1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoop(HLoopInformation* info) {
32  return info != nullptr;
33}
34
35static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36  return first_loop == second_loop;
37}
38
39static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40  return (inner != outer)
41      && (inner != nullptr)
42      && (outer != nullptr)
43      && inner->IsIn(*outer);
44}
45
46static void AddToListForLinearization(GrowableArray<HBasicBlock*>* worklist, HBasicBlock* block) {
47  size_t insert_at = worklist->Size();
48  HLoopInformation* block_loop = block->GetLoopInformation();
49  for (; insert_at > 0; --insert_at) {
50    HBasicBlock* current = worklist->Get(insert_at - 1);
51    HLoopInformation* current_loop = current->GetLoopInformation();
52    if (InSameLoop(block_loop, current_loop)
53        || !IsLoop(current_loop)
54        || IsInnerLoop(current_loop, block_loop)) {
55      // The block can be processed immediately.
56      break;
57    }
58  }
59  worklist->InsertAt(insert_at, block);
60}
61
62void SsaLivenessAnalysis::LinearizeGraph() {
63  // Create a reverse post ordering with the following properties:
64  // - Blocks in a loop are consecutive,
65  // - Back-edge is the last block before loop exits.
66
67  // (1): Record the number of forward predecessors for each block. This is to
68  //      ensure the resulting order is reverse post order. We could use the
69  //      current reverse post order in the graph, but it would require making
70  //      order queries to a GrowableArray, which is not the best data structure
71  //      for it.
72  GrowableArray<uint32_t> forward_predecessors(graph_->GetArena(), graph_->GetBlocks().Size());
73  forward_predecessors.SetSize(graph_->GetBlocks().Size());
74  for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
75    HBasicBlock* block = it.Current();
76    size_t number_of_forward_predecessors = block->GetPredecessors().Size();
77    if (block->IsLoopHeader()) {
78      number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges();
79    }
80    forward_predecessors.Put(block->GetBlockId(), number_of_forward_predecessors);
81  }
82
83  // (2): Following a worklist approach, first start with the entry block, and
84  //      iterate over the successors. When all non-back edge predecessors of a
85  //      successor block are visited, the successor block is added in the worklist
86  //      following an order that satisfies the requirements to build our linear graph.
87  GrowableArray<HBasicBlock*> worklist(graph_->GetArena(), 1);
88  worklist.Add(graph_->GetEntryBlock());
89  do {
90    HBasicBlock* current = worklist.Pop();
91    graph_->linear_order_.Add(current);
92    for (size_t i = 0, e = current->GetSuccessors().Size(); i < e; ++i) {
93      HBasicBlock* successor = current->GetSuccessors().Get(i);
94      int block_id = successor->GetBlockId();
95      size_t number_of_remaining_predecessors = forward_predecessors.Get(block_id);
96      if (number_of_remaining_predecessors == 1) {
97        AddToListForLinearization(&worklist, successor);
98      }
99      forward_predecessors.Put(block_id, number_of_remaining_predecessors - 1);
100    }
101  } while (!worklist.IsEmpty());
102}
103
104void SsaLivenessAnalysis::NumberInstructions() {
105  int ssa_index = 0;
106  size_t lifetime_position = 0;
107  // Each instruction gets a lifetime position, and a block gets a lifetime
108  // start and end position. Non-phi instructions have a distinct lifetime position than
109  // the block they are in. Phi instructions have the lifetime start of their block as
110  // lifetime position.
111  //
112  // Because the register allocator will insert moves in the graph, we need
113  // to differentiate between the start and end of an instruction. Adding 2 to
114  // the lifetime position for each instruction ensures the start of an
115  // instruction is different than the end of the previous instruction.
116  for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
117    HBasicBlock* block = it.Current();
118    block->SetLifetimeStart(lifetime_position);
119
120    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
121      HInstruction* current = inst_it.Current();
122      codegen_->AllocateLocations(current);
123      LocationSummary* locations = current->GetLocations();
124      if (locations != nullptr && locations->Out().IsValid()) {
125        instructions_from_ssa_index_.Add(current);
126        current->SetSsaIndex(ssa_index++);
127        current->SetLiveInterval(
128            LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
129      }
130      current->SetLifetimePosition(lifetime_position);
131    }
132    lifetime_position += 2;
133
134    // Add a null marker to notify we are starting a block.
