1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::Expr interface and subclasses for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_EXPRCXX_H
16#define LLVM_CLANG_AST_EXPRCXX_H
17
18#include "clang/AST/Decl.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/LambdaCapture.h"
21#include "clang/AST/TemplateBase.h"
22#include "clang/AST/UnresolvedSet.h"
23#include "clang/Basic/ExpressionTraits.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/Support/Compiler.h"
26
27namespace clang {
28
29class CXXConstructorDecl;
30class CXXDestructorDecl;
31class CXXMethodDecl;
32class CXXTemporary;
33class MSPropertyDecl;
34class TemplateArgumentListInfo;
35class UuidAttr;
36
37//===--------------------------------------------------------------------===//
38// C++ Expressions.
39//===--------------------------------------------------------------------===//
40
41/// \brief A call to an overloaded operator written using operator
42/// syntax.
43///
44/// Represents a call to an overloaded operator written using operator
45/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
46/// normal call, this AST node provides better information about the
47/// syntactic representation of the call.
48///
49/// In a C++ template, this expression node kind will be used whenever
50/// any of the arguments are type-dependent. In this case, the
51/// function itself will be a (possibly empty) set of functions and
52/// function templates that were found by name lookup at template
53/// definition time.
54class CXXOperatorCallExpr : public CallExpr {
55  /// \brief The overloaded operator.
56  OverloadedOperatorKind Operator;
57  SourceRange Range;
58
59  // Record the FP_CONTRACT state that applies to this operator call. Only
60  // meaningful for floating point types. For other types this value can be
61  // set to false.
62  unsigned FPContractable : 1;
63
64  SourceRange getSourceRangeImpl() const LLVM_READONLY;
65public:
66  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
67                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
68                      SourceLocation operatorloc, bool fpContractable)
69    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
70               operatorloc),
71      Operator(Op), FPContractable(fpContractable) {
72    Range = getSourceRangeImpl();
73  }
74  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
75    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
76
77
78  /// \brief Returns the kind of overloaded operator that this
79  /// expression refers to.
80  OverloadedOperatorKind getOperator() const { return Operator; }
81
82  /// \brief Returns the location of the operator symbol in the expression.
83  ///
84  /// When \c getOperator()==OO_Call, this is the location of the right
85  /// parentheses; when \c getOperator()==OO_Subscript, this is the location
86  /// of the right bracket.
87  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
88
89  SourceLocation getExprLoc() const LLVM_READONLY {
90    return (Operator < OO_Plus || Operator >= OO_Arrow ||
91            Operator == OO_PlusPlus || Operator == OO_MinusMinus)
92               ? getLocStart()
93               : getOperatorLoc();
94  }
95
96  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
97  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
98  SourceRange getSourceRange() const { return Range; }
99
100  static bool classof(const Stmt *T) {
101    return T->getStmtClass() == CXXOperatorCallExprClass;
102  }
103
104  // Set the FP contractability status of this operator. Only meaningful for
105  // operations on floating point types.
106  void setFPContractable(bool FPC) { FPContractable = FPC; }
107
108  // Get the FP contractability status of this operator. Only meaningful for
109  // operations on floating point types.
110  bool isFPContractable() const { return FPContractable; }
111
112  friend class ASTStmtReader;
113  friend class ASTStmtWriter;
114};
115
116/// Represents a call to a member function that
117/// may be written either with member call syntax (e.g., "obj.func()"
118/// or "objptr->func()") or with normal function-call syntax
119/// ("func()") within a member function that ends up calling a member
120/// function. The callee in either case is a MemberExpr that contains
121/// both the object argument and the member function, while the
122/// arguments are the arguments within the parentheses (not including
123/// the object argument).
124class CXXMemberCallExpr : public CallExpr {
125public:
126  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
127                    QualType t, ExprValueKind VK, SourceLocation RP)
128    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
129
130  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
131    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
132
133  /// \brief Retrieves the implicit object argument for the member call.
134  ///
135  /// For example, in "x.f(5)", this returns the sub-expression "x".
136  Expr *getImplicitObjectArgument() const;
137
138  /// \brief Retrieves the declaration of the called method.
139  CXXMethodDecl *getMethodDecl() const;
140
141  /// \brief Retrieves the CXXRecordDecl for the underlying type of
142  /// the implicit object argument.
143  ///
144  /// Note that this is may not be the same declaration as that of the class
145  /// context of the CXXMethodDecl which this function is calling.
146  /// FIXME: Returns 0 for member pointer call exprs.
147  CXXRecordDecl *getRecordDecl() const;
148
149  static bool classof(const Stmt *T) {
150    return T->getStmtClass() == CXXMemberCallExprClass;
151  }
152};
153
154/// \brief Represents a call to a CUDA kernel function.
155class CUDAKernelCallExpr : public CallExpr {
156private:
157  enum { CONFIG, END_PREARG };
158
159public:
160  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
161                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
162                     SourceLocation RP)
163    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
164    setConfig(Config);
165  }
166
167  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
168    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
169
170  const CallExpr *getConfig() const {
171    return cast_or_null<CallExpr>(getPreArg(CONFIG));
172  }
173  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
174  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
175
176  static bool classof(const Stmt *T) {
177    return T->getStmtClass() == CUDAKernelCallExprClass;
178  }
179};
180
181/// \brief Abstract class common to all of the C++ "named"/"keyword" casts.
182///
183/// This abstract class is inherited by all of the classes
184/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
185/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
186/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
187class CXXNamedCastExpr : public ExplicitCastExpr {
188private:
189  SourceLocation Loc; // the location of the casting op
190  SourceLocation RParenLoc; // the location of the right parenthesis
191  SourceRange AngleBrackets; // range for '<' '>'
192
193protected:
194  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
195                   CastKind kind, Expr *op, unsigned PathSize,
196                   TypeSourceInfo *writtenTy, SourceLocation l,
197                   SourceLocation RParenLoc,
198                   SourceRange AngleBrackets)
199    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
200      RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
201
202  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
203    : ExplicitCastExpr(SC, Shell, PathSize) { }
204
205  friend class ASTStmtReader;
206
207public:
208  const char *getCastName() const;
209
210  /// \brief Retrieve the location of the cast operator keyword, e.g.,
211  /// \c static_cast.
212  SourceLocation getOperatorLoc() const { return Loc; }
213
214  /// \brief Retrieve the location of the closing parenthesis.
215  SourceLocation getRParenLoc() const { return RParenLoc; }
216
217  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
218  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
219  SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
220
221  static bool classof(const Stmt *T) {
222    switch (T->getStmtClass()) {
223    case CXXStaticCastExprClass:
224    case CXXDynamicCastExprClass:
225    case CXXReinterpretCastExprClass:
226    case CXXConstCastExprClass:
227      return true;
228    default:
229      return false;
230    }
231  }
232};
233
234/// \brief A C++ \c static_cast expression (C++ [expr.static.cast]).
235///
236/// This expression node represents a C++ static cast, e.g.,
237/// \c static_cast<int>(1.0).
238class CXXStaticCastExpr : public CXXNamedCastExpr {
239  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
240                    unsigned pathSize, TypeSourceInfo *writtenTy,
241                    SourceLocation l, SourceLocation RParenLoc,
242                    SourceRange AngleBrackets)
243    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
244                       writtenTy, l, RParenLoc, AngleBrackets) {}
245
246  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
247    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
248
249public:
250  static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
251                                   ExprValueKind VK, CastKind K, Expr *Op,
252                                   const CXXCastPath *Path,
253                                   TypeSourceInfo *Written, SourceLocation L,
254                                   SourceLocation RParenLoc,
255                                   SourceRange AngleBrackets);
256  static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
257                                        unsigned PathSize);
258
259  static bool classof(const Stmt *T) {
260    return T->getStmtClass() == CXXStaticCastExprClass;
261  }
262};
263
264/// \brief A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
265///
266/// This expression node represents a dynamic cast, e.g.,
267/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
268/// check to determine how to perform the type conversion.
269class CXXDynamicCastExpr : public CXXNamedCastExpr {
270  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
271                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
272                     SourceLocation l, SourceLocation RParenLoc,
273                     SourceRange AngleBrackets)
274    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
275                       writtenTy, l, RParenLoc, AngleBrackets) {}
276
277  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
278    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
279
280public:
281  static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
282                                    ExprValueKind VK, CastKind Kind, Expr *Op,
283                                    const CXXCastPath *Path,
284                                    TypeSourceInfo *Written, SourceLocation L,
285                                    SourceLocation RParenLoc,
286                                    SourceRange AngleBrackets);
287
288  static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
289                                         unsigned pathSize);
290
291  bool isAlwaysNull() const;
292
293  static bool classof(const Stmt *T) {
294    return T->getStmtClass() == CXXDynamicCastExprClass;
295  }
296};
297
298/// \brief A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
299///
300/// This expression node represents a reinterpret cast, e.g.,
301/// @c reinterpret_cast<int>(VoidPtr).
302///
303/// A reinterpret_cast provides a differently-typed view of a value but
304/// (in Clang, as in most C++ implementations) performs no actual work at
305/// run time.
306class CXXReinterpretCastExpr : public CXXNamedCastExpr {
307  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
308                         Expr *op, unsigned pathSize,
309                         TypeSourceInfo *writtenTy, SourceLocation l,
310                         SourceLocation RParenLoc,
311                         SourceRange AngleBrackets)
312    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
313                       pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
314
315  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
316    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
317
318public:
319  static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
320                                        ExprValueKind VK, CastKind Kind,
321                                        Expr *Op, const CXXCastPath *Path,
322                                 TypeSourceInfo *WrittenTy, SourceLocation L,
323                                        SourceLocation RParenLoc,
324                                        SourceRange AngleBrackets);
325  static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
326                                             unsigned pathSize);
327
328  static bool classof(const Stmt *T) {
329    return T->getStmtClass() == CXXReinterpretCastExprClass;
330  }
331};
332
333/// \brief A C++ \c const_cast expression (C++ [expr.const.cast]).
334///
335/// This expression node represents a const cast, e.g.,
336/// \c const_cast<char*>(PtrToConstChar).
337///
338/// A const_cast can remove type qualifiers but does not change the underlying
339/// value.
340class CXXConstCastExpr : public CXXNamedCastExpr {
341  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
342                   TypeSourceInfo *writtenTy, SourceLocation l,
343                   SourceLocation RParenLoc, SourceRange AngleBrackets)
344    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
345                       0, writtenTy, l, RParenLoc, AngleBrackets) {}
346
347  explicit CXXConstCastExpr(EmptyShell Empty)
348    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
349
350public:
351  static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
352                                  ExprValueKind VK, Expr *Op,
353                                  TypeSourceInfo *WrittenTy, SourceLocation L,
354                                  SourceLocation RParenLoc,
355                                  SourceRange AngleBrackets);
356  static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
357
358  static bool classof(const Stmt *T) {
359    return T->getStmtClass() == CXXConstCastExprClass;
360  }
361};
362
363/// \brief A call to a literal operator (C++11 [over.literal])
364/// written as a user-defined literal (C++11 [lit.ext]).
365///
366/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
367/// is semantically equivalent to a normal call, this AST node provides better
368/// information about the syntactic representation of the literal.
369///
370/// Since literal operators are never found by ADL and can only be declared at
371/// namespace scope, a user-defined literal is never dependent.
372class UserDefinedLiteral : public CallExpr {
373  /// \brief The location of a ud-suffix within the literal.
374  SourceLocation UDSuffixLoc;
375
376public:
377  UserDefinedLiteral(const ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
378                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
379                     SourceLocation SuffixLoc)
380    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
381      UDSuffixLoc(SuffixLoc) {}
382  explicit UserDefinedLiteral(const ASTContext &C, EmptyShell Empty)
383    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
384
385  /// The kind of literal operator which is invoked.
386  enum LiteralOperatorKind {
387    LOK_Raw,      ///< Raw form: operator "" X (const char *)
388    LOK_Template, ///< Raw form: operator "" X<cs...> ()
389    LOK_Integer,  ///< operator "" X (unsigned long long)
390    LOK_Floating, ///< operator "" X (long double)
391    LOK_String,   ///< operator "" X (const CharT *, size_t)
392    LOK_Character ///< operator "" X (CharT)
393  };
394
395  /// \brief Returns the kind of literal operator invocation
396  /// which this expression represents.
397  LiteralOperatorKind getLiteralOperatorKind() const;
398
399  /// \brief If this is not a raw user-defined literal, get the
400  /// underlying cooked literal (representing the literal with the suffix
401  /// removed).
402  Expr *getCookedLiteral();
403  const Expr *getCookedLiteral() const {
404    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
405  }
406
407  SourceLocation getLocStart() const {
408    if (getLiteralOperatorKind() == LOK_Template)
409      return getRParenLoc();
410    return getArg(0)->getLocStart();
411  }
412  SourceLocation getLocEnd() const { return getRParenLoc(); }
413
414
415  /// \brief Returns the location of a ud-suffix in the expression.
416  ///
417  /// For a string literal, there may be multiple identical suffixes. This
418  /// returns the first.
419  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
420
421  /// \brief Returns the ud-suffix specified for this literal.
422  const IdentifierInfo *getUDSuffix() const;
423
424  static bool classof(const Stmt *S) {
425    return S->getStmtClass() == UserDefinedLiteralClass;
426  }
427
428  friend class ASTStmtReader;
429  friend class ASTStmtWriter;
430};
431
432/// \brief A boolean literal, per ([C++ lex.bool] Boolean literals).
433///
434class CXXBoolLiteralExpr : public Expr {
435  bool Value;
436  SourceLocation Loc;
437public:
438  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
439    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
440         false, false),
441    Value(val), Loc(l) {}
442
443  explicit CXXBoolLiteralExpr(EmptyShell Empty)
444    : Expr(CXXBoolLiteralExprClass, Empty) { }
445
446  bool getValue() const { return Value; }
447  void setValue(bool V) { Value = V; }
448
449  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
450  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
451
452  SourceLocation getLocation() const { return Loc; }
453  void setLocation(SourceLocation L) { Loc = L; }
454
455  static bool classof(const Stmt *T) {
456    return T->getStmtClass() == CXXBoolLiteralExprClass;
457  }
458
459  // Iterators
460  child_range children() { return child_range(); }
461};
462
463/// \brief The null pointer literal (C++11 [lex.nullptr])
464///
465/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
466class CXXNullPtrLiteralExpr : public Expr {
467  SourceLocation Loc;
468public:
469  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
470    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
471         false, false),
472    Loc(l) {}
473
474  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
475    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
476
477  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
478  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
479
480  SourceLocation getLocation() const { return Loc; }
481  void setLocation(SourceLocation L) { Loc = L; }
482
483  static bool classof(const Stmt *T) {
484    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
485  }
486
487  child_range children() { return child_range(); }
488};
489
490/// \brief Implicit construction of a std::initializer_list<T> object from an
491/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
492class CXXStdInitializerListExpr : public Expr {
493  Stmt *SubExpr;
494
495  CXXStdInitializerListExpr(EmptyShell Empty)
496    : Expr(CXXStdInitializerListExprClass, Empty), SubExpr(nullptr) {}
497
498public:
499  CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
500    : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
501           Ty->isDependentType(), SubExpr->isValueDependent(),
502           SubExpr->isInstantiationDependent(),
503           SubExpr->containsUnexpandedParameterPack()),
504      SubExpr(SubExpr) {}
505
506  Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
507  const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
508
509  SourceLocation getLocStart() const LLVM_READONLY {
510    return SubExpr->getLocStart();
511  }
512  SourceLocation getLocEnd() const LLVM_READONLY {
513    return SubExpr->getLocEnd();
514  }
515  SourceRange getSourceRange() const LLVM_READONLY {
516    return SubExpr->getSourceRange();
517  }
518
519  static bool classof(const Stmt *S) {
520    return S->getStmtClass() == CXXStdInitializerListExprClass;
521  }
522
523  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
524
525  friend class ASTReader;
526  friend class ASTStmtReader;
527};
528
529/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
530/// the \c type_info that corresponds to the supplied type, or the (possibly
531/// dynamic) type of the supplied expression.
