1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <gtest/gtest.h>
18
19#include <errno.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <malloc.h>
23#include <pthread.h>
24#include <signal.h>
25#include <stdio.h>
26#include <sys/mman.h>
27#include <sys/syscall.h>
28#include <time.h>
29#include <unistd.h>
30
31#include <atomic>
32#include <regex>
33#include <vector>
34
35#include <base/file.h>
36#include <base/stringprintf.h>
37
38#include "private/bionic_macros.h"
39#include "private/ScopeGuard.h"
40#include "BionicDeathTest.h"
41#include "ScopedSignalHandler.h"
42
43extern "C" pid_t gettid();
44
45TEST(pthread, pthread_key_create) {
46  pthread_key_t key;
47  ASSERT_EQ(0, pthread_key_create(&key, NULL));
48  ASSERT_EQ(0, pthread_key_delete(key));
49  // Can't delete a key that's already been deleted.
50  ASSERT_EQ(EINVAL, pthread_key_delete(key));
51}
52
53TEST(pthread, pthread_keys_max) {
54  // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
55  ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
56}
57
58TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
59  int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
60  ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
61}
62
63TEST(pthread, pthread_key_many_distinct) {
64  // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
65  // pthread keys, but We should be able to allocate at least this many keys.
66  int nkeys = PTHREAD_KEYS_MAX / 2;
67  std::vector<pthread_key_t> keys;
68
69  auto scope_guard = make_scope_guard([&keys]{
70    for (auto key : keys) {
71      EXPECT_EQ(0, pthread_key_delete(key));
72    }
73  });
74
75  for (int i = 0; i < nkeys; ++i) {
76    pthread_key_t key;
77    // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
78    ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
79    keys.push_back(key);
80    ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
81  }
82
83  for (int i = keys.size() - 1; i >= 0; --i) {
84    ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
85    pthread_key_t key = keys.back();
86    keys.pop_back();
87    ASSERT_EQ(0, pthread_key_delete(key));
88  }
89}
90
91TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
92  std::vector<pthread_key_t> keys;
93  int rv = 0;
94
95  // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
96  // be more than we are allowed to allocate now.
97  for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
98    pthread_key_t key;
99    rv = pthread_key_create(&key, NULL);
100    if (rv == EAGAIN) {
101      break;
102    }
103    EXPECT_EQ(0, rv);
104    keys.push_back(key);
105  }
106
107  // Don't leak keys.
108  for (auto key : keys) {
109    EXPECT_EQ(0, pthread_key_delete(key));
110  }
111  keys.clear();
112
113  // We should have eventually reached the maximum number of keys and received
114  // EAGAIN.
115  ASSERT_EQ(EAGAIN, rv);
116}
117
118TEST(pthread, pthread_key_delete) {
119  void* expected = reinterpret_cast<void*>(1234);
120  pthread_key_t key;
121  ASSERT_EQ(0, pthread_key_create(&key, NULL));
122  ASSERT_EQ(0, pthread_setspecific(key, expected));
123  ASSERT_EQ(expected, pthread_getspecific(key));
124  ASSERT_EQ(0, pthread_key_delete(key));
125  // After deletion, pthread_getspecific returns NULL.
126  ASSERT_EQ(NULL, pthread_getspecific(key));
127  // And you can't use pthread_setspecific with the deleted key.
128  ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
129}
130
131TEST(pthread, pthread_key_fork) {
132  void* expected = reinterpret_cast<void*>(1234);
133  pthread_key_t key;
134  ASSERT_EQ(0, pthread_key_create(&key, NULL));
135  ASSERT_EQ(0, pthread_setspecific(key, expected));
136  ASSERT_EQ(expected, pthread_getspecific(key));
137
138  pid_t pid = fork();
139  ASSERT_NE(-1, pid) << strerror(errno);
140
141  if (pid == 0) {
142    // The surviving thread inherits all the forking thread's TLS values...
143    ASSERT_EQ(expected, pthread_getspecific(key));
144    _exit(99);
145  }
146
147  int status;
148  ASSERT_EQ(pid, waitpid(pid, &status, 0));
149  ASSERT_TRUE(WIFEXITED(status));
150  ASSERT_EQ(99, WEXITSTATUS(status));
151
152  ASSERT_EQ(expected, pthread_getspecific(key));
153  ASSERT_EQ(0, pthread_key_delete(key));
154}
155
156static void* DirtyKeyFn(void* key) {
157  return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
158}
159
160TEST(pthread, pthread_key_dirty) {
161  pthread_key_t key;
162  ASSERT_EQ(0, pthread_key_create(&key, NULL));
163
164  size_t stack_size = 128 * 1024;
165  void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
166  ASSERT_NE(MAP_FAILED, stack);
167  memset(stack, 0xff, stack_size);
168
169  pthread_attr_t attr;
170  ASSERT_EQ(0, pthread_attr_init(&attr));
171  ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
172
173  pthread_t t;
174  ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
175
176  void* result;
177  ASSERT_EQ(0, pthread_join(t, &result));
178  ASSERT_EQ(nullptr, result); // Not ~0!
179
180  ASSERT_EQ(0, munmap(stack, stack_size));
181  ASSERT_EQ(0, pthread_key_delete(key));
182}
183
184TEST(pthread, static_pthread_key_used_before_creation) {
185#if defined(__BIONIC__)
186  // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
187  // So here tests if the static/global default value 0 can be detected as invalid key.