135    instructions_from_lifetime_position_.Add(nullptr);
136
137    for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
138         inst_it.Advance()) {
139      HInstruction* current = inst_it.Current();
140      codegen_->AllocateLocations(current);
141      LocationSummary* locations = current->GetLocations();
142      if (locations != nullptr && locations->Out().IsValid()) {
143        instructions_from_ssa_index_.Add(current);
144        current->SetSsaIndex(ssa_index++);
145        current->SetLiveInterval(
146            LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
147      }
148      instructions_from_lifetime_position_.Add(current);
149      current->SetLifetimePosition(lifetime_position);
150      lifetime_position += 2;
151    }
152
153    block->SetLifetimeEnd(lifetime_position);
154  }
155  number_of_ssa_values_ = ssa_index;
156}
157
158void SsaLivenessAnalysis::ComputeLiveness() {
159  for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
160    HBasicBlock* block = it.Current();
161    block_infos_.Put(
162        block->GetBlockId(),
163        new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_));
164  }
165
166  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
167  // This method does not handle backward branches for the sets, therefore live_in
168  // and live_out sets are not yet correct.
169  ComputeLiveRanges();
170
171  // Do a fixed point calculation to take into account backward branches,
172  // that will update live_in of loop headers, and therefore live_out and live_in
173  // of blocks in the loop.
174  ComputeLiveInAndLiveOutSets();
175}
176
177void SsaLivenessAnalysis::ComputeLiveRanges() {
178  // Do a post order visit, adding inputs of instructions live in the block where
179  // that instruction is defined, and killing instructions that are being visited.
180  for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
181    HBasicBlock* block = it.Current();
182
183    BitVector* kill = GetKillSet(*block);
184    BitVector* live_in = GetLiveInSet(*block);
185
186    // Set phi inputs of successors of this block corresponding to this block
187    // as live_in.
188    for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
189      HBasicBlock* successor = block->GetSuccessors().Get(i);
190      live_in->Union(GetLiveInSet(*successor));
191      size_t phi_input_index = successor->GetPredecessorIndexOf(block);
192      for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
193        HInstruction* phi = inst_it.Current();
194        HInstruction* input = phi->InputAt(phi_input_index);
195        input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
196        // A phi input whose last user is the phi dies at the end of the predecessor block,
197        // and not at the phi's lifetime position.
198        live_in->SetBit(input->GetSsaIndex());
199      }
200    }
201
202    // Add a range that covers this block to all instructions live_in because of successors.
203    // Instructions defined in this block will have their start of the range adjusted.
204    for (uint32_t idx : live_in->Indexes()) {
205      HInstruction* current = instructions_from_ssa_index_.Get(idx);
206      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
207    }
208
209    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
210         back_it.Advance()) {
211      HInstruction* current = back_it.Current();
212      if (current->HasSsaIndex()) {
213        // Kill the instruction and shorten its interval.
214        kill->SetBit(current->GetSsaIndex());
215        live_in->ClearBit(current->GetSsaIndex());
216        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
217      }
218
219      // Process the environment first, because we know their uses come after
220      // or at the same liveness position of inputs.
221      for (HEnvironment* environment = current->GetEnvironment();
222           environment != nullptr;
223           environment = environment->GetParent()) {
224        // Handle environment uses. See statements (b) and (c) of the
225        // SsaLivenessAnalysis.
226        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
227          HInstruction* instruction = environment->GetInstructionAt(i);
228          bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
229          if (should_be_live) {
230            DCHECK(instruction->HasSsaIndex());
231            live_in->SetBit(instruction->GetSsaIndex());
232          }
233          if (instruction != nullptr) {
234            instruction->GetLiveInterval()->AddUse(
235                current, environment, i, should_be_live);
236          }
237        }
238      }
239
240      // All inputs of an instruction must be live.
241      for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
242        HInstruction* input = current->InputAt(i);
243        // Some instructions 'inline' their inputs, that is they do not need
244        // to be materialized.
245        if (input->HasSsaIndex()) {
246          live_in->SetBit(input->GetSsaIndex());
247          input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i);
248        }
249      }
250    }
251
252    // Kill phis defined in this block.
