mir_to_lir.h revision c93ac8b73b5772e43b6dd1cc9e1deee79ca68849
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEF2             (1ULL << kRegDef2)
60#define REG_DEFA             (1ULL << kRegDefA)
61#define REG_DEFD             (1ULL << kRegDefD)
62#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
63#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
64#define REG_DEF_LIST0        (1ULL << kRegDefList0)
65#define REG_DEF_LIST1        (1ULL << kRegDefList1)
66#define REG_DEF_LR           (1ULL << kRegDefLR)
67#define REG_DEF_SP           (1ULL << kRegDefSP)
68#define REG_USE0             (1ULL << kRegUse0)
69#define REG_USE1             (1ULL << kRegUse1)
70#define REG_USE2             (1ULL << kRegUse2)
71#define REG_USE3             (1ULL << kRegUse3)
72#define REG_USE4             (1ULL << kRegUse4)
73#define REG_USEA             (1ULL << kRegUseA)
74#define REG_USEC             (1ULL << kRegUseC)
75#define REG_USED             (1ULL << kRegUseD)
76#define REG_USEB             (1ULL << kRegUseB)
77#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
78#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
79#define REG_USE_LIST0        (1ULL << kRegUseList0)
80#define REG_USE_LIST1        (1ULL << kRegUseList1)
81#define REG_USE_LR           (1ULL << kRegUseLR)
82#define REG_USE_PC           (1ULL << kRegUsePC)
83#define REG_USE_SP           (1ULL << kRegUseSP)
84#define SETS_CCODES          (1ULL << kSetsCCodes)
85#define USES_CCODES          (1ULL << kUsesCCodes)
86#define USE_FP_STACK         (1ULL << kUseFpStack)
87#define REG_USE_LO           (1ULL << kUseLo)
88#define REG_USE_HI           (1ULL << kUseHi)
89#define REG_DEF_LO           (1ULL << kDefLo)
90#define REG_DEF_HI           (1ULL << kDefHi)
91
92// Common combo register usage patterns.
93#define REG_DEF01            (REG_DEF0 | REG_DEF1)
94#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
95#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
96#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
97#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
98#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
99#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
100#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
101#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
102#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
103#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
104#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
105#define REG_USE012           (REG_USE01 | REG_USE2)
106#define REG_USE014           (REG_USE01 | REG_USE4)
107#define REG_USE01            (REG_USE0 | REG_USE1)
108#define REG_USE02            (REG_USE0 | REG_USE2)
109#define REG_USE12            (REG_USE1 | REG_USE2)
110#define REG_USE23            (REG_USE2 | REG_USE3)
111#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
112
113// TODO: #includes need a cleanup
114#ifndef INVALID_SREG
115#define INVALID_SREG (-1)
116#endif
117
118struct BasicBlock;
119struct CallInfo;
120struct CompilationUnit;
121struct InlineMethod;
122struct MIR;
123struct LIR;
124struct RegLocation;
125struct RegisterInfo;
126class DexFileMethodInliner;
127class MIRGraph;
128class Mir2Lir;
129
130typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
131                            const MethodReference& target_method,
132                            uint32_t method_idx, uintptr_t direct_code,
133                            uintptr_t direct_method, InvokeType type);
134
135typedef std::vector<uint8_t> CodeBuffer;
136
137struct UseDefMasks {
138  uint64_t use_mask;        // Resource mask for use.
139  uint64_t def_mask;        // Resource mask for def.
140};
141
142struct AssemblyInfo {
143  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
144};
145
146struct LIR {
147  CodeOffset offset;             // Offset of this instruction.
148  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
149  int16_t opcode;
150  LIR* next;
151  LIR* prev;
152  LIR* target;
153  struct {
154    unsigned int alias_info:17;  // For Dalvik register disambiguation.
155    bool is_nop:1;               // LIR is optimized away.
156    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
157    bool use_def_invalid:1;      // If true, masks should not be used.
158    unsigned int generation:1;   // Used to track visitation state during fixup pass.
159    unsigned int fixup:8;        // Fixup kind.
160  } flags;
161  union {
162    UseDefMasks m;               // Use & Def masks used during optimization.
163    AssemblyInfo a;              // Instruction info used during assembly phase.
164  } u;
165  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
166};
167
168// Target-specific initialization.
169Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
170                          ArenaAllocator* const arena);
171Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
172                            ArenaAllocator* const arena);
173Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
174                          ArenaAllocator* const arena);
175Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
176                          ArenaAllocator* const arena);
177
178// Utility macros to traverse the LIR list.
179#define NEXT_LIR(lir) (lir->next)
180#define PREV_LIR(lir) (lir->prev)
181
182// Defines for alias_info (tracks Dalvik register references).
183#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
184#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
185#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
186#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
187
188// Common resource macros.
189#define ENCODE_CCODE            (1ULL << kCCode)
190#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
191
192// Abstract memory locations.
193#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
194#define ENCODE_LITERAL          (1ULL << kLiteral)
195#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
196#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
197
198#define ENCODE_ALL              (~0ULL)
199#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
200                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
201
202#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
203#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
204  do { \
205    low_reg = both_regs & 0xff; \
206    high_reg = (both_regs >> 8) & 0xff; \
207  } while (false)
208
209// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
210#define STARTING_DOUBLE_SREG 0x10000
211
212// TODO: replace these macros
213#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
214#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
215#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
216#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
217#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
218
219class Mir2Lir : public Backend {
220  public:
221    /*
222     * Auxiliary information describing the location of data embedded in the Dalvik
223     * byte code stream.
224     */
225    struct EmbeddedData {
226      CodeOffset offset;        // Code offset of data block.
227      const uint16_t* table;      // Original dex data.
228      DexOffset vaddr;            // Dalvik offset of parent opcode.
229    };
230
231    struct FillArrayData : EmbeddedData {
232      int32_t size;
233    };
234
235    struct SwitchTable : EmbeddedData {
236      LIR* anchor;                // Reference instruction for relative offsets.
237      LIR** targets;              // Array of case targets.
238    };
239
240    /* Static register use counts */
241    struct RefCounts {
242      int count;
243      int s_reg;
244    };
245
246    /*
247     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
248     * and native register storage.  The primary purpose is to reuse previuosly
249     * loaded values, if possible, and otherwise to keep the value in register
250     * storage as long as possible.