188  static pthread_key_t key;
189  ASSERT_EQ(nullptr, pthread_getspecific(key));
190  ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
191  ASSERT_EQ(EINVAL, pthread_key_delete(key));
192#else
193  GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
194#endif
195}
196
197static void* IdFn(void* arg) {
198  return arg;
199}
200
201class SpinFunctionHelper {
202 public:
203  SpinFunctionHelper() {
204    SpinFunctionHelper::spin_flag_ = true;
205  }
206  ~SpinFunctionHelper() {
207    UnSpin();
208  }
209  auto GetFunction() -> void* (*)(void*) {
210    return SpinFunctionHelper::SpinFn;
211  }
212
213  void UnSpin() {
214    SpinFunctionHelper::spin_flag_ = false;
215  }
216
217 private:
218  static void* SpinFn(void*) {
219    while (spin_flag_) {}
220    return NULL;
221  }
222  static volatile bool spin_flag_;
223};
224
225// It doesn't matter if spin_flag_ is used in several tests,
226// because it is always set to false after each test. Each thread
227// loops on spin_flag_ can find it becomes false at some time.
228volatile bool SpinFunctionHelper::spin_flag_ = false;
229
230static void* JoinFn(void* arg) {
231  return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
232}
233
234static void AssertDetached(pthread_t t, bool is_detached) {
235  pthread_attr_t attr;
236  ASSERT_EQ(0, pthread_getattr_np(t, &attr));
237  int detach_state;
238  ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
239  pthread_attr_destroy(&attr);
240  ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
241}
242
243static void MakeDeadThread(pthread_t& t) {
244  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
245  ASSERT_EQ(0, pthread_join(t, NULL));
246}
247
248TEST(pthread, pthread_create) {
249  void* expected_result = reinterpret_cast<void*>(123);
250  // Can we create a thread?
251  pthread_t t;
252  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
253  // If we join, do we get the expected value back?
254  void* result;
255  ASSERT_EQ(0, pthread_join(t, &result));
256  ASSERT_EQ(expected_result, result);
257}
258
259TEST(pthread, pthread_create_EAGAIN) {
260  pthread_attr_t attributes;
261  ASSERT_EQ(0, pthread_attr_init(&attributes));
262  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
263
264  pthread_t t;
265  ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
266}
267
268TEST(pthread, pthread_no_join_after_detach) {
269  SpinFunctionHelper spinhelper;
270
271  pthread_t t1;
272  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
273
274  // After a pthread_detach...
275  ASSERT_EQ(0, pthread_detach(t1));
276  AssertDetached(t1, true);
277
278  // ...pthread_join should fail.
279  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
280}
281
282TEST(pthread, pthread_no_op_detach_after_join) {
283  SpinFunctionHelper spinhelper;
284
285  pthread_t t1;
286  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
287
288  // If thread 2 is already waiting to join thread 1...
289  pthread_t t2;
290  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
291
292  sleep(1); // (Give t2 a chance to call pthread_join.)
293
294#if defined(__BIONIC__)
295  ASSERT_EQ(EINVAL, pthread_detach(t1));
296#else
297  ASSERT_EQ(0, pthread_detach(t1));
298#endif
299  AssertDetached(t1, false);
300
301  spinhelper.UnSpin();
302
303  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
304  void* join_result;
305  ASSERT_EQ(0, pthread_join(t2, &join_result));
306  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
307}
308
309TEST(pthread, pthread_join_self) {
310  ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
311}
312
313struct TestBug37410 {
314  pthread_t main_thread;
315  pthread_mutex_t mutex;
316
317  static void main() {
318    TestBug37410 data;
319    data.main_thread = pthread_self();
320    ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
321    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
322
323    pthread_t t;
324    ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
325
326    // Wait for the thread to be running...
327    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
328    ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
329
330    // ...and exit.
331    pthread_exit(NULL);
332  }
333
334 private:
335  static void* thread_fn(void* arg) {
336    TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
337
338    // Let the main thread know we're running.
339    pthread_mutex_unlock(&data->mutex);
340
341    // And wait for the main thread to exit.
342    pthread_join(data->main_thread, NULL);
343
344    return NULL;
345  }
346};
347
348// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
349// run this test (which exits normally) in its own process.
350
351class pthread_DeathTest : public BionicDeathTest {};
352
353TEST_F(pthread_DeathTest, pthread_bug_37410) {
354  // http://code.google.com/p/android/issues/detail?id=37410
355  ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
356}
357
358static void* SignalHandlerFn(void* arg) {
359  sigset_t wait_set;
360  sigfillset(&wait_set);
361  return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
362}
363
364TEST(pthread, pthread_sigmask) {
365  // Check that SIGUSR1 isn't blocked.
