mir_to_lir.h revision da96aeda912ff317de2c41e5a49bd244427238ac
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "arch/instruction_set.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_location.h"
25#include "dex/reg_storage.h"
26#include "dex/backend.h"
27#include "dex/quick/resource_mask.h"
28#include "driver/compiler_driver.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "invoke_type.h"
31#include "leb128.h"
32#include "safe_map.h"
33#include "utils/array_ref.h"
34#include "utils/arena_allocator.h"
35#include "utils/arena_containers.h"
36#include "utils/arena_object.h"
37#include "utils/stack_checks.h"
38
39namespace art {
40
41// Set to 1 to measure cost of suspend check.
42#define NO_SUSPEND 0
43
44#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
45#define IS_BRANCH            (1ULL << kIsBranch)
46#define IS_IT                (1ULL << kIsIT)
47#define IS_MOVE              (1ULL << kIsMoveOp)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define IS_VOLATILE          (1ULL << kMemVolatile)
56#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
57#define NO_OPERAND           (1ULL << kNoOperand)
58#define REG_DEF0             (1ULL << kRegDef0)
59#define REG_DEF1             (1ULL << kRegDef1)
60#define REG_DEF2             (1ULL << kRegDef2)
61#define REG_DEFA             (1ULL << kRegDefA)
62#define REG_DEFD             (1ULL << kRegDefD)
63#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
64#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
65#define REG_DEF_LIST0        (1ULL << kRegDefList0)
66#define REG_DEF_LIST1        (1ULL << kRegDefList1)
67#define REG_DEF_LR           (1ULL << kRegDefLR)
68#define REG_DEF_SP           (1ULL << kRegDefSP)
69#define REG_USE0             (1ULL << kRegUse0)
70#define REG_USE1             (1ULL << kRegUse1)
71#define REG_USE2             (1ULL << kRegUse2)
72#define REG_USE3             (1ULL << kRegUse3)
73#define REG_USE4             (1ULL << kRegUse4)
74#define REG_USEA             (1ULL << kRegUseA)
75#define REG_USEC             (1ULL << kRegUseC)
76#define REG_USED             (1ULL << kRegUseD)
77#define REG_USEB             (1ULL << kRegUseB)
78#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
79#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
80#define REG_USE_LIST0        (1ULL << kRegUseList0)
81#define REG_USE_LIST1        (1ULL << kRegUseList1)
82#define REG_USE_LR           (1ULL << kRegUseLR)
83#define REG_USE_PC           (1ULL << kRegUsePC)
84#define REG_USE_SP           (1ULL << kRegUseSP)
85#define SETS_CCODES          (1ULL << kSetsCCodes)
86#define USES_CCODES          (1ULL << kUsesCCodes)
87#define USE_FP_STACK         (1ULL << kUseFpStack)
88#define REG_USE_LO           (1ULL << kUseLo)
89#define REG_USE_HI           (1ULL << kUseHi)
90#define REG_DEF_LO           (1ULL << kDefLo)
91#define REG_DEF_HI           (1ULL << kDefHi)
92#define SCALED_OFFSET_X0     (1ULL << kMemScaledx0)
93#define SCALED_OFFSET_X2     (1ULL << kMemScaledx2)
94#define SCALED_OFFSET_X4     (1ULL << kMemScaledx4)
95
96// Special load/stores
97#define IS_LOADX             (IS_LOAD | IS_VOLATILE)
98#define IS_LOAD_OFF          (IS_LOAD | SCALED_OFFSET_X0)
99#define IS_LOAD_OFF2         (IS_LOAD | SCALED_OFFSET_X2)
100#define IS_LOAD_OFF4         (IS_LOAD | SCALED_OFFSET_X4)
101
102#define IS_STOREX            (IS_STORE | IS_VOLATILE)
103#define IS_STORE_OFF         (IS_STORE | SCALED_OFFSET_X0)
104#define IS_STORE_OFF2        (IS_STORE | SCALED_OFFSET_X2)
105#define IS_STORE_OFF4        (IS_STORE | SCALED_OFFSET_X4)
106
107// Common combo register usage patterns.
108#define REG_DEF01            (REG_DEF0 | REG_DEF1)
109#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
110#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
111#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
112#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
113#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
114#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
115#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
116#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
117#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
118#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
119#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
120#define REG_USE012           (REG_USE01 | REG_USE2)
121#define REG_USE014           (REG_USE01 | REG_USE4)
122#define REG_USE01            (REG_USE0 | REG_USE1)
123#define REG_USE02            (REG_USE0 | REG_USE2)
124#define REG_USE12            (REG_USE1 | REG_USE2)
125#define REG_USE23            (REG_USE2 | REG_USE3)
126#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
127
128// TODO: #includes need a cleanup
129#ifndef INVALID_SREG
130#define INVALID_SREG (-1)
131#endif
132
133class BasicBlock;
134struct CallInfo;
135struct CompilationUnit;
136struct InlineMethod;
137class MIR;
138struct LIR;
139struct RegisterInfo;
140class DexFileMethodInliner;
141class MIRGraph;
142class MirMethodLoweringInfo;
143class Mir2Lir;
144
145typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
146                            const MethodReference& target_method,
147                            uint32_t method_idx, uintptr_t direct_code,
148                            uintptr_t direct_method, InvokeType type);
149
150typedef std::vector<uint8_t> CodeBuffer;
151
152struct UseDefMasks {
153  const ResourceMask* use_mask;        // Resource mask for use.
154  const ResourceMask* def_mask;        // Resource mask for def.
155};
156
157struct AssemblyInfo {
158  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
159};
160
161struct LIR {
162  CodeOffset offset;             // Offset of this instruction.
163  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
164  int16_t opcode;
165  LIR* next;
166  LIR* prev;
167  LIR* target;
168  struct {
169    unsigned int alias_info:17;  // For Dalvik register disambiguation.
170    bool is_nop:1;               // LIR is optimized away.
171    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
172    bool use_def_invalid:1;      // If true, masks should not be used.
173    unsigned int generation:1;   // Used to track visitation state during fixup pass.
174    unsigned int fixup:8;        // Fixup kind.
175  } flags;
176  union {
177    UseDefMasks m;               // Use & Def masks used during optimization.
178    AssemblyInfo a;              // Instruction info used during assembly phase.
179  } u;
180  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
181};
182
183// Utility macros to traverse the LIR list.
184#define NEXT_LIR(lir) (lir->next)
185#define PREV_LIR(lir) (lir->prev)
186
187// Defines for alias_info (tracks Dalvik register references).
188#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
189#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
190#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
191#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
192
193#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
194#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
195  do { \
196    low_reg = both_regs & 0xff; \
197    high_reg = (both_regs >> 8) & 0xff; \
198  } while (false)
199
200// Mask to denote sreg as the start of a 64-bit item.  Must not interfere with low 16 bits.
201#define STARTING_WIDE_SREG 0x10000
202
203// TODO: replace these macros
204#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
205#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
206#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
207#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
208#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
209
210class Mir2Lir : public Backend {
211  public:
212    static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
213    static constexpr bool kReportSizeError = true && kIsDebugBuild;
214
215    // TODO: If necessary, this could be made target-dependent.
216    static constexpr uint16_t kSmallSwitchThreshold = 5;
217
218    /*
219     * Auxiliary information describing the location of data embedded in the Dalvik
220     * byte code stream.
221     */
222    struct EmbeddedData {
223      CodeOffset offset;        // Code offset of data block.
224      const uint16_t* table;      // Original dex data.