251     *
252     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
253     * this register (or pair).  For example, a 64-bit register containing a 32-bit
254     * Dalvik value would have wide_value==false even though the storage container itself
255     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
256     * would have wide_value==true (and additionally would have its partner field set to the
257     * other half whose wide_value field would also be true.
258     *
259     * NOTE 2: In the case of a register pair, you can determine which of the partners
260     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
261     *
262     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
263     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
264     * value, and the s_reg of the high word is implied (s_reg + 1).
265     *
266     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
267     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
268     * If is_temp==true and live==false, no other fields have
269     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
270     * and def_end describe the relationship between the temp register/register pair and
271     * the Dalvik value[s] described by s_reg/s_reg+1.
272     *
273     * The fields used_storage, master_storage and storage_mask are used to track allocation
274     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
275     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
276     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
277     * change once initialized.  The "used_storage" field tracks current allocation status.
278     * Although each record contains this field, only the field from the largest member of
279     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
280     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
281     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
282     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
283     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
284     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
285     *
286     * For an X86 vector register example, storage_mask would be:
287     *    0x00000001 for 32-bit view of xmm1
288     *    0x00000003 for 64-bit view of xmm1
289     *    0x0000000f for 128-bit view of xmm1
290     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
291     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
292     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
293     *
294     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
295     * held in the widest member of an aliased set.  Note, though, that for a temp register to
296     * reused as live, it must both be marked live and the associated SReg() must match the
297     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
298     * members of an aliased set will share the same liveness flags, but each will individually
299     * maintain s_reg_.  In this way we can know that at least one member of an
300     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
301     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
302     * because it is wide), its aliases s2 and s3 will show as live, but will have
303     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
304     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
305     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
306     * report that v9 is currently not live as a single (which is what we want).
307     *
308     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
309     * to treat xmm registers:
310     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
311     *         o This more closely matches reality, but means you'd need to be able to get
312     *           to the associated RegisterInfo struct to figure out how it's being used.
313     *         o This is how 64-bit core registers will be used - always 64 bits, but the
314     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
315     *     2. View the xmm registers based on contents.
316     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
317     *           be a k64BitVector.
318     *         o Note that the two uses above would be considered distinct registers (but with
319     *           the aliasing mechanism, we could detect interference).
320     *         o This is how aliased double and single float registers will be handled on
321     *           Arm and MIPS.
322     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
323     * mechanism 2 for aliased float registers and x86 vector registers.
324     */
325    class RegisterInfo {
326     public:
327      RegisterInfo(RegStorage r, uint64_t mask = ENCODE_ALL);
328      ~RegisterInfo() {}
329      static void* operator new(size_t size, ArenaAllocator* arena) {
330        return arena->Alloc(size, kArenaAllocRegAlloc);
331      }
332
333      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
334      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
335      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
336      // No part of the containing storage is live in this view.
337      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
338      // Liveness of this view matches.  Note: not equivalent to !IsDead().
339      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
340      void MarkLive() { master_->liveness_ |= storage_mask_; }
341      void MarkDead() {
342        master_->liveness_ &= ~storage_mask_;
343        SetSReg(INVALID_SREG);
344      }
345      RegStorage GetReg() { return reg_; }
346      void SetReg(RegStorage reg) { reg_ = reg; }
347      bool IsTemp() { return is_temp_; }
348      void SetIsTemp(bool val) { is_temp_ = val; }
349      bool IsWide() { return wide_value_; }
350      void SetIsWide(bool val) { wide_value_ = val; }
351      bool IsDirty() { return dirty_; }
352      void SetIsDirty(bool val) { dirty_ = val; }
353      RegStorage Partner() { return partner_; }
354      void SetPartner(RegStorage partner) { partner_ = partner; }
355      int SReg() { return s_reg_; }
356      void SetSReg(int s_reg) { s_reg_ = s_reg; }
357      uint64_t DefUseMask() { return def_use_mask_; }
358      void SetDefUseMask(uint64_t def_use_mask) { def_use_mask_ = def_use_mask; }
359      RegisterInfo* Master() { return master_; }
360      void SetMaster(RegisterInfo* master) {
361        master_ = master;
362        if (master != this) {
363          master_->aliased_ = true;
364          DCHECK(alias_chain_ == nullptr);
365          alias_chain_ = master_->alias_chain_;
366          master_->alias_chain_ = this;
367        }
368      }
369      bool IsAliased() { return aliased_; }
370      RegisterInfo* GetAliasChain() { return alias_chain_; }
371      uint32_t StorageMask() { return storage_mask_; }
372      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
373      LIR* DefStart() { return def_start_; }
374      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
375      LIR* DefEnd() { return def_end_; }
376      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
377      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
378
379
380     private:
381      RegStorage reg_;
382      bool is_temp_;               // Can allocate as temp?
383      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
384      bool dirty_;                 // If live, is it dirty?
385      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
386      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
387      int s_reg_;                  // Name of live value.
388      uint64_t def_use_mask_;      // Resources for this element.
389      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
390      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
391      RegisterInfo* master_;       // Pointer to controlling storage mask.
392      uint32_t storage_mask_;      // Track allocation of sub-units.