532///
533/// This represents code like \c typeid(int) or \c typeid(*objPtr)
534class CXXTypeidExpr : public Expr {
535private:
536  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
537  SourceRange Range;
538
539public:
540  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
541    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
542           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
543           false,
544           // typeid is value-dependent if the type or expression are dependent
545           Operand->getType()->isDependentType(),
546           Operand->getType()->isInstantiationDependentType(),
547           Operand->getType()->containsUnexpandedParameterPack()),
548      Operand(Operand), Range(R) { }
549
550  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
551    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
552        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
553           false,
554        // typeid is value-dependent if the type or expression are dependent
555           Operand->isTypeDependent() || Operand->isValueDependent(),
556           Operand->isInstantiationDependent(),
557           Operand->containsUnexpandedParameterPack()),
558      Operand(Operand), Range(R) { }
559
560  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
561    : Expr(CXXTypeidExprClass, Empty) {
562    if (isExpr)
563      Operand = (Expr*)nullptr;
564    else
565      Operand = (TypeSourceInfo*)nullptr;
566  }
567
568  /// Determine whether this typeid has a type operand which is potentially
569  /// evaluated, per C++11 [expr.typeid]p3.
570  bool isPotentiallyEvaluated() const;
571
572  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
573
574  /// \brief Retrieves the type operand of this typeid() expression after
575  /// various required adjustments (removing reference types, cv-qualifiers).
576  QualType getTypeOperand(ASTContext &Context) const;
577
578  /// \brief Retrieve source information for the type operand.
579  TypeSourceInfo *getTypeOperandSourceInfo() const {
580    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
581    return Operand.get<TypeSourceInfo *>();
582  }
583
584  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
585    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
586    Operand = TSI;
587  }
588
589  Expr *getExprOperand() const {
590    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
591    return static_cast<Expr*>(Operand.get<Stmt *>());
592  }
593
594  void setExprOperand(Expr *E) {
595    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
596    Operand = E;
597  }
598
599  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
600  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
601  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
602  void setSourceRange(SourceRange R) { Range = R; }
603
604  static bool classof(const Stmt *T) {
605    return T->getStmtClass() == CXXTypeidExprClass;
606  }
607
608  // Iterators
609  child_range children() {
610    if (isTypeOperand()) return child_range();
611    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
612    return child_range(begin, begin + 1);
613  }
614};
615
616/// \brief A member reference to an MSPropertyDecl.
617///
618/// This expression always has pseudo-object type, and therefore it is
619/// typically not encountered in a fully-typechecked expression except
620/// within the syntactic form of a PseudoObjectExpr.
621class MSPropertyRefExpr : public Expr {
622  Expr *BaseExpr;
623  MSPropertyDecl *TheDecl;
624  SourceLocation MemberLoc;
625  bool IsArrow;
626  NestedNameSpecifierLoc QualifierLoc;
627
628public:
629  MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
630                    QualType ty, ExprValueKind VK,
631                    NestedNameSpecifierLoc qualifierLoc,
632                    SourceLocation nameLoc)
633  : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
634         /*type-dependent*/ false, baseExpr->isValueDependent(),
635         baseExpr->isInstantiationDependent(),
636         baseExpr->containsUnexpandedParameterPack()),
637    BaseExpr(baseExpr), TheDecl(decl),
638    MemberLoc(nameLoc), IsArrow(isArrow),
639    QualifierLoc(qualifierLoc) {}
640
641  MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
642
643  SourceRange getSourceRange() const LLVM_READONLY {
644    return SourceRange(getLocStart(), getLocEnd());
645  }
646  bool isImplicitAccess() const {
647    return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
648  }
649  SourceLocation getLocStart() const {
650    if (!isImplicitAccess())
651      return BaseExpr->getLocStart();
652    else if (QualifierLoc)
653      return QualifierLoc.getBeginLoc();
654    else
655        return MemberLoc;
656  }
657  SourceLocation getLocEnd() const { return getMemberLoc(); }
658
659  child_range children() {
660    return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
661  }
662  static bool classof(const Stmt *T) {
663    return T->getStmtClass() == MSPropertyRefExprClass;
664  }
665
666  Expr *getBaseExpr() const { return BaseExpr; }
667  MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
668  bool isArrow() const { return IsArrow; }
669  SourceLocation getMemberLoc() const { return MemberLoc; }
670  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
671
672  friend class ASTStmtReader;
673};
674
675/// A Microsoft C++ @c __uuidof expression, which gets
676/// the _GUID that corresponds to the supplied type or expression.
677///
678/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
679class CXXUuidofExpr : public Expr {
680private:
681  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
682  SourceRange Range;
683
684public:
685  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
686    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
687           false, Operand->getType()->isDependentType(),
688           Operand->getType()->isInstantiationDependentType(),
689           Operand->getType()->containsUnexpandedParameterPack()),
690      Operand(Operand), Range(R) { }
691
692  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
693    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
694           false, Operand->isTypeDependent(),
695           Operand->isInstantiationDependent(),
696           Operand->containsUnexpandedParameterPack()),
697      Operand(Operand), Range(R) { }
698
699  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
700    : Expr(CXXUuidofExprClass, Empty) {
701    if (isExpr)
702      Operand = (Expr*)nullptr;
703    else
704      Operand = (TypeSourceInfo*)nullptr;
705  }
706
707  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
708
709  /// \brief Retrieves the type operand of this __uuidof() expression after
710  /// various required adjustments (removing reference types, cv-qualifiers).
711  QualType getTypeOperand(ASTContext &Context) const;
712
713  /// \brief Retrieve source information for the type operand.
714  TypeSourceInfo *getTypeOperandSourceInfo() const {
715    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
716    return Operand.get<TypeSourceInfo *>();
717  }
718
719  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
720    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
721    Operand = TSI;
722  }
723
724  Expr *getExprOperand() const {
725    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
726    return static_cast<Expr*>(Operand.get<Stmt *>());
727  }
728
729  void setExprOperand(Expr *E) {
730    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
731    Operand = E;
732  }
733
734  StringRef getUuidAsStringRef(ASTContext &Context) const;
735
736  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
737  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
738  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
739  void setSourceRange(SourceRange R) { Range = R; }
740
741  static bool classof(const Stmt *T) {
742    return T->getStmtClass() == CXXUuidofExprClass;
743  }
744
745  /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
746  /// a single GUID.
747  static const UuidAttr *GetUuidAttrOfType(QualType QT,
748                                           bool *HasMultipleGUIDsPtr = nullptr);
749
750  // Iterators
751  child_range children() {
752    if (isTypeOperand()) return child_range();
753    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
754    return child_range(begin, begin + 1);
755  }
756};
757
758/// \brief Represents the \c this expression in C++.
759///
760/// This is a pointer to the object on which the current member function is
761/// executing (C++ [expr.prim]p3). Example:
762///
763/// \code
764/// class Foo {
765/// public:
766///   void bar();
767///   void test() { this->bar(); }
768/// };
769/// \endcode
770class CXXThisExpr : public Expr {
771  SourceLocation Loc;
772  bool Implicit : 1;
773
774public:
775  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
776    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
777           // 'this' is type-dependent if the class type of the enclosing
778           // member function is dependent (C++ [temp.dep.expr]p2)
779           Type->isDependentType(), Type->isDependentType(),
780           Type->isInstantiationDependentType(),
781           /*ContainsUnexpandedParameterPack=*/false),
782      Loc(L), Implicit(isImplicit) { }
783
784  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
785
786  SourceLocation getLocation() const { return Loc; }
787  void setLocation(SourceLocation L) { Loc = L; }
788
789  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
790  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
791
792  bool isImplicit() const { return Implicit; }
793  void setImplicit(bool I) { Implicit = I; }
794
795  static bool classof(const Stmt *T) {
796    return T->getStmtClass() == CXXThisExprClass;
797  }
798
799  // Iterators
800  child_range children() { return child_range(); }
801};
802
803/// \brief A C++ throw-expression (C++ [except.throw]).
804///
805/// This handles 'throw' (for re-throwing the current exception) and
806/// 'throw' assignment-expression.  When assignment-expression isn't
807/// present, Op will be null.
808class CXXThrowExpr : public Expr {
809  Stmt *Op;
810  SourceLocation ThrowLoc;
811  /// \brief Whether the thrown variable (if any) is in scope.
812  unsigned IsThrownVariableInScope : 1;
813
814  friend class ASTStmtReader;
815
816public:
817  // \p Ty is the void type which is used as the result type of the
818  // expression.  The \p l is the location of the throw keyword.  \p expr
819  // can by null, if the optional expression to throw isn't present.
820  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
821               bool IsThrownVariableInScope) :
822    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
823         expr && expr->isInstantiationDependent(),
824         expr && expr->containsUnexpandedParameterPack()),
825    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
826  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
827
828  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
829  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
830
831  SourceLocation getThrowLoc() const { return ThrowLoc; }
832
833  /// \brief Determines whether the variable thrown by this expression (if any!)
834  /// is within the innermost try block.
835  ///
836  /// This information is required to determine whether the NRVO can apply to
837  /// this variable.
838  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
839
840  SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
841  SourceLocation getLocEnd() const LLVM_READONLY {
842    if (!getSubExpr())
843      return ThrowLoc;
844    return getSubExpr()->getLocEnd();
845  }
846
847  static bool classof(const Stmt *T) {
848    return T->getStmtClass() == CXXThrowExprClass;
849  }
850
851  // Iterators
852  child_range children() {
853    return child_range(&Op, Op ? &Op+1 : &Op);
854  }
855};
856
857/// \brief A default argument (C++ [dcl.fct.default]).
858///
859/// This wraps up a function call argument that was created from the
860/// corresponding parameter's default argument, when the call did not
861/// explicitly supply arguments for all of the parameters.
862class CXXDefaultArgExpr : public Expr {
863  /// \brief The parameter whose default is being used.
864  ///
865  /// When the bit is set, the subexpression is stored after the
866  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
867  /// actual default expression is the subexpression.
868  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
869
870  /// \brief The location where the default argument expression was used.
871  SourceLocation Loc;
872
873  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
874    : Expr(SC,
875           param->hasUnparsedDefaultArg()
876             ? param->getType().getNonReferenceType()
877             : param->getDefaultArg()->getType(),
878           param->getDefaultArg()->getValueKind(),
879           param->getDefaultArg()->getObjectKind(), false, false, false, false),
880      Param(param, false), Loc(Loc) { }
881
882  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
883                    Expr *SubExpr)
884    : Expr(SC, SubExpr->getType(),
885           SubExpr->getValueKind(), SubExpr->getObjectKind(),
886           false, false, false, false),
887      Param(param, true), Loc(Loc) {
888    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
889  }
890
891public:
892  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
893
894  // \p Param is the parameter whose default argument is used by this
895  // expression.
896  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
897                                   ParmVarDecl *Param) {
898    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
899  }
900
901  // \p Param is the parameter whose default argument is used by this
902  // expression, and \p SubExpr is the expression that will actually be used.
903  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
904                                   ParmVarDecl *Param, Expr *SubExpr);
905
906  // Retrieve the parameter that the argument was created from.
907  const ParmVarDecl *getParam() const { return Param.getPointer(); }
908  ParmVarDecl *getParam() { return Param.getPointer(); }
909
910  // Retrieve the actual argument to the function call.
911  const Expr *getExpr() const {
912    if (Param.getInt())
913      return *reinterpret_cast<Expr const * const*> (this + 1);
914    return getParam()->getDefaultArg();
915  }
916  Expr *getExpr() {
917    if (Param.getInt())
918      return *reinterpret_cast<Expr **> (this + 1);
919    return getParam()->getDefaultArg();
920  }
921
922  /// \brief Retrieve the location where this default argument was actually
923  /// used.
924  SourceLocation getUsedLocation() const { return Loc; }
925
926  /// Default argument expressions have no representation in the
927  /// source, so they have an empty source range.
928  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
929  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
930
931  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
932
933  static bool classof(const Stmt *T) {
934    return T->getStmtClass() == CXXDefaultArgExprClass;
935  }
936
937  // Iterators
938  child_range children() { return child_range(); }
939
940  friend class ASTStmtReader;
941  friend class ASTStmtWriter;
942};
943
944/// \brief A use of a default initializer in a constructor or in aggregate
945/// initialization.
946///
947/// This wraps a use of a C++ default initializer (technically,
948/// a brace-or-equal-initializer for a non-static data member) when it
949/// is implicitly used in a mem-initializer-list in a constructor
950/// (C++11 [class.base.init]p8) or in aggregate initialization
951/// (C++1y [dcl.init.aggr]p7).
952class CXXDefaultInitExpr : public Expr {
953  /// \brief The field whose default is being used.
954  FieldDecl *Field;
955
956  /// \brief The location where the default initializer expression was used.
957  SourceLocation Loc;
958
959  CXXDefaultInitExpr(const ASTContext &C, SourceLocation Loc, FieldDecl *Field,
960                     QualType T);
961
962  CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
963
964public:
965  /// \p Field is the non-static data member whose default initializer is used
966  /// by this expression.
967  static CXXDefaultInitExpr *Create(const ASTContext &C, SourceLocation Loc,
968                                    FieldDecl *Field) {
969    return new (C) CXXDefaultInitExpr(C, Loc, Field, Field->getType());
970  }
971
972  /// \brief Get the field whose initializer will be used.
973  FieldDecl *getField() { return Field; }
974  const FieldDecl *getField() const { return Field; }
975
976  /// \brief Get the initialization expression that will be used.
977  const Expr *getExpr() const {
978    assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
979    return Field->getInClassInitializer();
980  }
981  Expr *getExpr() {
982    assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
983    return Field->getInClassInitializer();
984  }
985
986  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
987  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
988
989  static bool classof(const Stmt *T) {
990    return T->getStmtClass() == CXXDefaultInitExprClass;
991  }
992
993  // Iterators
994  child_range children() { return child_range(); }
995
996  friend class ASTReader;
997  friend class ASTStmtReader;
998};
999
1000/// \brief Represents a C++ temporary.
1001class CXXTemporary {
1002  /// \brief The destructor that needs to be called.
1003  const CXXDestructorDecl *Destructor;
1004
1005  explicit CXXTemporary(const CXXDestructorDecl *destructor)
1006    : Destructor(destructor) { }
1007
1008public:
1009  static CXXTemporary *Create(const ASTContext &C,
1010                              const CXXDestructorDecl *Destructor);
1011
1012  const CXXDestructorDecl *getDestructor() const { return Destructor; }
1013  void setDestructor(const CXXDestructorDecl *Dtor) {
1014    Destructor = Dtor;
1015  }
1016};
1017
1018/// \brief Represents binding an expression to a temporary.
1019///
1020/// This ensures the destructor is called for the temporary. It should only be
1021/// needed for non-POD, non-trivially destructable class types. For example:
1022///
1023/// \code
1024///   struct S {
1025///     S() { }  // User defined constructor makes S non-POD.
1026///     ~S() { } // User defined destructor makes it non-trivial.
1027///   };
1028///   void test() {
1029///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1030///   }
1031/// \endcode
1032class CXXBindTemporaryExpr : public Expr {
1033  CXXTemporary *Temp;
1034
1035  Stmt *SubExpr;
1036
1037  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
1038   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
1039          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
1040          SubExpr->isValueDependent(),
1041          SubExpr->isInstantiationDependent(),
1042          SubExpr->containsUnexpandedParameterPack()),
1043     Temp(temp), SubExpr(SubExpr) { }
1044
1045public:
1046  CXXBindTemporaryExpr(EmptyShell Empty)
1047    : Expr(CXXBindTemporaryExprClass, Empty), Temp(nullptr), SubExpr(nullptr) {}
1048
1049  static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
1050                                      Expr* SubExpr);
1051
1052  CXXTemporary *getTemporary() { return Temp; }
1053  const CXXTemporary *getTemporary() const { return Temp; }
1054  void setTemporary(CXXTemporary *T) { Temp = T; }
1055
1056  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1057  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1058  void setSubExpr(Expr *E) { SubExpr = E; }
1059
1060  SourceLocation getLocStart() const LLVM_READONLY {
1061    return SubExpr->getLocStart();
1062  }
1063  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
1064
1065  // Implement isa/cast/dyncast/etc.
1066  static bool classof(const Stmt *T) {
1067    return T->getStmtClass() == CXXBindTemporaryExprClass;
1068  }
1069
1070  // Iterators
1071  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1072};
1073
1074/// \brief Represents a call to a C++ constructor.