225      DexOffset vaddr;            // Dalvik offset of parent opcode.
226    };
227
228    struct FillArrayData : EmbeddedData {
229      int32_t size;
230    };
231
232    struct SwitchTable : EmbeddedData {
233      LIR* anchor;                // Reference instruction for relative offsets.
234      LIR** targets;              // Array of case targets.
235    };
236
237    /* Static register use counts */
238    struct RefCounts {
239      int count;
240      int s_reg;
241    };
242
243    /*
244     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
245     * and native register storage.  The primary purpose is to reuse previuosly
246     * loaded values, if possible, and otherwise to keep the value in register
247     * storage as long as possible.
248     *
249     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
250     * this register (or pair).  For example, a 64-bit register containing a 32-bit
251     * Dalvik value would have wide_value==false even though the storage container itself
252     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
253     * would have wide_value==true (and additionally would have its partner field set to the
254     * other half whose wide_value field would also be true.
255     *
256     * NOTE 2: In the case of a register pair, you can determine which of the partners
257     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
258     *
259     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
260     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
261     * value, and the s_reg of the high word is implied (s_reg + 1).
262     *
263     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
264     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
265     * If is_temp==true and live==false, no other fields have
266     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
267     * and def_end describe the relationship between the temp register/register pair and
268     * the Dalvik value[s] described by s_reg/s_reg+1.
269     *
270     * The fields used_storage, master_storage and storage_mask are used to track allocation
271     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
272     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
273     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
274     * change once initialized.  The "used_storage" field tracks current allocation status.
275     * Although each record contains this field, only the field from the largest member of
276     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
277     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
278     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
279     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
280     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
281     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
282     *
283     * For an X86 vector register example, storage_mask would be:
284     *    0x00000001 for 32-bit view of xmm1
285     *    0x00000003 for 64-bit view of xmm1
286     *    0x0000000f for 128-bit view of xmm1
287     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
288     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
289     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
290     *
291     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
292     * held in the widest member of an aliased set.  Note, though, that for a temp register to
293     * reused as live, it must both be marked live and the associated SReg() must match the
294     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
295     * members of an aliased set will share the same liveness flags, but each will individually
296     * maintain s_reg_.  In this way we can know that at least one member of an
297     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
298     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
299     * because it is wide), its aliases s2 and s3 will show as live, but will have
300     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
301     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
302     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
303     * report that v9 is currently not live as a single (which is what we want).
304     *
305     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
306     * to treat xmm registers:
307     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
308     *         o This more closely matches reality, but means you'd need to be able to get
309     *           to the associated RegisterInfo struct to figure out how it's being used.
310     *         o This is how 64-bit core registers will be used - always 64 bits, but the
311     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
312     *     2. View the xmm registers based on contents.
313     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
314     *           be a k64BitVector.
315     *         o Note that the two uses above would be considered distinct registers (but with
316     *           the aliasing mechanism, we could detect interference).
317     *         o This is how aliased double and single float registers will be handled on
318     *           Arm and MIPS.
319     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
320     * mechanism 2 for aliased float registers and x86 vector registers.
321     */
322    class RegisterInfo : public ArenaObject<kArenaAllocRegAlloc> {
323     public:
324      RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
325      ~RegisterInfo() {}
326
327      static const uint32_t k32SoloStorageMask     = 0x00000001;
328      static const uint32_t kLowSingleStorageMask  = 0x00000001;
329      static const uint32_t kHighSingleStorageMask = 0x00000002;
330      static const uint32_t k64SoloStorageMask     = 0x00000003;
331      static const uint32_t k128SoloStorageMask    = 0x0000000f;
332      static const uint32_t k256SoloStorageMask    = 0x000000ff;
333      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
334      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
335
336      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
337      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
338      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
339      // No part of the containing storage is live in this view.
340      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
341      // Liveness of this view matches.  Note: not equivalent to !IsDead().
342      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
343      void MarkLive(int s_reg) {
344        // TODO: Anything useful to assert here?
345        s_reg_ = s_reg;
346        master_->liveness_ |= storage_mask_;
347      }
348      void MarkDead() {
349        if (SReg() != INVALID_SREG) {
350          s_reg_ = INVALID_SREG;
351          master_->liveness_ &= ~storage_mask_;
352          ResetDefBody();
353        }
354      }
355      RegStorage GetReg() { return reg_; }
356      void SetReg(RegStorage reg) { reg_ = reg; }
357      bool IsTemp() { return is_temp_; }
358      void SetIsTemp(bool val) { is_temp_ = val; }
359      bool IsWide() { return wide_value_; }
360      void SetIsWide(bool val) {
361        wide_value_ = val;
362        if (!val) {
363          // If not wide, reset partner to self.
364          SetPartner(GetReg());
365        }
366      }
367      bool IsDirty() { return dirty_; }
368      void SetIsDirty(bool val) { dirty_ = val; }
369      RegStorage Partner() { return partner_; }
370      void SetPartner(RegStorage partner) { partner_ = partner; }
371      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
372      const ResourceMask& DefUseMask() { return def_use_mask_; }
373      void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
374      RegisterInfo* Master() { return master_; }
375      void SetMaster(RegisterInfo* master) {
376        master_ = master;
377        if (master != this) {
378          master_->aliased_ = true;
379          DCHECK(alias_chain_ == nullptr);
380          alias_chain_ = master_->alias_chain_;
381          master_->alias_chain_ = this;
382        }
383      }
384      bool IsAliased() { return aliased_; }
385      RegisterInfo* GetAliasChain() { return alias_chain_; }
386      uint32_t StorageMask() { return storage_mask_; }
387      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
388      LIR* DefStart() { return def_start_; }
389      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
390      LIR* DefEnd() { return def_end_; }
391      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
392      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
393      // Find member of aliased set matching storage_used; return nullptr if none.
394      RegisterInfo* FindMatchingView(uint32_t storage_used) {
395        RegisterInfo* res = Master();
396        for (; res != nullptr; res = res->GetAliasChain()) {
397          if (res->StorageMask() == storage_used)
398            break;
399        }
400        return res;
401      }
402
403     private:
404      RegStorage reg_;
405      bool is_temp_;               // Can allocate as temp?
406      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
407      bool dirty_;                 // If live, is it dirty?
408      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
409      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
410      int s_reg_;                  // Name of live value.
411      ResourceMask def_use_mask_;  // Resources for this element.
412      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
413      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
414      RegisterInfo* master_;       // Pointer to controlling storage mask.
415      uint32_t storage_mask_;      // Track allocation of sub-units.
416      LIR *def_start_;             // Starting inst in last def sequence.
417      LIR *def_end_;               // Ending inst in last def sequence.
418      RegisterInfo* alias_chain_;  // Chain of aliased registers.
419    };
420
421    class RegisterPool : public DeletableArenaObject<kArenaAllocRegAlloc> {
422     public:
423      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
424                   const ArrayRef<const RegStorage>& core_regs,
425                   const ArrayRef<const RegStorage>& core64_regs,
426                   const ArrayRef<const RegStorage>& sp_regs,
427                   const ArrayRef<const RegStorage>& dp_regs,
428                   const ArrayRef<const RegStorage>& reserved_regs,
429                   const ArrayRef<const RegStorage>& reserved64_regs,
430                   const ArrayRef<const RegStorage>& core_temps,
431                   const ArrayRef<const RegStorage>& core64_temps,
432                   const ArrayRef<const RegStorage>& sp_temps,
433                   const ArrayRef<const RegStorage>& dp_temps);
434      ~RegisterPool() {}
435      void ResetNextTemp() {
436        next_core_reg_ = 0;
437        next_sp_reg_ = 0;
438        next_dp_reg_ = 0;
439      }
440      ArenaVector<RegisterInfo*> core_regs_;
441      int next_core_reg_;
442      ArenaVector<RegisterInfo*> core64_regs_;
443      int next_core64_reg_;
444      ArenaVector<RegisterInfo*> sp_regs_;    // Single precision float.
445      int next_sp_reg_;
446      ArenaVector<RegisterInfo*> dp_regs_;    // Double precision float.
447      int next_dp_reg_;
448      ArenaVector<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
449      int* next_ref_reg_;
450
451     private:
452      Mir2Lir* const m2l_;
453    };
454
455    struct PromotionMap {
456      RegLocationType core_location:3;
457      uint8_t core_reg;
458      RegLocationType fp_location:3;
459      uint8_t fp_reg;
460      bool first_in_pair;
461    };
462
463    //
464    // Slow paths.  This object is used generate a sequence of code that is executed in the
465    // slow path.  For example, resolving a string or class is slow as it will only be executed
466    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
467    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
468    // branch over them.