393      LIR *def_start_;             // Starting inst in last def sequence.
394      LIR *def_end_;               // Ending inst in last def sequence.
395      RegisterInfo* alias_chain_;  // Chain of aliased registers.
396    };
397
398    class RegisterPool {
399     public:
400      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena, const std::vector<RegStorage>& core_regs,
401                   const std::vector<RegStorage>& sp_regs, const std::vector<RegStorage>& dp_regs,
402                   const std::vector<RegStorage>& reserved_regs,
403                   const std::vector<RegStorage>& core_temps,
404                   const std::vector<RegStorage>& sp_temps,
405                   const std::vector<RegStorage>& dp_temps);
406      ~RegisterPool() {}
407      static void* operator new(size_t size, ArenaAllocator* arena) {
408        return arena->Alloc(size, kArenaAllocRegAlloc);
409      }
410      void ResetNextTemp() {
411        next_core_reg_ = 0;
412        next_sp_reg_ = 0;
413        next_dp_reg_ = 0;
414      }
415      GrowableArray<RegisterInfo*> core_regs_;
416      int next_core_reg_;
417      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
418      int next_sp_reg_;
419      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
420      int next_dp_reg_;
421
422     private:
423      Mir2Lir* const m2l_;
424    };
425
426    struct PromotionMap {
427      RegLocationType core_location:3;
428      uint8_t core_reg;
429      RegLocationType fp_location:3;
430      uint8_t FpReg;
431      bool first_in_pair;
432    };
433
434    //
435    // Slow paths.  This object is used generate a sequence of code that is executed in the
436    // slow path.  For example, resolving a string or class is slow as it will only be executed
437    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
438    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
439    // branch over them.
440    //
441    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
442    // the Compile() function that will be called near the end of the code generated by the
443    // method.
444    //
445    // The basic flow for a slow path is:
446    //
447    //     CMP reg, #value
448    //     BEQ fromfast
449    //   cont:
450    //     ...
451    //     fast path code
452    //     ...
453    //     more code
454    //     ...
455    //     RETURN
456    ///
457    //   fromfast:
458    //     ...
459    //     slow path code
460    //     ...
461    //     B cont
462    //
463    // So you see we need two labels and two branches.  The first branch (called fromfast) is
464    // the conditional branch to the slow path code.  The second label (called cont) is used
465    // as an unconditional branch target for getting back to the code after the slow path
466    // has completed.
467    //
468
469    class LIRSlowPath {
470     public:
471      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
472                  LIR* cont = nullptr) :
473        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
474      }
475      virtual ~LIRSlowPath() {}
476      virtual void Compile() = 0;
477
478      static void* operator new(size_t size, ArenaAllocator* arena) {
479        return arena->Alloc(size, kArenaAllocData);
480      }
481
482     protected:
483      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
484
485      Mir2Lir* const m2l_;
486      CompilationUnit* const cu_;
487      const DexOffset current_dex_pc_;
488      LIR* const fromfast_;
489      LIR* const cont_;
490    };
491
492    virtual ~Mir2Lir() {}
493
494    int32_t s4FromSwitchData(const void* switch_data) {
495      return *reinterpret_cast<const int32_t*>(switch_data);
496    }
497
498    /*
499     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
500     * it was introduced, it was intended to be a quick best guess of type without having to
501     * take the time to do type analysis.  Currently, though, we have a much better idea of
502     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
503     * just use our knowledge of type to select the most appropriate register class?
504     */
505    RegisterClass RegClassBySize(OpSize size) {
506      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
507              size == kSignedByte) ? kCoreReg : kAnyReg;
508    }
509
510    size_t CodeBufferSizeInBytes() {
511      return code_buffer_.size() / sizeof(code_buffer_[0]);
512    }
513
514    static bool IsPseudoLirOp(int opcode) {
515      return (opcode < 0);
516    }
517
518    /*
519     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
520     * instructions which require PC-relative fixups), we need the operands to carry
521     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
522     * hold that index in the operand array.
523     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
524     * may be worth conditionally-compiling a set of identity functions here.
525     */
526    uint32_t WrapPointer(void* pointer) {
527      uint32_t res = pointer_storage_.Size();
528      pointer_storage_.Insert(pointer);
529      return res;
530    }
531
532    void* UnwrapPointer(size_t index) {
533      return pointer_storage_.Get(index);
534    }
535
536    // strdup(), but allocates from the arena.
537    char* ArenaStrdup(const char* str) {
538      size_t len = strlen(str) + 1;
539      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
540      if (res != NULL) {
541        strncpy(res, str, len);
542      }
543      return res;
544    }
545
546    // Shared by all targets - implemented in codegen_util.cc
547    void AppendLIR(LIR* lir);
548    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
549    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
550
551    /**
552     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
553     * to place in a frame.
554     * @return Returns the maximum number of compiler temporaries.
555     */
556    size_t GetMaxPossibleCompilerTemps() const;
557
558    /**
559     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
560     * @return Returns the size in bytes for space needed for compiler temporary spill region.
561     */
562    size_t GetNumBytesForCompilerTempSpillRegion();
563
564    DexOffset GetCurrentDexPc() const {
565      return current_dalvik_offset_;
566    }
567
568    int ComputeFrameSize();
569    virtual void Materialize();
570    virtual CompiledMethod* GetCompiledMethod();
571    void MarkSafepointPC(LIR* inst);
572    void SetupResourceMasks(LIR* lir);
573    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
574    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
575    void SetupRegMask(uint64_t* mask, int reg);
576    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
577    void DumpPromotionMap();
578    void CodegenDump();
579    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
580                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
581    LIR* NewLIR0(int opcode);
582    LIR* NewLIR1(int opcode, int dest);
583    LIR* NewLIR2(int opcode, int dest, int src1);
584    LIR* NewLIR2NoDest(int opcode, int src, int info);
585    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
586    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
587    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
588    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
589    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
590    LIR* AddWordData(LIR* *constant_list_p, int value);
591    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
592    void ProcessSwitchTables();
593    void DumpSparseSwitchTable(const uint16_t* table);
594    void DumpPackedSwitchTable(const uint16_t* table);
595    void MarkBoundary(DexOffset offset, const char* inst_str);
596    void NopLIR(LIR* lir);
597    void UnlinkLIR(LIR* lir);
598    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
599    bool IsInexpensiveConstant(RegLocation rl_src);
600    ConditionCode FlipComparisonOrder(ConditionCode before);
601    ConditionCode NegateComparison(ConditionCode before);
602    virtual void InstallLiteralPools();
603    void InstallSwitchTables();
604    void InstallFillArrayData();
605    bool VerifyCatchEntries();
606    void CreateMappingTables();
607    void CreateNativeGcMap();
608    int AssignLiteralOffset(CodeOffset offset);
609    int AssignSwitchTablesOffset(CodeOffset offset);
610    int AssignFillArrayDataOffset(CodeOffset offset);
611    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
612    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
613    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
614    // Handle bookkeeping to convert a wide RegLocation to a narow RegLocation.  No code generated.
