1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_ANALYSIS_CFG_H
16#define LLVM_CLANG_ANALYSIS_CFG_H
17
18#include "clang/AST/Stmt.h"
19#include "clang/Analysis/Support/BumpVector.h"
20#include "clang/Basic/SourceLocation.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/GraphTraits.h"
23#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/Support/Allocator.h"
26#include "llvm/Support/Casting.h"
27#include "llvm/Support/raw_ostream.h"
28#include <bitset>
29#include <cassert>
30#include <iterator>
31#include <memory>
32
33namespace clang {
34  class CXXDestructorDecl;
35  class Decl;
36  class Stmt;
37  class Expr;
38  class FieldDecl;
39  class VarDecl;
40  class CXXCtorInitializer;
41  class CXXBaseSpecifier;
42  class CXXBindTemporaryExpr;
43  class CFG;
44  class PrinterHelper;
45  class LangOptions;
46  class ASTContext;
47  class CXXRecordDecl;
48  class CXXDeleteExpr;
49  class CXXNewExpr;
50  class BinaryOperator;
51
52/// CFGElement - Represents a top-level expression in a basic block.
53class CFGElement {
54public:
55  enum Kind {
56    // main kind
57    Statement,
58    Initializer,
59    NewAllocator,
60    // dtor kind
61    AutomaticObjectDtor,
62    DeleteDtor,
63    BaseDtor,
64    MemberDtor,
65    TemporaryDtor,
66    DTOR_BEGIN = AutomaticObjectDtor,
67    DTOR_END = TemporaryDtor
68  };
69
70protected:
71  // The int bits are used to mark the kind.
72  llvm::PointerIntPair<void *, 2> Data1;
73  llvm::PointerIntPair<void *, 2> Data2;
74
75  CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr)
76    : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
77      Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {
78    assert(getKind() == kind);
79  }
80
81  CFGElement() {}
82public:
83
84  /// \brief Convert to the specified CFGElement type, asserting that this
85  /// CFGElement is of the desired type.
86  template<typename T>
87  T castAs() const {
88    assert(T::isKind(*this));
89    T t;
90    CFGElement& e = t;
91    e = *this;
92    return t;
93  }
94
95  /// \brief Convert to the specified CFGElement type, returning None if this
96  /// CFGElement is not of the desired type.
97  template<typename T>
98  Optional<T> getAs() const {
99    if (!T::isKind(*this))
100      return None;
101    T t;
102    CFGElement& e = t;
103    e = *this;
104    return t;
105  }
106
107  Kind getKind() const {
108    unsigned x = Data2.getInt();
109    x <<= 2;
110    x |= Data1.getInt();
111    return (Kind) x;
112  }
113};
114
115class CFGStmt : public CFGElement {
116public:
117  CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
118
119  const Stmt *getStmt() const {
120    return static_cast<const Stmt *>(Data1.getPointer());
121  }
122
123private:
124  friend class CFGElement;
125  CFGStmt() {}
126  static bool isKind(const CFGElement &E) {
127    return E.getKind() == Statement;
128  }
129};
130
131/// CFGInitializer - Represents C++ base or member initializer from
132/// constructor's initialization list.
133class CFGInitializer : public CFGElement {
134public:
135  CFGInitializer(CXXCtorInitializer *initializer)
136      : CFGElement(Initializer, initializer) {}
137
138  CXXCtorInitializer* getInitializer() const {
139    return static_cast<CXXCtorInitializer*>(Data1.getPointer());
140  }
141
142private:
143  friend class CFGElement;
144  CFGInitializer() {}
145  static bool isKind(const CFGElement &E) {
146    return E.getKind() == Initializer;
147  }
148};
149
150/// CFGNewAllocator - Represents C++ allocator call.
151class CFGNewAllocator : public CFGElement {
152public:
153  explicit CFGNewAllocator(const CXXNewExpr *S)
154    : CFGElement(NewAllocator, S) {}
155
156  // Get the new expression.
