1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18
19#include "base/logging.h"
20#include "dex/mir_graph.h"
21#include "dex/quick/mir_to_lir-inl.h"
22#include "dex/dataflow_iterator-inl.h"
23#include "dex/quick/dex_file_method_inliner.h"
24#include "dex/quick/dex_file_to_method_inliner_map.h"
25#include "dex/reg_storage_eq.h"
26#include "driver/compiler_driver.h"
27#include "x86_lir.h"
28
29namespace art {
30
31/* This file contains codegen for the X86 ISA */
32
33LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
34  int opcode;
35  /* must be both DOUBLE or both not DOUBLE */
36  DCHECK(r_dest.IsFloat() || r_src.IsFloat());
37  DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
38  if (r_dest.IsDouble()) {
39    opcode = kX86MovsdRR;
40  } else {
41    if (r_dest.IsSingle()) {
42      if (r_src.IsSingle()) {
43        opcode = kX86MovssRR;
44      } else {  // Fpr <- Gpr
45        opcode = kX86MovdxrRR;
46      }
47    } else {  // Gpr <- Fpr
48      DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
49      opcode = kX86MovdrxRR;
50    }
51  }
52  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
53  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
54  if (r_dest == r_src) {
55    res->flags.is_nop = true;
56  }
57  return res;
58}
59
60bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
61  UNUSED(value);
62  return true;
63}
64
65bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
66  return value == 0;
67}
68
69bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
70  UNUSED(value);
71  return true;
72}
73
74bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
75  return value == 0;
76}
77
78/*
79 * Load a immediate using a shortcut if possible; otherwise
80 * grab from the per-translation literal pool.  If target is
81 * a high register, build constant into a low register and copy.
82 *
83 * No additional register clobbering operation performed. Use this version when
84 * 1) r_dest is freshly returned from AllocTemp or
85 * 2) The codegen is under fixed register usage
86 */
87LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
88  RegStorage r_dest_save = r_dest;
89  if (r_dest.IsFloat()) {
90    if (value == 0) {
91      return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
92    }
93    r_dest = AllocTemp();
94  }
95
96  LIR *res;
97  if (value == 0) {
98    res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
99  } else {
100    // Note, there is no byte immediate form of a 32 bit immediate move.
101    // 64-bit immediate is not supported by LIR structure
102    res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
103  }
104
105  if (r_dest_save.IsFloat()) {
106    NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
107    FreeTemp(r_dest);
108  }
109
110  return res;
111}
112
113LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
114  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
115  res->target = target;
116  return res;
117}
118
119LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
120  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
121                        X86ConditionEncoding(cc));
122  branch->target = target;
123  return branch;
124}
125
126LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
127  X86OpCode opcode = kX86Bkpt;
128  switch (op) {
129    case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
130    case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
131    case kOpRev: opcode = r_dest_src.Is64Bit() ? kX86Bswap64R : kX86Bswap32R; break;
132    case kOpBlx: opcode = kX86CallR; break;
133    default:
134      LOG(FATAL) << "Bad case in OpReg " << op;
135  }
136  return NewLIR1(opcode, r_dest_src.GetReg());
137}
138
139LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
140  X86OpCode opcode = kX86Bkpt;
141  bool byte_imm = IS_SIMM8(value);
142  DCHECK(!r_dest_src1.IsFloat());
143  if (r_dest_src1.Is64Bit()) {
144    switch (op) {
145      case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
146      case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
147      case kOpLsl: opcode = kX86Sal64RI; break;
148      case kOpLsr: opcode = kX86Shr64RI; break;
149      case kOpAsr: opcode = kX86Sar64RI; break;
150      case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break;
151      default:
152        LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
153    }
154  } else {
155    switch (op) {
156      case kOpLsl: opcode = kX86Sal32RI; break;
157      case kOpLsr: opcode = kX86Shr32RI; break;
158      case kOpAsr: opcode = kX86Sar32RI; break;
159      case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
160      case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
161      case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
162      // case kOpSbb: opcode = kX86Sbb32RI; break;
163      case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
164      case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
165      case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
166      case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
167      case kOpMov:
168        /*
169         * Moving the constant zero into register can be specialized as an xor of the register.