615    RegLocation NarrowRegLoc(RegLocation loc);
616
617    // Shared by all targets - implemented in local_optimizations.cc
618    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
619    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
620    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
621    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
622
623    // Shared by all targets - implemented in ralloc_util.cc
624    int GetSRegHi(int lowSreg);
625    bool LiveOut(int s_reg);
626    void SimpleRegAlloc();
627    void ResetRegPool();
628    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
629    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
630    void DumpCoreRegPool();
631    void DumpFpRegPool();
632    void DumpRegPools();
633    /* Mark a temp register as dead.  Does not affect allocation state. */
634    void Clobber(RegStorage reg);
635    void ClobberSReg(int s_reg);
636    void ClobberAliases(RegisterInfo* info);
637    int SRegToPMap(int s_reg);
638    void RecordCorePromotion(RegStorage reg, int s_reg);
639    RegStorage AllocPreservedCoreReg(int s_reg);
640    void RecordSinglePromotion(RegStorage reg, int s_reg);
641    void RecordDoublePromotion(RegStorage reg, int s_reg);
642    RegStorage AllocPreservedSingle(int s_reg);
643    virtual RegStorage AllocPreservedDouble(int s_reg);
644    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
645    RegStorage AllocFreeTemp();
646    RegStorage AllocTemp();
647    RegStorage AllocTempSingle();
648    RegStorage AllocTempDouble();
649    void FlushReg(RegStorage reg);
650    void FlushRegWide(RegStorage reg);
651    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
652    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
653    void FreeTemp(RegStorage reg);
654    bool IsLive(RegStorage reg);
655    bool IsTemp(RegStorage reg);
656    bool IsPromoted(RegStorage reg);
657    bool IsDirty(RegStorage reg);
658    void LockTemp(RegStorage reg);
659    void ResetDef(RegStorage reg);
660    void NullifyRange(RegStorage reg, int s_reg);
661    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
662    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
663    RegLocation WideToNarrow(RegLocation rl);
664    void ResetDefLoc(RegLocation rl);
665    void ResetDefLocWide(RegLocation rl);
666    void ResetDefTracking();
667    void ClobberAllTemps();
668    void FlushSpecificReg(RegisterInfo* info);
669    void FlushAllRegs();
670    bool RegClassMatches(int reg_class, RegStorage reg);
671    void MarkLive(RegLocation loc);
672    void MarkLiveReg(RegStorage reg, int s_reg);
673    void MarkTemp(RegStorage reg);
674    void UnmarkTemp(RegStorage reg);
675    void MarkWide(RegStorage reg);
676    void MarkClean(RegLocation loc);
677    void MarkDirty(RegLocation loc);
678    void MarkInUse(RegStorage reg);
679    bool CheckCorePoolSanity();
680    RegLocation UpdateLoc(RegLocation loc);
681    RegLocation UpdateLocWide(RegLocation loc);
682    RegLocation UpdateRawLoc(RegLocation loc);
683
684    /**
685     * @brief Used to prepare a register location to receive a wide value.
686     * @see EvalLoc
687     * @param loc the location where the value will be stored.
688     * @param reg_class Type of register needed.
689     * @param update Whether the liveness information should be updated.
690     * @return Returns the properly typed temporary in physical register pairs.
691     */
692    RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
693
694    /**
695     * @brief Used to prepare a register location to receive a value.
696     * @param loc the location where the value will be stored.
697     * @param reg_class Type of register needed.
698     * @param update Whether the liveness information should be updated.
699     * @return Returns the properly typed temporary in physical register.
700     */
701    RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
702
703    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
704    void DumpCounts(const RefCounts* arr, int size, const char* msg);
705    void DoPromotion();
706    int VRegOffset(int v_reg);
707    int SRegOffset(int s_reg);
708    RegLocation GetReturnWide(bool is_double);
709    RegLocation GetReturn(bool is_float);
710    RegisterInfo* GetRegInfo(RegStorage reg);
711
712    // Shared by all targets - implemented in gen_common.cc.
713    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
714    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
715                          RegLocation rl_src, RegLocation rl_dest, int lit);
716    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
717    void HandleSlowPaths();
718    void GenBarrier();
719    void GenDivZeroException();
720    // c_code holds condition code that's generated from testing divisor against 0.
721    void GenDivZeroCheck(ConditionCode c_code);
722    // reg holds divisor.
723    void GenDivZeroCheck(RegStorage reg);
724    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
725    void GenArrayBoundsCheck(int32_t index, RegStorage length);
726    LIR* GenNullCheck(RegStorage reg);
727    void MarkPossibleNullPointerException(int opt_flags);
728    void MarkPossibleStackOverflowException();
729    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
730    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
731    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
732    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
733    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
734                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
735    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
736                                 LIR* taken, LIR* fall_through);
737    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
738    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
739                         RegLocation rl_src);
740    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
741                     RegLocation rl_src);
742    void GenFilledNewArray(CallInfo* info);
743    void GenSput(MIR* mir, RegLocation rl_src,
744                 bool is_long_or_double, bool is_object);
745    void GenSget(MIR* mir, RegLocation rl_dest,
746                 bool is_long_or_double, bool is_object);
747    void GenIGet(MIR* mir, int opt_flags, OpSize size,
748                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
749    void GenIPut(MIR* mir, int opt_flags, OpSize size,
750                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
751    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
752                        RegLocation rl_src);
753
754    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
755    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
756    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
757    void GenThrow(RegLocation rl_src);
758    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
759    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
760    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
761                      RegLocation rl_src1, RegLocation rl_src2);
762    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
763                        RegLocation rl_src1, RegLocation rl_shift);
764    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
765                          RegLocation rl_src, int lit);
766    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
767                        RegLocation rl_src1, RegLocation rl_src2);
768    template <size_t pointer_size>
769    void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest,
770                           RegLocation rl_src);
771    void GenSuspendTest(int opt_flags);
772    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
773
774    // This will be overridden by x86 implementation.