1075class CXXConstructExpr : public Expr {
1076public:
1077  enum ConstructionKind {
1078    CK_Complete,
1079    CK_NonVirtualBase,
1080    CK_VirtualBase,
1081    CK_Delegating
1082  };
1083
1084private:
1085  CXXConstructorDecl *Constructor;
1086
1087  SourceLocation Loc;
1088  SourceRange ParenOrBraceRange;
1089  unsigned NumArgs : 16;
1090  bool Elidable : 1;
1091  bool HadMultipleCandidates : 1;
1092  bool ListInitialization : 1;
1093  bool StdInitListInitialization : 1;
1094  bool ZeroInitialization : 1;
1095  unsigned ConstructKind : 2;
1096  Stmt **Args;
1097
1098protected:
1099  CXXConstructExpr(const ASTContext &C, StmtClass SC, QualType T,
1100                   SourceLocation Loc,
1101                   CXXConstructorDecl *d, bool elidable,
1102                   ArrayRef<Expr *> Args,
1103                   bool HadMultipleCandidates,
1104                   bool ListInitialization,
1105                   bool StdInitListInitialization,
1106                   bool ZeroInitialization,
1107                   ConstructionKind ConstructKind,
1108                   SourceRange ParenOrBraceRange);
1109
1110  /// \brief Construct an empty C++ construction expression.
1111  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
1112    : Expr(SC, Empty), Constructor(nullptr), NumArgs(0), Elidable(false),
1113      HadMultipleCandidates(false), ListInitialization(false),
1114      ZeroInitialization(false), ConstructKind(0), Args(nullptr)
1115  { }
1116
1117public:
1118  /// \brief Construct an empty C++ construction expression.
1119  explicit CXXConstructExpr(EmptyShell Empty)
1120    : Expr(CXXConstructExprClass, Empty), Constructor(nullptr),
1121      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
1122      ListInitialization(false), ZeroInitialization(false),
1123      ConstructKind(0), Args(nullptr)
1124  { }
1125
1126  static CXXConstructExpr *Create(const ASTContext &C, QualType T,
1127                                  SourceLocation Loc,
1128                                  CXXConstructorDecl *D, bool Elidable,
1129                                  ArrayRef<Expr *> Args,
1130                                  bool HadMultipleCandidates,
1131                                  bool ListInitialization,
1132                                  bool StdInitListInitialization,
1133                                  bool ZeroInitialization,
1134                                  ConstructionKind ConstructKind,
1135                                  SourceRange ParenOrBraceRange);
1136
1137  CXXConstructorDecl *getConstructor() const { return Constructor; }
1138  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
1139
1140  SourceLocation getLocation() const { return Loc; }
1141  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
1142
1143  /// \brief Whether this construction is elidable.
1144  bool isElidable() const { return Elidable; }
1145  void setElidable(bool E) { Elidable = E; }
1146
1147  /// \brief Whether the referred constructor was resolved from
1148  /// an overloaded set having size greater than 1.
1149  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1150  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1151
1152  /// \brief Whether this constructor call was written as list-initialization.
1153  bool isListInitialization() const { return ListInitialization; }
1154  void setListInitialization(bool V) { ListInitialization = V; }
1155
1156  /// \brief Whether this constructor call was written as list-initialization,
1157  /// but was interpreted as forming a std::initializer_list<T> from the list
1158  /// and passing that as a single constructor argument.
1159  /// See C++11 [over.match.list]p1 bullet 1.
1160  bool isStdInitListInitialization() const { return StdInitListInitialization; }
1161  void setStdInitListInitialization(bool V) { StdInitListInitialization = V; }
1162
1163  /// \brief Whether this construction first requires
1164  /// zero-initialization before the initializer is called.
1165  bool requiresZeroInitialization() const { return ZeroInitialization; }
1166  void setRequiresZeroInitialization(bool ZeroInit) {
1167    ZeroInitialization = ZeroInit;
1168  }
1169
1170  /// \brief Determine whether this constructor is actually constructing
1171  /// a base class (rather than a complete object).
1172  ConstructionKind getConstructionKind() const {
1173    return (ConstructionKind)ConstructKind;
1174  }
1175  void setConstructionKind(ConstructionKind CK) {
1176    ConstructKind = CK;
1177  }
1178
1179  typedef ExprIterator arg_iterator;
1180  typedef ConstExprIterator const_arg_iterator;
1181  typedef llvm::iterator_range<arg_iterator> arg_range;
1182  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
1183
1184  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
1185  arg_const_range arguments() const {
1186    return arg_const_range(arg_begin(), arg_end());
1187  }
1188
1189  arg_iterator arg_begin() { return Args; }
1190  arg_iterator arg_end() { return Args + NumArgs; }
1191  const_arg_iterator arg_begin() const { return Args; }
1192  const_arg_iterator arg_end() const { return Args + NumArgs; }
1193
1194  Expr **getArgs() { return reinterpret_cast<Expr **>(Args); }
1195  const Expr *const *getArgs() const {
1196    return const_cast<CXXConstructExpr *>(this)->getArgs();
1197  }
1198  unsigned getNumArgs() const { return NumArgs; }
1199
1200  /// \brief Return the specified argument.
1201  Expr *getArg(unsigned Arg) {
1202    assert(Arg < NumArgs && "Arg access out of range!");
1203    return cast<Expr>(Args[Arg]);
1204  }
1205  const Expr *getArg(unsigned Arg) const {
1206    assert(Arg < NumArgs && "Arg access out of range!");
1207    return cast<Expr>(Args[Arg]);
1208  }
1209
1210  /// \brief Set the specified argument.
1211  void setArg(unsigned Arg, Expr *ArgExpr) {
1212    assert(Arg < NumArgs && "Arg access out of range!");
1213    Args[Arg] = ArgExpr;
1214  }
1215
1216  SourceLocation getLocStart() const LLVM_READONLY;
1217  SourceLocation getLocEnd() const LLVM_READONLY;
1218  SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
1219  void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
1220
1221  static bool classof(const Stmt *T) {
1222    return T->getStmtClass() == CXXConstructExprClass ||
1223      T->getStmtClass() == CXXTemporaryObjectExprClass;
1224  }
1225
1226  // Iterators
1227  child_range children() {
1228    return child_range(&Args[0], &Args[0]+NumArgs);
1229  }
1230
1231  friend class ASTStmtReader;
1232};
1233
1234/// \brief Represents an explicit C++ type conversion that uses "functional"
1235/// notation (C++ [expr.type.conv]).
1236///
1237/// Example:
1238/// \code
1239///   x = int(0.5);
1240/// \endcode
1241class CXXFunctionalCastExpr : public ExplicitCastExpr {
1242  SourceLocation LParenLoc;
1243  SourceLocation RParenLoc;
1244
1245  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1246                        TypeSourceInfo *writtenTy,
1247                        CastKind kind, Expr *castExpr, unsigned pathSize,
1248                        SourceLocation lParenLoc, SourceLocation rParenLoc)
1249    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1250                       castExpr, pathSize, writtenTy),
1251      LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}
1252
1253  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1254    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1255
1256public:
1257  static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
1258                                       ExprValueKind VK,
1259                                       TypeSourceInfo *Written,
1260                                       CastKind Kind, Expr *Op,
1261                                       const CXXCastPath *Path,
1262                                       SourceLocation LPLoc,
1263                                       SourceLocation RPLoc);
1264  static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
1265                                            unsigned PathSize);
1266
1267  SourceLocation getLParenLoc() const { return LParenLoc; }
1268  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1269  SourceLocation getRParenLoc() const { return RParenLoc; }
1270  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1271
1272  SourceLocation getLocStart() const LLVM_READONLY;
1273  SourceLocation getLocEnd() const LLVM_READONLY;
1274
1275  static bool classof(const Stmt *T) {
1276    return T->getStmtClass() == CXXFunctionalCastExprClass;
1277  }
1278};
1279
1280/// @brief Represents a C++ functional cast expression that builds a
1281/// temporary object.
1282///
1283/// This expression type represents a C++ "functional" cast
1284/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1285/// constructor to build a temporary object. With N == 1 arguments the
1286/// functional cast expression will be represented by CXXFunctionalCastExpr.
1287/// Example:
1288/// \code
1289/// struct X { X(int, float); }
1290///
1291/// X create_X() {
1292///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1293/// };
1294/// \endcode
1295class CXXTemporaryObjectExpr : public CXXConstructExpr {
1296  TypeSourceInfo *Type;
1297
1298public:
1299  CXXTemporaryObjectExpr(const ASTContext &C, CXXConstructorDecl *Cons,
1300                         TypeSourceInfo *Type,
1301                         ArrayRef<Expr *> Args,
1302                         SourceRange ParenOrBraceRange,
1303                         bool HadMultipleCandidates,
1304                         bool ListInitialization,
1305                         bool StdInitListInitialization,
1306                         bool ZeroInitialization);
1307  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1308    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1309
1310  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1311
1312  SourceLocation getLocStart() const LLVM_READONLY;
1313  SourceLocation getLocEnd() const LLVM_READONLY;
1314
1315  static bool classof(const Stmt *T) {
1316    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1317  }
1318
1319  friend class ASTStmtReader;
1320};
1321
1322/// \brief A C++ lambda expression, which produces a function object
1323/// (of unspecified type) that can be invoked later.
1324///
1325/// Example:
1326/// \code
1327/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1328///   values.erase(std::remove_if(values.begin(), values.end(),
1329///                               [=](double value) { return value > cutoff; });
1330/// }
1331/// \endcode
1332///
1333/// C++11 lambda expressions can capture local variables, either by copying
1334/// the values of those local variables at the time the function
1335/// object is constructed (not when it is called!) or by holding a
1336/// reference to the local variable. These captures can occur either
1337/// implicitly or can be written explicitly between the square
1338/// brackets ([...]) that start the lambda expression.
1339///
1340/// C++1y introduces a new form of "capture" called an init-capture that
1341/// includes an initializing expression (rather than capturing a variable),
1342/// and which can never occur implicitly.
1343class LambdaExpr : public Expr {
1344  /// \brief The source range that covers the lambda introducer ([...]).
1345  SourceRange IntroducerRange;
1346
1347  /// \brief The source location of this lambda's capture-default ('=' or '&').
1348  SourceLocation CaptureDefaultLoc;
1349
1350  /// \brief The number of captures.
1351  unsigned NumCaptures : 16;
1352
1353  /// \brief The default capture kind, which is a value of type
1354  /// LambdaCaptureDefault.
1355  unsigned CaptureDefault : 2;
1356
1357  /// \brief Whether this lambda had an explicit parameter list vs. an
1358  /// implicit (and empty) parameter list.
1359  unsigned ExplicitParams : 1;
1360
1361  /// \brief Whether this lambda had the result type explicitly specified.
1362  unsigned ExplicitResultType : 1;
1363
1364  /// \brief Whether there are any array index variables stored at the end of
1365  /// this lambda expression.
1366  unsigned HasArrayIndexVars : 1;
1367
1368  /// \brief The location of the closing brace ('}') that completes
1369  /// the lambda.
1370  ///
1371  /// The location of the brace is also available by looking up the
1372  /// function call operator in the lambda class. However, it is
1373  /// stored here to improve the performance of getSourceRange(), and
1374  /// to avoid having to deserialize the function call operator from a
1375  /// module file just to determine the source range.
1376  SourceLocation ClosingBrace;
1377
1378  // Note: The capture initializers are stored directly after the lambda
1379  // expression, along with the index variables used to initialize by-copy
1380  // array captures.
1381
1382  typedef LambdaCapture Capture;
1383
1384  /// \brief Construct a lambda expression.
1385  LambdaExpr(QualType T, SourceRange IntroducerRange,
1386             LambdaCaptureDefault CaptureDefault,
1387             SourceLocation CaptureDefaultLoc,
1388             ArrayRef<Capture> Captures,
1389             bool ExplicitParams,
1390             bool ExplicitResultType,
1391             ArrayRef<Expr *> CaptureInits,
1392             ArrayRef<VarDecl *> ArrayIndexVars,
1393             ArrayRef<unsigned> ArrayIndexStarts,
1394             SourceLocation ClosingBrace,
1395             bool ContainsUnexpandedParameterPack);
1396
1397  /// \brief Construct an empty lambda expression.
1398  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1399    : Expr(LambdaExprClass, Empty),
1400      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1401      ExplicitResultType(false), HasArrayIndexVars(true) {
1402    getStoredStmts()[NumCaptures] = nullptr;
1403  }
1404
1405  Stmt **getStoredStmts() const {
1406    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1407  }
1408
1409  /// \brief Retrieve the mapping from captures to the first array index
1410  /// variable.
1411  unsigned *getArrayIndexStarts() const {
1412    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1413  }
1414
1415  /// \brief Retrieve the complete set of array-index variables.
1416  VarDecl **getArrayIndexVars() const {
1417    unsigned ArrayIndexSize = llvm::RoundUpToAlignment(
1418        sizeof(unsigned) * (NumCaptures + 1), llvm::alignOf<VarDecl *>());
1419    return reinterpret_cast<VarDecl **>(
1420        reinterpret_cast<char *>(getArrayIndexStarts()) + ArrayIndexSize);
1421  }
1422
1423public:
1424  /// \brief Construct a new lambda expression.
1425  static LambdaExpr *Create(const ASTContext &C,
1426                            CXXRecordDecl *Class,
1427                            SourceRange IntroducerRange,
1428                            LambdaCaptureDefault CaptureDefault,
1429                            SourceLocation CaptureDefaultLoc,
1430                            ArrayRef<Capture> Captures,
1431                            bool ExplicitParams,
1432                            bool ExplicitResultType,
1433                            ArrayRef<Expr *> CaptureInits,
1434                            ArrayRef<VarDecl *> ArrayIndexVars,
1435                            ArrayRef<unsigned> ArrayIndexStarts,
1436                            SourceLocation ClosingBrace,
1437                            bool ContainsUnexpandedParameterPack);
1438
1439  /// \brief Construct a new lambda expression that will be deserialized from
1440  /// an external source.
1441  static LambdaExpr *CreateDeserialized(const ASTContext &C,
1442                                        unsigned NumCaptures,
1443                                        unsigned NumArrayIndexVars);
1444
1445  /// \brief Determine the default capture kind for this lambda.
1446  LambdaCaptureDefault getCaptureDefault() const {
1447    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1448  }
1449
1450  /// \brief Retrieve the location of this lambda's capture-default, if any.
1451  SourceLocation getCaptureDefaultLoc() const {
1452    return CaptureDefaultLoc;
1453  }
1454
1455  /// \brief An iterator that walks over the captures of the lambda,
1456  /// both implicit and explicit.
1457  typedef const Capture *capture_iterator;
1458
1459  /// \brief An iterator over a range of lambda captures.
1460  typedef llvm::iterator_range<capture_iterator> capture_range;
1461
1462  /// \brief Retrieve this lambda's captures.
1463  capture_range captures() const;
1464
1465  /// \brief Retrieve an iterator pointing to the first lambda capture.
1466  capture_iterator capture_begin() const;
1467
1468  /// \brief Retrieve an iterator pointing past the end of the
1469  /// sequence of lambda captures.
1470  capture_iterator capture_end() const;
1471
1472  /// \brief Determine the number of captures in this lambda.
1473  unsigned capture_size() const { return NumCaptures; }
1474
1475  /// \brief Retrieve this lambda's explicit captures.
1476  capture_range explicit_captures() const;
1477
1478  /// \brief Retrieve an iterator pointing to the first explicit
1479  /// lambda capture.
1480  capture_iterator explicit_capture_begin() const;
1481
1482  /// \brief Retrieve an iterator pointing past the end of the sequence of
1483  /// explicit lambda captures.
1484  capture_iterator explicit_capture_end() const;
1485
1486  /// \brief Retrieve this lambda's implicit captures.
1487  capture_range implicit_captures() const;
1488
1489  /// \brief Retrieve an iterator pointing to the first implicit
1490  /// lambda capture.
1491  capture_iterator implicit_capture_begin() const;
1492
1493  /// \brief Retrieve an iterator pointing past the end of the sequence of
1494  /// implicit lambda captures.
1495  capture_iterator implicit_capture_end() const;
1496
1497  /// \brief Iterator that walks over the capture initialization
1498  /// arguments.
1499  typedef Expr **capture_init_iterator;
1500
1501  /// \brief Retrieve the initialization expressions for this lambda's captures.
1502  llvm::iterator_range<capture_init_iterator> capture_inits() const {
1503    return llvm::iterator_range<capture_init_iterator>(capture_init_begin(),
1504                                                       capture_init_end());
1505  }
1506
1507  /// \brief Retrieve the first initialization argument for this
1508  /// lambda expression (which initializes the first capture field).
1509  capture_init_iterator capture_init_begin() const {
1510    return reinterpret_cast<Expr **>(getStoredStmts());
1511  }
1512
1513  /// \brief Retrieve the iterator pointing one past the last
1514  /// initialization argument for this lambda expression.