469    //
470    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
471    // the Compile() function that will be called near the end of the code generated by the
472    // method.
473    //
474    // The basic flow for a slow path is:
475    //
476    //     CMP reg, #value
477    //     BEQ fromfast
478    //   cont:
479    //     ...
480    //     fast path code
481    //     ...
482    //     more code
483    //     ...
484    //     RETURN
485    ///
486    //   fromfast:
487    //     ...
488    //     slow path code
489    //     ...
490    //     B cont
491    //
492    // So you see we need two labels and two branches.  The first branch (called fromfast) is
493    // the conditional branch to the slow path code.  The second label (called cont) is used
494    // as an unconditional branch target for getting back to the code after the slow path
495    // has completed.
496    //
497
498    class LIRSlowPath : public ArenaObject<kArenaAllocSlowPaths> {
499     public:
500      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
501                  LIR* cont = nullptr) :
502        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
503      }
504      virtual ~LIRSlowPath() {}
505      virtual void Compile() = 0;
506
507      LIR *GetContinuationLabel() {
508        return cont_;
509      }
510
511      LIR *GetFromFast() {
512        return fromfast_;
513      }
514
515     protected:
516      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
517
518      Mir2Lir* const m2l_;
519      CompilationUnit* const cu_;
520      const DexOffset current_dex_pc_;
521      LIR* const fromfast_;
522      LIR* const cont_;
523    };
524
525    // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
526    class ScopedMemRefType {
527     public:
528      ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
529          : m2l_(m2l),
530            old_mem_ref_type_(m2l->mem_ref_type_) {
531        m2l_->mem_ref_type_ = new_mem_ref_type;
532      }
533
534      ~ScopedMemRefType() {
535        m2l_->mem_ref_type_ = old_mem_ref_type_;
536      }
537
538     private:
539      Mir2Lir* const m2l_;
540      ResourceMask::ResourceBit old_mem_ref_type_;
541
542      DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
543    };
544
545    virtual ~Mir2Lir() {}
546
547    /**
548     * @brief Decodes the LIR offset.
549     * @return Returns the scaled offset of LIR.
550     */
551    virtual size_t GetInstructionOffset(LIR* lir);
552
553    int32_t s4FromSwitchData(const void* switch_data) {
554      return *reinterpret_cast<const int32_t*>(switch_data);
555    }
556
557    /*
558     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
559     * it was introduced, it was intended to be a quick best guess of type without having to
560     * take the time to do type analysis.  Currently, though, we have a much better idea of
561     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
562     * just use our knowledge of type to select the most appropriate register class?
563     */
564    RegisterClass RegClassBySize(OpSize size) {
565      if (size == kReference) {
566        return kRefReg;
567      } else {
568        return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
569                size == kSignedByte) ? kCoreReg : kAnyReg;
570      }
571    }
572
573    size_t CodeBufferSizeInBytes() {
574      return code_buffer_.size() / sizeof(code_buffer_[0]);
575    }
576
577    static bool IsPseudoLirOp(int opcode) {
578      return (opcode < 0);
579    }
580
581    /*
582     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
583     * instructions which require PC-relative fixups), we need the operands to carry
584     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
585     * hold that index in the operand array.
586     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
587     * may be worth conditionally-compiling a set of identity functions here.
588     */
589    uint32_t WrapPointer(void* pointer) {
590      uint32_t res = pointer_storage_.size();
591      pointer_storage_.push_back(pointer);
592      return res;
593    }
594
595    void* UnwrapPointer(size_t index) {
596      return pointer_storage_[index];
597    }
598
599    // strdup(), but allocates from the arena.
600    char* ArenaStrdup(const char* str) {
601      size_t len = strlen(str) + 1;
602      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
603      if (res != NULL) {
604        strncpy(res, str, len);
605      }
606      return res;
607    }
608
609    // Shared by all targets - implemented in codegen_util.cc
610    void AppendLIR(LIR* lir);
611    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
612    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
613
614    /**
615     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
616     * to place in a frame.
617     * @return Returns the maximum number of compiler temporaries.
618     */
619    size_t GetMaxPossibleCompilerTemps() const;
620
621    /**
622     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
623     * @return Returns the size in bytes for space needed for compiler temporary spill region.
624     */
625    size_t GetNumBytesForCompilerTempSpillRegion();
626
627    DexOffset GetCurrentDexPc() const {
628      return current_dalvik_offset_;
629    }
630
631    RegisterClass ShortyToRegClass(char shorty_type);
632    RegisterClass LocToRegClass(RegLocation loc);
633    int ComputeFrameSize();
634    virtual void Materialize();
635    virtual CompiledMethod* GetCompiledMethod();
636    void MarkSafepointPC(LIR* inst);
637    void MarkSafepointPCAfter(LIR* after);
638    void SetupResourceMasks(LIR* lir);
639    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
640    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
641    void SetupRegMask(ResourceMask* mask, int reg);
642    void ClearRegMask(ResourceMask* mask, int reg);
643    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
644    void EliminateLoad(LIR* lir, int reg_id);
645    void DumpDependentInsnPair(LIR* check_lir, LIR* this_lir, const char* type);
646    void DumpPromotionMap();
647    void CodegenDump();
648    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
649                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
650    LIR* NewLIR0(int opcode);
651    LIR* NewLIR1(int opcode, int dest);
652    LIR* NewLIR2(int opcode, int dest, int src1);
653    LIR* NewLIR2NoDest(int opcode, int src, int info);
654    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
655    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
656    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
657    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
658    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
659    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
660    LIR* ScanLiteralPoolClass(LIR* data_target, const DexFile& dex_file, uint32_t type_idx);
661    LIR* AddWordData(LIR* *constant_list_p, int value);
662    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
663    void ProcessSwitchTables();
664    void DumpSparseSwitchTable(const uint16_t* table);
665    void DumpPackedSwitchTable(const uint16_t* table);
666    void MarkBoundary(DexOffset offset, const char* inst_str);
667    void NopLIR(LIR* lir);
668    void UnlinkLIR(LIR* lir);
669    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
670    bool IsInexpensiveConstant(RegLocation rl_src);
671    ConditionCode FlipComparisonOrder(ConditionCode before);
672    ConditionCode NegateComparison(ConditionCode before);
673    virtual void InstallLiteralPools();
674    void InstallSwitchTables();
675    void InstallFillArrayData();
676    bool VerifyCatchEntries();
677    void CreateMappingTables();
678    void CreateNativeGcMap();
679    int AssignLiteralOffset(CodeOffset offset);
680    int AssignSwitchTablesOffset(CodeOffset offset);
681    int AssignFillArrayDataOffset(CodeOffset offset);
682    virtual LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
683    virtual void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
684    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
685
686    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
687    virtual RegLocation NarrowRegLoc(RegLocation loc);
688
689    // Shared by all targets - implemented in local_optimizations.cc
690    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
691    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
692    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
693    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
694
695    // Shared by all targets - implemented in ralloc_util.cc
696    int GetSRegHi(int lowSreg);
697    bool LiveOut(int s_reg);
698    void SimpleRegAlloc();
699    void ResetRegPool();
700    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
701    void DumpRegPool(ArenaVector<RegisterInfo*>* regs);
702    void DumpCoreRegPool();
703    void DumpFpRegPool();
704    void DumpRegPools();
705    /* Mark a temp register as dead.  Does not affect allocation state. */
706    void Clobber(RegStorage reg);
707    void ClobberSReg(int s_reg);
708    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
709    int SRegToPMap(int s_reg);
710    void RecordCorePromotion(RegStorage reg, int s_reg);
711    RegStorage AllocPreservedCoreReg(int s_reg);
712    void RecordFpPromotion(RegStorage reg, int s_reg);
713    RegStorage AllocPreservedFpReg(int s_reg);
714    virtual RegStorage AllocPreservedSingle(int s_reg);
715    virtual RegStorage AllocPreservedDouble(int s_reg);
716    RegStorage AllocTempBody(ArenaVector<RegisterInfo*>& regs, int* next_temp, bool required);
717    virtual RegStorage AllocTemp(bool required = true);
718    virtual RegStorage AllocTempWide(bool required = true);
719    virtual RegStorage AllocTempRef(bool required = true);
720    virtual RegStorage AllocTempSingle(bool required = true);
721    virtual RegStorage AllocTempDouble(bool required = true);
722    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class, bool required = true);