775    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
776    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
777                       RegLocation rl_src1, RegLocation rl_src2);
778
779    // Shared by all targets - implemented in gen_invoke.cc.
780    template <size_t pointer_size>
781    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc,
782                    bool use_link = true);
783    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
784    RegStorage CallHelperSetup(ThreadOffset<8> helper_offset);
785    template <size_t pointer_size>
786    void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc);
787    template <size_t pointer_size>
788    void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc);
789    template <size_t pointer_size>
790    void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc);
791    template <size_t pointer_size>
792    void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
793                                      bool safepoint_pc);
794    template <size_t pointer_size>
795    void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1,
796                                 bool safepoint_pc);
797    template <size_t pointer_size>
798    void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
799                                         RegLocation arg1, bool safepoint_pc);
800    template <size_t pointer_size>
801    void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
802                                         int arg1, bool safepoint_pc);
803    template <size_t pointer_size>
804    void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1,
805                                 bool safepoint_pc);
806    template <size_t pointer_size>
807    void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1,
808                                 bool safepoint_pc);
809    template <size_t pointer_size>
810    void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0,
811                                    bool safepoint_pc);
812    template <size_t pointer_size>
813    void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
814                                    bool safepoint_pc);
815    template <size_t pointer_size>
816    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset,
817                                               RegStorage arg0, RegLocation arg2, bool safepoint_pc);
818    template <size_t pointer_size>
819    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
820                                                 RegLocation arg0, RegLocation arg1,
821                                                 bool safepoint_pc);
822    template <size_t pointer_size>
823    void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
824                                 RegStorage arg1, bool safepoint_pc);
825    template <size_t pointer_size>
826    void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
827                                    RegStorage arg1, int arg2, bool safepoint_pc);
828    template <size_t pointer_size>
829    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
830                                               RegLocation arg2, bool safepoint_pc);
831    template <size_t pointer_size>
832    void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2,
833                                       bool safepoint_pc);
834    template <size_t pointer_size>
835    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
836                                                    int arg0, RegLocation arg1, RegLocation arg2,
837                                                    bool safepoint_pc);
838    template <size_t pointer_size>
839    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
840                                                            RegLocation arg0, RegLocation arg1,
841                                                            RegLocation arg2,
842                                                            bool safepoint_pc);
843    void GenInvoke(CallInfo* info);
844    void GenInvokeNoInline(CallInfo* info);
845    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
846    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
847                             NextCallInsn next_call_insn,
848                             const MethodReference& target_method,
849                             uint32_t vtable_idx,
850                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
851                             bool skip_this);
852    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
853                           NextCallInsn next_call_insn,
854                           const MethodReference& target_method,
855                           uint32_t vtable_idx,
856                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
857                           bool skip_this);
858
859    /**
860     * @brief Used to determine the register location of destination.
861     * @details This is needed during generation of inline intrinsics because it finds destination
862     *  of return,
863     * either the physical register or the target of move-result.
864     * @param info Information about the invoke.
865     * @return Returns the destination location.
866     */
867    RegLocation InlineTarget(CallInfo* info);
868
869    /**
870     * @brief Used to determine the wide register location of destination.
871     * @see InlineTarget
872     * @param info Information about the invoke.
873     * @return Returns the destination location.
874     */
875    RegLocation InlineTargetWide(CallInfo* info);
876
877    bool GenInlinedCharAt(CallInfo* info);
878    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
879    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
880    bool GenInlinedAbsInt(CallInfo* info);
881    bool GenInlinedAbsLong(CallInfo* info);
882    bool GenInlinedAbsFloat(CallInfo* info);
883    bool GenInlinedAbsDouble(CallInfo* info);
884    bool GenInlinedFloatCvt(CallInfo* info);
885    bool GenInlinedDoubleCvt(CallInfo* info);
886    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
887    bool GenInlinedStringCompareTo(CallInfo* info);
888    bool GenInlinedCurrentThread(CallInfo* info);
889    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
890    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
891                             bool is_volatile, bool is_ordered);
892    virtual int LoadArgRegs(CallInfo* info, int call_state,
893                    NextCallInsn next_call_insn,
894                    const MethodReference& target_method,
895                    uint32_t vtable_idx,
896                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
897                    bool skip_this);
898
899    // Shared by all targets - implemented in gen_loadstore.cc.
900    RegLocation LoadCurrMethod();
901    void LoadCurrMethodDirect(RegStorage r_tgt);
902    LIR* LoadConstant(RegStorage r_dest, int value);
903    // Natural word size.
904    LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
905      return LoadBaseDisp(r_base, displacement, r_dest, kWord);
906    }
907    // Load 32 bits, regardless of target.
908    LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
909      return LoadBaseDisp(r_base, displacement, r_dest, k32);
910    }
911    // Load a reference at base + displacement and decompress into register.
912    LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
913      return LoadBaseDisp(r_base, displacement, r_dest, kReference);
914    }
915    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
916    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
917    // Load Dalvik value with 64-bit memory storage.
918    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
919    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
920    void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
921    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
922    void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
923    // Load Dalvik value with 64-bit memory storage.
924    void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
925    // Load Dalvik value with 64-bit memory storage.
926    void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
927    // Store an item of natural word size.
928    LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
929      return StoreBaseDisp(r_base, displacement, r_src, kWord);
930    }
931    // Store an uncompressed reference into a compressed 32-bit container.
932    LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src) {
933      return StoreBaseDisp(r_base, displacement, r_src, kReference);
934    }
935    // Store 32 bits, regardless of target.
936    LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
937      return StoreBaseDisp(r_base, displacement, r_src, k32);
938    }
939
940    /**
941     * @brief Used to do the final store in the destination as per bytecode semantics.
942     * @param rl_dest The destination dalvik register location.
943     * @param rl_src The source register location. Can be either physical register or dalvik register.
944     */
945    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
946
947    /**
948     * @brief Used to do the final store in a wide destination as per bytecode semantics.
949     * @see StoreValue
950     * @param rl_dest The destination dalvik register location.