1515  capture_init_iterator capture_init_end() const {
1516    return capture_init_begin() + NumCaptures;
1517  }
1518
1519  /// \brief Retrieve the set of index variables used in the capture
1520  /// initializer of an array captured by copy.
1521  ///
1522  /// \param Iter The iterator that points at the capture initializer for
1523  /// which we are extracting the corresponding index variables.
1524  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1525
1526  /// \brief Retrieve the source range covering the lambda introducer,
1527  /// which contains the explicit capture list surrounded by square
1528  /// brackets ([...]).
1529  SourceRange getIntroducerRange() const { return IntroducerRange; }
1530
1531  /// \brief Retrieve the class that corresponds to the lambda.
1532  ///
1533  /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
1534  /// captures in its fields and provides the various operations permitted
1535  /// on a lambda (copying, calling).
1536  CXXRecordDecl *getLambdaClass() const;
1537
1538  /// \brief Retrieve the function call operator associated with this
1539  /// lambda expression.
1540  CXXMethodDecl *getCallOperator() const;
1541
1542  /// \brief If this is a generic lambda expression, retrieve the template
1543  /// parameter list associated with it, or else return null.
1544  TemplateParameterList *getTemplateParameterList() const;
1545
1546  /// \brief Whether this is a generic lambda.
1547  bool isGenericLambda() const { return getTemplateParameterList(); }
1548
1549  /// \brief Retrieve the body of the lambda.
1550  CompoundStmt *getBody() const;
1551
1552  /// \brief Determine whether the lambda is mutable, meaning that any
1553  /// captures values can be modified.
1554  bool isMutable() const;
1555
1556  /// \brief Determine whether this lambda has an explicit parameter
1557  /// list vs. an implicit (empty) parameter list.
1558  bool hasExplicitParameters() const { return ExplicitParams; }
1559
1560  /// \brief Whether this lambda had its result type explicitly specified.
1561  bool hasExplicitResultType() const { return ExplicitResultType; }
1562
1563  static bool classof(const Stmt *T) {
1564    return T->getStmtClass() == LambdaExprClass;
1565  }
1566
1567  SourceLocation getLocStart() const LLVM_READONLY {
1568    return IntroducerRange.getBegin();
1569  }
1570  SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }
1571
1572  child_range children() {
1573    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1574  }
1575
1576  friend class ASTStmtReader;
1577  friend class ASTStmtWriter;
1578};
1579
1580/// An expression "T()" which creates a value-initialized rvalue of type
1581/// T, which is a non-class type.  See (C++98 [5.2.3p2]).
1582class CXXScalarValueInitExpr : public Expr {
1583  SourceLocation RParenLoc;
1584  TypeSourceInfo *TypeInfo;
1585
1586  friend class ASTStmtReader;
1587
1588public:
1589  /// \brief Create an explicitly-written scalar-value initialization
1590  /// expression.
1591  CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
1592                         SourceLocation rParenLoc)
1593      : Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1594             false, false, Type->isInstantiationDependentType(),
1595             Type->containsUnexpandedParameterPack()),
1596        RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1597
1598  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1599    : Expr(CXXScalarValueInitExprClass, Shell) { }
1600
1601  TypeSourceInfo *getTypeSourceInfo() const {
1602    return TypeInfo;
1603  }
1604
1605  SourceLocation getRParenLoc() const { return RParenLoc; }
1606
1607  SourceLocation getLocStart() const LLVM_READONLY;
1608  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1609
1610  static bool classof(const Stmt *T) {
1611    return T->getStmtClass() == CXXScalarValueInitExprClass;
1612  }
1613
1614  // Iterators
1615  child_range children() { return child_range(); }
1616};
1617
1618/// \brief Represents a new-expression for memory allocation and constructor
1619/// calls, e.g: "new CXXNewExpr(foo)".
1620class CXXNewExpr : public Expr {
1621  /// Contains an optional array size expression, an optional initialization
1622  /// expression, and any number of optional placement arguments, in that order.
1623  Stmt **SubExprs;
1624  /// \brief Points to the allocation function used.
1625  FunctionDecl *OperatorNew;
1626  /// \brief Points to the deallocation function used in case of error. May be
1627  /// null.
1628  FunctionDecl *OperatorDelete;
1629
1630  /// \brief The allocated type-source information, as written in the source.
1631  TypeSourceInfo *AllocatedTypeInfo;
1632
1633  /// \brief If the allocated type was expressed as a parenthesized type-id,
1634  /// the source range covering the parenthesized type-id.
1635  SourceRange TypeIdParens;
1636
1637  /// \brief Range of the entire new expression.
1638  SourceRange Range;
1639
1640  /// \brief Source-range of a paren-delimited initializer.
1641  SourceRange DirectInitRange;
1642
1643  /// Was the usage ::new, i.e. is the global new to be used?
1644  bool GlobalNew : 1;
1645  /// Do we allocate an array? If so, the first SubExpr is the size expression.
1646  bool Array : 1;
1647  /// If this is an array allocation, does the usual deallocation
1648  /// function for the allocated type want to know the allocated size?
1649  bool UsualArrayDeleteWantsSize : 1;
1650  /// The number of placement new arguments.
1651  unsigned NumPlacementArgs : 13;
1652  /// What kind of initializer do we have? Could be none, parens, or braces.
1653  /// In storage, we distinguish between "none, and no initializer expr", and
1654  /// "none, but an implicit initializer expr".
1655  unsigned StoredInitializationStyle : 2;
1656
1657  friend class ASTStmtReader;
1658  friend class ASTStmtWriter;
1659public:
1660  enum InitializationStyle {
1661    NoInit,   ///< New-expression has no initializer as written.
1662    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1663    ListInit  ///< New-expression has a C++11 list-initializer.
1664  };
1665
1666  CXXNewExpr(const ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1667             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1668             ArrayRef<Expr*> placementArgs,
1669             SourceRange typeIdParens, Expr *arraySize,
1670             InitializationStyle initializationStyle, Expr *initializer,
1671             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1672             SourceRange Range, SourceRange directInitRange);
1673  explicit CXXNewExpr(EmptyShell Shell)
1674    : Expr(CXXNewExprClass, Shell), SubExprs(nullptr) { }
1675
1676  void AllocateArgsArray(const ASTContext &C, bool isArray,
1677                         unsigned numPlaceArgs, bool hasInitializer);
1678
1679  QualType getAllocatedType() const {
1680    assert(getType()->isPointerType());
1681    return getType()->getAs<PointerType>()->getPointeeType();
1682  }
1683
1684  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1685    return AllocatedTypeInfo;
1686  }
1687
1688  /// \brief True if the allocation result needs to be null-checked.
1689  ///
1690  /// C++11 [expr.new]p13:
1691  ///   If the allocation function returns null, initialization shall
1692  ///   not be done, the deallocation function shall not be called,
1693  ///   and the value of the new-expression shall be null.
1694  ///
1695  /// C++ DR1748:
1696  ///   If the allocation function is a reserved placement allocation
1697  ///   function that returns null, the behavior is undefined.
1698  ///
1699  /// An allocation function is not allowed to return null unless it
1700  /// has a non-throwing exception-specification.  The '03 rule is
1701  /// identical except that the definition of a non-throwing
1702  /// exception specification is just "is it throw()?".
1703  bool shouldNullCheckAllocation(const ASTContext &Ctx) const;
1704
1705  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1706  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1707  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1708  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1709
1710  bool isArray() const { return Array; }
1711  Expr *getArraySize() {
1712    return Array ? cast<Expr>(SubExprs[0]) : nullptr;
1713  }
1714  const Expr *getArraySize() const {
1715    return Array ? cast<Expr>(SubExprs[0]) : nullptr;
1716  }
1717
1718  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1719  Expr **getPlacementArgs() {
1720    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1721  }
1722
1723  Expr *getPlacementArg(unsigned i) {
1724    assert(i < NumPlacementArgs && "Index out of range");
1725    return getPlacementArgs()[i];
1726  }
1727  const Expr *getPlacementArg(unsigned i) const {
1728    assert(i < NumPlacementArgs && "Index out of range");
1729    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1730  }
1731
1732  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1733  SourceRange getTypeIdParens() const { return TypeIdParens; }
1734
1735  bool isGlobalNew() const { return GlobalNew; }
1736
1737  /// \brief Whether this new-expression has any initializer at all.
1738  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1739
1740  /// \brief The kind of initializer this new-expression has.
1741  InitializationStyle getInitializationStyle() const {
1742    if (StoredInitializationStyle == 0)
1743      return NoInit;
1744    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1745  }
1746
1747  /// \brief The initializer of this new-expression.
1748  Expr *getInitializer() {
1749    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : nullptr;
1750  }
1751  const Expr *getInitializer() const {
1752    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : nullptr;
1753  }
1754
1755  /// \brief Returns the CXXConstructExpr from this new-expression, or null.
1756  const CXXConstructExpr* getConstructExpr() const {
1757    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1758  }
1759
1760  /// Answers whether the usual array deallocation function for the
1761  /// allocated type expects the size of the allocation as a
1762  /// parameter.
1763  bool doesUsualArrayDeleteWantSize() const {
1764    return UsualArrayDeleteWantsSize;
1765  }
1766
1767  typedef ExprIterator arg_iterator;
1768  typedef ConstExprIterator const_arg_iterator;
1769
1770  arg_iterator placement_arg_begin() {
1771    return SubExprs + Array + hasInitializer();
1772  }
1773  arg_iterator placement_arg_end() {
1774    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1775  }
1776  const_arg_iterator placement_arg_begin() const {
1777    return SubExprs + Array + hasInitializer();
1778  }
1779  const_arg_iterator placement_arg_end() const {
1780    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1781  }
1782
1783  typedef Stmt **raw_arg_iterator;
1784  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1785  raw_arg_iterator raw_arg_end() {
1786    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1787  }
1788  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1789  const_arg_iterator raw_arg_end() const {
1790    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1791  }
1792
1793  SourceLocation getStartLoc() const { return Range.getBegin(); }
1794  SourceLocation getEndLoc() const { return Range.getEnd(); }
1795
1796  SourceRange getDirectInitRange() const { return DirectInitRange; }
1797
1798  SourceRange getSourceRange() const LLVM_READONLY {
1799    return Range;
1800  }
1801  SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
1802  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1803
1804  static bool classof(const Stmt *T) {
1805    return T->getStmtClass() == CXXNewExprClass;
1806  }
1807
1808  // Iterators
1809  child_range children() {
1810    return child_range(raw_arg_begin(), raw_arg_end());
1811  }
1812};
1813
1814/// \brief Represents a \c delete expression for memory deallocation and
1815/// destructor calls, e.g. "delete[] pArray".
1816class CXXDeleteExpr : public Expr {
1817  /// Points to the operator delete overload that is used. Could be a member.
1818  FunctionDecl *OperatorDelete;
1819  /// The pointer expression to be deleted.
1820  Stmt *Argument;
1821  /// Location of the expression.
1822  SourceLocation Loc;
1823  /// Is this a forced global delete, i.e. "::delete"?
1824  bool GlobalDelete : 1;
1825  /// Is this the array form of delete, i.e. "delete[]"?
1826  bool ArrayForm : 1;
1827  /// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1828  /// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1829  /// will be true).
1830  bool ArrayFormAsWritten : 1;
1831  /// Does the usual deallocation function for the element type require
1832  /// a size_t argument?
1833  bool UsualArrayDeleteWantsSize : 1;
1834public:
1835  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1836                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1837                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1838    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1839           arg->isInstantiationDependent(),
1840           arg->containsUnexpandedParameterPack()),
1841      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1842      GlobalDelete(globalDelete),
1843      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1844      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1845  explicit CXXDeleteExpr(EmptyShell Shell)
1846    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(nullptr),
1847      Argument(nullptr) {}
1848
1849  bool isGlobalDelete() const { return GlobalDelete; }
1850  bool isArrayForm() const { return ArrayForm; }
1851  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1852
1853  /// Answers whether the usual array deallocation function for the
1854  /// allocated type expects the size of the allocation as a
1855  /// parameter.  This can be true even if the actual deallocation
1856  /// function that we're using doesn't want a size.
1857  bool doesUsualArrayDeleteWantSize() const {
1858    return UsualArrayDeleteWantsSize;
1859  }
1860
1861  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1862
1863  Expr *getArgument() { return cast<Expr>(Argument); }
1864  const Expr *getArgument() const { return cast<Expr>(Argument); }
1865
1866  /// \brief Retrieve the type being destroyed.
1867  ///
1868  /// If the type being destroyed is a dependent type which may or may not
1869  /// be a pointer, return an invalid type.
1870  QualType getDestroyedType() const;
1871
1872  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1873  SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}
1874
1875  static bool classof(const Stmt *T) {
1876    return T->getStmtClass() == CXXDeleteExprClass;
1877  }
1878
1879  // Iterators
1880  child_range children() { return child_range(&Argument, &Argument+1); }
1881
1882  friend class ASTStmtReader;
1883};
1884
1885/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1886class PseudoDestructorTypeStorage {
1887  /// \brief Either the type source information or the name of the type, if
1888  /// it couldn't be resolved due to type-dependence.
1889  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1890
1891  /// \brief The starting source location of the pseudo-destructor type.
1892  SourceLocation Location;
1893
1894public:
1895  PseudoDestructorTypeStorage() { }
1896
1897  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1898    : Type(II), Location(Loc) { }
1899
1900  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1901
1902  TypeSourceInfo *getTypeSourceInfo() const {
1903    return Type.dyn_cast<TypeSourceInfo *>();
1904  }
1905
1906  IdentifierInfo *getIdentifier() const {
1907    return Type.dyn_cast<IdentifierInfo *>();
1908  }
1909
1910  SourceLocation getLocation() const { return Location; }
1911};
1912
1913/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1914///
1915/// A pseudo-destructor is an expression that looks like a member access to a
1916/// destructor of a scalar type, except that scalar types don't have
1917/// destructors. For example:
1918///
1919/// \code
1920/// typedef int T;
1921/// void f(int *p) {
1922///   p->T::~T();
1923/// }
1924/// \endcode
1925///
1926/// Pseudo-destructors typically occur when instantiating templates such as:
1927///
1928/// \code
1929/// template<typename T>
1930/// void destroy(T* ptr) {
1931///   ptr->T::~T();
1932/// }
1933/// \endcode
1934///
1935/// for scalar types. A pseudo-destructor expression has no run-time semantics
1936/// beyond evaluating the base expression.
1937class CXXPseudoDestructorExpr : public Expr {
1938  /// \brief The base expression (that is being destroyed).
1939  Stmt *Base;
1940
1941  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1942  /// period ('.').
1943  bool IsArrow : 1;
1944
1945  /// \brief The location of the '.' or '->' operator.
1946  SourceLocation OperatorLoc;
1947
1948  /// \brief The nested-name-specifier that follows the operator, if present.
1949  NestedNameSpecifierLoc QualifierLoc;
1950
1951  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1952  /// expression.
1953  TypeSourceInfo *ScopeType;
1954
1955  /// \brief The location of the '::' in a qualified pseudo-destructor
1956  /// expression.
1957  SourceLocation ColonColonLoc;
1958
1959  /// \brief The location of the '~'.
1960  SourceLocation TildeLoc;
1961
1962  /// \brief The type being destroyed, or its name if we were unable to
1963  /// resolve the name.
1964  PseudoDestructorTypeStorage DestroyedType;
1965
1966  friend class ASTStmtReader;
1967
1968public:
1969  CXXPseudoDestructorExpr(const ASTContext &Context,
1970                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1971                          NestedNameSpecifierLoc QualifierLoc,
1972                          TypeSourceInfo *ScopeType,
1973                          SourceLocation ColonColonLoc,
1974                          SourceLocation TildeLoc,
1975                          PseudoDestructorTypeStorage DestroyedType);
1976
1977  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1978    : Expr(CXXPseudoDestructorExprClass, Shell),
1979      Base(nullptr), IsArrow(false), QualifierLoc(), ScopeType(nullptr) { }
1980
1981  Expr *getBase() const { return cast<Expr>(Base); }
1982
1983  /// \brief Determines whether this member expression actually had
1984  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1985  /// x->Base::foo.
1986  bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
1987
1988  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1989  /// with source-location information.
1990  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1991
1992  /// \brief If the member name was qualified, retrieves the
1993  /// nested-name-specifier that precedes the member name. Otherwise, returns
1994  /// null.