366  sigset_t original_set;
367  sigemptyset(&original_set);
368  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
369  ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
370
371  // Block SIGUSR1.
372  sigset_t set;
373  sigemptyset(&set);
374  sigaddset(&set, SIGUSR1);
375  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
376
377  // Check that SIGUSR1 is blocked.
378  sigset_t final_set;
379  sigemptyset(&final_set);
380  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
381  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
382  // ...and that sigprocmask agrees with pthread_sigmask.
383  sigemptyset(&final_set);
384  ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
385  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
386
387  // Spawn a thread that calls sigwait and tells us what it received.
388  pthread_t signal_thread;
389  int received_signal = -1;
390  ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
391
392  // Send that thread SIGUSR1.
393  pthread_kill(signal_thread, SIGUSR1);
394
395  // See what it got.
396  void* join_result;
397  ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
398  ASSERT_EQ(SIGUSR1, received_signal);
399  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
400
401  // Restore the original signal mask.
402  ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
403}
404
405TEST(pthread, pthread_setname_np__too_long) {
406  // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
407  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
408  ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
409}
410
411TEST(pthread, pthread_setname_np__self) {
412  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
413}
414
415TEST(pthread, pthread_setname_np__other) {
416  SpinFunctionHelper spinhelper;
417
418  pthread_t t1;
419  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
420  ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
421}
422
423TEST(pthread, pthread_setname_np__no_such_thread) {
424  pthread_t dead_thread;
425  MakeDeadThread(dead_thread);
426
427  // Call pthread_setname_np after thread has already exited.
428  ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
429}
430
431TEST(pthread, pthread_kill__0) {
432  // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
433  ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
434}
435
436TEST(pthread, pthread_kill__invalid_signal) {
437  ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
438}
439
440static void pthread_kill__in_signal_handler_helper(int signal_number) {
441  static int count = 0;
442  ASSERT_EQ(SIGALRM, signal_number);
443  if (++count == 1) {
444    // Can we call pthread_kill from a signal handler?
445    ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
446  }
447}
448
449TEST(pthread, pthread_kill__in_signal_handler) {
450  ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
451  ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
452}
453
454TEST(pthread, pthread_detach__no_such_thread) {
455  pthread_t dead_thread;
456  MakeDeadThread(dead_thread);
457
458  ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
459}
460
461TEST(pthread, pthread_getcpuclockid__clock_gettime) {
462  SpinFunctionHelper spinhelper;
463
464  pthread_t t;
465  ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
466
467  clockid_t c;
468  ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
469  timespec ts;
470  ASSERT_EQ(0, clock_gettime(c, &ts));
471}
472
473TEST(pthread, pthread_getcpuclockid__no_such_thread) {
474  pthread_t dead_thread;
475  MakeDeadThread(dead_thread);
476
477  clockid_t c;
478  ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
479}
480
481TEST(pthread, pthread_getschedparam__no_such_thread) {
482  pthread_t dead_thread;
483  MakeDeadThread(dead_thread);
484
485  int policy;
486  sched_param param;
487  ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, &param));
488}
489
490TEST(pthread, pthread_setschedparam__no_such_thread) {
491  pthread_t dead_thread;
492  MakeDeadThread(dead_thread);
493
494  int policy = 0;
495  sched_param param;
496  ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, &param));
497}
498
499TEST(pthread, pthread_join__no_such_thread) {
500  pthread_t dead_thread;
501  MakeDeadThread(dead_thread);
502
503  ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
504}
505
506TEST(pthread, pthread_kill__no_such_thread) {
507  pthread_t dead_thread;
508  MakeDeadThread(dead_thread);
509
510  ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
511}
512
513TEST(pthread, pthread_join__multijoin) {
514  SpinFunctionHelper spinhelper;
515
516  pthread_t t1;
517  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
518
519  pthread_t t2;
520  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
521
522  sleep(1); // (Give t2 a chance to call pthread_join.)
523
524  // Multiple joins to the same thread should fail.
525  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
526
527  spinhelper.UnSpin();
528
529  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
530  void* join_result;
531  ASSERT_EQ(0, pthread_join(t2, &join_result));
532  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
533}
534
535TEST(pthread, pthread_join__race) {
536  // http://b/11693195 --- pthread_join could return before the thread had actually exited.
537  // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
538  for (size_t i = 0; i < 1024; ++i) {
539    size_t stack_size = 64*1024;
540    void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
541
542    pthread_attr_t a;
543    pthread_attr_init(&a);
544    pthread_attr_setstack(&a, stack, stack_size);
545
546    pthread_t t;
547    ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
548    ASSERT_EQ(0, pthread_join(t, NULL));
549    ASSERT_EQ(0, munmap(stack, stack_size));
550  }
551}
552
553static void* GetActualGuardSizeFn(void* arg) {
554  pthread_attr_t attributes;
555  pthread_getattr_np(pthread_self(), &attributes);
556  pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
557  return NULL;
558}
559
560static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
561  size_t result;
562  pthread_t t;
563  pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
564  pthread_join(t, NULL);
565  return result;
566}
567
568static void* GetActualStackSizeFn(void* arg) {
569  pthread_attr_t attributes;
570  pthread_getattr_np(pthread_self(), &attributes);
571  pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
572  return NULL;
573}
574
575static size_t GetActualStackSize(const pthread_attr_t& attributes) {
576  size_t result;
577  pthread_t t;
578  pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
579  pthread_join(t, NULL);
580  return result;
581}
582
583TEST(pthread, pthread_attr_setguardsize) {
584  pthread_attr_t attributes;
585  ASSERT_EQ(0, pthread_attr_init(&attributes));
586
587  // Get the default guard size.