157  const CXXNewExpr *getAllocatorExpr() const {
158    return static_cast<CXXNewExpr *>(Data1.getPointer());
159  }
160
161private:
162  friend class CFGElement;
163  CFGNewAllocator() {}
164  static bool isKind(const CFGElement &elem) {
165    return elem.getKind() == NewAllocator;
166  }
167};
168
169/// CFGImplicitDtor - Represents C++ object destructor implicitly generated
170/// by compiler on various occasions.
171class CFGImplicitDtor : public CFGElement {
172protected:
173  CFGImplicitDtor() {}
174  CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr)
175    : CFGElement(kind, data1, data2) {
176    assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
177  }
178
179public:
180  const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
181  bool isNoReturn(ASTContext &astContext) const;
182
183private:
184  friend class CFGElement;
185  static bool isKind(const CFGElement &E) {
186    Kind kind = E.getKind();
187    return kind >= DTOR_BEGIN && kind <= DTOR_END;
188  }
189};
190
191/// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
192/// for automatic object or temporary bound to const reference at the point
193/// of leaving its local scope.
194class CFGAutomaticObjDtor: public CFGImplicitDtor {
195public:
196  CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
197      : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
198
199  const VarDecl *getVarDecl() const {
200    return static_cast<VarDecl*>(Data1.getPointer());
201  }
202
203  // Get statement end of which triggered the destructor call.
204  const Stmt *getTriggerStmt() const {
205    return static_cast<Stmt*>(Data2.getPointer());
206  }
207
208private:
209  friend class CFGElement;
210  CFGAutomaticObjDtor() {}
211  static bool isKind(const CFGElement &elem) {
212    return elem.getKind() == AutomaticObjectDtor;
213  }
214};
215
216/// CFGDeleteDtor - Represents C++ object destructor generated
217/// from a call to delete.
218class CFGDeleteDtor : public CFGImplicitDtor {
219public:
220  CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE)
221      : CFGImplicitDtor(DeleteDtor, RD, DE) {}
222
223  const CXXRecordDecl *getCXXRecordDecl() const {
224    return static_cast<CXXRecordDecl*>(Data1.getPointer());
225  }
226
227  // Get Delete expression which triggered the destructor call.
228  const CXXDeleteExpr *getDeleteExpr() const {
229    return static_cast<CXXDeleteExpr *>(Data2.getPointer());
230  }
231
232
233private:
234  friend class CFGElement;
235  CFGDeleteDtor() {}
236  static bool isKind(const CFGElement &elem) {
237    return elem.getKind() == DeleteDtor;
238  }
239};
240
241/// CFGBaseDtor - Represents C++ object destructor implicitly generated for
242/// base object in destructor.
243class CFGBaseDtor : public CFGImplicitDtor {
244public:
245  CFGBaseDtor(const CXXBaseSpecifier *base)
246      : CFGImplicitDtor(BaseDtor, base) {}
247
248  const CXXBaseSpecifier *getBaseSpecifier() const {
249    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
250  }
251
252private:
253  friend class CFGElement;
254  CFGBaseDtor() {}
255  static bool isKind(const CFGElement &E) {
256    return E.getKind() == BaseDtor;
257  }
258};
259
260/// CFGMemberDtor - Represents C++ object destructor implicitly generated for
261/// member object in destructor.
262class CFGMemberDtor : public CFGImplicitDtor {
263public:
264  CFGMemberDtor(const FieldDecl *field)
265      : CFGImplicitDtor(MemberDtor, field, nullptr) {}
266
267  const FieldDecl *getFieldDecl() const {
268    return static_cast<const FieldDecl*>(Data1.getPointer());
269  }
270
271private:
272  friend class CFGElement;
273  CFGMemberDtor() {}
274  static bool isKind(const CFGElement &E) {
275    return E.getKind() == MemberDtor;
276  }
277};
278
279/// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
280/// at the end of full expression for temporary object.
281class CFGTemporaryDtor : public CFGImplicitDtor {
282public:
283  CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
284      : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {}
285
286  const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
287    return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
288  }
289
290private:
291  friend class CFGElement;
292  CFGTemporaryDtor() {}
293  static bool isKind(const CFGElement &E) {
294    return E.getKind() == TemporaryDtor;
295  }
296};
297
298/// CFGTerminator - Represents CFGBlock terminator statement.