723    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class, bool required = true);
724    void FlushReg(RegStorage reg);
725    void FlushRegWide(RegStorage reg);
726    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
727    RegStorage FindLiveReg(ArenaVector<RegisterInfo*>& regs, int s_reg);
728    virtual void FreeTemp(RegStorage reg);
729    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
730    virtual bool IsLive(RegStorage reg);
731    virtual bool IsTemp(RegStorage reg);
732    bool IsPromoted(RegStorage reg);
733    bool IsDirty(RegStorage reg);
734    virtual void LockTemp(RegStorage reg);
735    void ResetDef(RegStorage reg);
736    void NullifyRange(RegStorage reg, int s_reg);
737    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
738    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
739    void ResetDefLoc(RegLocation rl);
740    void ResetDefLocWide(RegLocation rl);
741    void ResetDefTracking();
742    void ClobberAllTemps();
743    void FlushSpecificReg(RegisterInfo* info);
744    void FlushAllRegs();
745    bool RegClassMatches(int reg_class, RegStorage reg);
746    void MarkLive(RegLocation loc);
747    void MarkTemp(RegStorage reg);
748    void UnmarkTemp(RegStorage reg);
749    void MarkWide(RegStorage reg);
750    void MarkNarrow(RegStorage reg);
751    void MarkClean(RegLocation loc);
752    void MarkDirty(RegLocation loc);
753    void MarkInUse(RegStorage reg);
754    bool CheckCorePoolSanity();
755    virtual RegLocation UpdateLoc(RegLocation loc);
756    virtual RegLocation UpdateLocWide(RegLocation loc);
757    RegLocation UpdateRawLoc(RegLocation loc);
758
759    /**
760     * @brief Used to prepare a register location to receive a wide value.
761     * @see EvalLoc
762     * @param loc the location where the value will be stored.
763     * @param reg_class Type of register needed.
764     * @param update Whether the liveness information should be updated.
765     * @return Returns the properly typed temporary in physical register pairs.
766     */
767    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
768
769    /**
770     * @brief Used to prepare a register location to receive a value.
771     * @param loc the location where the value will be stored.
772     * @param reg_class Type of register needed.
773     * @param update Whether the liveness information should be updated.
774     * @return Returns the properly typed temporary in physical register.
775     */
776    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
777
778    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
779    void DumpCounts(const RefCounts* arr, int size, const char* msg);
780    void DoPromotion();
781    int VRegOffset(int v_reg);
782    int SRegOffset(int s_reg);
783    RegLocation GetReturnWide(RegisterClass reg_class);
784    RegLocation GetReturn(RegisterClass reg_class);
785    RegisterInfo* GetRegInfo(RegStorage reg);
786
787    // Shared by all targets - implemented in gen_common.cc.
788    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
789    virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
790                                  RegLocation rl_src, RegLocation rl_dest, int lit);
791    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
792    bool HandleEasyFloatingPointDiv(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
793    virtual void HandleSlowPaths();
794    void GenBarrier();
795    void GenDivZeroException();
796    // c_code holds condition code that's generated from testing divisor against 0.
797    void GenDivZeroCheck(ConditionCode c_code);
798    // reg holds divisor.
799    void GenDivZeroCheck(RegStorage reg);
800    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
801    void GenArrayBoundsCheck(int32_t index, RegStorage length);
802    LIR* GenNullCheck(RegStorage reg);
803    void MarkPossibleNullPointerException(int opt_flags);
804    void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
805    void MarkPossibleStackOverflowException();
806    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
807    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
808    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
809    virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags);
810    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, RegLocation rl_src2,
811                             LIR* taken);
812    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken);
813    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
814    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
815                         RegLocation rl_src);
816    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
817                     RegLocation rl_src);
818    void GenFilledNewArray(CallInfo* info);
819    void GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src);
820    void GenSput(MIR* mir, RegLocation rl_src, OpSize size);
821    // Get entrypoints are specific for types, size alone is not sufficient to safely infer
822    // entrypoint.
823    void GenSget(MIR* mir, RegLocation rl_dest, OpSize size, Primitive::Type type);
824    void GenIGet(MIR* mir, int opt_flags, OpSize size, Primitive::Type type,
825                 RegLocation rl_dest, RegLocation rl_obj);
826    void GenIPut(MIR* mir, int opt_flags, OpSize size,
827                 RegLocation rl_src, RegLocation rl_obj);
828    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
829                        RegLocation rl_src);
830
831    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
832    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
833    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
834    void GenThrow(RegLocation rl_src);
835    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
836    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
837    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
838                      RegLocation rl_src1, RegLocation rl_src2);
839    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
840                        RegLocation rl_src1, RegLocation rl_shift);
841    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
842                          RegLocation rl_src, int lit);
843    virtual void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
844                                RegLocation rl_src1, RegLocation rl_src2, int flags);
845    void GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest, RegLocation rl_src);
846    virtual void GenSuspendTest(int opt_flags);
847    virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
848
849    // This will be overridden by x86 implementation.
850    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
851    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
852                       RegLocation rl_src1, RegLocation rl_src2, int flags);
853
854    // Shared by all targets - implemented in gen_invoke.cc.
855    LIR* CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
856                    bool use_link = true);
857    RegStorage CallHelperSetup(QuickEntrypointEnum trampoline);
858
859    void CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc);
860    void CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
861    void CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0, bool safepoint_pc);
862    void CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
863                                      bool safepoint_pc);
864    void CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
865                                 bool safepoint_pc);
866    void CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0, RegLocation arg1,
867                                         bool safepoint_pc);
868    void CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0, int arg1,
869                                         bool safepoint_pc);
870    void CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
871                                 bool safepoint_pc);
872    void CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
873                                 bool safepoint_pc);
874    void CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
875    void CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
876                                    bool safepoint_pc);
877    void CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline, RegStorage arg0,
878                                               RegLocation arg2, bool safepoint_pc);
879    void CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
880                                                 RegLocation arg1, bool safepoint_pc);
881    void CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0, RegStorage arg1,
882                                 bool safepoint_pc);
883    void CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
884                                    RegStorage arg1, int arg2, bool safepoint_pc);
885    void CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline, int arg0,
886                                               RegLocation arg2, bool safepoint_pc);
887    void CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline, int arg0, int arg2,
888                                       bool safepoint_pc);
889    void CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
890                                                    RegLocation arg1, RegLocation arg2,
891                                                    bool safepoint_pc);
892    void CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,
893                                                            RegLocation arg0, RegLocation arg1,
894                                                            RegLocation arg2,
895                                                            bool safepoint_pc);
896    void GenInvoke(CallInfo* info);
897    void GenInvokeNoInline(CallInfo* info);
898    virtual NextCallInsn GetNextSDCallInsn();
899
900    /*
901     * @brief Generate the actual call insn based on the method info.