170         * However, that sets eflags while the move does not. For that reason here, always do
171         * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
172         */
173        opcode = kX86Mov32RI;
174        break;
175      case kOpMul:
176        opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
177        return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
178      case kOp2Byte:
179        opcode = kX86Mov32RI;
180        value = static_cast<int8_t>(value);
181        break;
182      case kOp2Short:
183        opcode = kX86Mov32RI;
184        value = static_cast<int16_t>(value);
185        break;
186      case kOp2Char:
187        opcode = kX86Mov32RI;
188        value = static_cast<uint16_t>(value);
189        break;
190      case kOpNeg:
191        opcode = kX86Mov32RI;
192        value = -value;
193        break;
194      default:
195        LOG(FATAL) << "Bad case in OpRegImm " << op;
196    }
197  }
198  return NewLIR2(opcode, r_dest_src1.GetReg(), value);
199}
200
201LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
202    bool is64Bit = r_dest_src1.Is64Bit();
203    X86OpCode opcode = kX86Nop;
204    bool src2_must_be_cx = false;
205    switch (op) {
206        // X86 unary opcodes
207      case kOpMvn:
208        OpRegCopy(r_dest_src1, r_src2);
209        return OpReg(kOpNot, r_dest_src1);
210      case kOpNeg:
211        OpRegCopy(r_dest_src1, r_src2);
212        return OpReg(kOpNeg, r_dest_src1);
213      case kOpRev:
214        OpRegCopy(r_dest_src1, r_src2);
215        return OpReg(kOpRev, r_dest_src1);
216      case kOpRevsh:
217        OpRegCopy(r_dest_src1, r_src2);
218        OpReg(kOpRev, r_dest_src1);
219        return OpRegImm(kOpAsr, r_dest_src1, 16);
220        // X86 binary opcodes
221      case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
222      case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
223      case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
224      case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
225      case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
226      case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
227      case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
228      case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
229      case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
230      case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
231      case kOpOr:  opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
232      case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
233      case kOp2Byte:
234        // TODO: there are several instances of this check.  A utility function perhaps?
235        // TODO: Similar to Arm's reg < 8 check.  Perhaps add attribute checks to RegStorage?
236        // Use shifts instead of a byte operand if the source can't be byte accessed.
237        if (r_src2.GetRegNum() >= rs_rX86_SP_32.GetRegNum()) {
238          NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
239          NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
240          return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
241                         is64Bit ? 56 : 24);
242        } else {
243          opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
244        }
245        break;
246      case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
247      case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
248      case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
249      default:
250        LOG(FATAL) << "Bad case in OpRegReg " << op;
251        break;
252    }
253    CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
254    return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
255}
256
257LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
258  DCHECK(!r_base.IsFloat());
259  X86OpCode opcode = kX86Nop;
260  int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
261  switch (move_type) {
262    case kMov8GP:
263      CHECK(!r_dest.IsFloat());
264      opcode = kX86Mov8RM;
265      break;
266    case kMov16GP:
267      CHECK(!r_dest.IsFloat());
268      opcode = kX86Mov16RM;
269      break;
270    case kMov32GP:
271      CHECK(!r_dest.IsFloat());
272      opcode = kX86Mov32RM;
273      break;
274    case kMov32FP:
275      CHECK(r_dest.IsFloat());
276      opcode = kX86MovssRM;
277      break;
278    case kMov64FP:
279      CHECK(r_dest.IsFloat());
280      opcode = kX86MovsdRM;
281      break;
282    case kMovU128FP:
283      CHECK(r_dest.IsFloat());
284      opcode = kX86MovupsRM;
285      break;
286    case kMovA128FP:
287      CHECK(r_dest.IsFloat());
288      opcode = kX86MovapsRM;
289      break;
290    case kMovLo128FP:
291      CHECK(r_dest.IsFloat());
292      opcode = kX86MovlpsRM;
293      break;
294    case kMovHi128FP:
295      CHECK(r_dest.IsFloat());
296      opcode = kX86MovhpsRM;
297      break;
298    case kMov64GP:
299    case kMovLo64FP:
300    case kMovHi64FP:
301    default:
302      LOG(FATAL) << "Bad case in OpMovRegMem";
303      break;
304  }
305
306  return NewLIR3(opcode, dest, r_base.GetReg(), offset);
307}
308
309LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
310  DCHECK(!r_base.IsFloat());
311  int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
312
313  X86OpCode opcode = kX86Nop;