299///
300/// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
301/// in control flow of destructors of temporaries. In this case terminator
302/// statement is the same statement that branches control flow in evaluation
303/// of matching full expression.
304class CFGTerminator {
305  llvm::PointerIntPair<Stmt *, 1> Data;
306public:
307  CFGTerminator() {}
308  CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
309      : Data(S, TemporaryDtorsBranch) {}
310
311  Stmt *getStmt() { return Data.getPointer(); }
312  const Stmt *getStmt() const { return Data.getPointer(); }
313
314  bool isTemporaryDtorsBranch() const { return Data.getInt(); }
315
316  operator Stmt *() { return getStmt(); }
317  operator const Stmt *() const { return getStmt(); }
318
319  Stmt *operator->() { return getStmt(); }
320  const Stmt *operator->() const { return getStmt(); }
321
322  Stmt &operator*() { return *getStmt(); }
323  const Stmt &operator*() const { return *getStmt(); }
324
325  explicit operator bool() const { return getStmt(); }
326};
327
328/// CFGBlock - Represents a single basic block in a source-level CFG.
329///  It consists of:
330///
331///  (1) A set of statements/expressions (which may contain subexpressions).
332///  (2) A "terminator" statement (not in the set of statements).
333///  (3) A list of successors and predecessors.
334///
335/// Terminator: The terminator represents the type of control-flow that occurs
336/// at the end of the basic block.  The terminator is a Stmt* referring to an
337/// AST node that has control-flow: if-statements, breaks, loops, etc.
338/// If the control-flow is conditional, the condition expression will appear
339/// within the set of statements in the block (usually the last statement).
340///
341/// Predecessors: the order in the set of predecessors is arbitrary.
342///
343/// Successors: the order in the set of successors is NOT arbitrary.  We
344///  currently have the following orderings based on the terminator:
345///
346///     Terminator       Successor Ordering
347///  -----------------------------------------------------
348///       if            Then Block;  Else Block
349///     ? operator      LHS expression;  RHS expression
350///     &&, ||          expression that uses result of && or ||, RHS
351///
352/// But note that any of that may be NULL in case of optimized-out edges.
353///
354class CFGBlock {
355  class ElementList {
356    typedef BumpVector<CFGElement> ImplTy;
357    ImplTy Impl;
358  public:
359    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
360
361    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
362    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
363    typedef ImplTy::iterator                              reverse_iterator;
364    typedef ImplTy::const_iterator                       const_reverse_iterator;
365    typedef ImplTy::const_reference                       const_reference;
366
367    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
368    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
369        BumpVectorContext &C) {
370      return Impl.insert(I, Cnt, E, C);
371    }
372
373    const_reference front() const { return Impl.back(); }
374    const_reference back() const { return Impl.front(); }
375
376    iterator begin() { return Impl.rbegin(); }
377    iterator end() { return Impl.rend(); }
378    const_iterator begin() const { return Impl.rbegin(); }
379    const_iterator end() const { return Impl.rend(); }
380    reverse_iterator rbegin() { return Impl.begin(); }
381    reverse_iterator rend() { return Impl.end(); }
382    const_reverse_iterator rbegin() const { return Impl.begin(); }
383    const_reverse_iterator rend() const { return Impl.end(); }
384
385   CFGElement operator[](size_t i) const  {
386     assert(i < Impl.size());
387     return Impl[Impl.size() - 1 - i];
388   }
389
390    size_t size() const { return Impl.size(); }
391    bool empty() const { return Impl.empty(); }
392  };
393
394  /// Stmts - The set of statements in the basic block.
395  ElementList Elements;
396
397  /// Label - An (optional) label that prefixes the executable
398  ///  statements in the block.  When this variable is non-NULL, it is
399  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
400  Stmt *Label;
401
402  /// Terminator - The terminator for a basic block that
403  ///  indicates the type of control-flow that occurs between a block
404  ///  and its successors.