902     * @param method_info the lowering info for the method call.
903     * @returns Call instruction
904     */
905    virtual LIR* GenCallInsn(const MirMethodLoweringInfo& method_info);
906
907    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
908    virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
909                             NextCallInsn next_call_insn,
910                             const MethodReference& target_method,
911                             uint32_t vtable_idx,
912                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
913                             bool skip_this);
914    virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
915                           NextCallInsn next_call_insn,
916                           const MethodReference& target_method,
917                           uint32_t vtable_idx,
918                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
919                           bool skip_this);
920
921    /**
922     * @brief Used to determine the register location of destination.
923     * @details This is needed during generation of inline intrinsics because it finds destination
924     *  of return,
925     * either the physical register or the target of move-result.
926     * @param info Information about the invoke.
927     * @return Returns the destination location.
928     */
929    RegLocation InlineTarget(CallInfo* info);
930
931    /**
932     * @brief Used to determine the wide register location of destination.
933     * @see InlineTarget
934     * @param info Information about the invoke.
935     * @return Returns the destination location.
936     */
937    RegLocation InlineTargetWide(CallInfo* info);
938
939    bool GenInlinedReferenceGetReferent(CallInfo* info);
940    virtual bool GenInlinedCharAt(CallInfo* info);
941    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
942    virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
943    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
944    virtual bool GenInlinedAbsInt(CallInfo* info);
945    virtual bool GenInlinedAbsLong(CallInfo* info);
946    virtual bool GenInlinedAbsFloat(CallInfo* info) = 0;
947    virtual bool GenInlinedAbsDouble(CallInfo* info) = 0;
948    bool GenInlinedFloatCvt(CallInfo* info);
949    bool GenInlinedDoubleCvt(CallInfo* info);
950    virtual bool GenInlinedCeil(CallInfo* info);
951    virtual bool GenInlinedFloor(CallInfo* info);
952    virtual bool GenInlinedRint(CallInfo* info);
953    virtual bool GenInlinedRound(CallInfo* info, bool is_double);
954    virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
955    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
956    bool GenInlinedStringCompareTo(CallInfo* info);
957    virtual bool GenInlinedCurrentThread(CallInfo* info);
958    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
959    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
960                             bool is_volatile, bool is_ordered);
961    virtual int LoadArgRegs(CallInfo* info, int call_state,
962                    NextCallInsn next_call_insn,
963                    const MethodReference& target_method,
964                    uint32_t vtable_idx,
965                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
966                    bool skip_this);
967
968    // Shared by all targets - implemented in gen_loadstore.cc.
969    RegLocation LoadCurrMethod();
970    void LoadCurrMethodDirect(RegStorage r_tgt);
971    virtual LIR* LoadConstant(RegStorage r_dest, int value);
972    // Natural word size.
973    virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
974      return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
975    }
976    // Load 8 bits, regardless of target.
977    virtual LIR* Load8Disp(RegStorage r_base, int displacement, RegStorage r_dest) {
978      return LoadBaseDisp(r_base, displacement, r_dest, kSignedByte, kNotVolatile);
979    }
980    // Load 32 bits, regardless of target.
981    virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
982      return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
983    }
984    // Load a reference at base + displacement and decompress into register.
985    virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
986                             VolatileKind is_volatile) {
987      return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
988    }
989    // Load a reference at base + index and decompress into register.
990    virtual LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
991                                int scale) {
992      return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
993    }
994    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
995    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
996    // Load Dalvik value with 64-bit memory storage.
997    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
998    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
999    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
1000    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1001    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
1002    // Load Dalvik value with 64-bit memory storage.
1003    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
1004    // Load Dalvik value with 64-bit memory storage.
1005    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
1006    // Store an item of natural word size.
1007    virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1008      return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
1009    }
1010    // Store an uncompressed reference into a compressed 32-bit container.
1011    virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
1012                              VolatileKind is_volatile) {
1013      return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
1014    }
1015    // Store an uncompressed reference into a compressed 32-bit container by index.
1016    virtual LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1017                                 int scale) {
1018      return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
1019    }
1020    // Store 32 bits, regardless of target.
1021    virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1022      return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
1023    }
1024
1025    /**
1026     * @brief Used to do the final store in the destination as per bytecode semantics.
1027     * @param rl_dest The destination dalvik register location.
1028     * @param rl_src The source register location. Can be either physical register or dalvik register.
1029     */
1030    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1031
1032    /**
1033     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1034     * @see StoreValue
1035     * @param rl_dest The destination dalvik register location.
1036     * @param rl_src The source register location. Can be either physical register or dalvik
1037     *  register.
1038     */
1039    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1040
1041    /**
1042     * @brief Used to do the final store to a destination as per bytecode semantics.
1043     * @see StoreValue
1044     * @param rl_dest The destination dalvik register location.
1045     * @param rl_src The source register location. It must be kLocPhysReg
1046     *
1047     * This is used for x86 two operand computations, where we have computed the correct
1048     * register value that now needs to be properly registered.  This is used to avoid an
1049     * extra register copy that would result if StoreValue was called.
1050     */
1051    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1052
1053    /**
1054     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1055     * @see StoreValueWide
1056     * @param rl_dest The destination dalvik register location.
1057     * @param rl_src The source register location. It must be kLocPhysReg
1058     *
1059     * This is used for x86 two operand computations, where we have computed the correct
1060     * register values that now need to be properly registered.  This is used to avoid an
1061     * extra pair of register copies that would result if StoreValueWide was called.
1062     */
1063    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1064
1065    // Shared by all targets - implemented in mir_to_lir.cc.
1066    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1067    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1068    bool MethodBlockCodeGen(BasicBlock* bb);
1069    bool SpecialMIR2LIR(const InlineMethod& special);
1070    virtual void MethodMIR2LIR();
1071    // Update LIR for verbose listings.
1072    void UpdateLIROffsets();
1073
1074    /**
1075     * @brief Mark a garbage collection card. Skip if the stored value is null.
1076     * @param val_reg the register holding the stored value to check against null.
1077     * @param tgt_addr_reg the address of the object or array where the value was stored.
1078     */
1079    void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
1080
1081    /*
1082     * @brief Load the address of the dex method into the register.
1083     * @param target_method The MethodReference of the method to be invoked.
1084     * @param type How the method will be invoked.
1085     * @param register that will contain the code address.
1086     * @note register will be passed to TargetReg to get physical register.
1087     */
1088    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1089                         SpecialTargetRegister symbolic_reg);
1090
1091    /*
1092     * @brief Load the Method* of a dex method into the register.
1093     * @param target_method The MethodReference of the method to be invoked.
1094     * @param type How the method will be invoked.
1095     * @param register that will contain the code address.
1096     * @note register will be passed to TargetReg to get physical register.
1097     */
1098    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1099                                   SpecialTargetRegister symbolic_reg);
1100
1101    /*
1102     * @brief Load the Class* of a Dex Class type into the register.
1103     * @param dex DexFile that contains the class type.
1104     * @param type How the method will be invoked.
1105     * @param register that will contain the code address.
1106     * @note register will be passed to TargetReg to get physical register.
1107     */
1108    virtual void LoadClassType(const DexFile& dex_file, uint32_t type_idx,
1109                               SpecialTargetRegister symbolic_reg);
1110
1111    // Routines that work for the generic case, but may be overriden by target.
1112    /*
1113     * @brief Compare memory to immediate, and branch if condition true.