314  switch (move_type) {
315    case kMov8GP:
316      CHECK(!r_src.IsFloat());
317      opcode = kX86Mov8MR;
318      break;
319    case kMov16GP:
320      CHECK(!r_src.IsFloat());
321      opcode = kX86Mov16MR;
322      break;
323    case kMov32GP:
324      CHECK(!r_src.IsFloat());
325      opcode = kX86Mov32MR;
326      break;
327    case kMov32FP:
328      CHECK(r_src.IsFloat());
329      opcode = kX86MovssMR;
330      break;
331    case kMov64FP:
332      CHECK(r_src.IsFloat());
333      opcode = kX86MovsdMR;
334      break;
335    case kMovU128FP:
336      CHECK(r_src.IsFloat());
337      opcode = kX86MovupsMR;
338      break;
339    case kMovA128FP:
340      CHECK(r_src.IsFloat());
341      opcode = kX86MovapsMR;
342      break;
343    case kMovLo128FP:
344      CHECK(r_src.IsFloat());
345      opcode = kX86MovlpsMR;
346      break;
347    case kMovHi128FP:
348      CHECK(r_src.IsFloat());
349      opcode = kX86MovhpsMR;
350      break;
351    case kMov64GP:
352    case kMovLo64FP:
353    case kMovHi64FP:
354    default:
355      LOG(FATAL) << "Bad case in OpMovMemReg";
356      break;
357  }
358
359  return NewLIR3(opcode, r_base.GetReg(), offset, src);
360}
361
362LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
363  // The only conditional reg to reg operation supported is Cmov
364  DCHECK_EQ(op, kOpCmov);
365  DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit());
366  return NewLIR3(r_dest.Is64Bit() ? kX86Cmov64RRC : kX86Cmov32RRC, r_dest.GetReg(),
367                 r_src.GetReg(), X86ConditionEncoding(cc));
368}
369
370LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
371  bool is64Bit = r_dest.Is64Bit();
372  X86OpCode opcode = kX86Nop;
373  switch (op) {
374      // X86 binary opcodes
375    case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
376    case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
377    case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
378    case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
379    case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
380    case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
381    case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
382    case kOp2Byte: opcode = kX86Movsx8RM; break;
383    case kOp2Short: opcode = kX86Movsx16RM; break;
384    case kOp2Char: opcode = kX86Movzx16RM; break;
385    case kOpMul:
386    default:
387      LOG(FATAL) << "Bad case in OpRegMem " << op;
388      break;
389  }
390  LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
391  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
392    DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
393    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
394  }
395  return l;
396}
397
398LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
399  DCHECK_NE(rl_dest.location, kLocPhysReg);
400  int displacement = SRegOffset(rl_dest.s_reg_low);
401  bool is64Bit = rl_dest.wide != 0;
402  X86OpCode opcode = kX86Nop;
403  switch (op) {
404    case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
405    case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
406    case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
407    case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
408    case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
409    case kOpOr:  opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
410    case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
411    case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
412    case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
413    case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
414    default:
415      LOG(FATAL) << "Bad case in OpMemReg " << op;
416      break;
417  }
418  LIR *l = NewLIR3(opcode, rs_rX86_SP_32.GetReg(), displacement, r_value);
419  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
420    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
421    AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
422  }
423  return l;
424}
425
426LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
427  DCHECK_NE(rl_value.location, kLocPhysReg);
428  bool is64Bit = r_dest.Is64Bit();
429  int displacement = SRegOffset(rl_value.s_reg_low);
430  X86OpCode opcode = kX86Nop;
431  switch (op) {
432    case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
433    case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
434    case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
435    case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
436    case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
437    case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
438    case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
439    case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
440    default:
441      LOG(FATAL) << "Bad case in OpRegMem " << op;
442      break;
443  }
444  LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP_32.GetReg(), displacement);
445  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
446    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
447  }
448  return l;
449}
450
451LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
452                             RegStorage r_src2) {
453  bool is64Bit = r_dest.Is64Bit();
454  if (r_dest != r_src1 && r_dest != r_src2) {