1995  NestedNameSpecifier *getQualifier() const {
1996    return QualifierLoc.getNestedNameSpecifier();
1997  }
1998
1999  /// \brief Determine whether this pseudo-destructor expression was written
2000  /// using an '->' (otherwise, it used a '.').
2001  bool isArrow() const { return IsArrow; }
2002
2003  /// \brief Retrieve the location of the '.' or '->' operator.
2004  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2005
2006  /// \brief Retrieve the scope type in a qualified pseudo-destructor
2007  /// expression.
2008  ///
2009  /// Pseudo-destructor expressions can have extra qualification within them
2010  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2011  /// Here, if the object type of the expression is (or may be) a scalar type,
2012  /// \p T may also be a scalar type and, therefore, cannot be part of a
2013  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2014  /// destructor expression.
2015  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2016
2017  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
2018  /// expression.
2019  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2020
2021  /// \brief Retrieve the location of the '~'.
2022  SourceLocation getTildeLoc() const { return TildeLoc; }
2023
2024  /// \brief Retrieve the source location information for the type
2025  /// being destroyed.
2026  ///
2027  /// This type-source information is available for non-dependent
2028  /// pseudo-destructor expressions and some dependent pseudo-destructor
2029  /// expressions. Returns null if we only have the identifier for a
2030  /// dependent pseudo-destructor expression.
2031  TypeSourceInfo *getDestroyedTypeInfo() const {
2032    return DestroyedType.getTypeSourceInfo();
2033  }
2034
2035  /// \brief In a dependent pseudo-destructor expression for which we do not
2036  /// have full type information on the destroyed type, provides the name
2037  /// of the destroyed type.
2038  IdentifierInfo *getDestroyedTypeIdentifier() const {
2039    return DestroyedType.getIdentifier();
2040  }
2041
2042  /// \brief Retrieve the type being destroyed.
2043  QualType getDestroyedType() const;
2044
2045  /// \brief Retrieve the starting location of the type being destroyed.
2046  SourceLocation getDestroyedTypeLoc() const {
2047    return DestroyedType.getLocation();
2048  }
2049
2050  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
2051  /// expression.
2052  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2053    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2054  }
2055
2056  /// \brief Set the destroyed type.
2057  void setDestroyedType(TypeSourceInfo *Info) {
2058    DestroyedType = PseudoDestructorTypeStorage(Info);
2059  }
2060
2061  SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
2062  SourceLocation getLocEnd() const LLVM_READONLY;
2063
2064  static bool classof(const Stmt *T) {
2065    return T->getStmtClass() == CXXPseudoDestructorExprClass;
2066  }
2067
2068  // Iterators
2069  child_range children() { return child_range(&Base, &Base + 1); }
2070};
2071
2072/// \brief A type trait used in the implementation of various C++11 and
2073/// Library TR1 trait templates.
2074///
2075/// \code
2076///   __is_pod(int) == true
2077///   __is_enum(std::string) == false
2078///   __is_trivially_constructible(vector<int>, int*, int*)
2079/// \endcode
2080class TypeTraitExpr : public Expr {
2081  /// \brief The location of the type trait keyword.
2082  SourceLocation Loc;
2083
2084  /// \brief  The location of the closing parenthesis.
2085  SourceLocation RParenLoc;
2086
2087  // Note: The TypeSourceInfos for the arguments are allocated after the
2088  // TypeTraitExpr.
2089
2090  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2091                ArrayRef<TypeSourceInfo *> Args,
2092                SourceLocation RParenLoc,
2093                bool Value);
2094
2095  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2096
2097  /// \brief Retrieve the argument types.
2098  TypeSourceInfo **getTypeSourceInfos() {
2099    return reinterpret_cast<TypeSourceInfo **>(this+1);
2100  }
2101
2102  /// \brief Retrieve the argument types.
2103  TypeSourceInfo * const *getTypeSourceInfos() const {
2104    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2105  }
2106
2107public:
2108  /// \brief Create a new type trait expression.
2109  static TypeTraitExpr *Create(const ASTContext &C, QualType T,
2110                               SourceLocation Loc, TypeTrait Kind,
2111                               ArrayRef<TypeSourceInfo *> Args,
2112                               SourceLocation RParenLoc,
2113                               bool Value);
2114
2115  static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
2116                                           unsigned NumArgs);
2117
2118  /// \brief Determine which type trait this expression uses.
2119  TypeTrait getTrait() const {
2120    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2121  }
2122
2123  bool getValue() const {
2124    assert(!isValueDependent());
2125    return TypeTraitExprBits.Value;
2126  }
2127
2128  /// \brief Determine the number of arguments to this type trait.
2129  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2130
2131  /// \brief Retrieve the Ith argument.
2132  TypeSourceInfo *getArg(unsigned I) const {
2133    assert(I < getNumArgs() && "Argument out-of-range");
2134    return getArgs()[I];
2135  }
2136
2137  /// \brief Retrieve the argument types.
2138  ArrayRef<TypeSourceInfo *> getArgs() const {
2139    return llvm::makeArrayRef(getTypeSourceInfos(), getNumArgs());
2140  }
2141
2142  typedef TypeSourceInfo **arg_iterator;
2143  arg_iterator arg_begin() {
2144    return getTypeSourceInfos();
2145  }
2146  arg_iterator arg_end() {
2147    return getTypeSourceInfos() + getNumArgs();
2148  }
2149
2150  typedef TypeSourceInfo const * const *arg_const_iterator;
2151  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2152  arg_const_iterator arg_end() const {
2153    return getTypeSourceInfos() + getNumArgs();
2154  }
2155
2156  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2157  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2158
2159  static bool classof(const Stmt *T) {
2160    return T->getStmtClass() == TypeTraitExprClass;
2161  }
2162
2163  // Iterators
2164  child_range children() { return child_range(); }
2165
2166  friend class ASTStmtReader;
2167  friend class ASTStmtWriter;
2168
2169};
2170
2171/// \brief An Embarcadero array type trait, as used in the implementation of
2172/// __array_rank and __array_extent.
2173///
2174/// Example:
2175/// \code
2176///   __array_rank(int[10][20]) == 2
2177///   __array_extent(int, 1)    == 20
2178/// \endcode
2179class ArrayTypeTraitExpr : public Expr {
2180  virtual void anchor();
2181
2182  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2183  unsigned ATT : 2;
2184
2185  /// \brief The value of the type trait. Unspecified if dependent.
2186  uint64_t Value;
2187
2188  /// \brief The array dimension being queried, or -1 if not used.
2189  Expr *Dimension;
2190
2191  /// \brief The location of the type trait keyword.
2192  SourceLocation Loc;
2193
2194  /// \brief The location of the closing paren.
2195  SourceLocation RParen;
2196
2197  /// \brief The type being queried.
2198  TypeSourceInfo *QueriedType;
2199
2200public:
2201  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2202                     TypeSourceInfo *queried, uint64_t value,
2203                     Expr *dimension, SourceLocation rparen, QualType ty)
2204    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2205           false, queried->getType()->isDependentType(),
2206           (queried->getType()->isInstantiationDependentType() ||
2207            (dimension && dimension->isInstantiationDependent())),
2208           queried->getType()->containsUnexpandedParameterPack()),
2209      ATT(att), Value(value), Dimension(dimension),
2210      Loc(loc), RParen(rparen), QueriedType(queried) { }
2211
2212
2213  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2214    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2215      QueriedType() { }
2216
2217  virtual ~ArrayTypeTraitExpr() { }
2218
2219  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2220  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2221
2222  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2223
2224  QualType getQueriedType() const { return QueriedType->getType(); }
2225
2226  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2227
2228  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2229
2230  Expr *getDimensionExpression() const { return Dimension; }
2231
2232  static bool classof(const Stmt *T) {
2233    return T->getStmtClass() == ArrayTypeTraitExprClass;
2234  }
2235
2236  // Iterators
2237  child_range children() { return child_range(); }
2238
2239  friend class ASTStmtReader;
2240};
2241
2242/// \brief An expression trait intrinsic.
2243///
2244/// Example:
2245/// \code
2246///   __is_lvalue_expr(std::cout) == true
2247///   __is_lvalue_expr(1) == false
2248/// \endcode
2249class ExpressionTraitExpr : public Expr {
2250  /// \brief The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2251  unsigned ET : 31;
2252  /// \brief The value of the type trait. Unspecified if dependent.
2253  bool Value : 1;
2254
2255  /// \brief The location of the type trait keyword.
2256  SourceLocation Loc;
2257
2258  /// \brief The location of the closing paren.
2259  SourceLocation RParen;
2260
2261  /// \brief The expression being queried.
2262  Expr* QueriedExpression;
2263public:
2264  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2265                     Expr *queried, bool value,
2266                     SourceLocation rparen, QualType resultType)
2267    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2268           false, // Not type-dependent
2269           // Value-dependent if the argument is type-dependent.
2270           queried->isTypeDependent(),
2271           queried->isInstantiationDependent(),
2272           queried->containsUnexpandedParameterPack()),
2273      ET(et), Value(value), Loc(loc), RParen(rparen),
2274      QueriedExpression(queried) { }
2275
2276  explicit ExpressionTraitExpr(EmptyShell Empty)
2277    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2278      QueriedExpression() { }
2279
2280  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2281  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2282
2283  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2284
2285  Expr *getQueriedExpression() const { return QueriedExpression; }
2286
2287  bool getValue() const { return Value; }
2288
2289  static bool classof(const Stmt *T) {
2290    return T->getStmtClass() == ExpressionTraitExprClass;
2291  }
2292
2293  // Iterators
2294  child_range children() { return child_range(); }
2295
2296  friend class ASTStmtReader;
2297};
2298
2299
2300/// \brief A reference to an overloaded function set, either an
2301/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2302class OverloadExpr : public Expr {
2303  /// \brief The common name of these declarations.
2304  DeclarationNameInfo NameInfo;
2305
2306  /// \brief The nested-name-specifier that qualifies the name, if any.
2307  NestedNameSpecifierLoc QualifierLoc;
2308
2309  /// The results.  These are undesugared, which is to say, they may
2310  /// include UsingShadowDecls.  Access is relative to the naming
2311  /// class.
2312  // FIXME: Allocate this data after the OverloadExpr subclass.
2313  DeclAccessPair *Results;
2314  unsigned NumResults;
2315
2316protected:
2317  /// \brief Whether the name includes info for explicit template
2318  /// keyword and arguments.
2319  bool HasTemplateKWAndArgsInfo;
2320
2321  /// \brief Return the optional template keyword and arguments info.
2322  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2323
2324  /// \brief Return the optional template keyword and arguments info.
2325  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2326    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2327  }
2328
2329  OverloadExpr(StmtClass K, const ASTContext &C,
2330               NestedNameSpecifierLoc QualifierLoc,
2331               SourceLocation TemplateKWLoc,
2332               const DeclarationNameInfo &NameInfo,
2333               const TemplateArgumentListInfo *TemplateArgs,
2334               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2335               bool KnownDependent,
2336               bool KnownInstantiationDependent,
2337               bool KnownContainsUnexpandedParameterPack);
2338
2339  OverloadExpr(StmtClass K, EmptyShell Empty)
2340    : Expr(K, Empty), QualifierLoc(), Results(nullptr), NumResults(0),
2341      HasTemplateKWAndArgsInfo(false) { }
2342
2343  void initializeResults(const ASTContext &C,
2344                         UnresolvedSetIterator Begin,
2345                         UnresolvedSetIterator End);
2346
2347public:
2348  struct FindResult {
2349    OverloadExpr *Expression;
2350    bool IsAddressOfOperand;
2351    bool HasFormOfMemberPointer;
2352  };
2353
2354  /// \brief Finds the overloaded expression in the given expression \p E of
2355  /// OverloadTy.
2356  ///
2357  /// \return the expression (which must be there) and true if it has
2358  /// the particular form of a member pointer expression
2359  static FindResult find(Expr *E) {
2360    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2361
2362    FindResult Result;
2363
2364    E = E->IgnoreParens();
2365    if (isa<UnaryOperator>(E)) {
2366      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2367      E = cast<UnaryOperator>(E)->getSubExpr();
2368      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2369
2370      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2371      Result.IsAddressOfOperand = true;
2372      Result.Expression = Ovl;
2373    } else {
2374      Result.HasFormOfMemberPointer = false;
2375      Result.IsAddressOfOperand = false;
2376      Result.Expression = cast<OverloadExpr>(E);
2377    }
2378
2379    return Result;
2380  }
2381
2382  /// \brief Gets the naming class of this lookup, if any.
2383  CXXRecordDecl *getNamingClass() const;
2384
2385  typedef UnresolvedSetImpl::iterator decls_iterator;
2386  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2387  decls_iterator decls_end() const {
2388    return UnresolvedSetIterator(Results + NumResults);
2389  }
2390  llvm::iterator_range<decls_iterator> decls() const {
2391    return llvm::iterator_range<decls_iterator>(decls_begin(), decls_end());
2392  }
2393
2394  /// \brief Gets the number of declarations in the unresolved set.
2395  unsigned getNumDecls() const { return NumResults; }
2396
2397  /// \brief Gets the full name info.
2398  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2399
2400  /// \brief Gets the name looked up.
2401  DeclarationName getName() const { return NameInfo.getName(); }
2402
2403  /// \brief Gets the location of the name.
2404  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2405
2406  /// \brief Fetches the nested-name qualifier, if one was given.
2407  NestedNameSpecifier *getQualifier() const {
2408    return QualifierLoc.getNestedNameSpecifier();
2409  }
2410
2411  /// \brief Fetches the nested-name qualifier with source-location
2412  /// information, if one was given.
2413  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2414
2415  /// \brief Retrieve the location of the template keyword preceding
2416  /// this name, if any.
2417  SourceLocation getTemplateKeywordLoc() const {
2418    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2419    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2420  }
2421
2422  /// \brief Retrieve the location of the left angle bracket starting the
2423  /// explicit template argument list following the name, if any.
2424  SourceLocation getLAngleLoc() const {
2425    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2426    return getTemplateKWAndArgsInfo()->LAngleLoc;
2427  }
2428
2429  /// \brief Retrieve the location of the right angle bracket ending the
2430  /// explicit template argument list following the name, if any.
2431  SourceLocation getRAngleLoc() const {
2432    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2433    return getTemplateKWAndArgsInfo()->RAngleLoc;
2434  }
2435
2436  /// \brief Determines whether the name was preceded by the template keyword.
2437  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2438
2439  /// \brief Determines whether this expression had explicit template arguments.
2440  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2441
2442  // Note that, inconsistently with the explicit-template-argument AST
2443  // nodes, users are *forbidden* from calling these methods on objects
2444  // without explicit template arguments.
2445
2446  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2447    assert(hasExplicitTemplateArgs());
2448    return *getTemplateKWAndArgsInfo();
2449  }
2450
2451  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2452    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2453  }
2454
2455  TemplateArgumentLoc const *getTemplateArgs() const {
2456    return getExplicitTemplateArgs().getTemplateArgs();
2457  }
2458
2459  unsigned getNumTemplateArgs() const {
2460    return getExplicitTemplateArgs().NumTemplateArgs;
2461  }
2462
2463  /// \brief Copies the template arguments into the given structure.
2464  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2465    getExplicitTemplateArgs().copyInto(List);
2466  }
2467
2468  /// \brief Retrieves the optional explicit template arguments.
2469  ///
2470  /// This points to the same data as getExplicitTemplateArgs(), but
2471  /// returns null if there are no explicit template arguments.
2472  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2473    if (!hasExplicitTemplateArgs()) return nullptr;
2474    return &getExplicitTemplateArgs();
2475  }
2476
2477  static bool classof(const Stmt *T) {
2478    return T->getStmtClass() == UnresolvedLookupExprClass ||
2479           T->getStmtClass() == UnresolvedMemberExprClass;
2480  }
2481
2482  friend class ASTStmtReader;
2483  friend class ASTStmtWriter;
2484};
2485
2486/// \brief A reference to a name which we were able to look up during
2487/// parsing but could not resolve to a specific declaration.
2488///
2489/// This arises in several ways:
2490///   * we might be waiting for argument-dependent lookup;
2491///   * the name might resolve to an overloaded function;
2492/// and eventually:
2493///   * the lookup might have included a function template.
2494///
2495/// These never include UnresolvedUsingValueDecls, which are always class
2496/// members and therefore appear only in UnresolvedMemberLookupExprs.