588  size_t default_guard_size;
589  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
590
591  // No such thing as too small: will be rounded up to one page by pthread_create.
592  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
593  size_t guard_size;
594  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
595  ASSERT_EQ(128U, guard_size);
596  ASSERT_EQ(4096U, GetActualGuardSize(attributes));
597
598  // Large enough and a multiple of the page size.
599  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
600  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
601  ASSERT_EQ(32*1024U, guard_size);
602
603  // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
604  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
605  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
606  ASSERT_EQ(32*1024U + 1, guard_size);
607}
608
609TEST(pthread, pthread_attr_setstacksize) {
610  pthread_attr_t attributes;
611  ASSERT_EQ(0, pthread_attr_init(&attributes));
612
613  // Get the default stack size.
614  size_t default_stack_size;
615  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
616
617  // Too small.
618  ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
619  size_t stack_size;
620  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
621  ASSERT_EQ(default_stack_size, stack_size);
622  ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
623
624  // Large enough and a multiple of the page size; may be rounded up by pthread_create.
625  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
626  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
627  ASSERT_EQ(32*1024U, stack_size);
628  ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
629
630  // Large enough but not aligned; will be rounded up by pthread_create.
631  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
632  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
633  ASSERT_EQ(32*1024U + 1, stack_size);
634#if defined(__BIONIC__)
635  ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
636#else // __BIONIC__
637  // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
638  ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
639#endif // __BIONIC__
640}
641
642TEST(pthread, pthread_rwlockattr_smoke) {
643  pthread_rwlockattr_t attr;
644  ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
645
646  int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
647  for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
648    ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
649    int pshared;
650    ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
651    ASSERT_EQ(pshared_value_array[i], pshared);
652  }
653
654  int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
655                      PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
656  for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
657    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
658    int kind;
659    ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
660    ASSERT_EQ(kind_array[i], kind);
661  }
662
663  ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
664}
665
666TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
667  pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
668  pthread_rwlock_t lock2;
669  ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
670  ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
671}
672
673TEST(pthread, pthread_rwlock_smoke) {
674  pthread_rwlock_t l;
675  ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
676
677  // Single read lock
678  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
679  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
680
681  // Multiple read lock
682  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
683  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
684  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
685  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
686
687  // Write lock
688  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
689  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
690
691  // Try writer lock
692  ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
693  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
694  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
695  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
696
697  // Try reader lock
698  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
699  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
700  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
701  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
702  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
703
704  // Try writer lock after unlock
705  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
706  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
707
708  // EDEADLK in "read after write"
709  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
710  ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
711  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
712
713  // EDEADLK in "write after write"
714  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
715  ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
716  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
717
718  ASSERT_EQ(0, pthread_rwlock_destroy(&l));
719}
720
721static void WaitUntilThreadSleep(std::atomic<pid_t>& pid) {
722  while (pid == 0) {
723    usleep(1000);
724  }
725  std::string filename = android::base::StringPrintf("/proc/%d/stat", pid.load());
726  std::regex regex {R"(\s+S\s+)"};
727
728  while (true) {
729    std::string content;
730    ASSERT_TRUE(android::base::ReadFileToString(filename, &content));
731    if (std::regex_search(content, regex)) {
732      break;
733    }
734    usleep(1000);
735  }
736}
737
738struct RwlockWakeupHelperArg {
739  pthread_rwlock_t lock;
740  enum Progress {
741    LOCK_INITIALIZED,
742    LOCK_WAITING,
743    LOCK_RELEASED,
744    LOCK_ACCESSED
745  };
746  std::atomic<Progress> progress;
747  std::atomic<pid_t> tid;
748};
749
750static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) {
751  arg->tid = gettid();
752  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
753  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
754
755  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock));
756  ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock));
757  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
758  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
759
760  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
761}
762
763TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
764  RwlockWakeupHelperArg wakeup_arg;
765  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
766  ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
767  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
768  wakeup_arg.tid = 0;
769
770  pthread_t thread;
771  ASSERT_EQ(0, pthread_create(&thread, NULL,
772    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg));
773  WaitUntilThreadSleep(wakeup_arg.tid);
774  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