455    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
456      if (r_src1 == r_src2) {
457        OpRegCopy(r_dest, r_src1);
458        return OpRegImm(kOpLsl, r_dest, 1);
459      } else if (r_src1 != rs_rBP) {
460        return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
461                       r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
462                       0 /* scale */, 0 /* disp */);
463      } else {
464        return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
465                       r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
466                       0 /* scale */, 0 /* disp */);
467      }
468    } else {
469      OpRegCopy(r_dest, r_src1);
470      return OpRegReg(op, r_dest, r_src2);
471    }
472  } else if (r_dest == r_src1) {
473    return OpRegReg(op, r_dest, r_src2);
474  } else {  // r_dest == r_src2
475    switch (op) {
476      case kOpSub:  // non-commutative
477        OpReg(kOpNeg, r_dest);
478        op = kOpAdd;
479        break;
480      case kOpSbc:
481      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
482        RegStorage t_reg = AllocTemp();
483        OpRegCopy(t_reg, r_src1);
484        OpRegReg(op, t_reg, r_src2);
485        LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
486        AppendLIR(res);
487        FreeTemp(t_reg);
488        return res;
489      }
490      case kOpAdd:  // commutative
491      case kOpOr:
492      case kOpAdc:
493      case kOpAnd:
494      case kOpXor:
495      case kOpMul:
496        break;
497      default:
498        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
499    }
500    return OpRegReg(op, r_dest, r_src1);
501  }
502}
503
504LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
505  if (op == kOpMul && !cu_->target64) {
506    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
507    return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
508  } else if (op == kOpAnd && !cu_->target64) {
509    if (value == 0xFF && r_src.Low4()) {
510      return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
511    } else if (value == 0xFFFF) {
512      return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
513    }
514  }
515  if (r_dest != r_src) {
516    if ((false) && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
517      // TODO: fix bug in LEA encoding when disp == 0
518      return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
519                     r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
520    } else if (op == kOpAdd) {  // lea add special case
521      return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
522                     r_src.GetReg() /* base */, rs_rX86_SP_32.GetReg()/*r4sib_no_index*/ /* index */,
523                     0 /* scale */, value /* disp */);
524    }
525    OpRegCopy(r_dest, r_src);
526  }
527  return OpRegImm(op, r_dest, value);
528}
529
530LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
531  DCHECK_EQ(kX86, cu_->instruction_set);
532  X86OpCode opcode = kX86Bkpt;
533  switch (op) {
534    case kOpBlx: opcode = kX86CallT;  break;
535    case kOpBx: opcode = kX86JmpT;  break;
536    default:
537      LOG(FATAL) << "Bad opcode: " << op;
538      break;
539  }
540  return NewLIR1(opcode, thread_offset.Int32Value());
541}
542
543LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
544  DCHECK_EQ(kX86_64, cu_->instruction_set);
545  X86OpCode opcode = kX86Bkpt;
546  switch (op) {
547    case kOpBlx: opcode = kX86CallT;  break;
548    case kOpBx: opcode = kX86JmpT;  break;
549    default:
550      LOG(FATAL) << "Bad opcode: " << op;
551      break;
552  }
553  return NewLIR1(opcode, thread_offset.Int32Value());
554}
555
556LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
557  X86OpCode opcode = kX86Bkpt;
558  switch (op) {
559    case kOpBlx: opcode = kX86CallM;  break;
560    default:
561      LOG(FATAL) << "Bad opcode: " << op;
562      break;
563  }
564  return NewLIR2(opcode, r_base.GetReg(), disp);
565}
566
567LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
568    int32_t val_lo = Low32Bits(value);
569    int32_t val_hi = High32Bits(value);
570    int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
571    LIR *res;
572    bool is_fp = r_dest.IsFloat();
573    // TODO: clean this up once we fully recognize 64-bit storage containers.
574    if (is_fp) {
575      DCHECK(r_dest.IsDouble());
576      if (value == 0) {
577        return NewLIR2(kX86XorpdRR, low_reg_val, low_reg_val);
578      } else if (pc_rel_base_reg_.Valid() || cu_->target64) {
579        // We will load the value from the literal area.
580        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
581        if (data_target == nullptr) {
582          data_target = AddWideData(&literal_list_, val_lo, val_hi);
583        }
584
585        // Load the proper value from the literal area.
586        // We don't know the proper offset for the value, so pick one that
587        // will force 4 byte offset.  We will fix this up in the assembler
588        // later to have the right value.
589        ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
590        if (cu_->target64) {
591          res = NewLIR3(kX86MovsdRM, low_reg_val, kRIPReg, 256 /* bogus */);
592        } else {
593          // Get the PC to a register and get the anchor.