405  CFGTerminator Terminator;
406
407  /// LoopTarget - Some blocks are used to represent the "loop edge" to
408  ///  the start of a loop from within the loop body.  This Stmt* will be
409  ///  refer to the loop statement for such blocks (and be null otherwise).
410  const Stmt *LoopTarget;
411
412  /// BlockID - A numerical ID assigned to a CFGBlock during construction
413  ///   of the CFG.
414  unsigned BlockID;
415
416public:
417  /// This class represents a potential adjacent block in the CFG.  It encodes
418  /// whether or not the block is actually reachable, or can be proved to be
419  /// trivially unreachable.  For some cases it allows one to encode scenarios
420  /// where a block was substituted because the original (now alternate) block
421  /// is unreachable.
422  class AdjacentBlock {
423    enum Kind {
424      AB_Normal,
425      AB_Unreachable,
426      AB_Alternate
427    };
428
429    CFGBlock *ReachableBlock;
430    llvm::PointerIntPair<CFGBlock*, 2> UnreachableBlock;
431
432  public:
433    /// Construct an AdjacentBlock with a possibly unreachable block.
434    AdjacentBlock(CFGBlock *B, bool IsReachable);
435
436    /// Construct an AdjacentBlock with a reachable block and an alternate
437    /// unreachable block.
438    AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock);
439
440    /// Get the reachable block, if one exists.
441    CFGBlock *getReachableBlock() const {
442      return ReachableBlock;
443    }
444
445    /// Get the potentially unreachable block.
446    CFGBlock *getPossiblyUnreachableBlock() const {
447      return UnreachableBlock.getPointer();
448    }
449
450    /// Provide an implicit conversion to CFGBlock* so that
451    /// AdjacentBlock can be substituted for CFGBlock*.
452    operator CFGBlock*() const {
453      return getReachableBlock();
454    }
455
456    CFGBlock& operator *() const {
457      return *getReachableBlock();
458    }
459
460    CFGBlock* operator ->() const {
461      return getReachableBlock();
462    }
463
464    bool isReachable() const {
465      Kind K = (Kind) UnreachableBlock.getInt();
466      return K == AB_Normal || K == AB_Alternate;
467    }
468  };
469
470private:
471  /// Predecessors/Successors - Keep track of the predecessor / successor
472  /// CFG blocks.
473  typedef BumpVector<AdjacentBlock> AdjacentBlocks;
474  AdjacentBlocks Preds;
475  AdjacentBlocks Succs;
476
477  /// NoReturn - This bit is set when the basic block contains a function call
478  /// or implicit destructor that is attributed as 'noreturn'. In that case,
479  /// control cannot technically ever proceed past this block. All such blocks
480  /// will have a single immediate successor: the exit block. This allows them
481  /// to be easily reached from the exit block and using this bit quickly
482  /// recognized without scanning the contents of the block.
483  ///
484  /// Optimization Note: This bit could be profitably folded with Terminator's
485  /// storage if the memory usage of CFGBlock becomes an issue.
486  unsigned HasNoReturnElement : 1;
487
488  /// Parent - The parent CFG that owns this CFGBlock.