1114     * @param cond The condition code that when true will branch to the target.
1115     * @param temp_reg A temporary register that can be used if compare to memory is not
1116     * supported by the architecture.
1117     * @param base_reg The register holding the base address.
1118     * @param offset The offset from the base.
1119     * @param check_value The immediate to compare to.
1120     * @param target branch target (or nullptr)
1121     * @param compare output for getting LIR for comparison (or nullptr)
1122     * @returns The branch instruction that was generated.
1123     */
1124    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1125                                   int offset, int check_value, LIR* target, LIR** compare);
1126
1127    // Required for target - codegen helpers.
1128    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1129                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1130    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1131    virtual void GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1,
1132                                            int32_t constant) = 0;
1133    virtual void GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1,
1134                                             int64_t constant) = 0;
1135    virtual LIR* CheckSuspendUsingLoad() = 0;
1136
1137    virtual RegStorage LoadHelper(QuickEntrypointEnum trampoline) = 0;
1138
1139    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1140                              OpSize size, VolatileKind is_volatile) = 0;
1141    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1142                                 int scale, OpSize size) = 0;
1143    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1144    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1145    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1146                               OpSize size, VolatileKind is_volatile) = 0;
1147    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1148                                  int scale, OpSize size) = 0;
1149
1150    /**
1151     * @brief Unconditionally mark a garbage collection card.
1152     * @param tgt_addr_reg the address of the object or array where the value was stored.
1153     */
1154    virtual void UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) = 0;
1155
1156    // Required for target - register utilities.
1157
1158    bool IsSameReg(RegStorage reg1, RegStorage reg2) {
1159      RegisterInfo* info1 = GetRegInfo(reg1);
1160      RegisterInfo* info2 = GetRegInfo(reg2);
1161      return (info1->Master() == info2->Master() &&
1162             (info1->StorageMask() & info2->StorageMask()) != 0);
1163    }
1164
1165    static constexpr bool IsWide(OpSize size) {
1166      return size == k64 || size == kDouble;
1167    }
1168
1169    static constexpr bool IsRef(OpSize size) {
1170      return size == kReference;
1171    }
1172
1173    /**
1174     * @brief Portable way of getting special registers from the backend.
1175     * @param reg Enumeration describing the purpose of the register.
1176     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1177     * @note This function is currently allowed to return any suitable view of the registers
1178     *   (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
1179     */
1180    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1181
1182    /**
1183     * @brief Portable way of getting special registers from the backend.
1184     * @param reg Enumeration describing the purpose of the register.
1185     * @param wide_kind What kind of view of the special register is required.
1186     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1187     *
1188     * @note For 32b system, wide (kWide) views only make sense for the argument registers and the
1189     *       return. In that case, this function should return a pair where the first component of
1190     *       the result will be the indicated special register.
1191     */
1192    virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
1193      if (wide_kind == kWide) {
1194        DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg15) || (kRet0 == reg));
1195        static_assert((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
1196                      (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
1197                      (kArg7 == kArg6 + 1), "kargs range unexpected");
1198        static_assert((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
1199                      (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
1200                      (kFArg7 == kFArg6 + 1) && (kFArg8 == kFArg7 + 1) && (kFArg9 == kFArg8 + 1) &&
1201                      (kFArg10 == kFArg9 + 1) && (kFArg11 == kFArg10 + 1) &&
1202                      (kFArg12 == kFArg11 + 1) && (kFArg13 == kFArg12 + 1) &&
1203                      (kFArg14 == kFArg13 + 1) && (kFArg15 == kFArg14 + 1),
1204                      "kfargs range unexpected");
1205        static_assert(kRet1 == kRet0 + 1, "kret range unexpected");
1206        return RegStorage::MakeRegPair(TargetReg(reg),
1207                                       TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
1208      } else {
1209        return TargetReg(reg);
1210      }
1211    }
1212
1213    /**
1214     * @brief Portable way of getting a special register for storing a pointer.
1215     * @see TargetReg()
1216     */
1217    virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
1218      return TargetReg(reg);
1219    }
1220
1221    // Get a reg storage corresponding to the wide & ref flags of the reg location.
1222    virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
1223      if (loc.ref) {
1224        return TargetReg(reg, kRef);
1225      } else {
1226        return TargetReg(reg, loc.wide ? kWide : kNotWide);
1227      }
1228    }
1229
1230    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1231    virtual RegLocation GetReturnAlt() = 0;
1232    virtual RegLocation GetReturnWideAlt() = 0;
1233    virtual RegLocation LocCReturn() = 0;
1234    virtual RegLocation LocCReturnRef() = 0;
1235    virtual RegLocation LocCReturnDouble() = 0;
1236    virtual RegLocation LocCReturnFloat() = 0;
1237    virtual RegLocation LocCReturnWide() = 0;
1238    virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
1239    virtual void AdjustSpillMask() = 0;
1240    virtual void ClobberCallerSave() = 0;
1241    virtual void FreeCallTemps() = 0;
1242    virtual void LockCallTemps() = 0;
1243    virtual void CompilerInitializeRegAlloc() = 0;
1244
1245    // Required for target - miscellaneous.
1246    virtual void AssembleLIR() = 0;
1247    virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
1248    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
1249                                          ResourceMask* use_mask, ResourceMask* def_mask) = 0;
1250    virtual const char* GetTargetInstFmt(int opcode) = 0;
1251    virtual const char* GetTargetInstName(int opcode) = 0;
1252    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1253
1254    // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
1255    //       take care of this.
1256    virtual ResourceMask GetPCUseDefEncoding() const = 0;
1257    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1258    virtual size_t GetInsnSize(LIR* lir) = 0;
1259    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1260
1261    // Get the register class for load/store of a field.
1262    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1263
1264    // Required for target - Dalvik-level generators.
1265    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1266                                   RegLocation rl_src1, RegLocation rl_src2, int flags) = 0;
1267    virtual void GenArithOpDouble(Instruction::Code opcode,
1268                                  RegLocation rl_dest, RegLocation rl_src1,
1269                                  RegLocation rl_src2) = 0;
1270    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1271                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1272    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1273                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1274    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1275                               RegLocation rl_src) = 0;
1276    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1277
1278    /**
1279     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1280     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1281     * that applies on integers. The generated code will write the smallest or largest value
1282     * directly into the destination register as specified by the invoke information.
1283     * @param info Information about the invoke.
1284     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1285     * @param is_long If true the value value is Long. Otherwise the value is Int.
1286     * @return Returns true if successfully generated
1287     */
1288    virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
1289    virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
1290
1291    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1292    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1293    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1294    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1295                                  bool is_div) = 0;
1296    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1297                                     bool is_div) = 0;
1298    /*
1299     * @brief Generate an integer div or rem operation by a literal.
1300     * @param rl_dest Destination Location.
1301     * @param rl_src1 Numerator Location.
1302     * @param rl_src2 Divisor Location.
1303     * @param is_div 'true' if this is a division, 'false' for a remainder.
1304     * @param flags The instruction optimization flags. It can include information
1305     * if exception check can be elided.
1306     */
1307    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1308                                  RegLocation rl_src2, bool is_div, int flags) = 0;
1309    /*
1310     * @brief Generate an integer div or rem operation by a literal.
1311     * @param rl_dest Destination Location.
1312     * @param rl_src Numerator Location.
1313     * @param lit Divisor.
1314     * @param is_div 'true' if this is a division, 'false' for a remainder.
1315     */
1316    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1317                                     bool is_div) = 0;
1318    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1319
1320    /**
1321     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1322     * @details This is used for generating DivideByZero checks when divisor is held in two
1323     *  separate registers.
1324     * @param reg The register holding the pair of 32-bit values.