775
776  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
777  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
778
779  ASSERT_EQ(0, pthread_join(thread, NULL));
780  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
781  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
782}
783
784static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) {
785  arg->tid = gettid();
786  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
787  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
788
789  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
790  ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
791  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
792  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
793
794  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
795}
796
797TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
798  RwlockWakeupHelperArg wakeup_arg;
799  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
800  ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
801  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
802  wakeup_arg.tid = 0;
803
804  pthread_t thread;
805  ASSERT_EQ(0, pthread_create(&thread, NULL,
806    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg));
807  WaitUntilThreadSleep(wakeup_arg.tid);
808  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
809
810  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
811  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
812
813  ASSERT_EQ(0, pthread_join(thread, NULL));
814  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
815  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
816}
817
818class RwlockKindTestHelper {
819 private:
820  struct ThreadArg {
821    RwlockKindTestHelper* helper;
822    std::atomic<pid_t>& tid;
823
824    ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
825      : helper(helper), tid(tid) { }
826  };
827
828 public:
829  pthread_rwlock_t lock;
830
831 public:
832  RwlockKindTestHelper(int kind_type) {
833    InitRwlock(kind_type);
834  }
835
836  ~RwlockKindTestHelper() {
837    DestroyRwlock();
838  }
839
840  void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
841    tid = 0;
842    ThreadArg* arg = new ThreadArg(this, tid);
843    ASSERT_EQ(0, pthread_create(&thread, NULL,
844                                reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
845  }
846
847  void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
848    tid = 0;
849    ThreadArg* arg = new ThreadArg(this, tid);
850    ASSERT_EQ(0, pthread_create(&thread, NULL,
851                                reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
852  }
853
854 private:
855  void InitRwlock(int kind_type) {
856    pthread_rwlockattr_t attr;
857    ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
858    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
859    ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
860    ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
861  }
862
863  void DestroyRwlock() {
864    ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
865  }
866
867  static void WriterThreadFn(ThreadArg* arg) {
868    arg->tid = gettid();
869
870    RwlockKindTestHelper* helper = arg->helper;
871    ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
872    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
873    delete arg;
874  }
875
876  static void ReaderThreadFn(ThreadArg* arg) {
877    arg->tid = gettid();
878
879    RwlockKindTestHelper* helper = arg->helper;
880    ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
881    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
882    delete arg;
883  }
884};
885
886TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
887  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
888  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
889
890  pthread_t writer_thread;
891  std::atomic<pid_t> writer_tid;
892  helper.CreateWriterThread(writer_thread, writer_tid);
893  WaitUntilThreadSleep(writer_tid);
894
895  pthread_t reader_thread;
896  std::atomic<pid_t> reader_tid;
897  helper.CreateReaderThread(reader_thread, reader_tid);
898  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
899
900  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
901  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
902}
903
904TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
905  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
906  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
907
908  pthread_t writer_thread;
909  std::atomic<pid_t> writer_tid;
910  helper.CreateWriterThread(writer_thread, writer_tid);
911  WaitUntilThreadSleep(writer_tid);
912
913  pthread_t reader_thread;
914  std::atomic<pid_t> reader_tid;
915  helper.CreateReaderThread(reader_thread, reader_tid);
916  WaitUntilThreadSleep(reader_tid);
917
918  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
919  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
920  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
921}
922
923static int g_once_fn_call_count = 0;
924static void OnceFn() {
925  ++g_once_fn_call_count;
926}
927
928TEST(pthread, pthread_once_smoke) {
929  pthread_once_t once_control = PTHREAD_ONCE_INIT;
930  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
931  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
932  ASSERT_EQ(1, g_once_fn_call_count);
933}
934
935static std::string pthread_once_1934122_result = "";
936
937static void Routine2() {
938  pthread_once_1934122_result += "2";
939}
940
941static void Routine1() {
942  pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
943  pthread_once_1934122_result += "1";
944  pthread_once(&once_control_2, &Routine2);
945}
946
947TEST(pthread, pthread_once_1934122) {
948  // Very old versions of Android couldn't call pthread_once from a
949  // pthread_once init routine. http://b/1934122.
950  pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
951  ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
952  ASSERT_EQ("12", pthread_once_1934122_result);
953}
954
955static int g_atfork_prepare_calls = 0;
956static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
957static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
958static int g_atfork_parent_calls = 0;
959static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
960static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
961static int g_atfork_child_calls = 0;
962static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
963static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
964
965TEST(pthread, pthread_atfork_smoke) {
966  ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
967  ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
968
969  int pid = fork();
970  ASSERT_NE(-1, pid) << strerror(errno);
971
972  // Child and parent calls are made in the order they were registered.
973  if (pid == 0) {
974    ASSERT_EQ(12, g_atfork_child_calls);
975    _exit(0);
976  }
977  ASSERT_EQ(12, g_atfork_parent_calls);
978
979  // Prepare calls are made in the reverse order.