253    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
254      HInstruction* current = inst_it.Current();
255      if (current->HasSsaIndex()) {
256        kill->SetBit(current->GetSsaIndex());
257        live_in->ClearBit(current->GetSsaIndex());
258        LiveInterval* interval = current->GetLiveInterval();
259        DCHECK((interval->GetFirstRange() == nullptr)
260               || (interval->GetStart() == current->GetLifetimePosition()));
261        interval->SetFrom(current->GetLifetimePosition());
262      }
263    }
264
265    if (block->IsLoopHeader()) {
266      size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
267      // For all live_in instructions at the loop header, we need to create a range
268      // that covers the full loop.
269      for (uint32_t idx : live_in->Indexes()) {
270        HInstruction* current = instructions_from_ssa_index_.Get(idx);
271        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
272      }
273    }
274  }
275}
276
277void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
278  bool changed;
279  do {
280    changed = false;
281
282    for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
283      const HBasicBlock& block = *it.Current();
284
285      // The live_in set depends on the kill set (which does not
286      // change in this loop), and the live_out set.  If the live_out
287      // set does not change, there is no need to update the live_in set.
288      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
289        changed = true;
290      }
291    }
292  } while (changed);
293}
294
295bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
296  BitVector* live_out = GetLiveOutSet(block);
297  bool changed = false;
298  // The live_out set of a block is the union of live_in sets of its successors.
299  for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
300    HBasicBlock* successor = block.GetSuccessors().Get(i);
301    if (live_out->Union(GetLiveInSet(*successor))) {
302      changed = true;
303    }
304  }
305  return changed;
306}
307
308
309bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
310  BitVector* live_out = GetLiveOutSet(block);
311  BitVector* kill = GetKillSet(block);
312  BitVector* live_in = GetLiveInSet(block);
313  // If live_out is updated (because of backward branches), we need to make
314  // sure instructions in live_out are also in live_in, unless they are killed
315  // by this block.
316  return live_in->UnionIfNotIn(live_out, kill);
317}
318
319static int RegisterOrLowRegister(Location location) {
320  return location.IsPair() ? location.low() : location.reg();
321}
322
323int LiveInterval::FindFirstRegisterHint(size_t* free_until,
324                                        const SsaLivenessAnalysis& liveness) const {
325  DCHECK(!IsHighInterval());
326  if (IsTemp()) return kNoRegister;
327
328  if (GetParent() == this && defined_by_ != nullptr) {
329    // This is the first interval for the instruction. Try to find
330    // a register based on its definition.
331    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
332    int hint = FindHintAtDefinition();
333    if (hint != kNoRegister && free_until[hint] > GetStart()) {
334      return hint;
335    }
336  }
337
338  if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
339    // If the start of this interval is at a block boundary, we look at the
340    // location of the interval in blocks preceding the block this interval
341    // starts at. If one location is a register we return it as a hint. This
342    // will avoid a move between the two blocks.
343    HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
344    for (size_t i = 0; i < block->GetPredecessors().Size(); ++i) {
345      size_t position = block->GetPredecessors().Get(i)->GetLifetimeEnd() - 1;
346      // We know positions above GetStart() do not have a location yet.
347      if (position < GetStart()) {
348        LiveInterval* existing = GetParent()->GetSiblingAt(position);
349        if (existing != nullptr
350            && existing->HasRegister()
351            && (free_until[existing->GetRegister()] > GetStart())) {
352          return existing->GetRegister();
353        }
354      }
355    }
356  }
357
358  UsePosition* use = first_use_;
359  size_t start = GetStart();
360  size_t end = GetEnd();
361  while (use != nullptr && use->GetPosition() <= end) {
362    size_t use_position = use->GetPosition();
363    if (use_position >= start && !use->IsSynthesized()) {
364      HInstruction* user = use->GetUser();
365      size_t input_index = use->GetInputIndex();
366      if (user->IsPhi()) {
367        // If the phi has a register, try to use the same.
368        Location phi_location = user->GetLiveInterval()->ToLocation();
369        if (phi_location.IsRegisterKind()) {
370          DCHECK(SameRegisterKind(phi_location));
371          int reg = RegisterOrLowRegister(phi_location);
372          if (free_until[reg] >= use_position) {
373            return reg;
374          }
375        }
376        const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
377        // If the instruction dies at the phi assignment, we can try having the
378        // same register.