594          LIR* anchor;
595          RegStorage r_pc = GetPcAndAnchor(&anchor);
596
597          res = LoadBaseDisp(r_pc, kDummy32BitOffset, RegStorage::FloatSolo64(low_reg_val),
598                             kDouble, kNotVolatile);
599          res->operands[4] = WrapPointer(anchor);
600          if (IsTemp(r_pc)) {
601            FreeTemp(r_pc);
602          }
603        }
604        res->target = data_target;
605        res->flags.fixup = kFixupLoad;
606      } else {
607        if (r_dest.IsPair()) {
608          if (val_lo == 0) {
609            res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
610          } else {
611            res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo);
612          }
613          if (val_hi != 0) {
614            RegStorage r_dest_hi = AllocTempDouble();
615            LoadConstantNoClobber(r_dest_hi, val_hi);
616            NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
617            FreeTemp(r_dest_hi);
618          }
619        } else {
620          RegStorage r_temp = AllocTypedTempWide(false, kCoreReg);
621          res = LoadConstantWide(r_temp, value);
622          OpRegCopyWide(r_dest, r_temp);
623          FreeTemp(r_temp);
624        }
625      }
626    } else {
627      if (r_dest.IsPair()) {
628        res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
629        LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
630      } else {
631        if (value == 0) {
632          res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg());
633        } else if (value >= INT_MIN && value <= INT_MAX) {
634          res = NewLIR2(kX86Mov64RI32, r_dest.GetReg(), val_lo);
635        } else {
636          res = NewLIR3(kX86Mov64RI64, r_dest.GetReg(), val_hi, val_lo);
637        }
638      }
639    }
640    return res;
641}
642
643LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
644                                     int displacement, RegStorage r_dest, OpSize size) {
645  LIR *load = nullptr;
646  LIR *load2 = nullptr;
647  bool is_array = r_index.Valid();
648  bool pair = r_dest.IsPair();
649  bool is64bit = ((size == k64) || (size == kDouble));
650  X86OpCode opcode = kX86Nop;
651  switch (size) {
652    case k64:
653    case kDouble:
654      if (r_dest.IsFloat()) {
655        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
656      } else if (!pair) {
657        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
658      } else {
659        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
660      }
661      // TODO: double store is to unaligned address
662      DCHECK_EQ((displacement & 0x3), 0);
663      break;
664    case kWord:
665      if (cu_->target64) {
666        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
667        CHECK_EQ(is_array, false);
668        CHECK_EQ(r_dest.IsFloat(), false);
669        break;
670      }
671      FALLTHROUGH_INTENDED;  // else fall-through to k32 case
672    case k32:
673    case kSingle:
674    case kReference:  // TODO: update for reference decompression on 64-bit targets.
675      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
676      if (r_dest.IsFloat()) {
677        opcode = is_array ? kX86MovssRA : kX86MovssRM;
678        DCHECK(r_dest.IsFloat());
679      }
680      DCHECK_EQ((displacement & 0x3), 0);
681      break;
682    case kUnsignedHalf:
683      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
684      DCHECK_EQ((displacement & 0x1), 0);
685      break;
686    case kSignedHalf:
687      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
688      DCHECK_EQ((displacement & 0x1), 0);
689      break;
690    case kUnsignedByte:
691      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
692      break;
693    case kSignedByte:
694      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
695      break;
696    default:
697      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
698  }
699
700  if (!is_array) {
701    if (!pair) {
702      load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
703    } else {
704      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
705      if (r_base == r_dest.GetLow()) {
706        load = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
707                        displacement + HIWORD_OFFSET);
708        load2 = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
709      } else {
710        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
711        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
712                        displacement + HIWORD_OFFSET);
713      }
714    }
715    if (mem_ref_type_ == ResourceMask::kDalvikReg) {
716      DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
717      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
718                              true /* is_load */, is64bit);
719      if (pair) {
720        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
721                                true /* is_load */, is64bit);
722      }
723    }
724  } else {
725    if (!pair) {
726      load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
727                     displacement + LOWORD_OFFSET);
728    } else {
729      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
730      if (r_base == r_dest.GetLow()) {
731        if (r_dest.GetHigh() == r_index) {
732          // We can't use either register for the first load.
733          RegStorage temp = AllocTemp();
734          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
735                          displacement + HIWORD_OFFSET);
736          load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
737                         displacement + LOWORD_OFFSET);
738          OpRegCopy(r_dest.GetHigh(), temp);
739          FreeTemp(temp);
740        } else {
741          load = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
742                          displacement + HIWORD_OFFSET);
743          load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
744                         displacement + LOWORD_OFFSET);
745        }
746      } else {
747        if (r_dest.GetLow() == r_index) {
748          // We can't use either register for the first load.
749          RegStorage temp = AllocTemp();
750          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
751                         displacement + LOWORD_OFFSET);
752          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
753                          displacement + HIWORD_OFFSET);
754          OpRegCopy(r_dest.GetLow(), temp);
755          FreeTemp(temp);
756        } else {
757          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
758                         displacement + LOWORD_OFFSET);
759          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
760                          displacement + HIWORD_OFFSET);
761        }
762      }
763    }
764  }
765
766  // Always return first load generated as this might cause a fault if base is null.