489  CFG *Parent;
490
491public:
492  explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
493    : Elements(C), Label(nullptr), Terminator(nullptr), LoopTarget(nullptr),
494      BlockID(blockid), Preds(C, 1), Succs(C, 1), HasNoReturnElement(false),
495      Parent(parent) {}
496
497  // Statement iterators
498  typedef ElementList::iterator                      iterator;
499  typedef ElementList::const_iterator                const_iterator;
500  typedef ElementList::reverse_iterator              reverse_iterator;
501  typedef ElementList::const_reverse_iterator        const_reverse_iterator;
502
503  CFGElement                 front()       const { return Elements.front();   }
504  CFGElement                 back()        const { return Elements.back();    }
505
506  iterator                   begin()             { return Elements.begin();   }
507  iterator                   end()               { return Elements.end();     }
508  const_iterator             begin()       const { return Elements.begin();   }
509  const_iterator             end()         const { return Elements.end();     }
510
511  reverse_iterator           rbegin()            { return Elements.rbegin();  }
512  reverse_iterator           rend()              { return Elements.rend();    }
513  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
514  const_reverse_iterator     rend()        const { return Elements.rend();    }
515
516  unsigned                   size()        const { return Elements.size();    }
517  bool                       empty()       const { return Elements.empty();   }
518
519  CFGElement operator[](size_t i) const  { return Elements[i]; }
520
521  // CFG iterators
522  typedef AdjacentBlocks::iterator                              pred_iterator;
523  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
524  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
525  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
526
527  typedef AdjacentBlocks::iterator                              succ_iterator;
528  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
529  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
530  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
531
532  pred_iterator                pred_begin()        { return Preds.begin();   }
533  pred_iterator                pred_end()          { return Preds.end();     }
534  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
535  const_pred_iterator          pred_end()    const { return Preds.end();     }
536
537  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
538  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
539  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
540  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
541
542  succ_iterator                succ_begin()        { return Succs.begin();   }
543  succ_iterator                succ_end()          { return Succs.end();     }
544  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
545  const_succ_iterator          succ_end()    const { return Succs.end();     }
546
547  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
548  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
549  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
550  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
551
552  unsigned                     succ_size()   const { return Succs.size();    }
553  bool                         succ_empty()  const { return Succs.empty();   }
554
555  unsigned                     pred_size()   const { return Preds.size();    }
556  bool                         pred_empty()  const { return Preds.empty();   }
557
558
559  class FilterOptions {
560  public:
561    FilterOptions() {
562      IgnoreNullPredecessors = 1;
563      IgnoreDefaultsWithCoveredEnums = 0;
564    }
565
566    unsigned IgnoreNullPredecessors : 1;
567    unsigned IgnoreDefaultsWithCoveredEnums : 1;
568  };
569
570  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
571       const CFGBlock *Dst);
572
573  template <typename IMPL, bool IsPred>
574  class FilteredCFGBlockIterator {
575  private:
576    IMPL I, E;
577    const FilterOptions F;
578    const CFGBlock *From;
579  public:
580    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
581                                      const CFGBlock *from,
582                                      const FilterOptions &f)
583        : I(i), E(e), F(f), From(from) {
584      while (hasMore() && Filter(*I))
585        ++I;
586    }
587
588    bool hasMore() const { return I != E; }
589
590    FilteredCFGBlockIterator &operator++() {
591      do { ++I; } while (hasMore() && Filter(*I));
592      return *this;
593    }
594
595    const CFGBlock *operator*() const { return *I; }
596  private:
597    bool Filter(const CFGBlock *To) {
598      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
599    }
600  };
601
602  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
603          filtered_pred_iterator;
604
605  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
606          filtered_succ_iterator;
607
608  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
609    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
610  }
611
612  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
613    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
614  }
615
616  // Manipulation of block contents
617
618  void setTerminator(CFGTerminator Term) { Terminator = Term; }
619  void setLabel(Stmt *Statement) { Label = Statement; }
620  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
621  void setHasNoReturnElement() { HasNoReturnElement = true; }
622
623  CFGTerminator getTerminator() { return Terminator; }
624  const CFGTerminator getTerminator() const { return Terminator; }
625
626  Stmt *getTerminatorCondition(bool StripParens = true);
627
628  const Stmt *getTerminatorCondition(bool StripParens = true) const {
629    return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens);
630  }
631
632  const Stmt *getLoopTarget() const { return LoopTarget; }
633
634  Stmt *getLabel() { return Label; }
635  const Stmt *getLabel() const { return Label; }
636
637  bool hasNoReturnElement() const { return HasNoReturnElement; }
638
639  unsigned getBlockID() const { return BlockID; }
640
641  CFG *getParent() const { return Parent; }
642
643  void dump() const;
644
645  void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
646  void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
647             bool ShowColors) const;
648  void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
649  void printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
650    OS << "BB#" << getBlockID();
651  }
652
653  /// Adds a (potentially unreachable) successor block to the current block.