2497class UnresolvedLookupExpr : public OverloadExpr {
2498  /// True if these lookup results should be extended by
2499  /// argument-dependent lookup if this is the operand of a function
2500  /// call.
2501  bool RequiresADL;
2502
2503  /// True if these lookup results are overloaded.  This is pretty
2504  /// trivially rederivable if we urgently need to kill this field.
2505  bool Overloaded;
2506
2507  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2508  /// any.  This can generally be recalculated from the context chain,
2509  /// but that can be fairly expensive for unqualified lookups.  If we
2510  /// want to improve memory use here, this could go in a union
2511  /// against the qualified-lookup bits.
2512  CXXRecordDecl *NamingClass;
2513
2514  UnresolvedLookupExpr(const ASTContext &C,
2515                       CXXRecordDecl *NamingClass,
2516                       NestedNameSpecifierLoc QualifierLoc,
2517                       SourceLocation TemplateKWLoc,
2518                       const DeclarationNameInfo &NameInfo,
2519                       bool RequiresADL, bool Overloaded,
2520                       const TemplateArgumentListInfo *TemplateArgs,
2521                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2522    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2523                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2524      RequiresADL(RequiresADL),
2525      Overloaded(Overloaded), NamingClass(NamingClass)
2526  {}
2527
2528  UnresolvedLookupExpr(EmptyShell Empty)
2529    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2530      RequiresADL(false), Overloaded(false), NamingClass(nullptr)
2531  {}
2532
2533  friend class ASTStmtReader;
2534
2535public:
2536  static UnresolvedLookupExpr *Create(const ASTContext &C,
2537                                      CXXRecordDecl *NamingClass,
2538                                      NestedNameSpecifierLoc QualifierLoc,
2539                                      const DeclarationNameInfo &NameInfo,
2540                                      bool ADL, bool Overloaded,
2541                                      UnresolvedSetIterator Begin,
2542                                      UnresolvedSetIterator End) {
2543    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2544                                       SourceLocation(), NameInfo,
2545                                       ADL, Overloaded, nullptr, Begin, End);
2546  }
2547
2548  static UnresolvedLookupExpr *Create(const ASTContext &C,
2549                                      CXXRecordDecl *NamingClass,
2550                                      NestedNameSpecifierLoc QualifierLoc,
2551                                      SourceLocation TemplateKWLoc,
2552                                      const DeclarationNameInfo &NameInfo,
2553                                      bool ADL,
2554                                      const TemplateArgumentListInfo *Args,
2555                                      UnresolvedSetIterator Begin,
2556                                      UnresolvedSetIterator End);
2557
2558  static UnresolvedLookupExpr *CreateEmpty(const ASTContext &C,
2559                                           bool HasTemplateKWAndArgsInfo,
2560                                           unsigned NumTemplateArgs);
2561
2562  /// True if this declaration should be extended by
2563  /// argument-dependent lookup.
2564  bool requiresADL() const { return RequiresADL; }
2565
2566  /// True if this lookup is overloaded.
2567  bool isOverloaded() const { return Overloaded; }
2568
2569  /// Gets the 'naming class' (in the sense of C++0x
2570  /// [class.access.base]p5) of the lookup.  This is the scope
2571  /// that was looked in to find these results.
2572  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2573
2574  SourceLocation getLocStart() const LLVM_READONLY {
2575    if (NestedNameSpecifierLoc l = getQualifierLoc())
2576      return l.getBeginLoc();
2577    return getNameInfo().getLocStart();
2578  }
2579  SourceLocation getLocEnd() const LLVM_READONLY {
2580    if (hasExplicitTemplateArgs())
2581      return getRAngleLoc();
2582    return getNameInfo().getLocEnd();
2583  }
2584
2585  child_range children() { return child_range(); }
2586
2587  static bool classof(const Stmt *T) {
2588    return T->getStmtClass() == UnresolvedLookupExprClass;
2589  }
2590};
2591
2592/// \brief A qualified reference to a name whose declaration cannot
2593/// yet be resolved.
2594///
2595/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2596/// it expresses a reference to a declaration such as
2597/// X<T>::value. The difference, however, is that an
2598/// DependentScopeDeclRefExpr node is used only within C++ templates when
2599/// the qualification (e.g., X<T>::) refers to a dependent type. In
2600/// this case, X<T>::value cannot resolve to a declaration because the
2601/// declaration will differ from one instantiation of X<T> to the
2602/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2603/// qualifier (X<T>::) and the name of the entity being referenced
2604/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2605/// declaration can be found.
2606class DependentScopeDeclRefExpr : public Expr {
2607  /// \brief The nested-name-specifier that qualifies this unresolved
2608  /// declaration name.
2609  NestedNameSpecifierLoc QualifierLoc;
2610
2611  /// \brief The name of the entity we will be referencing.
2612  DeclarationNameInfo NameInfo;
2613
2614  /// \brief Whether the name includes info for explicit template
2615  /// keyword and arguments.
2616  bool HasTemplateKWAndArgsInfo;
2617
2618  /// \brief Return the optional template keyword and arguments info.
2619  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2620    if (!HasTemplateKWAndArgsInfo) return nullptr;
2621    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2622  }
2623  /// \brief Return the optional template keyword and arguments info.
2624  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2625    return const_cast<DependentScopeDeclRefExpr*>(this)
2626      ->getTemplateKWAndArgsInfo();
2627  }
2628
2629  DependentScopeDeclRefExpr(QualType T,
2630                            NestedNameSpecifierLoc QualifierLoc,
2631                            SourceLocation TemplateKWLoc,
2632                            const DeclarationNameInfo &NameInfo,
2633                            const TemplateArgumentListInfo *Args);
2634
2635public:
2636  static DependentScopeDeclRefExpr *Create(const ASTContext &C,
2637                                           NestedNameSpecifierLoc QualifierLoc,
2638                                           SourceLocation TemplateKWLoc,
2639                                           const DeclarationNameInfo &NameInfo,
2640                              const TemplateArgumentListInfo *TemplateArgs);
2641
2642  static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &C,
2643                                                bool HasTemplateKWAndArgsInfo,
2644                                                unsigned NumTemplateArgs);
2645
2646  /// \brief Retrieve the name that this expression refers to.
2647  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2648
2649  /// \brief Retrieve the name that this expression refers to.
2650  DeclarationName getDeclName() const { return NameInfo.getName(); }
2651
2652  /// \brief Retrieve the location of the name within the expression.
2653  ///
2654  /// For example, in "X<T>::value" this is the location of "value".
2655  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2656
2657  /// \brief Retrieve the nested-name-specifier that qualifies the
2658  /// name, with source location information.
2659  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2660
2661  /// \brief Retrieve the nested-name-specifier that qualifies this
2662  /// declaration.
2663  NestedNameSpecifier *getQualifier() const {
2664    return QualifierLoc.getNestedNameSpecifier();
2665  }
2666
2667  /// \brief Retrieve the location of the template keyword preceding
2668  /// this name, if any.
2669  SourceLocation getTemplateKeywordLoc() const {
2670    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2671    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2672  }
2673
2674  /// \brief Retrieve the location of the left angle bracket starting the
2675  /// explicit template argument list following the name, if any.
2676  SourceLocation getLAngleLoc() const {
2677    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2678    return getTemplateKWAndArgsInfo()->LAngleLoc;
2679  }
2680
2681  /// \brief Retrieve the location of the right angle bracket ending the
2682  /// explicit template argument list following the name, if any.
2683  SourceLocation getRAngleLoc() const {
2684    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2685    return getTemplateKWAndArgsInfo()->RAngleLoc;
2686  }
2687
2688  /// Determines whether the name was preceded by the template keyword.
2689  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2690
2691  /// Determines whether this lookup had explicit template arguments.
2692  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2693
2694  // Note that, inconsistently with the explicit-template-argument AST
2695  // nodes, users are *forbidden* from calling these methods on objects
2696  // without explicit template arguments.
2697
2698  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2699    assert(hasExplicitTemplateArgs());
2700    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2701  }
2702
2703  /// Gets a reference to the explicit template argument list.
2704  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2705    assert(hasExplicitTemplateArgs());
2706    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2707  }
2708
2709  /// \brief Retrieves the optional explicit template arguments.
2710  ///
2711  /// This points to the same data as getExplicitTemplateArgs(), but
2712  /// returns null if there are no explicit template arguments.
2713  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2714    if (!hasExplicitTemplateArgs()) return nullptr;
2715    return &getExplicitTemplateArgs();
2716  }
2717
2718  /// \brief Copies the template arguments (if present) into the given
2719  /// structure.
2720  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2721    getExplicitTemplateArgs().copyInto(List);
2722  }
2723
2724  TemplateArgumentLoc const *getTemplateArgs() const {
2725    return getExplicitTemplateArgs().getTemplateArgs();
2726  }
2727
2728  unsigned getNumTemplateArgs() const {
2729    return getExplicitTemplateArgs().NumTemplateArgs;
2730  }
2731
2732  /// Note: getLocStart() is the start of the whole DependentScopeDeclRefExpr,
2733  /// and differs from getLocation().getStart().
2734  SourceLocation getLocStart() const LLVM_READONLY {
2735    return QualifierLoc.getBeginLoc();
2736  }
2737  SourceLocation getLocEnd() const LLVM_READONLY {
2738    if (hasExplicitTemplateArgs())
2739      return getRAngleLoc();
2740    return getLocation();
2741  }
2742
2743  static bool classof(const Stmt *T) {
2744    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2745  }
2746
2747  child_range children() { return child_range(); }
2748
2749  friend class ASTStmtReader;
2750  friend class ASTStmtWriter;
2751};
2752
2753/// Represents an expression -- generally a full-expression -- that
2754/// introduces cleanups to be run at the end of the sub-expression's
2755/// evaluation.  The most common source of expression-introduced
2756/// cleanups is temporary objects in C++, but several other kinds of
2757/// expressions can create cleanups, including basically every
2758/// call in ARC that returns an Objective-C pointer.
2759///
2760/// This expression also tracks whether the sub-expression contains a
2761/// potentially-evaluated block literal.  The lifetime of a block
2762/// literal is the extent of the enclosing scope.
2763class ExprWithCleanups : public Expr {
2764public:
2765  /// The type of objects that are kept in the cleanup.
2766  /// It's useful to remember the set of blocks;  we could also
2767  /// remember the set of temporaries, but there's currently
2768  /// no need.
2769  typedef BlockDecl *CleanupObject;
2770
2771private:
2772  Stmt *SubExpr;
2773
2774  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2775  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2776
2777  CleanupObject *getObjectsBuffer() {
2778    return reinterpret_cast<CleanupObject*>(this + 1);
2779  }
2780  const CleanupObject *getObjectsBuffer() const {
2781    return reinterpret_cast<const CleanupObject*>(this + 1);
2782  }
2783  friend class ASTStmtReader;
2784
2785public:
2786  static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
2787                                  unsigned numObjects);
2788
2789  static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
2790                                  ArrayRef<CleanupObject> objects);
2791
2792  ArrayRef<CleanupObject> getObjects() const {
2793    return llvm::makeArrayRef(getObjectsBuffer(), getNumObjects());
2794  }
2795
2796  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2797
2798  CleanupObject getObject(unsigned i) const {
2799    assert(i < getNumObjects() && "Index out of range");
2800    return getObjects()[i];
2801  }
2802
2803  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2804  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2805
2806  /// As with any mutator of the AST, be very careful
2807  /// when modifying an existing AST to preserve its invariants.
2808  void setSubExpr(Expr *E) { SubExpr = E; }
2809
2810  SourceLocation getLocStart() const LLVM_READONLY {
2811    return SubExpr->getLocStart();
2812  }
2813  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
2814
2815  // Implement isa/cast/dyncast/etc.
2816  static bool classof(const Stmt *T) {
2817    return T->getStmtClass() == ExprWithCleanupsClass;
2818  }
2819
2820  // Iterators
2821  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2822};
2823
2824/// \brief Describes an explicit type conversion that uses functional
2825/// notion but could not be resolved because one or more arguments are
2826/// type-dependent.
2827///
2828/// The explicit type conversions expressed by
2829/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2830/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2831/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2832/// type-dependent. For example, this would occur in a template such
2833/// as:
2834///
2835/// \code
2836///   template<typename T, typename A1>
2837///   inline T make_a(const A1& a1) {
2838///     return T(a1);
2839///   }
2840/// \endcode
2841///
2842/// When the returned expression is instantiated, it may resolve to a
2843/// constructor call, conversion function call, or some kind of type
2844/// conversion.
2845class CXXUnresolvedConstructExpr : public Expr {
2846  /// \brief The type being constructed.
2847  TypeSourceInfo *Type;
2848
2849  /// \brief The location of the left parentheses ('(').
2850  SourceLocation LParenLoc;
2851
2852  /// \brief The location of the right parentheses (')').
2853  SourceLocation RParenLoc;
2854
2855  /// \brief The number of arguments used to construct the type.
2856  unsigned NumArgs;
2857
2858  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2859                             SourceLocation LParenLoc,
2860                             ArrayRef<Expr*> Args,
2861                             SourceLocation RParenLoc);
2862
2863  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2864    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2865
2866  friend class ASTStmtReader;
2867
2868public:
2869  static CXXUnresolvedConstructExpr *Create(const ASTContext &C,
2870                                            TypeSourceInfo *Type,
2871                                            SourceLocation LParenLoc,
2872                                            ArrayRef<Expr*> Args,
2873                                            SourceLocation RParenLoc);
2874
2875  static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &C,
2876                                                 unsigned NumArgs);
2877
2878  /// \brief Retrieve the type that is being constructed, as specified
2879  /// in the source code.
2880  QualType getTypeAsWritten() const { return Type->getType(); }
2881
2882  /// \brief Retrieve the type source information for the type being
2883  /// constructed.
2884  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2885
2886  /// \brief Retrieve the location of the left parentheses ('(') that
2887  /// precedes the argument list.
2888  SourceLocation getLParenLoc() const { return LParenLoc; }
2889  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2890
2891  /// \brief Retrieve the location of the right parentheses (')') that
2892  /// follows the argument list.
2893  SourceLocation getRParenLoc() const { return RParenLoc; }
2894  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2895
2896  /// \brief Retrieve the number of arguments.
2897  unsigned arg_size() const { return NumArgs; }
2898
2899  typedef Expr** arg_iterator;
2900  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2901  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2902
2903  typedef const Expr* const * const_arg_iterator;
2904  const_arg_iterator arg_begin() const {
2905    return reinterpret_cast<const Expr* const *>(this + 1);
2906  }
2907  const_arg_iterator arg_end() const {
2908    return arg_begin() + NumArgs;
2909  }
2910
2911  Expr *getArg(unsigned I) {
2912    assert(I < NumArgs && "Argument index out-of-range");
2913    return *(arg_begin() + I);
2914  }
2915
2916  const Expr *getArg(unsigned I) const {
2917    assert(I < NumArgs && "Argument index out-of-range");
2918    return *(arg_begin() + I);
2919  }
2920
2921  void setArg(unsigned I, Expr *E) {
2922    assert(I < NumArgs && "Argument index out-of-range");
2923    *(arg_begin() + I) = E;
2924  }
2925
2926  SourceLocation getLocStart() const LLVM_READONLY;
2927  SourceLocation getLocEnd() const LLVM_READONLY {
2928    if (!RParenLoc.isValid() && NumArgs > 0)
2929      return getArg(NumArgs - 1)->getLocEnd();
2930    return RParenLoc;
2931  }
2932
2933  static bool classof(const Stmt *T) {
2934    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2935  }
2936
2937  // Iterators
2938  child_range children() {
2939    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2940    return child_range(begin, begin + NumArgs);
2941  }
2942};
2943
2944/// \brief Represents a C++ member access expression where the actual
2945/// member referenced could not be resolved because the base
2946/// expression or the member name was dependent.
2947///
2948/// Like UnresolvedMemberExprs, these can be either implicit or
2949/// explicit accesses.  It is only possible to get one of these with
2950/// an implicit access if a qualifier is provided.
2951class CXXDependentScopeMemberExpr : public Expr {
2952  /// \brief The expression for the base pointer or class reference,
2953  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2954  Stmt *Base;
2955
2956  /// \brief The type of the base expression.  Never null, even for
2957  /// implicit accesses.
2958  QualType BaseType;
2959
2960  /// \brief Whether this member expression used the '->' operator or
2961  /// the '.' operator.
2962  bool IsArrow : 1;
2963
2964  /// \brief Whether this member expression has info for explicit template
2965  /// keyword and arguments.