951     * @param rl_src The source register location. Can be either physical register or dalvik
952     *  register.
953     */
954    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
955
956    /**
957     * @brief Used to do the final store to a destination as per bytecode semantics.
958     * @see StoreValue
959     * @param rl_dest The destination dalvik register location.
960     * @param rl_src The source register location. It must be kLocPhysReg
961     *
962     * This is used for x86 two operand computations, where we have computed the correct
963     * register value that now needs to be properly registered.  This is used to avoid an
964     * extra register copy that would result if StoreValue was called.
965     */
966    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
967
968    /**
969     * @brief Used to do the final store in a wide destination as per bytecode semantics.
970     * @see StoreValueWide
971     * @param rl_dest The destination dalvik register location.
972     * @param rl_src The source register location. It must be kLocPhysReg
973     *
974     * This is used for x86 two operand computations, where we have computed the correct
975     * register values that now need to be properly registered.  This is used to avoid an
976     * extra pair of register copies that would result if StoreValueWide was called.
977     */
978    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
979
980    // Shared by all targets - implemented in mir_to_lir.cc.
981    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
982    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
983    bool MethodBlockCodeGen(BasicBlock* bb);
984    bool SpecialMIR2LIR(const InlineMethod& special);
985    void MethodMIR2LIR();
986    // Update LIR for verbose listings.
987    void UpdateLIROffsets();
988
989    /*
990     * @brief Load the address of the dex method into the register.
991     * @param target_method The MethodReference of the method to be invoked.
992     * @param type How the method will be invoked.
993     * @param register that will contain the code address.
994     * @note register will be passed to TargetReg to get physical register.
995     */
996    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
997                         SpecialTargetRegister symbolic_reg);
998
999    /*
1000     * @brief Load the Method* of a dex method into the register.
1001     * @param target_method The MethodReference of the method to be invoked.
1002     * @param type How the method will be invoked.
1003     * @param register that will contain the code address.
1004     * @note register will be passed to TargetReg to get physical register.
1005     */
1006    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1007                                   SpecialTargetRegister symbolic_reg);
1008
1009    /*
1010     * @brief Load the Class* of a Dex Class type into the register.
1011     * @param type How the method will be invoked.
1012     * @param register that will contain the code address.
1013     * @note register will be passed to TargetReg to get physical register.
1014     */
1015    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
1016
1017    // Routines that work for the generic case, but may be overriden by target.
1018    /*
1019     * @brief Compare memory to immediate, and branch if condition true.
1020     * @param cond The condition code that when true will branch to the target.
1021     * @param temp_reg A temporary register that can be used if compare to memory is not
1022     * supported by the architecture.
1023     * @param base_reg The register holding the base address.
1024     * @param offset The offset from the base.
1025     * @param check_value The immediate to compare to.
1026     * @returns The branch instruction that was generated.
1027     */
1028    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1029                                   int offset, int check_value, LIR* target);
1030
1031    // Required for target - codegen helpers.
1032    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1033                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1034    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1035    virtual LIR* CheckSuspendUsingLoad() = 0;
1036
1037    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
1038    virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0;
1039
1040    virtual LIR* LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
1041                                      OpSize size) = 0;
1042    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1043                              OpSize size) = 0;
1044    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1045                                 int scale, OpSize size) = 0;
1046    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1047                                     int displacement, RegStorage r_dest, OpSize size) = 0;
1048    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1049    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1050    virtual LIR* StoreBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_src,
1051                                       OpSize size) = 0;
1052    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1053                               OpSize size) = 0;
1054    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1055                                  int scale, OpSize size) = 0;
1056    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1057                                      int displacement, RegStorage r_src, OpSize size) = 0;
1058    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1059
1060    // Required for target - register utilities.
1061    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class) = 0;
1062    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class) = 0;
1063    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1064    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1065    virtual RegLocation GetReturnAlt() = 0;
1066    virtual RegLocation GetReturnWideAlt() = 0;
1067    virtual RegLocation LocCReturn() = 0;
1068    virtual RegLocation LocCReturnDouble() = 0;
1069    virtual RegLocation LocCReturnFloat() = 0;
1070    virtual RegLocation LocCReturnWide() = 0;
1071    virtual uint64_t GetRegMaskCommon(RegStorage reg) = 0;
1072    virtual void AdjustSpillMask() = 0;
1073    virtual void ClobberCallerSave() = 0;
1074    virtual void FreeCallTemps() = 0;
1075    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
1076    virtual void LockCallTemps() = 0;
1077    virtual void MarkPreservedSingle(int v_reg, RegStorage reg) = 0;
1078    virtual void MarkPreservedDouble(int v_reg, RegStorage reg) = 0;
1079    virtual void CompilerInitializeRegAlloc() = 0;
1080
1081    // Required for target - miscellaneous.
1082    virtual void AssembleLIR() = 0;
1083    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
1084    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
1085    virtual const char* GetTargetInstFmt(int opcode) = 0;
1086    virtual const char* GetTargetInstName(int opcode) = 0;
1087    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1088    virtual uint64_t GetPCUseDefEncoding() = 0;
1089    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1090    virtual int GetInsnSize(LIR* lir) = 0;
1091    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1092
1093    // Check support for volatile load/store of a given size.
1094    virtual bool SupportsVolatileLoadStore(OpSize size) = 0;
1095    // Get the register class for load/store of a field.
1096    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1097
1098    // Required for target - Dalvik-level generators.
1099    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1100                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1101    virtual void GenMulLong(Instruction::Code,
1102                            RegLocation rl_dest, RegLocation rl_src1,
1103                            RegLocation rl_src2) = 0;
1104    virtual void GenAddLong(Instruction::Code,
1105                            RegLocation rl_dest, RegLocation rl_src1,
1106                            RegLocation rl_src2) = 0;
1107    virtual void GenAndLong(Instruction::Code,
1108                            RegLocation rl_dest, RegLocation rl_src1,
1109                            RegLocation rl_src2) = 0;
1110    virtual void GenArithOpDouble(Instruction::Code opcode,
1111                                  RegLocation rl_dest, RegLocation rl_src1,
1112                                  RegLocation rl_src2) = 0;
1113    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1114                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1115    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1116                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1117    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1118                               RegLocation rl_src) = 0;
1119    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1120
1121    /**
1122     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1123     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1124     * that applies on integers. The generated code will write the smallest or largest value
1125     * directly into the destination register as specified by the invoke information.