980  ASSERT_EQ(21, g_atfork_prepare_calls);
981  int status;
982  ASSERT_EQ(pid, waitpid(pid, &status, 0));
983}
984
985TEST(pthread, pthread_attr_getscope) {
986  pthread_attr_t attr;
987  ASSERT_EQ(0, pthread_attr_init(&attr));
988
989  int scope;
990  ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
991  ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
992}
993
994TEST(pthread, pthread_condattr_init) {
995  pthread_condattr_t attr;
996  pthread_condattr_init(&attr);
997
998  clockid_t clock;
999  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1000  ASSERT_EQ(CLOCK_REALTIME, clock);
1001
1002  int pshared;
1003  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1004  ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1005}
1006
1007TEST(pthread, pthread_condattr_setclock) {
1008  pthread_condattr_t attr;
1009  pthread_condattr_init(&attr);
1010
1011  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1012  clockid_t clock;
1013  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1014  ASSERT_EQ(CLOCK_REALTIME, clock);
1015
1016  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1017  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1018  ASSERT_EQ(CLOCK_MONOTONIC, clock);
1019
1020  ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1021}
1022
1023TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1024#if defined(__BIONIC__)
1025  pthread_condattr_t attr;
1026  pthread_condattr_init(&attr);
1027
1028  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1029  ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1030
1031  pthread_cond_t cond_var;
1032  ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1033
1034  ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1035  ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1036
1037  attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1038  clockid_t clock;
1039  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1040  ASSERT_EQ(CLOCK_MONOTONIC, clock);
1041  int pshared;
1042  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1043  ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1044#else  // !defined(__BIONIC__)
1045  GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1046#endif  // !defined(__BIONIC__)
1047}
1048
1049class pthread_CondWakeupTest : public ::testing::Test {
1050 protected:
1051  pthread_mutex_t mutex;
1052  pthread_cond_t cond;
1053
1054  enum Progress {
1055    INITIALIZED,
1056    WAITING,
1057    SIGNALED,
1058    FINISHED,
1059  };
1060  std::atomic<Progress> progress;
1061  pthread_t thread;
1062
1063 protected:
1064  virtual void SetUp() {
1065    ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL));
1066    ASSERT_EQ(0, pthread_cond_init(&cond, NULL));
1067    progress = INITIALIZED;
1068    ASSERT_EQ(0,
1069      pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1070  }
1071
1072  virtual void TearDown() {
1073    ASSERT_EQ(0, pthread_join(thread, NULL));
1074    ASSERT_EQ(FINISHED, progress);
1075    ASSERT_EQ(0, pthread_cond_destroy(&cond));
1076    ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1077  }
1078
1079  void SleepUntilProgress(Progress expected_progress) {
1080    while (progress != expected_progress) {
1081      usleep(5000);
1082    }
1083    usleep(5000);
1084  }
1085
1086 private:
1087  static void WaitThreadFn(pthread_CondWakeupTest* test) {
1088    ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1089    test->progress = WAITING;
1090    while (test->progress == WAITING) {
1091      ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex));
1092    }
1093    ASSERT_EQ(SIGNALED, test->progress);
1094    test->progress = FINISHED;
1095    ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1096  }
1097};
1098
1099TEST_F(pthread_CondWakeupTest, signal) {
1100  SleepUntilProgress(WAITING);
1101  progress = SIGNALED;
1102  pthread_cond_signal(&cond);
1103}
1104
1105TEST_F(pthread_CondWakeupTest, broadcast) {
1106  SleepUntilProgress(WAITING);
1107  progress = SIGNALED;
1108  pthread_cond_broadcast(&cond);
1109}
1110
1111TEST(pthread, pthread_mutex_timedlock) {
1112  pthread_mutex_t m;
1113  ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
1114
1115  // If the mutex is already locked, pthread_mutex_timedlock should time out.
1116  ASSERT_EQ(0, pthread_mutex_lock(&m));
1117
1118  timespec ts;
1119  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1120  ts.tv_nsec += 1;
1121  ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1122
1123  // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1124  ASSERT_EQ(0, pthread_mutex_unlock(&m));
1125
1126  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1127  ts.tv_nsec += 1;
1128  ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1129
1130  ASSERT_EQ(0, pthread_mutex_unlock(&m));
1131  ASSERT_EQ(0, pthread_mutex_destroy(&m));
1132}
1133
1134TEST(pthread, pthread_attr_getstack__main_thread) {
1135  // This test is only meaningful for the main thread, so make sure we're running on it!
1136  ASSERT_EQ(getpid(), syscall(__NR_gettid));
1137
1138  // Get the main thread's attributes.
1139  pthread_attr_t attributes;
1140  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1141
1142  // Check that we correctly report that the main thread has no guard page.
1143  size_t guard_size;
1144  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1145  ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1146
1147  // Get the stack base and the stack size (both ways).
1148  void* stack_base;
1149  size_t stack_size;
1150  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1151  size_t stack_size2;
1152  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1153
1154  // The two methods of asking for the stack size should agree.
1155  EXPECT_EQ(stack_size, stack_size2);
1156
1157  // What does /proc/self/maps' [stack] line say?