2966  bool HasTemplateKWAndArgsInfo : 1;
2967
2968  /// \brief The location of the '->' or '.' operator.
2969  SourceLocation OperatorLoc;
2970
2971  /// \brief The nested-name-specifier that precedes the member name, if any.
2972  NestedNameSpecifierLoc QualifierLoc;
2973
2974  /// \brief In a qualified member access expression such as t->Base::f, this
2975  /// member stores the resolves of name lookup in the context of the member
2976  /// access expression, to be used at instantiation time.
2977  ///
2978  /// FIXME: This member, along with the QualifierLoc, could
2979  /// be stuck into a structure that is optionally allocated at the end of
2980  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2981  NamedDecl *FirstQualifierFoundInScope;
2982
2983  /// \brief The member to which this member expression refers, which
2984  /// can be name, overloaded operator, or destructor.
2985  ///
2986  /// FIXME: could also be a template-id
2987  DeclarationNameInfo MemberNameInfo;
2988
2989  /// \brief Return the optional template keyword and arguments info.
2990  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2991    if (!HasTemplateKWAndArgsInfo) return nullptr;
2992    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2993  }
2994  /// \brief Return the optional template keyword and arguments info.
2995  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2996    return const_cast<CXXDependentScopeMemberExpr*>(this)
2997      ->getTemplateKWAndArgsInfo();
2998  }
2999
3000  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
3001                              QualType BaseType, bool IsArrow,
3002                              SourceLocation OperatorLoc,
3003                              NestedNameSpecifierLoc QualifierLoc,
3004                              SourceLocation TemplateKWLoc,
3005                              NamedDecl *FirstQualifierFoundInScope,
3006                              DeclarationNameInfo MemberNameInfo,
3007                              const TemplateArgumentListInfo *TemplateArgs);
3008
3009public:
3010  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
3011                              QualType BaseType, bool IsArrow,
3012                              SourceLocation OperatorLoc,
3013                              NestedNameSpecifierLoc QualifierLoc,
3014                              NamedDecl *FirstQualifierFoundInScope,
3015                              DeclarationNameInfo MemberNameInfo);
3016
3017  static CXXDependentScopeMemberExpr *
3018  Create(const ASTContext &C, Expr *Base, QualType BaseType, bool IsArrow,
3019         SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
3020         SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
3021         DeclarationNameInfo MemberNameInfo,
3022         const TemplateArgumentListInfo *TemplateArgs);
3023
3024  static CXXDependentScopeMemberExpr *
3025  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
3026              unsigned NumTemplateArgs);
3027
3028  /// \brief True if this is an implicit access, i.e. one in which the
3029  /// member being accessed was not written in the source.  The source
3030  /// location of the operator is invalid in this case.
3031  bool isImplicitAccess() const;
3032
3033  /// \brief Retrieve the base object of this member expressions,
3034  /// e.g., the \c x in \c x.m.
3035  Expr *getBase() const {
3036    assert(!isImplicitAccess());
3037    return cast<Expr>(Base);
3038  }
3039
3040  QualType getBaseType() const { return BaseType; }
3041
3042  /// \brief Determine whether this member expression used the '->'
3043  /// operator; otherwise, it used the '.' operator.
3044  bool isArrow() const { return IsArrow; }
3045
3046  /// \brief Retrieve the location of the '->' or '.' operator.
3047  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3048
3049  /// \brief Retrieve the nested-name-specifier that qualifies the member
3050  /// name.
3051  NestedNameSpecifier *getQualifier() const {
3052    return QualifierLoc.getNestedNameSpecifier();
3053  }
3054
3055  /// \brief Retrieve the nested-name-specifier that qualifies the member
3056  /// name, with source location information.
3057  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3058
3059
3060  /// \brief Retrieve the first part of the nested-name-specifier that was
3061  /// found in the scope of the member access expression when the member access
3062  /// was initially parsed.
3063  ///
3064  /// This function only returns a useful result when member access expression
3065  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3066  /// returned by this function describes what was found by unqualified name
3067  /// lookup for the identifier "Base" within the scope of the member access
3068  /// expression itself. At template instantiation time, this information is
3069  /// combined with the results of name lookup into the type of the object
3070  /// expression itself (the class type of x).
3071  NamedDecl *getFirstQualifierFoundInScope() const {
3072    return FirstQualifierFoundInScope;
3073  }
3074
3075  /// \brief Retrieve the name of the member that this expression
3076  /// refers to.
3077  const DeclarationNameInfo &getMemberNameInfo() const {
3078    return MemberNameInfo;
3079  }
3080
3081  /// \brief Retrieve the name of the member that this expression
3082  /// refers to.
3083  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3084
3085  // \brief Retrieve the location of the name of the member that this
3086  // expression refers to.
3087  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3088
3089  /// \brief Retrieve the location of the template keyword preceding the
3090  /// member name, if any.
3091  SourceLocation getTemplateKeywordLoc() const {
3092    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3093    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3094  }
3095
3096  /// \brief Retrieve the location of the left angle bracket starting the
3097  /// explicit template argument list following the member name, if any.
3098  SourceLocation getLAngleLoc() const {
3099    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3100    return getTemplateKWAndArgsInfo()->LAngleLoc;
3101  }
3102
3103  /// \brief Retrieve the location of the right angle bracket ending the
3104  /// explicit template argument list following the member name, if any.
3105  SourceLocation getRAngleLoc() const {
3106    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3107    return getTemplateKWAndArgsInfo()->RAngleLoc;
3108  }
3109
3110  /// Determines whether the member name was preceded by the template keyword.
3111  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3112
3113  /// \brief Determines whether this member expression actually had a C++
3114  /// template argument list explicitly specified, e.g., x.f<int>.
3115  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3116
3117  /// \brief Retrieve the explicit template argument list that followed the
3118  /// member template name, if any.
3119  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3120    assert(hasExplicitTemplateArgs());
3121    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3122  }
3123
3124  /// \brief Retrieve the explicit template argument list that followed the
3125  /// member template name, if any.
3126  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3127    return const_cast<CXXDependentScopeMemberExpr *>(this)
3128             ->getExplicitTemplateArgs();
3129  }
3130
3131  /// \brief Retrieves the optional explicit template arguments.
3132  ///
3133  /// This points to the same data as getExplicitTemplateArgs(), but
3134  /// returns null if there are no explicit template arguments.
3135  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
3136    if (!hasExplicitTemplateArgs()) return nullptr;
3137    return &getExplicitTemplateArgs();
3138  }
3139
3140  /// \brief Copies the template arguments (if present) into the given
3141  /// structure.
3142  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3143    getExplicitTemplateArgs().copyInto(List);
3144  }
3145
3146  /// \brief Initializes the template arguments using the given structure.
3147  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3148    getExplicitTemplateArgs().initializeFrom(List);
3149  }
3150
3151  /// \brief Retrieve the template arguments provided as part of this
3152  /// template-id.
3153  const TemplateArgumentLoc *getTemplateArgs() const {
3154    return getExplicitTemplateArgs().getTemplateArgs();
3155  }
3156
3157  /// \brief Retrieve the number of template arguments provided as part of this
3158  /// template-id.
3159  unsigned getNumTemplateArgs() const {
3160    return getExplicitTemplateArgs().NumTemplateArgs;
3161  }
3162
3163  SourceLocation getLocStart() const LLVM_READONLY {
3164    if (!isImplicitAccess())
3165      return Base->getLocStart();
3166    if (getQualifier())
3167      return getQualifierLoc().getBeginLoc();
3168    return MemberNameInfo.getBeginLoc();
3169
3170  }
3171  SourceLocation getLocEnd() const LLVM_READONLY {
3172    if (hasExplicitTemplateArgs())
3173      return getRAngleLoc();
3174    return MemberNameInfo.getEndLoc();
3175  }
3176
3177  static bool classof(const Stmt *T) {
3178    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3179  }
3180
3181  // Iterators
3182  child_range children() {
3183    if (isImplicitAccess()) return child_range();
3184    return child_range(&Base, &Base + 1);
3185  }
3186
3187  friend class ASTStmtReader;
3188  friend class ASTStmtWriter;
3189};
3190
3191/// \brief Represents a C++ member access expression for which lookup
3192/// produced a set of overloaded functions.
3193///
3194/// The member access may be explicit or implicit:
3195/// \code
3196///    struct A {
3197///      int a, b;
3198///      int explicitAccess() { return this->a + this->A::b; }
3199///      int implicitAccess() { return a + A::b; }
3200///    };
3201/// \endcode
3202///
3203/// In the final AST, an explicit access always becomes a MemberExpr.
3204/// An implicit access may become either a MemberExpr or a
3205/// DeclRefExpr, depending on whether the member is static.
3206class UnresolvedMemberExpr : public OverloadExpr {
3207  /// \brief Whether this member expression used the '->' operator or
3208  /// the '.' operator.
3209  bool IsArrow : 1;
3210
3211  /// \brief Whether the lookup results contain an unresolved using
3212  /// declaration.
3213  bool HasUnresolvedUsing : 1;
3214
3215  /// \brief The expression for the base pointer or class reference,
3216  /// e.g., the \c x in x.f.
3217  ///
3218  /// This can be null if this is an 'unbased' member expression.
3219  Stmt *Base;
3220
3221  /// \brief The type of the base expression; never null.
3222  QualType BaseType;
3223
3224  /// \brief The location of the '->' or '.' operator.
3225  SourceLocation OperatorLoc;
3226
3227  UnresolvedMemberExpr(const ASTContext &C, bool HasUnresolvedUsing,
3228                       Expr *Base, QualType BaseType, bool IsArrow,
3229                       SourceLocation OperatorLoc,
3230                       NestedNameSpecifierLoc QualifierLoc,
3231                       SourceLocation TemplateKWLoc,
3232                       const DeclarationNameInfo &MemberNameInfo,
3233                       const TemplateArgumentListInfo *TemplateArgs,
3234                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3235
3236  UnresolvedMemberExpr(EmptyShell Empty)
3237    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3238      HasUnresolvedUsing(false), Base(nullptr) { }
3239
3240  friend class ASTStmtReader;
3241
3242public:
3243  static UnresolvedMemberExpr *
3244  Create(const ASTContext &C, bool HasUnresolvedUsing,
3245         Expr *Base, QualType BaseType, bool IsArrow,
3246         SourceLocation OperatorLoc,
3247         NestedNameSpecifierLoc QualifierLoc,
3248         SourceLocation TemplateKWLoc,
3249         const DeclarationNameInfo &MemberNameInfo,
3250         const TemplateArgumentListInfo *TemplateArgs,
3251         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3252
3253  static UnresolvedMemberExpr *
3254  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
3255              unsigned NumTemplateArgs);
3256
3257  /// \brief True if this is an implicit access, i.e., one in which the
3258  /// member being accessed was not written in the source.
3259  ///
3260  /// The source location of the operator is invalid in this case.
3261  bool isImplicitAccess() const;
3262
3263  /// \brief Retrieve the base object of this member expressions,
3264  /// e.g., the \c x in \c x.m.
3265  Expr *getBase() {
3266    assert(!isImplicitAccess());
3267    return cast<Expr>(Base);
3268  }
3269  const Expr *getBase() const {
3270    assert(!isImplicitAccess());
3271    return cast<Expr>(Base);
3272  }
3273
3274  QualType getBaseType() const { return BaseType; }
3275
3276  /// \brief Determine whether the lookup results contain an unresolved using
3277  /// declaration.
3278  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3279
3280  /// \brief Determine whether this member expression used the '->'
3281  /// operator; otherwise, it used the '.' operator.
3282  bool isArrow() const { return IsArrow; }
3283
3284  /// \brief Retrieve the location of the '->' or '.' operator.
3285  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3286
3287  /// \brief Retrieve the naming class of this lookup.
3288  CXXRecordDecl *getNamingClass() const;
3289
3290  /// \brief Retrieve the full name info for the member that this expression
3291  /// refers to.
3292  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3293
3294  /// \brief Retrieve the name of the member that this expression
3295  /// refers to.
3296  DeclarationName getMemberName() const { return getName(); }
3297
3298  // \brief Retrieve the location of the name of the member that this
3299  // expression refers to.
3300  SourceLocation getMemberLoc() const { return getNameLoc(); }
3301
3302  // \brief Return the preferred location (the member name) for the arrow when
3303  // diagnosing a problem with this expression.
3304  SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
3305
3306  SourceLocation getLocStart() const LLVM_READONLY {
3307    if (!isImplicitAccess())
3308      return Base->getLocStart();
3309    if (NestedNameSpecifierLoc l = getQualifierLoc())
3310      return l.getBeginLoc();
3311    return getMemberNameInfo().getLocStart();
3312  }
3313  SourceLocation getLocEnd() const LLVM_READONLY {
3314    if (hasExplicitTemplateArgs())
3315      return getRAngleLoc();
3316    return getMemberNameInfo().getLocEnd();
3317  }
3318
3319  static bool classof(const Stmt *T) {
3320    return T->getStmtClass() == UnresolvedMemberExprClass;
3321  }
3322
3323  // Iterators
3324  child_range children() {
3325    if (isImplicitAccess()) return child_range();
3326    return child_range(&Base, &Base + 1);
3327  }
3328};
3329
3330/// \brief Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
3331///
3332/// The noexcept expression tests whether a given expression might throw. Its
3333/// result is a boolean constant.
3334class CXXNoexceptExpr : public Expr {
3335  bool Value : 1;
3336  Stmt *Operand;
3337  SourceRange Range;
3338
3339  friend class ASTStmtReader;
3340
3341public:
3342  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3343                  SourceLocation Keyword, SourceLocation RParen)
3344    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3345           /*TypeDependent*/false,
3346           /*ValueDependent*/Val == CT_Dependent,
3347           Val == CT_Dependent || Operand->isInstantiationDependent(),
3348           Operand->containsUnexpandedParameterPack()),
3349      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3350  { }
3351
3352  CXXNoexceptExpr(EmptyShell Empty)
3353    : Expr(CXXNoexceptExprClass, Empty)
3354  { }
3355
3356  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3357
3358  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
3359  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
3360  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3361
3362  bool getValue() const { return Value; }
3363
3364  static bool classof(const Stmt *T) {
3365    return T->getStmtClass() == CXXNoexceptExprClass;
3366  }
3367
3368  // Iterators
3369  child_range children() { return child_range(&Operand, &Operand + 1); }
3370};
3371
3372/// \brief Represents a C++11 pack expansion that produces a sequence of
3373/// expressions.
3374///
3375/// A pack expansion expression contains a pattern (which itself is an
3376/// expression) followed by an ellipsis. For example:
3377///
3378/// \code
3379/// template<typename F, typename ...Types>
3380/// void forward(F f, Types &&...args) {
3381///   f(static_cast<Types&&>(args)...);
3382/// }
3383/// \endcode
3384///
3385/// Here, the argument to the function object \c f is a pack expansion whose
3386/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3387/// template is instantiated, the pack expansion will instantiate to zero or
3388/// or more function arguments to the function object \c f.
3389class PackExpansionExpr : public Expr {
3390  SourceLocation EllipsisLoc;
3391
3392  /// \brief The number of expansions that will be produced by this pack
3393  /// expansion expression, if known.
3394  ///
3395  /// When zero, the number of expansions is not known. Otherwise, this value
3396  /// is the number of expansions + 1.
3397  unsigned NumExpansions;
3398
3399  Stmt *Pattern;
3400
3401  friend class ASTStmtReader;
3402  friend class ASTStmtWriter;
3403
3404public:
3405  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3406                    Optional<unsigned> NumExpansions)
3407    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3408           Pattern->getObjectKind(), /*TypeDependent=*/true,
3409           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3410           /*ContainsUnexpandedParameterPack=*/false),
3411      EllipsisLoc(EllipsisLoc),
3412      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3413      Pattern(Pattern) { }
3414
3415  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3416
3417  /// \brief Retrieve the pattern of the pack expansion.
3418  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3419
3420  /// \brief Retrieve the pattern of the pack expansion.
3421  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3422
3423  /// \brief Retrieve the location of the ellipsis that describes this pack
3424  /// expansion.
3425  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3426
3427  /// \brief Determine the number of expansions that will be produced when
3428  /// this pack expansion is instantiated, if already known.