1126     * @param info Information about the invoke.
1127     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1128     * @return Returns true if successfully generated
1129     */
1130    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
1131
1132    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1133    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1134    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1135    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1136    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1137                           RegLocation rl_src2) = 0;
1138    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1139                            RegLocation rl_src2) = 0;
1140    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1141                            RegLocation rl_src2) = 0;
1142    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1143                                  bool is_div) = 0;
1144    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1145                                     bool is_div) = 0;
1146    /*
1147     * @brief Generate an integer div or rem operation by a literal.
1148     * @param rl_dest Destination Location.
1149     * @param rl_src1 Numerator Location.
1150     * @param rl_src2 Divisor Location.
1151     * @param is_div 'true' if this is a division, 'false' for a remainder.
1152     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1153     */
1154    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1155                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1156    /*
1157     * @brief Generate an integer div or rem operation by a literal.
1158     * @param rl_dest Destination Location.
1159     * @param rl_src Numerator Location.
1160     * @param lit Divisor.
1161     * @param is_div 'true' if this is a division, 'false' for a remainder.
1162     */
1163    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1164                                     bool is_div) = 0;
1165    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1166
1167    /**
1168     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1169     * @details This is used for generating DivideByZero checks when divisor is held in two
1170     *  separate registers.
1171     * @param reg The register holding the pair of 32-bit values.
1172     */
1173    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1174
1175    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1176    virtual void GenExitSequence() = 0;
1177    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1178    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1179    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1180
1181    /**
1182     * @brief Lowers the kMirOpSelect MIR into LIR.
1183     * @param bb The basic block in which the MIR is from.
1184     * @param mir The MIR whose opcode is kMirOpSelect.
1185     */
1186    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1187
1188    /**
1189     * @brief Used to generate a memory barrier in an architecture specific way.
1190     * @details The last generated LIR will be considered for use as barrier. Namely,
1191     * if the last LIR can be updated in a way where it will serve the semantics of
1192     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1193     * that can keep the semantics.
1194     * @param barrier_kind The kind of memory barrier to generate.
1195     */
1196    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1197
1198    virtual void GenMoveException(RegLocation rl_dest) = 0;
1199    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1200                                               int first_bit, int second_bit) = 0;
1201    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1202    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1203    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1204    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1205    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1206                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1207    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1208                             RegLocation rl_index, RegLocation rl_src, int scale,
1209                             bool card_mark) = 0;
1210    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1211                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1212
1213    // Required for target - single operation generators.
1214    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1215    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1216    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1217                                LIR* target) = 0;
1218    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1219    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1220    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1221    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1222    virtual void OpEndIT(LIR* it) = 0;
1223    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1224    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1225    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1226    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1227    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1228    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1229    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1230    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1231
1232    /**
1233     * @brief Used to generate an LIR that does a load from mem to reg.
1234     * @param r_dest The destination physical register.
1235     * @param r_base The base physical register for memory operand.
1236     * @param offset The displacement for memory operand.
1237     * @param move_type Specification on the move desired (size, alignment, register kind).
1238     * @return Returns the generate move LIR.
1239     */
1240    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1241                             MoveType move_type) = 0;
1242
1243    /**
1244     * @brief Used to generate an LIR that does a store from reg to mem.
1245     * @param r_base The base physical register for memory operand.
1246     * @param offset The displacement for memory operand.
1247     * @param r_src The destination physical register.
1248     * @param bytes_to_move The number of bytes to move.
1249     * @param is_aligned Whether the memory location is known to be aligned.
1250     * @return Returns the generate move LIR.
1251     */
1252    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1253                             MoveType move_type) = 0;
1254
1255    /**
1256     * @brief Used for generating a conditional register to register operation.
1257     * @param op The opcode kind.
1258     * @param cc The condition code that when true will perform the opcode.
1259     * @param r_dest The destination physical register.
1260     * @param r_src The source physical register.
1261     * @return Returns the newly created LIR or null in case of creation failure.
1262     */
1263    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1264
1265    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1266    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1267                             RegStorage r_src2) = 0;
1268    virtual LIR* OpTestSuspend(LIR* target) = 0;
1269    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1270    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0;
1271    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1272    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1273    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1274                       int offset) = 0;
1275    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1276    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1277    virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0;
1278    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1279    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1280    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1281    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1282
1283    // May be optimized by targets.
1284    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1285    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1286
1287    // Temp workaround
1288    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1289
1290  protected:
1291    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1292
1293    CompilationUnit* GetCompilationUnit() {
1294      return cu_;
1295    }
1296    /*
1297     * @brief Returns the index of the lowest set bit in 'x'.
1298     * @param x Value to be examined.
1299     * @returns The bit number of the lowest bit set in the value.
1300     */
1301    int32_t LowestSetBit(uint64_t x);
1302    /*
1303     * @brief Is this value a power of two?
1304     * @param x Value to be examined.
1305     * @returns 'true' if only 1 bit is set in the value.
1306     */
1307    bool IsPowerOfTwo(uint64_t x);
1308    /*
1309     * @brief Do these SRs overlap?
1310     * @param rl_op1 One RegLocation
1311     * @param rl_op2 The other RegLocation
1312     * @return 'true' if the VR pairs overlap
1313     *
1314     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1315     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1316     * dex, we'll want to make this case illegal.