654  void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C);
655
656  void appendStmt(Stmt *statement, BumpVectorContext &C) {
657    Elements.push_back(CFGStmt(statement), C);
658  }
659
660  void appendInitializer(CXXCtorInitializer *initializer,
661                        BumpVectorContext &C) {
662    Elements.push_back(CFGInitializer(initializer), C);
663  }
664
665  void appendNewAllocator(CXXNewExpr *NE,
666                          BumpVectorContext &C) {
667    Elements.push_back(CFGNewAllocator(NE), C);
668  }
669
670  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
671    Elements.push_back(CFGBaseDtor(BS), C);
672  }
673
674  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
675    Elements.push_back(CFGMemberDtor(FD), C);
676  }
677
678  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
679    Elements.push_back(CFGTemporaryDtor(E), C);
680  }
681
682  void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
683    Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
684  }
685
686  void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) {
687    Elements.push_back(CFGDeleteDtor(RD, DE), C);
688  }
689
690  // Destructors must be inserted in reversed order. So insertion is in two
691  // steps. First we prepare space for some number of elements, then we insert
692  // the elements beginning at the last position in prepared space.
693  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
694      BumpVectorContext &C) {
695    return iterator(Elements.insert(I.base(), Cnt,
696                                    CFGAutomaticObjDtor(nullptr, 0), C));
697  }
698  iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
699    *I = CFGAutomaticObjDtor(VD, S);
700    return ++I;
701  }
702};
703
704/// \brief CFGCallback defines methods that should be called when a logical
705/// operator error is found when building the CFG.
706class CFGCallback {
707public:
708  CFGCallback() {}
709  virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
710  virtual void compareBitwiseEquality(const BinaryOperator *B,
711                                      bool isAlwaysTrue) {}
712  virtual ~CFGCallback() {}
713};
714
715/// CFG - Represents a source-level, intra-procedural CFG that represents the
716///  control-flow of a Stmt.  The Stmt can represent an entire function body,
717///  or a single expression.  A CFG will always contain one empty block that
718///  represents the Exit point of the CFG.  A CFG will also contain a designated
719///  Entry block.  The CFG solely represents control-flow; it consists of
720///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
721///  was constructed from.
722class CFG {
723public:
724  //===--------------------------------------------------------------------===//
725  // CFG Construction & Manipulation.
726  //===--------------------------------------------------------------------===//
727
728  class BuildOptions {
729    std::bitset<Stmt::lastStmtConstant> alwaysAddMask;
730  public:
731    typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
732    ForcedBlkExprs **forcedBlkExprs;
733    CFGCallback *Observer;
734    bool PruneTriviallyFalseEdges;
735    bool AddEHEdges;
736    bool AddInitializers;
737    bool AddImplicitDtors;
738    bool AddTemporaryDtors;
739    bool AddStaticInitBranches;
740    bool AddCXXNewAllocator;
741
742    bool alwaysAdd(const Stmt *stmt) const {
743      return alwaysAddMask[stmt->getStmtClass()];
744    }
745
746    BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
747      alwaysAddMask[stmtClass] = val;
748      return *this;
749    }
750
751    BuildOptions &setAllAlwaysAdd() {
752      alwaysAddMask.set();
753      return *this;
754    }
755
756    BuildOptions()
757      : forcedBlkExprs(nullptr), Observer(nullptr),
758        PruneTriviallyFalseEdges(true), AddEHEdges(false),
759        AddInitializers(false), AddImplicitDtors(false),
760        AddTemporaryDtors(false), AddStaticInitBranches(false),
761        AddCXXNewAllocator(false) {}
762  };
763
764  /// \brief Provides a custom implementation of the iterator class to have the
765  /// same interface as Function::iterator - iterator returns CFGBlock
766  /// (not a pointer to CFGBlock).