3429  Optional<unsigned> getNumExpansions() const {
3430    if (NumExpansions)
3431      return NumExpansions - 1;
3432
3433    return None;
3434  }
3435
3436  SourceLocation getLocStart() const LLVM_READONLY {
3437    return Pattern->getLocStart();
3438  }
3439  SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }
3440
3441  static bool classof(const Stmt *T) {
3442    return T->getStmtClass() == PackExpansionExprClass;
3443  }
3444
3445  // Iterators
3446  child_range children() {
3447    return child_range(&Pattern, &Pattern + 1);
3448  }
3449};
3450
3451inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3452  if (!HasTemplateKWAndArgsInfo) return nullptr;
3453  if (isa<UnresolvedLookupExpr>(this))
3454    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3455      (cast<UnresolvedLookupExpr>(this) + 1);
3456  else
3457    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3458      (cast<UnresolvedMemberExpr>(this) + 1);
3459}
3460
3461/// \brief Represents an expression that computes the length of a parameter
3462/// pack.
3463///
3464/// \code
3465/// template<typename ...Types>
3466/// struct count {
3467///   static const unsigned value = sizeof...(Types);
3468/// };
3469/// \endcode
3470class SizeOfPackExpr : public Expr {
3471  /// \brief The location of the \c sizeof keyword.
3472  SourceLocation OperatorLoc;
3473
3474  /// \brief The location of the name of the parameter pack.
3475  SourceLocation PackLoc;
3476
3477  /// \brief The location of the closing parenthesis.
3478  SourceLocation RParenLoc;
3479
3480  /// \brief The length of the parameter pack, if known.
3481  ///
3482  /// When this expression is value-dependent, the length of the parameter pack
3483  /// is unknown. When this expression is not value-dependent, the length is
3484  /// known.
3485  unsigned Length;
3486
3487  /// \brief The parameter pack itself.
3488  NamedDecl *Pack;
3489
3490  friend class ASTStmtReader;
3491  friend class ASTStmtWriter;
3492
3493public:
3494  /// \brief Create a value-dependent expression that computes the length of
3495  /// the given parameter pack.
3496  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3497                 SourceLocation PackLoc, SourceLocation RParenLoc)
3498    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3499           /*TypeDependent=*/false, /*ValueDependent=*/true,
3500           /*InstantiationDependent=*/true,
3501           /*ContainsUnexpandedParameterPack=*/false),
3502      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3503      Length(0), Pack(Pack) { }
3504
3505  /// \brief Create an expression that computes the length of
3506  /// the given parameter pack, which is already known.
3507  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3508                 SourceLocation PackLoc, SourceLocation RParenLoc,
3509                 unsigned Length)
3510  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3511         /*TypeDependent=*/false, /*ValueDependent=*/false,
3512         /*InstantiationDependent=*/false,
3513         /*ContainsUnexpandedParameterPack=*/false),
3514    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3515    Length(Length), Pack(Pack) { }
3516
3517  /// \brief Create an empty expression.
3518  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3519
3520  /// \brief Determine the location of the 'sizeof' keyword.
3521  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3522
3523  /// \brief Determine the location of the parameter pack.
3524  SourceLocation getPackLoc() const { return PackLoc; }
3525
3526  /// \brief Determine the location of the right parenthesis.
3527  SourceLocation getRParenLoc() const { return RParenLoc; }
3528
3529  /// \brief Retrieve the parameter pack.
3530  NamedDecl *getPack() const { return Pack; }
3531
3532  /// \brief Retrieve the length of the parameter pack.
3533  ///
3534  /// This routine may only be invoked when the expression is not
3535  /// value-dependent.
3536  unsigned getPackLength() const {
3537    assert(!isValueDependent() &&
3538           "Cannot get the length of a value-dependent pack size expression");
3539    return Length;
3540  }
3541
3542  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
3543  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3544
3545  static bool classof(const Stmt *T) {
3546    return T->getStmtClass() == SizeOfPackExprClass;
3547  }
3548
3549  // Iterators
3550  child_range children() { return child_range(); }
3551};
3552
3553/// \brief Represents a reference to a non-type template parameter
3554/// that has been substituted with a template argument.
3555class SubstNonTypeTemplateParmExpr : public Expr {
3556  /// \brief The replaced parameter.
3557  NonTypeTemplateParmDecl *Param;
3558
3559  /// \brief The replacement expression.
3560  Stmt *Replacement;
3561
3562  /// \brief The location of the non-type template parameter reference.
3563  SourceLocation NameLoc;
3564
3565  friend class ASTReader;
3566  friend class ASTStmtReader;
3567  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3568    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3569
3570public:
3571  SubstNonTypeTemplateParmExpr(QualType type,
3572                               ExprValueKind valueKind,
3573                               SourceLocation loc,
3574                               NonTypeTemplateParmDecl *param,
3575                               Expr *replacement)
3576    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3577           replacement->isTypeDependent(), replacement->isValueDependent(),
3578           replacement->isInstantiationDependent(),
3579           replacement->containsUnexpandedParameterPack()),
3580      Param(param), Replacement(replacement), NameLoc(loc) {}
3581
3582  SourceLocation getNameLoc() const { return NameLoc; }
3583  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3584  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3585
3586  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3587
3588  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3589
3590  static bool classof(const Stmt *s) {
3591    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3592  }
3593
3594  // Iterators
3595  child_range children() { return child_range(&Replacement, &Replacement+1); }
3596};
3597
3598/// \brief Represents a reference to a non-type template parameter pack that
3599/// has been substituted with a non-template argument pack.
3600///
3601/// When a pack expansion in the source code contains multiple parameter packs
3602/// and those parameter packs correspond to different levels of template
3603/// parameter lists, this node is used to represent a non-type template
3604/// parameter pack from an outer level, which has already had its argument pack
3605/// substituted but that still lives within a pack expansion that itself
3606/// could not be instantiated. When actually performing a substitution into
3607/// that pack expansion (e.g., when all template parameters have corresponding
3608/// arguments), this type will be replaced with the appropriate underlying
3609/// expression at the current pack substitution index.
3610class SubstNonTypeTemplateParmPackExpr : public Expr {
3611  /// \brief The non-type template parameter pack itself.
3612  NonTypeTemplateParmDecl *Param;
3613
3614  /// \brief A pointer to the set of template arguments that this
3615  /// parameter pack is instantiated with.
3616  const TemplateArgument *Arguments;
3617
3618  /// \brief The number of template arguments in \c Arguments.
3619  unsigned NumArguments;
3620
3621  /// \brief The location of the non-type template parameter pack reference.
3622  SourceLocation NameLoc;
3623
3624  friend class ASTReader;
3625  friend class ASTStmtReader;
3626  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3627    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3628
3629public:
3630  SubstNonTypeTemplateParmPackExpr(QualType T,
3631                                   NonTypeTemplateParmDecl *Param,
3632                                   SourceLocation NameLoc,
3633                                   const TemplateArgument &ArgPack);
3634
3635  /// \brief Retrieve the non-type template parameter pack being substituted.
3636  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3637
3638  /// \brief Retrieve the location of the parameter pack name.
3639  SourceLocation getParameterPackLocation() const { return NameLoc; }
3640
3641  /// \brief Retrieve the template argument pack containing the substituted
3642  /// template arguments.
3643  TemplateArgument getArgumentPack() const;
3644
3645  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3646  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3647
3648  static bool classof(const Stmt *T) {
3649    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3650  }
3651
3652  // Iterators
3653  child_range children() { return child_range(); }
3654};
3655
3656/// \brief Represents a reference to a function parameter pack that has been
3657/// substituted but not yet expanded.
3658///
3659/// When a pack expansion contains multiple parameter packs at different levels,
3660/// this node is used to represent a function parameter pack at an outer level
3661/// which we have already substituted to refer to expanded parameters, but where
3662/// the containing pack expansion cannot yet be expanded.
3663///
3664/// \code
3665/// template<typename...Ts> struct S {
3666///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3667/// };
3668/// template struct S<int, int>;
3669/// \endcode
3670class FunctionParmPackExpr : public Expr {
3671  /// \brief The function parameter pack which was referenced.
3672  ParmVarDecl *ParamPack;
3673
3674  /// \brief The location of the function parameter pack reference.
3675  SourceLocation NameLoc;
3676
3677  /// \brief The number of expansions of this pack.
3678  unsigned NumParameters;
3679
3680  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3681                       SourceLocation NameLoc, unsigned NumParams,
3682                       Decl * const *Params);
3683
3684  friend class ASTReader;
3685  friend class ASTStmtReader;
3686
3687public:
3688  static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
3689                                      ParmVarDecl *ParamPack,
3690                                      SourceLocation NameLoc,
3691                                      ArrayRef<Decl *> Params);
3692  static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
3693                                           unsigned NumParams);
3694
3695  /// \brief Get the parameter pack which this expression refers to.
3696  ParmVarDecl *getParameterPack() const { return ParamPack; }
3697
3698  /// \brief Get the location of the parameter pack.
3699  SourceLocation getParameterPackLocation() const { return NameLoc; }
3700
3701  /// \brief Iterators over the parameters which the parameter pack expanded
3702  /// into.
3703  typedef ParmVarDecl * const *iterator;
3704  iterator begin() const { return reinterpret_cast<iterator>(this+1); }
3705  iterator end() const { return begin() + NumParameters; }
3706
3707  /// \brief Get the number of parameters in this parameter pack.
3708  unsigned getNumExpansions() const { return NumParameters; }
3709
3710  /// \brief Get an expansion of the parameter pack by index.
3711  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3712
3713  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3714  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3715
3716  static bool classof(const Stmt *T) {
3717    return T->getStmtClass() == FunctionParmPackExprClass;
3718  }
3719
3720  child_range children() { return child_range(); }
3721};
3722
3723/// \brief Represents a prvalue temporary that is written into memory so that
3724/// a reference can bind to it.
3725///
3726/// Prvalue expressions are materialized when they need to have an address
3727/// in memory for a reference to bind to. This happens when binding a
3728/// reference to the result of a conversion, e.g.,
3729///
3730/// \code
3731/// const int &r = 1.0;
3732/// \endcode
3733///
3734/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3735/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3736/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3737/// (either an lvalue or an xvalue, depending on the kind of reference binding
3738/// to it), maintaining the invariant that references always bind to glvalues.
3739///
3740/// Reference binding and copy-elision can both extend the lifetime of a
3741/// temporary. When either happens, the expression will also track the
3742/// declaration which is responsible for the lifetime extension.
3743class MaterializeTemporaryExpr : public Expr {
3744private:
3745  struct ExtraState {
3746    /// \brief The temporary-generating expression whose value will be
3747    /// materialized.
3748    Stmt *Temporary;
3749
3750    /// \brief The declaration which lifetime-extended this reference, if any.
3751    /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3752    const ValueDecl *ExtendingDecl;
3753
3754    unsigned ManglingNumber;
3755  };
3756  llvm::PointerUnion<Stmt *, ExtraState *> State;
3757
3758  friend class ASTStmtReader;
3759  friend class ASTStmtWriter;
3760
3761  void initializeExtraState(const ValueDecl *ExtendedBy,
3762                            unsigned ManglingNumber);
3763
3764public:
3765  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3766                           bool BoundToLvalueReference)
3767    : Expr(MaterializeTemporaryExprClass, T,
3768           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3769           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3770           Temporary->isInstantiationDependent(),
3771           Temporary->containsUnexpandedParameterPack()),
3772        State(Temporary) {}
3773
3774  MaterializeTemporaryExpr(EmptyShell Empty)
3775    : Expr(MaterializeTemporaryExprClass, Empty) { }
3776
3777  Stmt *getTemporary() const {
3778    return State.is<Stmt *>() ? State.get<Stmt *>()
3779                              : State.get<ExtraState *>()->Temporary;
3780  }
3781
3782  /// \brief Retrieve the temporary-generating subexpression whose value will
3783  /// be materialized into a glvalue.
3784  Expr *GetTemporaryExpr() const { return static_cast<Expr *>(getTemporary()); }
3785
3786  /// \brief Retrieve the storage duration for the materialized temporary.
3787  StorageDuration getStorageDuration() const {
3788    const ValueDecl *ExtendingDecl = getExtendingDecl();
3789    if (!ExtendingDecl)
3790      return SD_FullExpression;
3791    // FIXME: This is not necessarily correct for a temporary materialized
3792    // within a default initializer.
3793    if (isa<FieldDecl>(ExtendingDecl))
3794      return SD_Automatic;
3795    return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3796  }
3797
3798  /// \brief Get the declaration which triggered the lifetime-extension of this
3799  /// temporary, if any.
3800  const ValueDecl *getExtendingDecl() const {
3801    return State.is<Stmt *>() ? nullptr
3802                              : State.get<ExtraState *>()->ExtendingDecl;
3803  }
3804
3805  void setExtendingDecl(const ValueDecl *ExtendedBy, unsigned ManglingNumber);
3806
3807  unsigned getManglingNumber() const {
3808    return State.is<Stmt *>() ? 0 : State.get<ExtraState *>()->ManglingNumber;
3809  }
3810
3811  /// \brief Determine whether this materialized temporary is bound to an
3812  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3813  bool isBoundToLvalueReference() const {
3814    return getValueKind() == VK_LValue;
3815  }
3816
3817  SourceLocation getLocStart() const LLVM_READONLY {
3818    return getTemporary()->getLocStart();
3819  }
3820  SourceLocation getLocEnd() const LLVM_READONLY {
3821    return getTemporary()->getLocEnd();
3822  }
3823
3824  static bool classof(const Stmt *T) {
3825    return T->getStmtClass() == MaterializeTemporaryExprClass;
3826  }
3827
3828  // Iterators
3829  child_range children() {
3830    if (State.is<Stmt *>())
3831      return child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1);
3832
3833    auto ES = State.get<ExtraState *>();
3834    return child_range(&ES->Temporary, &ES->Temporary + 1);
3835  }
3836};
3837
3838/// \brief Represents a folding of a pack over an operator.
3839///
3840/// This expression is always dependent and represents a pack expansion of the
3841/// forms:
3842///
3843///    ( expr op ... )
3844///    ( ... op expr )
3845///    ( expr op ... op expr )
3846class CXXFoldExpr : public Expr {
3847  SourceLocation LParenLoc;
3848  SourceLocation EllipsisLoc;
3849  SourceLocation RParenLoc;
3850  Stmt *SubExprs[2];
3851  BinaryOperatorKind Opcode;
3852
3853  friend class ASTStmtReader;
3854  friend class ASTStmtWriter;
3855public:
3856  CXXFoldExpr(QualType T, SourceLocation LParenLoc, Expr *LHS,
3857              BinaryOperatorKind Opcode, SourceLocation EllipsisLoc, Expr *RHS,
3858              SourceLocation RParenLoc)
3859      : Expr(CXXFoldExprClass, T, VK_RValue, OK_Ordinary,
3860             /*Dependent*/ true, true, true,
3861             /*ContainsUnexpandedParameterPack*/ false),
3862        LParenLoc(LParenLoc), EllipsisLoc(EllipsisLoc), RParenLoc(RParenLoc),
3863        Opcode(Opcode) {
3864    SubExprs[0] = LHS;
3865    SubExprs[1] = RHS;
3866  }
3867  CXXFoldExpr(EmptyShell Empty) : Expr(CXXFoldExprClass, Empty) {}
3868
3869  Expr *getLHS() const { return static_cast<Expr*>(SubExprs[0]); }
3870  Expr *getRHS() const { return static_cast<Expr*>(SubExprs[1]); }
3871
3872  /// Does this produce a right-associated sequence of operators?
3873  bool isRightFold() const {
3874    return getLHS() && getLHS()->containsUnexpandedParameterPack();
3875  }
3876  /// Does this produce a left-associated sequence of operators?
3877  bool isLeftFold() const { return !isRightFold(); }
3878  /// Get the pattern, that is, the operand that contains an unexpanded pack.
3879  Expr *getPattern() const { return isLeftFold() ? getRHS() : getLHS(); }
3880  /// Get the operand that doesn't contain a pack, for a binary fold.
3881  Expr *getInit() const { return isLeftFold() ? getLHS() : getRHS(); }
3882
3883  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3884  BinaryOperatorKind getOperator() const { return Opcode; }
3885
3886  SourceLocation getLocStart() const LLVM_READONLY {
3887    return LParenLoc;
3888  }
3889  SourceLocation getLocEnd() const LLVM_READONLY {
3890    return RParenLoc;
3891  }
3892
3893  static bool classof(const Stmt *T) {
3894    return T->getStmtClass() == CXXFoldExprClass;
3895  }
3896
3897  // Iterators
3898  child_range children() { return child_range(SubExprs, SubExprs + 2); }
3899};
3900
3901}  // end namespace clang
3902
3903#endif
3904