1317     */
1318    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1319
1320    /*
1321     * @brief Force a location (in a register) into a temporary register
1322     * @param loc location of result
1323     * @returns update location
1324     */
1325    RegLocation ForceTemp(RegLocation loc);
1326
1327    /*
1328     * @brief Force a wide location (in registers) into temporary registers
1329     * @param loc location of result
1330     * @returns update location
1331     */
1332    RegLocation ForceTempWide(RegLocation loc);
1333
1334    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1335      return wide ? k64 : ref ? kReference : k32;
1336    }
1337
1338    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1339                                    RegLocation rl_dest, RegLocation rl_src);
1340
1341    void AddSlowPath(LIRSlowPath* slowpath);
1342
1343    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1344                                            bool type_known_abstract, bool use_declaring_class,
1345                                            bool can_assume_type_is_in_dex_cache,
1346                                            uint32_t type_idx, RegLocation rl_dest,
1347                                            RegLocation rl_src);
1348    /*
1349     * @brief Generate the debug_frame FDE information if possible.
1350     * @returns pointer to vector containg CFE information, or NULL.
1351     */
1352    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1353
1354    /**
1355     * @brief Used to insert marker that can be used to associate MIR with LIR.
1356     * @details Only inserts marker if verbosity is enabled.
1357     * @param mir The mir that is currently being generated.
1358     */
1359    void GenPrintLabel(MIR* mir);
1360
1361    /**
1362     * @brief Used to generate return sequence when there is no frame.
1363     * @details Assumes that the return registers have already been populated.
1364     */
1365    virtual void GenSpecialExitSequence() = 0;
1366
1367    /**
1368     * @brief Used to generate code for special methods that are known to be
1369     * small enough to work in frameless mode.
1370     * @param bb The basic block of the first MIR.
1371     * @param mir The first MIR of the special method.
1372     * @param special Information about the special method.
1373     * @return Returns whether or not this was handled successfully. Returns false
1374     * if caller should punt to normal MIR2LIR conversion.
1375     */
1376    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1377
1378  private:
1379    void ClobberBody(RegisterInfo* p);
1380    void SetCurrentDexPc(DexOffset dexpc) {
1381      current_dalvik_offset_ = dexpc;
1382    }
1383
1384    /**
1385     * @brief Used to lock register if argument at in_position was passed that way.
1386     * @details Does nothing if the argument is passed via stack.
1387     * @param in_position The argument number whose register to lock.
1388     * @param wide Whether the argument is wide.
1389     */
1390    void LockArg(int in_position, bool wide = false);
1391
1392    /**
1393     * @brief Used to load VR argument to a physical register.
1394     * @details The load is only done if the argument is not already in physical register.
1395     * LockArg must have been previously called.
1396     * @param in_position The argument number to load.
1397     * @param wide Whether the argument is 64-bit or not.
1398     * @return Returns the register (or register pair) for the loaded argument.
1399     */
1400    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1401
1402    /**
1403     * @brief Used to load a VR argument directly to a specified register location.
1404     * @param in_position The argument number to place in register.
1405     * @param rl_dest The register location where to place argument.
1406     */
1407    void LoadArgDirect(int in_position, RegLocation rl_dest);
1408
1409    /**
1410     * @brief Used to generate LIR for special getter method.
1411     * @param mir The mir that represents the iget.
1412     * @param special Information about the special getter method.
1413     * @return Returns whether LIR was successfully generated.
1414     */
1415    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1416
1417    /**
1418     * @brief Used to generate LIR for special setter method.
1419     * @param mir The mir that represents the iput.
1420     * @param special Information about the special setter method.
1421     * @return Returns whether LIR was successfully generated.
1422     */
1423    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1424
1425    /**
1426     * @brief Used to generate LIR for special return-args method.
1427     * @param mir The mir that represents the return of argument.
1428     * @param special Information about the special return-args method.
1429     * @return Returns whether LIR was successfully generated.
1430     */
1431    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1432
1433    void AddDivZeroCheckSlowPath(LIR* branch);
1434
1435    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1436    // kArg2 as temp.
1437    void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1438
1439  public:
1440    // TODO: add accessors for these.
1441    LIR* literal_list_;                        // Constants.
1442    LIR* method_literal_list_;                 // Method literals requiring patching.
1443    LIR* class_literal_list_;                  // Class literals requiring patching.
1444    LIR* code_literal_list_;                   // Code literals requiring patching.
1445    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1446
1447  protected:
1448    CompilationUnit* const cu_;
1449    MIRGraph* const mir_graph_;
1450    GrowableArray<SwitchTable*> switch_tables_;
1451    GrowableArray<FillArrayData*> fill_array_data_;
1452    GrowableArray<RegisterInfo*> tempreg_info_;
1453    GrowableArray<RegisterInfo*> reginfo_map_;
1454    GrowableArray<void*> pointer_storage_;
1455    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1456    CodeOffset data_offset_;            // starting offset of literal pool.
1457    size_t total_size_;                   // header + code size.
1458    LIR* block_label_list_;
1459    PromotionMap* promotion_map_;
1460    /*
1461     * TODO: The code generation utilities don't have a built-in
1462     * mechanism to propagate the original Dalvik opcode address to the
1463     * associated generated instructions.  For the trace compiler, this wasn't
1464     * necessary because the interpreter handled all throws and debugging
1465     * requests.  For now we'll handle this by placing the Dalvik offset
1466     * in the CompilationUnit struct before codegen for each instruction.
1467     * The low-level LIR creation utilites will pull it from here.  Rework this.
1468     */
1469    DexOffset current_dalvik_offset_;
1470    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1471    RegisterPool* reg_pool_;
1472    /*
1473     * Sanity checking for the register temp tracking.  The same ssa
1474     * name should never be associated with one temp register per
1475     * instruction compilation.
1476     */
1477    int live_sreg_;
1478    CodeBuffer code_buffer_;
1479    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1480    std::vector<uint8_t> encoded_mapping_table_;
1481    std::vector<uint32_t> core_vmap_table_;
1482    std::vector<uint32_t> fp_vmap_table_;
1483    std::vector<uint8_t> native_gc_map_;
1484    int num_core_spills_;
1485    int num_fp_spills_;
1486    int frame_size_;
1487    unsigned int core_spill_mask_;
1488    unsigned int fp_spill_mask_;
1489    LIR* first_lir_insn_;
1490    LIR* last_lir_insn_;
1491
1492    GrowableArray<LIRSlowPath*> slow_paths_;
1493};  // Class Mir2Lir
1494
1495}  // namespace art
1496
1497#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1498