767  class graph_iterator {
768  public:
769    typedef const CFGBlock                  value_type;
770    typedef value_type&                     reference;
771    typedef value_type*                     pointer;
772    typedef BumpVector<CFGBlock*>::iterator ImplTy;
773
774    graph_iterator(const ImplTy &i) : I(i) {}
775
776    bool operator==(const graph_iterator &X) const { return I == X.I; }
777    bool operator!=(const graph_iterator &X) const { return I != X.I; }
778
779    reference operator*()    const { return **I; }
780    pointer operator->()     const { return  *I; }
781    operator CFGBlock* ()          { return  *I; }
782
783    graph_iterator &operator++() { ++I; return *this; }
784    graph_iterator &operator--() { --I; return *this; }
785
786  private:
787    ImplTy I;
788  };
789
790  class const_graph_iterator {
791  public:
792    typedef const CFGBlock                  value_type;
793    typedef value_type&                     reference;
794    typedef value_type*                     pointer;
795    typedef BumpVector<CFGBlock*>::const_iterator ImplTy;
796
797    const_graph_iterator(const ImplTy &i) : I(i) {}
798
799    bool operator==(const const_graph_iterator &X) const { return I == X.I; }
800    bool operator!=(const const_graph_iterator &X) const { return I != X.I; }
801
802    reference operator*() const { return **I; }
803    pointer operator->()  const { return  *I; }
804    operator CFGBlock* () const { return  *I; }
805
806    const_graph_iterator &operator++() { ++I; return *this; }
807    const_graph_iterator &operator--() { --I; return *this; }
808
809  private:
810    ImplTy I;
811  };
812
813  /// buildCFG - Builds a CFG from an AST.
814  static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
815                                       const BuildOptions &BO);
816
817  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
818  ///  the caller should not directly free it.
819  CFGBlock *createBlock();
820
821  /// setEntry - Set the entry block of the CFG.  This is typically used
822  ///  only during CFG construction.  Most CFG clients expect that the
823  ///  entry block has no predecessors and contains no statements.
824  void setEntry(CFGBlock *B) { Entry = B; }
825
826  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
827  ///  This is typically used only during CFG construction.
828  void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
829
830  //===--------------------------------------------------------------------===//
831  // Block Iterators
832  //===--------------------------------------------------------------------===//
833
834  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
835  typedef CFGBlockListTy::iterator                 iterator;
836  typedef CFGBlockListTy::const_iterator           const_iterator;
837  typedef std::reverse_iterator<iterator>          reverse_iterator;
838  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
839
840  CFGBlock &                front()                { return *Blocks.front(); }
841  CFGBlock &                back()                 { return *Blocks.back(); }
842
843  iterator                  begin()                { return Blocks.begin(); }
844  iterator                  end()                  { return Blocks.end(); }
845  const_iterator            begin()       const    { return Blocks.begin(); }
846  const_iterator            end()         const    { return Blocks.end(); }
847
848  graph_iterator nodes_begin() { return graph_iterator(Blocks.begin()); }
849  graph_iterator nodes_end() { return graph_iterator(Blocks.end()); }
850  const_graph_iterator nodes_begin() const {
851    return const_graph_iterator(Blocks.begin());
852  }
853  const_graph_iterator nodes_end() const {
854    return const_graph_iterator(Blocks.end());
855  }
856
857  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
858  reverse_iterator          rend()                 { return Blocks.rend(); }
859  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
860  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
861
862  CFGBlock &                getEntry()             { return *Entry; }
863  const CFGBlock &          getEntry()    const    { return *Entry; }
864  CFGBlock &                getExit()              { return *Exit; }
865  const CFGBlock &          getExit()     const    { return *Exit; }
866
867  CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
868  const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
869
870  typedef std::vector<const CFGBlock*>::const_iterator try_block_iterator;
871  try_block_iterator try_blocks_begin() const {
872    return TryDispatchBlocks.begin();
873  }
874  try_block_iterator try_blocks_end() const {
875    return TryDispatchBlocks.end();
876  }
877
878  void addTryDispatchBlock(const CFGBlock *block) {
879    TryDispatchBlocks.push_back(block);
880  }
881
882  /// Records a synthetic DeclStmt and the DeclStmt it was constructed from.
883  ///
884  /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains
885  /// multiple decls.