379        if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
380          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
381            if (i == input_index) {
382              continue;
383            }
384            HInstruction* input = user->InputAt(i);
385            Location location = input->GetLiveInterval()->GetLocationAt(
386                predecessors.Get(i)->GetLifetimeEnd() - 1);
387            if (location.IsRegisterKind()) {
388              int reg = RegisterOrLowRegister(location);
389              if (free_until[reg] >= use_position) {
390                return reg;
391              }
392            }
393          }
394        }
395      } else {
396        // If the instruction is expected in a register, try to use it.
397        LocationSummary* locations = user->GetLocations();
398        Location expected = locations->InAt(use->GetInputIndex());
399        // We use the user's lifetime position - 1 (and not `use_position`) because the
400        // register is blocked at the beginning of the user.
401        size_t position = user->GetLifetimePosition() - 1;
402        if (expected.IsRegisterKind()) {
403          DCHECK(SameRegisterKind(expected));
404          int reg = RegisterOrLowRegister(expected);
405          if (free_until[reg] >= position) {
406            return reg;
407          }
408        }
409      }
410    }
411    use = use->GetNext();
412  }
413
414  return kNoRegister;
415}
416
417int LiveInterval::FindHintAtDefinition() const {
418  if (defined_by_->IsPhi()) {
419    // Try to use the same register as one of the inputs.
420    const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
421    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
422      HInstruction* input = defined_by_->InputAt(i);
423      size_t end = predecessors.Get(i)->GetLifetimeEnd();
424      LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1);
425      if (input_interval->GetEnd() == end) {
426        // If the input dies at the end of the predecessor, we know its register can
427        // be reused.
428        Location input_location = input_interval->ToLocation();
429        if (input_location.IsRegisterKind()) {
430          DCHECK(SameRegisterKind(input_location));
431          return RegisterOrLowRegister(input_location);
432        }
433      }
434    }
435  } else {
436    LocationSummary* locations = GetDefinedBy()->GetLocations();
437    Location out = locations->Out();
438    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
439      // Try to use the same register as the first input.
440      LiveInterval* input_interval =
441          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
442      if (input_interval->GetEnd() == GetStart()) {
443        // If the input dies at the start of this instruction, we know its register can
444        // be reused.
445        Location location = input_interval->ToLocation();
446        if (location.IsRegisterKind()) {
447          DCHECK(SameRegisterKind(location));
448          return RegisterOrLowRegister(location);
449        }
450      }
451    }
452  }
453  return kNoRegister;
454}
455
456bool LiveInterval::SameRegisterKind(Location other) const {
457  if (IsFloatingPoint()) {
458    if (IsLowInterval() || IsHighInterval()) {
459      return other.IsFpuRegisterPair();
460    } else {
461      return other.IsFpuRegister();
462    }
463  } else {
464    if (IsLowInterval() || IsHighInterval()) {
465      return other.IsRegisterPair();
466    } else {
467      return other.IsRegister();
468    }
469  }
470}
471
472bool LiveInterval::NeedsTwoSpillSlots() const {
473  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
474}
475
476Location LiveInterval::ToLocation() const {
477  DCHECK(!IsHighInterval());
478  if (HasRegister()) {
479    if (IsFloatingPoint()) {
480      if (HasHighInterval()) {
481        return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
482      } else {
483        return Location::FpuRegisterLocation(GetRegister());
484      }
485    } else {
486      if (HasHighInterval()) {
487        return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
488      } else {
489        return Location::RegisterLocation(GetRegister());
490      }
491    }
492  } else {
493    HInstruction* defined_by = GetParent()->GetDefinedBy();
494    if (defined_by->IsConstant()) {
495      return defined_by->GetLocations()->Out();
496    } else if (GetParent()->HasSpillSlot()) {
497      if (NeedsTwoSpillSlots()) {
498        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
499      } else {
500        return Location::StackSlot(GetParent()->GetSpillSlot());
501      }
502    } else {
503      return Location();
504    }
505  }
506}
507
508Location LiveInterval::GetLocationAt(size_t position) {
509  LiveInterval* sibling = GetSiblingAt(position);
510  DCHECK(sibling != nullptr);
511  return sibling->ToLocation();
512}
513
514LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
515  LiveInterval* current = this;
516  while (current != nullptr && !current->IsDefinedAt(position)) {
517    current = current->GetNextSibling();
518  }
519  return current;
520}
521
522}  // namespace art
523