1158  void* maps_stack_hi = NULL;
1159  FILE* fp = fopen("/proc/self/maps", "r");
1160  ASSERT_TRUE(fp != NULL);
1161  char line[BUFSIZ];
1162  while (fgets(line, sizeof(line), fp) != NULL) {
1163    uintptr_t lo, hi;
1164    char name[10];
1165    sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name);
1166    if (strcmp(name, "[stack]") == 0) {
1167      maps_stack_hi = reinterpret_cast<void*>(hi);
1168      break;
1169    }
1170  }
1171  fclose(fp);
1172
1173  // The stack size should correspond to RLIMIT_STACK.
1174  rlimit rl;
1175  ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1176  uint64_t original_rlim_cur = rl.rlim_cur;
1177#if defined(__BIONIC__)
1178  if (rl.rlim_cur == RLIM_INFINITY) {
1179    rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1180  }
1181#endif
1182  EXPECT_EQ(rl.rlim_cur, stack_size);
1183
1184  auto guard = make_scope_guard([&rl, original_rlim_cur]() {
1185    rl.rlim_cur = original_rlim_cur;
1186    ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1187  });
1188
1189  // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1190  // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1191  // region isn't very interesting.
1192  EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1193
1194  //
1195  // What if RLIMIT_STACK is smaller than the stack's current extent?
1196  //
1197  rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1198  rl.rlim_max = RLIM_INFINITY;
1199  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1200
1201  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1202  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1203  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1204
1205  EXPECT_EQ(stack_size, stack_size2);
1206  ASSERT_EQ(1024U, stack_size);
1207
1208  //
1209  // What if RLIMIT_STACK isn't a whole number of pages?
1210  //
1211  rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1212  rl.rlim_max = RLIM_INFINITY;
1213  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1214
1215  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1216  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1217  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1218
1219  EXPECT_EQ(stack_size, stack_size2);
1220  ASSERT_EQ(6666U, stack_size);
1221}
1222
1223static void pthread_attr_getstack_18908062_helper(void*) {
1224  char local_variable;
1225  pthread_attr_t attributes;
1226  pthread_getattr_np(pthread_self(), &attributes);
1227  void* stack_base;
1228  size_t stack_size;
1229  pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1230
1231  // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1232  ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1233  ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1234}
1235
1236// Check whether something on stack is in the range of
1237// [stack_base, stack_base + stack_size). see b/18908062.
1238TEST(pthread, pthread_attr_getstack_18908062) {
1239  pthread_t t;
1240  ASSERT_EQ(0, pthread_create(&t, NULL,
1241            reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1242            NULL));
1243  pthread_join(t, NULL);
1244}
1245
1246#if defined(__BIONIC__)
1247static void* pthread_gettid_np_helper(void* arg) {
1248  *reinterpret_cast<pid_t*>(arg) = gettid();
1249  return NULL;
1250}
1251#endif
1252
1253TEST(pthread, pthread_gettid_np) {
1254#if defined(__BIONIC__)
1255  ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1256
1257  pid_t t_gettid_result;
1258  pthread_t t;
1259  pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1260
1261  pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1262
1263  pthread_join(t, NULL);
1264
1265  ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1266#else
1267  GTEST_LOG_(INFO) << "This test does nothing.\n";
1268#endif
1269}
1270
1271static size_t cleanup_counter = 0;
1272
1273static void AbortCleanupRoutine(void*) {
1274  abort();
1275}
1276
1277static void CountCleanupRoutine(void*) {
1278  ++cleanup_counter;
1279}
1280
1281static void PthreadCleanupTester() {
1282  pthread_cleanup_push(CountCleanupRoutine, NULL);
1283  pthread_cleanup_push(CountCleanupRoutine, NULL);
1284  pthread_cleanup_push(AbortCleanupRoutine, NULL);
1285
1286  pthread_cleanup_pop(0); // Pop the abort without executing it.
1287  pthread_cleanup_pop(1); // Pop one count while executing it.
1288  ASSERT_EQ(1U, cleanup_counter);
1289  // Exit while the other count is still on the cleanup stack.