767  return load;
768}
769
770/* Load value from base + scaled index. */
771LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
772                                 int scale, OpSize size) {
773  return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
774}
775
776LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
777                              OpSize size, VolatileKind is_volatile) {
778  // LoadBaseDisp() will emit correct insn for atomic load on x86
779  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
780
781  LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
782                                  size);
783
784  if (UNLIKELY(is_volatile == kVolatile)) {
785    GenMemBarrier(kLoadAny);  // Only a scheduling barrier.
786  }
787
788  return load;
789}
790
791LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
792                                      int displacement, RegStorage r_src, OpSize size,
793                                      int opt_flags) {
794  LIR *store = nullptr;
795  LIR *store2 = nullptr;
796  bool is_array = r_index.Valid();
797  bool pair = r_src.IsPair();
798  bool is64bit = (size == k64) || (size == kDouble);
799  bool consider_non_temporal = false;
800
801  X86OpCode opcode = kX86Nop;
802  switch (size) {
803    case k64:
804      consider_non_temporal = true;
805      FALLTHROUGH_INTENDED;
806    case kDouble:
807      if (r_src.IsFloat()) {
808        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
809      } else if (!pair) {
810        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
811      } else {
812        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
813      }
814      // TODO: double store is to unaligned address
815      DCHECK_EQ((displacement & 0x3), 0);
816      break;
817    case kWord:
818      if (cu_->target64) {
819        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
820        CHECK_EQ(is_array, false);
821        CHECK_EQ(r_src.IsFloat(), false);
822        consider_non_temporal = true;
823        break;
824      }
825      FALLTHROUGH_INTENDED;  // else fall-through to k32 case
826    case k32:
827    case kSingle:
828    case kReference:
829      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
830      if (r_src.IsFloat()) {
831        opcode = is_array ? kX86MovssAR : kX86MovssMR;
832        DCHECK(r_src.IsSingle());
833      }
834      DCHECK_EQ((displacement & 0x3), 0);
835      consider_non_temporal = true;
836      break;
837    case kUnsignedHalf:
838    case kSignedHalf:
839      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
840      DCHECK_EQ((displacement & 0x1), 0);
841      break;
842    case kUnsignedByte:
843    case kSignedByte:
844      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
845      break;
846    default:
847      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
848  }
849
850  // Handle non temporal hint here.
851  if (consider_non_temporal && ((opt_flags & MIR_STORE_NON_TEMPORAL) != 0)) {
852    switch (opcode) {
853      // We currently only handle 32/64 bit moves here.
854      case kX86Mov64AR:
855        opcode = kX86Movnti64AR;
856        break;
857      case kX86Mov64MR:
858        opcode = kX86Movnti64MR;
859        break;
860      case kX86Mov32AR:
861        opcode = kX86Movnti32AR;
862        break;
863      case kX86Mov32MR:
864        opcode = kX86Movnti32MR;
865        break;
866      default:
867        // Do nothing here.
868        break;
869    }
870  }
871
872  if (!is_array) {
873    if (!pair) {
874      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
875    } else {
876      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
877      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
878      store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
879    }
880    if (mem_ref_type_ == ResourceMask::kDalvikReg) {
881      DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
882      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
883                              false /* is_load */, is64bit);
884      if (pair) {
885        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
886                                false /* is_load */, is64bit);
887      }
888    }
889  } else {
890    if (!pair) {
891      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
892                      displacement + LOWORD_OFFSET, r_src.GetReg());
893    } else {
894      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
895      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
896                      displacement + LOWORD_OFFSET, r_src.GetLowReg());
897      store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
898                       displacement + HIWORD_OFFSET, r_src.GetHighReg());
899    }
900  }
901  return store;
902}
903
904/* store value base base + scaled index. */
905LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
906                                  int scale, OpSize size) {
907  return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
908}
909
910LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size,
911                               VolatileKind is_volatile) {
912  if (UNLIKELY(is_volatile == kVolatile)) {
913    GenMemBarrier(kAnyStore);  // Only a scheduling barrier.
914  }
915
916  // StoreBaseDisp() will emit correct insn for atomic store on x86
917  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
918  // x86 only allows registers EAX-EDX to be used as byte registers, if the input src is not
919  // valid, allocate a temp.