1325     */
1326    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1327
1328    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1329    virtual void GenExitSequence() = 0;
1330    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1331    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1332
1333    /*
1334     * @brief Handle Machine Specific MIR Extended opcodes.
1335     * @param bb The basic block in which the MIR is from.
1336     * @param mir The MIR whose opcode is not standard extended MIR.
1337     * @note Base class implementation will abort for unknown opcodes.
1338     */
1339    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1340
1341    /**
1342     * @brief Lowers the kMirOpSelect MIR into LIR.
1343     * @param bb The basic block in which the MIR is from.
1344     * @param mir The MIR whose opcode is kMirOpSelect.
1345     */
1346    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1347
1348    /**
1349     * @brief Generates code to select one of the given constants depending on the given opcode.
1350     */
1351    virtual void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
1352                                  int32_t true_val, int32_t false_val, RegStorage rs_dest,
1353                                  RegisterClass dest_reg_class) = 0;
1354
1355    /**
1356     * @brief Used to generate a memory barrier in an architecture specific way.
1357     * @details The last generated LIR will be considered for use as barrier. Namely,
1358     * if the last LIR can be updated in a way where it will serve the semantics of
1359     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1360     * that can keep the semantics.
1361     * @param barrier_kind The kind of memory barrier to generate.
1362     * @return whether a new instruction was generated.
1363     */
1364    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1365
1366    virtual void GenMoveException(RegLocation rl_dest) = 0;
1367    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1368                                               int first_bit, int second_bit) = 0;
1369    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1370    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1371
1372    // Create code for switch statements. Will decide between short and long versions below.
1373    void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1374    void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1375
1376    // Potentially backend-specific versions of switch instructions for shorter switch statements.
1377    // The default implementation will create a chained compare-and-branch.
1378    virtual void GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1379    virtual void GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1380    // Backend-specific versions of switch instructions for longer switch statements.
1381    virtual void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1382    virtual void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1383
1384    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1385                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1386    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1387                             RegLocation rl_index, RegLocation rl_src, int scale,
1388                             bool card_mark) = 0;
1389    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1390                                   RegLocation rl_src1, RegLocation rl_shift, int flags) = 0;
1391
1392    // Required for target - single operation generators.
1393    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1394    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1395    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1396                                LIR* target) = 0;
1397    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1398    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1399    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1400    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1401    virtual void OpEndIT(LIR* it) = 0;
1402    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1403    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1404    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1405    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1406    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1407    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1408    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1409
1410    /**
1411     * @brief Used to generate an LIR that does a load from mem to reg.
1412     * @param r_dest The destination physical register.
1413     * @param r_base The base physical register for memory operand.
1414     * @param offset The displacement for memory operand.
1415     * @param move_type Specification on the move desired (size, alignment, register kind).
1416     * @return Returns the generate move LIR.
1417     */
1418    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1419                             MoveType move_type) = 0;
1420
1421    /**
1422     * @brief Used to generate an LIR that does a store from reg to mem.
1423     * @param r_base The base physical register for memory operand.
1424     * @param offset The displacement for memory operand.
1425     * @param r_src The destination physical register.
1426     * @param bytes_to_move The number of bytes to move.
1427     * @param is_aligned Whether the memory location is known to be aligned.
1428     * @return Returns the generate move LIR.
1429     */
1430    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1431                             MoveType move_type) = 0;
1432
1433    /**
1434     * @brief Used for generating a conditional register to register operation.
1435     * @param op The opcode kind.
1436     * @param cc The condition code that when true will perform the opcode.
1437     * @param r_dest The destination physical register.
1438     * @param r_src The source physical register.
1439     * @return Returns the newly created LIR or null in case of creation failure.
1440     */
1441    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1442
1443    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1444    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1445                             RegStorage r_src2) = 0;
1446    virtual LIR* OpTestSuspend(LIR* target) = 0;
1447    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1448    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1449    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1450    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1451    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1452    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1453    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1454    virtual bool InexpensiveConstantInt(int32_t value, Instruction::Code opcode) {
1455      UNUSED(opcode);
1456      return InexpensiveConstantInt(value);
1457    }
1458
1459    /**
1460     * @brief Whether division by the given divisor can be converted to multiply by its reciprocal.
1461     * @param divisor A constant divisor bits of float type.
1462     * @return Returns true iff, x/divisor == x*(1.0f/divisor), for every float x.
1463     */
1464    bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
1465      // True, if float value significand bits are 0.
1466      return ((divisor & 0x7fffff) == 0);
1467    }
1468
1469    /**
1470     * @brief Whether division by the given divisor can be converted to multiply by its reciprocal.
1471     * @param divisor A constant divisor bits of double type.
1472     * @return Returns true iff, x/divisor == x*(1.0/divisor), for every double x.
1473     */
1474    bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
1475      // True, if double value significand bits are 0.
1476      return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
1477    }
1478
1479    // May be optimized by targets.
1480    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1481    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1482
1483    // Temp workaround
1484    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1485
1486    virtual LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) = 0;
1487
1488  protected:
1489    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1490
1491    CompilationUnit* GetCompilationUnit() {
1492      return cu_;
1493    }
1494    /*
1495     * @brief Returns the index of the lowest set bit in 'x'.
1496     * @param x Value to be examined.
1497     * @returns The bit number of the lowest bit set in the value.
1498     */
1499    int32_t LowestSetBit(uint64_t x);
1500    /*
1501     * @brief Is this value a power of two?
1502     * @param x Value to be examined.
1503     * @returns 'true' if only 1 bit is set in the value.
1504     */
1505    bool IsPowerOfTwo(uint64_t x);
1506    /*
1507     * @brief Do these SRs overlap?
1508     * @param rl_op1 One RegLocation
1509     * @param rl_op2 The other RegLocation
1510     * @return 'true' if the VR pairs overlap
1511     *
1512     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1513     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1514     * dex, we'll want to make this case illegal.
1515     */
1516    bool PartiallyIntersects(RegLocation rl_op1, RegLocation rl_op2);
1517
1518    /*
1519     * @brief Do these SRs intersect?
1520     * @param rl_op1 One RegLocation
1521     * @param rl_op2 The other RegLocation
1522     * @return 'true' if the VR pairs intersect
1523     *
1524     * Check to see if a result pair has misaligned overlap or
1525     * full overlap with an operand pair.
1526     */
1527    bool Intersects(RegLocation rl_op1, RegLocation rl_op2);
1528
1529    /*
1530     * @brief Force a location (in a register) into a temporary register
1531     * @param loc location of result
1532     * @returns update location
1533     */
1534    virtual RegLocation ForceTemp(RegLocation loc);
1535
1536    /*
1537     * @brief Force a wide location (in registers) into temporary registers
1538     * @param loc location of result
1539     * @returns update location
1540     */
1541    virtual RegLocation ForceTempWide(RegLocation loc);
1542
1543    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1544                                    RegLocation rl_dest, RegLocation rl_src);
1545
1546    void AddSlowPath(LIRSlowPath* slowpath);
1547
1548    /*
1549     *
1550     * @brief Implement Set up instanceof a class.
1551     * @param needs_access_check 'true' if we must check the access.
1552     * @param type_known_final 'true' if the type is known to be a final class.
1553     * @param type_known_abstract 'true' if the type is known to be an abstract class.
1554     * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
1555     * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
1556     * @param type_idx Type index to use if use_declaring_class is 'false'.
1557     * @param rl_dest Result to be set to 0 or 1.
1558     * @param rl_src Object to be tested.
1559     */
1560    void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1561                                    bool type_known_abstract, bool use_declaring_class,
1562                                    bool can_assume_type_is_in_dex_cache,
1563                                    uint32_t type_idx, RegLocation rl_dest,
1564                                    RegLocation rl_src);
1565    /*
1566     * @brief Generate the eh_frame FDE information if possible.