1290  pthread_exit(NULL);
1291
1292  // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1293  pthread_cleanup_pop(0);
1294}
1295
1296static void* PthreadCleanupStartRoutine(void*) {
1297  PthreadCleanupTester();
1298  return NULL;
1299}
1300
1301TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1302  pthread_t t;
1303  ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1304  pthread_join(t, NULL);
1305  ASSERT_EQ(2U, cleanup_counter);
1306}
1307
1308TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1309  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1310}
1311
1312TEST(pthread, pthread_mutexattr_gettype) {
1313  pthread_mutexattr_t attr;
1314  ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1315
1316  int attr_type;
1317
1318  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1319  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1320  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1321
1322  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1323  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1324  ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1325
1326  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1327  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1328  ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1329
1330  ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1331}
1332
1333struct PthreadMutex {
1334  pthread_mutex_t lock;
1335
1336  PthreadMutex(int mutex_type) {
1337    init(mutex_type);
1338  }
1339
1340  ~PthreadMutex() {
1341    destroy();
1342  }
1343
1344 private:
1345  void init(int mutex_type) {
1346    pthread_mutexattr_t attr;
1347    ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1348    ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1349    ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1350    ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1351  }
1352
1353  void destroy() {
1354    ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1355  }
1356
1357  DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1358};
1359
1360TEST(pthread, pthread_mutex_lock_NORMAL) {
1361  PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1362
1363  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1364  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1365}
1366
1367TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1368  PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1369
1370  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1371  ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1372  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1373  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1374  ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1375  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1376  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1377}
1378
1379TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1380  PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1381
1382  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1383  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1384  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1385  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1386  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1387  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1388  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1389}
1390
1391TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1392  pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1393  PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1394  ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1395  pthread_mutex_destroy(&lock_normal);
1396
1397  pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1398  PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1399  ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1400  pthread_mutex_destroy(&lock_errorcheck);
1401
1402  pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1403  PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1404  ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1405  ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1406}
1407class MutexWakeupHelper {
1408 private:
1409  PthreadMutex m;
1410  enum Progress {
1411    LOCK_INITIALIZED,
1412    LOCK_WAITING,
1413    LOCK_RELEASED,
1414    LOCK_ACCESSED
1415  };
1416  std::atomic<Progress> progress;
1417  std::atomic<pid_t> tid;
1418
1419  static void thread_fn(MutexWakeupHelper* helper) {
1420    helper->tid = gettid();
1421    ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1422    helper->progress = LOCK_WAITING;
1423
1424    ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1425    ASSERT_EQ(LOCK_RELEASED, helper->progress);
1426    ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1427
1428    helper->progress = LOCK_ACCESSED;
1429  }
1430
1431 public:
1432  MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1433  }
1434
1435  void test() {
1436    ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1437    progress = LOCK_INITIALIZED;
1438    tid = 0;
1439
1440    pthread_t thread;
1441    ASSERT_EQ(0, pthread_create(&thread, NULL,
1442      reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1443
1444    WaitUntilThreadSleep(tid);
1445    ASSERT_EQ(LOCK_WAITING, progress);
1446
1447    progress = LOCK_RELEASED;
1448    ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1449
1450    ASSERT_EQ(0, pthread_join(thread, NULL));
1451    ASSERT_EQ(LOCK_ACCESSED, progress);
1452  }
1453};
1454
1455TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1456  MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1457  helper.test();
1458}
1459
1460TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1461  MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1462  helper.test();
1463}
1464
1465TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1466  MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1467  helper.test();
1468}
1469
1470TEST(pthread, pthread_mutex_owner_tid_limit) {
1471#if defined(__BIONIC__) && !defined(__LP64__)
1472  FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1473  ASSERT_TRUE(fp != NULL);
1474  long pid_max;
1475  ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1476  fclose(fp);
1477  // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1478  ASSERT_LE(pid_max, 65536);
1479#else
1480  GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1481#endif
1482}
1483
1484class StrictAlignmentAllocator {
1485 public:
1486  void* allocate(size_t size, size_t alignment) {
1487    char* p = new char[size + alignment * 2];
1488    allocated_array.push_back(p);
1489    while (!is_strict_aligned(p, alignment)) {
1490      ++p;
1491    }
1492    return p;
1493  }
1494
1495  ~StrictAlignmentAllocator() {
1496    for (auto& p : allocated_array) {
1497      delete [] p;
1498    }
1499  }
1500
1501 private:
1502  bool is_strict_aligned(char* p, size_t alignment) {
1503    return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1504  }
1505
1506  std::vector<char*> allocated_array;
1507};
1508
1509TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1510#if defined(__BIONIC__)
1511  // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1512  StrictAlignmentAllocator allocator;
1513  pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1514                             allocator.allocate(sizeof(pthread_mutex_t), 4));
1515  ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1516  ASSERT_EQ(0, pthread_mutex_lock(mutex));
1517  ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1518  ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1519
1520  pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1521                           allocator.allocate(sizeof(pthread_cond_t), 4));
1522  ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1523  ASSERT_EQ(0, pthread_cond_signal(cond));
1524  ASSERT_EQ(0, pthread_cond_broadcast(cond));
1525  ASSERT_EQ(0, pthread_cond_destroy(cond));
1526
1527  pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1528                               allocator.allocate(sizeof(pthread_rwlock_t), 4));
1529  ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1530  ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1531  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1532  ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1533  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1534  ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1535
1536#else
1537  GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1538#endif
1539}
1540
1541TEST(pthread, pthread_mutex_lock_null_32) {
1542#if defined(__BIONIC__) && !defined(__LP64__)
1543  ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
1544#else
1545  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1546#endif
1547}
1548
1549TEST(pthread, pthread_mutex_unlock_null_32) {
1550#if defined(__BIONIC__) && !defined(__LP64__)
1551  ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
1552#else
1553  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1554#endif
1555}
1556
1557TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1558#if defined(__BIONIC__) && defined(__LP64__)
1559  pthread_mutex_t* null_value = nullptr;
1560  ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1561#else
1562  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1563#endif
1564}
1565
1566TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1567#if defined(__BIONIC__) && defined(__LP64__)
1568  pthread_mutex_t* null_value = nullptr;
1569  ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1570#else
1571  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1572#endif
1573}
1574