920  bool allocated_temp = false;
921  if (size == kUnsignedByte || size == kSignedByte) {
922    if (!cu_->target64 && !r_src.Low4()) {
923      RegStorage r_input = r_src;
924      r_src = AllocateByteRegister();
925      OpRegCopy(r_src, r_input);
926      allocated_temp = true;
927    }
928  }
929
930  LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
931
932  if (UNLIKELY(is_volatile == kVolatile)) {
933    // A volatile load might follow the volatile store so insert a StoreLoad barrier.
934    // This does require a fence, even on x86.
935    GenMemBarrier(kAnyAny);
936  }
937
938  if (allocated_temp) {
939    FreeTemp(r_src);
940  }
941
942  return store;
943}
944
945LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
946                                   int offset, int check_value, LIR* target, LIR** compare) {
947  UNUSED(temp_reg);  // Comparison performed directly with memory.
948  LIR* inst = NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(),
949      offset, check_value);
950  if (compare != nullptr) {
951    *compare = inst;
952  }
953  LIR* branch = OpCondBranch(cond, target);
954  return branch;
955}
956
957void X86Mir2Lir::AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) {
958  if (cu_->target64) {
959    Mir2Lir::AnalyzeMIR(core_counts, mir, weight);
960    return;
961  }
962
963  int opcode = mir->dalvikInsn.opcode;
964  bool uses_pc_rel_load = false;
965  switch (opcode) {
966    // Instructions referencing doubles.
967    case Instruction::CMPL_DOUBLE:
968    case Instruction::CMPG_DOUBLE:
969    case Instruction::NEG_DOUBLE:
970    case Instruction::ADD_DOUBLE:
971    case Instruction::SUB_DOUBLE:
972    case Instruction::MUL_DOUBLE:
973    case Instruction::DIV_DOUBLE:
974    case Instruction::REM_DOUBLE:
975    case Instruction::ADD_DOUBLE_2ADDR:
976    case Instruction::SUB_DOUBLE_2ADDR:
977    case Instruction::MUL_DOUBLE_2ADDR:
978    case Instruction::DIV_DOUBLE_2ADDR:
979    case Instruction::REM_DOUBLE_2ADDR:
980    case kMirOpFusedCmplDouble:
981    case kMirOpFusedCmpgDouble:
982      uses_pc_rel_load = AnalyzeFPInstruction(opcode, mir);
983      break;
984
985    // Packed switch needs the PC-relative pointer if it's large.
986    case Instruction::PACKED_SWITCH:
987      if (mir_graph_->GetTable(mir, mir->dalvikInsn.vB)[1] > kSmallSwitchThreshold) {
988        uses_pc_rel_load = true;
989      }
990      break;
991
992    case kMirOpConstVector:
993      uses_pc_rel_load = true;
994      break;
995    case kMirOpPackedMultiply:
996    case kMirOpPackedShiftLeft:
997    case kMirOpPackedSignedShiftRight:
998    case kMirOpPackedUnsignedShiftRight:
999      {
1000        // Byte emulation requires constants from the literal pool.
1001        OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1002        if (opsize == kSignedByte || opsize == kUnsignedByte) {
1003          uses_pc_rel_load = true;
1004        }
1005      }
1006      break;
1007
1008    case Instruction::INVOKE_STATIC:
1009    case Instruction::INVOKE_STATIC_RANGE:
1010      if (mir_graph_->GetMethodLoweringInfo(mir).IsIntrinsic()) {
1011        uses_pc_rel_load = AnalyzeInvokeStaticIntrinsic(mir);
1012        break;
1013      }
1014      FALLTHROUGH_INTENDED;
1015    default:
1016      Mir2Lir::AnalyzeMIR(core_counts, mir, weight);
1017      break;
1018  }
1019
1020  if (uses_pc_rel_load) {
1021    DCHECK(pc_rel_temp_ != nullptr);
1022    core_counts[SRegToPMap(pc_rel_temp_->s_reg_low)].count += weight;
1023  }
1024}
1025
1026bool X86Mir2Lir::AnalyzeFPInstruction(int opcode, MIR* mir) {
1027  DCHECK(!cu_->target64);
1028  // Look at all the uses, and see if they are double constants.
1029  uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
1030  int next_sreg = 0;
1031  if (attrs & DF_UA) {
1032    if (attrs & DF_A_WIDE) {
1033      if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
1034        return true;
1035      }
1036      next_sreg += 2;
1037    } else {
1038      next_sreg++;
1039    }
1040  }
1041  if (attrs & DF_UB) {
1042    if (attrs & DF_B_WIDE) {
1043      if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
1044        return true;
1045      }
1046      next_sreg += 2;
1047    } else {
1048      next_sreg++;
1049    }
1050  }
1051  if (attrs & DF_UC) {
1052    if (attrs & DF_C_WIDE) {
1053      if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
1054        return true;
1055      }
1056    }
1057  }
1058  return false;
1059}
1060
1061inline bool X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
1062  // If this is a double literal, we will want it in the literal pool on 32b platforms.