1567     * @returns pointer to vector containg FDE information, or NULL.
1568     */
1569    virtual std::vector<uint8_t>* ReturnFrameDescriptionEntry();
1570
1571    /**
1572     * @brief Used to insert marker that can be used to associate MIR with LIR.
1573     * @details Only inserts marker if verbosity is enabled.
1574     * @param mir The mir that is currently being generated.
1575     */
1576    void GenPrintLabel(MIR* mir);
1577
1578    /**
1579     * @brief Used to generate return sequence when there is no frame.
1580     * @details Assumes that the return registers have already been populated.
1581     */
1582    virtual void GenSpecialExitSequence() = 0;
1583
1584    /**
1585     * @brief Used to generate code for special methods that are known to be
1586     * small enough to work in frameless mode.
1587     * @param bb The basic block of the first MIR.
1588     * @param mir The first MIR of the special method.
1589     * @param special Information about the special method.
1590     * @return Returns whether or not this was handled successfully. Returns false
1591     * if caller should punt to normal MIR2LIR conversion.
1592     */
1593    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1594
1595  protected:
1596    void ClobberBody(RegisterInfo* p);
1597    void SetCurrentDexPc(DexOffset dexpc) {
1598      current_dalvik_offset_ = dexpc;
1599    }
1600
1601    /**
1602     * @brief Used to lock register if argument at in_position was passed that way.
1603     * @details Does nothing if the argument is passed via stack.
1604     * @param in_position The argument number whose register to lock.
1605     * @param wide Whether the argument is wide.
1606     */
1607    void LockArg(int in_position, bool wide = false);
1608
1609    /**
1610     * @brief Used to load VR argument to a physical register.
1611     * @details The load is only done if the argument is not already in physical register.
1612     * LockArg must have been previously called.
1613     * @param in_position The argument number to load.
1614     * @param wide Whether the argument is 64-bit or not.
1615     * @return Returns the register (or register pair) for the loaded argument.
1616     */
1617    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1618
1619    /**
1620     * @brief Used to load a VR argument directly to a specified register location.
1621     * @param in_position The argument number to place in register.
1622     * @param rl_dest The register location where to place argument.
1623     */
1624    void LoadArgDirect(int in_position, RegLocation rl_dest);
1625
1626    /**
1627     * @brief Used to generate LIR for special getter method.
1628     * @param mir The mir that represents the iget.
1629     * @param special Information about the special getter method.
1630     * @return Returns whether LIR was successfully generated.
1631     */
1632    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1633
1634    /**
1635     * @brief Used to generate LIR for special setter method.
1636     * @param mir The mir that represents the iput.
1637     * @param special Information about the special setter method.
1638     * @return Returns whether LIR was successfully generated.
1639     */
1640    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1641
1642    /**
1643     * @brief Used to generate LIR for special return-args method.
1644     * @param mir The mir that represents the return of argument.
1645     * @param special Information about the special return-args method.
1646     * @return Returns whether LIR was successfully generated.
1647     */
1648    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1649
1650    void AddDivZeroCheckSlowPath(LIR* branch);
1651
1652    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1653    // kArg2 as temp.
1654    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1655
1656    /**
1657     * @brief Load Constant into RegLocation
1658     * @param rl_dest Destination RegLocation
1659     * @param value Constant value
1660     */
1661    virtual void GenConst(RegLocation rl_dest, int value);
1662
1663    /**
1664     * Returns true iff wide GPRs are just different views on the same physical register.
1665     */
1666    virtual bool WideGPRsAreAliases() const = 0;
1667
1668    /**
1669     * Returns true iff wide FPRs are just different views on the same physical register.
1670     */
1671    virtual bool WideFPRsAreAliases() const = 0;
1672
1673
1674    enum class WidenessCheck {  // private
1675      kIgnoreWide,
1676      kCheckWide,
1677      kCheckNotWide
1678    };
1679
1680    enum class RefCheck {  // private
1681      kIgnoreRef,
1682      kCheckRef,
1683      kCheckNotRef
1684    };
1685
1686    enum class FPCheck {  // private
1687      kIgnoreFP,
1688      kCheckFP,
1689      kCheckNotFP
1690    };
1691
1692    /**
1693     * Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
1694     * that it has the expected form for the flags.
1695     * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
1696     */
1697    void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
1698                             bool report)
1699        const;
1700
1701    /**
1702     * Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
1703     * that it has the expected size.
1704     */
1705    void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
1706
1707    // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
1708    // kReportSizeError.
1709    void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
1710    // See CheckRegLocationImpl.
1711    void CheckRegLocation(RegLocation rl) const;
1712
1713  public:
1714    // TODO: add accessors for these.
1715    LIR* literal_list_;                        // Constants.
1716    LIR* method_literal_list_;                 // Method literals requiring patching.
1717    LIR* class_literal_list_;                  // Class literals requiring patching.
1718    LIR* code_literal_list_;                   // Code literals requiring patching.
1719    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1720
1721  protected:
1722    CompilationUnit* const cu_;
1723    MIRGraph* const mir_graph_;
1724    ArenaVector<SwitchTable*> switch_tables_;
1725    ArenaVector<FillArrayData*> fill_array_data_;
1726    ArenaVector<RegisterInfo*> tempreg_info_;
1727    ArenaVector<RegisterInfo*> reginfo_map_;
1728    ArenaVector<void*> pointer_storage_;
1729    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1730    CodeOffset data_offset_;            // starting offset of literal pool.
1731    size_t total_size_;                   // header + code size.
1732    LIR* block_label_list_;
1733    PromotionMap* promotion_map_;
1734    /*
1735     * TODO: The code generation utilities don't have a built-in
1736     * mechanism to propagate the original Dalvik opcode address to the
1737     * associated generated instructions.  For the trace compiler, this wasn't
1738     * necessary because the interpreter handled all throws and debugging
1739     * requests.  For now we'll handle this by placing the Dalvik offset
1740     * in the CompilationUnit struct before codegen for each instruction.
1741     * The low-level LIR creation utilites will pull it from here.  Rework this.
1742     */
1743    DexOffset current_dalvik_offset_;
1744    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1745    std::unique_ptr<RegisterPool> reg_pool_;
1746    /*
1747     * Sanity checking for the register temp tracking.  The same ssa
1748     * name should never be associated with one temp register per
1749     * instruction compilation.
1750     */
1751    int live_sreg_;
1752    CodeBuffer code_buffer_;
1753    // The source mapping table data (pc -> dex). More entries than in encoded_mapping_table_
1754    SrcMap src_mapping_table_;
1755    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1756    std::vector<uint8_t> encoded_mapping_table_;
1757    ArenaVector<uint32_t> core_vmap_table_;
1758    ArenaVector<uint32_t> fp_vmap_table_;
1759    std::vector<uint8_t> native_gc_map_;
1760    ArenaVector<LinkerPatch> patches_;
1761    int num_core_spills_;
1762    int num_fp_spills_;
1763    int frame_size_;
1764    unsigned int core_spill_mask_;
1765    unsigned int fp_spill_mask_;
1766    LIR* first_lir_insn_;
1767    LIR* last_lir_insn_;
1768
1769    ArenaVector<LIRSlowPath*> slow_paths_;
1770
1771    // The memory reference type for new LIRs.
1772    // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
1773    // invoke RawLIR() would clutter the code and reduce the readability.
1774    ResourceMask::ResourceBit mem_ref_type_;
1775
1776    // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
1777    // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
1778    // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
1779    // to deduplicate the masks.
1780    ResourceMaskCache mask_cache_;
1781
1782  private:
1783    static bool SizeMatchesTypeForEntrypoint(OpSize size, Primitive::Type type);
1784};  // Class Mir2Lir
1785
1786}  // namespace art
1787
1788#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1789