1063  DCHECK(!cu_->target64);
1064  return use.is_const;
1065}
1066
1067bool X86Mir2Lir::AnalyzeInvokeStaticIntrinsic(MIR* mir) {
1068  // 64 bit RIP addressing doesn't need this analysis.
1069  DCHECK(!cu_->target64);
1070
1071  // Retrieve the type of the intrinsic.
1072  MethodReference method_ref = mir_graph_->GetMethodLoweringInfo(mir).GetTargetMethod();
1073  DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1074  DexFileMethodInliner* method_inliner =
1075    cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(method_ref.dex_file);
1076  InlineMethod method;
1077  bool is_intrinsic = method_inliner->IsIntrinsic(method_ref.dex_method_index, &method);
1078  DCHECK(is_intrinsic);
1079
1080  switch (method.opcode) {
1081    case kIntrinsicAbsDouble:
1082    case kIntrinsicMinMaxDouble:
1083      return true;
1084    default:
1085      return false;
1086  }
1087}
1088
1089RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc) {
1090  loc = UpdateLoc(loc);
1091  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1092    if (GetRegInfo(loc.reg)->IsTemp()) {
1093      Clobber(loc.reg);
1094      FreeTemp(loc.reg);
1095      loc.reg = RegStorage::InvalidReg();
1096      loc.location = kLocDalvikFrame;
1097    }
1098  }
1099  DCHECK(CheckCorePoolSanity());
1100  return loc;
1101}
1102
1103RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc) {
1104  loc = UpdateLocWide(loc);
1105  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1106    if (GetRegInfo(loc.reg)->IsTemp()) {
1107      Clobber(loc.reg);
1108      FreeTemp(loc.reg);
1109      loc.reg = RegStorage::InvalidReg();
1110      loc.location = kLocDalvikFrame;
1111    }
1112  }
1113  DCHECK(CheckCorePoolSanity());
1114  return loc;
1115}
1116
1117LIR* X86Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) {
1118  UNUSED(r_tgt);  // Call to absolute memory location doesn't need a temporary target register.
1119  if (cu_->target64) {
1120    return OpThreadMem(op, GetThreadOffset<8>(trampoline));
1121  } else {
1122    return OpThreadMem(op, GetThreadOffset<4>(trampoline));
1123  }
1124}
1125
1126void X86Mir2Lir::CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) {
1127  // Start with the default counts.
1128  Mir2Lir::CountRefs(core_counts, fp_counts, num_regs);
1129
1130  if (pc_rel_temp_ != nullptr) {
1131    // Now, if the dex cache array base temp is used only once outside any loops (weight = 1),
1132    // avoid the promotion, otherwise boost the weight by factor 2 because the full PC-relative
1133    // load sequence is 3 instructions long and by promoting the PC base we save 2 instructions
1134    // per use.
1135    int p_map_idx = SRegToPMap(pc_rel_temp_->s_reg_low);
1136    if (core_counts[p_map_idx].count == 1) {
1137      core_counts[p_map_idx].count = 0;
1138    } else {
1139      core_counts[p_map_idx].count *= 2;
1140    }
1141  }
1142}
1143
1144void X86Mir2Lir::DoPromotion() {
1145  if (!cu_->target64) {
1146    pc_rel_temp_ = mir_graph_->GetNewCompilerTemp(kCompilerTempBackend, false);
1147  }
1148
1149  Mir2Lir::DoPromotion();
1150
1151  if (pc_rel_temp_ != nullptr) {
1152    // Now, if the dex cache array base temp is promoted, remember the register but
1153    // always remove the temp's stack location to avoid unnecessarily bloating the stack.
1154    pc_rel_base_reg_ = mir_graph_->reg_location_[pc_rel_temp_->s_reg_low].reg;
1155    DCHECK(!pc_rel_base_reg_.Valid() || !pc_rel_base_reg_.IsFloat());
1156    mir_graph_->RemoveLastCompilerTemp(kCompilerTempBackend, false, pc_rel_temp_);
1157    pc_rel_temp_ = nullptr;
1158  }
1159}
1160
1161}  // namespace art
1162