886  void addSyntheticDeclStmt(const DeclStmt *Synthetic,
887                            const DeclStmt *Source) {
888    assert(Synthetic->isSingleDecl() && "Can handle single declarations only");
889    assert(Synthetic != Source && "Don't include original DeclStmts in map");
890    assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map");
891    SyntheticDeclStmts[Synthetic] = Source;
892  }
893
894  typedef llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator
895    synthetic_stmt_iterator;
896
897  /// Iterates over synthetic DeclStmts in the CFG.
898  ///
899  /// Each element is a (synthetic statement, source statement) pair.
900  ///
901  /// \sa addSyntheticDeclStmt
902  synthetic_stmt_iterator synthetic_stmt_begin() const {
903    return SyntheticDeclStmts.begin();
904  }
905
906  /// \sa synthetic_stmt_begin
907  synthetic_stmt_iterator synthetic_stmt_end() const {
908    return SyntheticDeclStmts.end();
909  }
910
911  //===--------------------------------------------------------------------===//
912  // Member templates useful for various batch operations over CFGs.
913  //===--------------------------------------------------------------------===//
914
915  template <typename CALLBACK>
916  void VisitBlockStmts(CALLBACK& O) const {
917    for (const_iterator I=begin(), E=end(); I != E; ++I)
918      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
919           BI != BE; ++BI) {
920        if (Optional<CFGStmt> stmt = BI->getAs<CFGStmt>())
921          O(const_cast<Stmt*>(stmt->getStmt()));
922      }
923  }
924
925  //===--------------------------------------------------------------------===//
926  // CFG Introspection.
927  //===--------------------------------------------------------------------===//
928
929  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
930  /// start at 0).
931  unsigned getNumBlockIDs() const { return NumBlockIDs; }
932
933  /// size - Return the total number of CFGBlocks within the CFG
934  /// This is simply a renaming of the getNumBlockIDs(). This is necessary
935  /// because the dominator implementation needs such an interface.
936  unsigned size() const { return NumBlockIDs; }
937
938  //===--------------------------------------------------------------------===//
939  // CFG Debugging: Pretty-Printing and Visualization.
940  //===--------------------------------------------------------------------===//
941
942  void viewCFG(const LangOptions &LO) const;
943  void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
944  void dump(const LangOptions &LO, bool ShowColors) const;
945
946  //===--------------------------------------------------------------------===//
947  // Internal: constructors and data.
948  //===--------------------------------------------------------------------===//
949
950  CFG()
951    : Entry(nullptr), Exit(nullptr), IndirectGotoBlock(nullptr), NumBlockIDs(0),
952      Blocks(BlkBVC, 10) {}
953
954  llvm::BumpPtrAllocator& getAllocator() {
955    return BlkBVC.getAllocator();
956  }
957
958  BumpVectorContext &getBumpVectorContext() {
959    return BlkBVC;
960  }
961
962private:
963  CFGBlock *Entry;
964  CFGBlock *Exit;
965  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
966                                // for indirect gotos
967  unsigned  NumBlockIDs;
968
969  BumpVectorContext BlkBVC;
970
971  CFGBlockListTy Blocks;
972
973  /// C++ 'try' statements are modeled with an indirect dispatch block.
974  /// This is the collection of such blocks present in the CFG.
975  std::vector<const CFGBlock *> TryDispatchBlocks;
976
977  /// Collects DeclStmts synthesized for this CFG and maps each one back to its
978  /// source DeclStmt.
979  llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts;
980};
981} // end namespace clang
982
983//===----------------------------------------------------------------------===//
984// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
985//===----------------------------------------------------------------------===//
986
987namespace llvm {
988
989/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
990/// CFGTerminator to a specific Stmt class.
991template <> struct simplify_type< ::clang::CFGTerminator> {
992  typedef ::clang::Stmt *SimpleType;
993  static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) {
994    return Val.getStmt();
995  }
996};
997
998// Traits for: CFGBlock
999
1000template <> struct GraphTraits< ::clang::CFGBlock *> {
1001  typedef ::clang::CFGBlock NodeType;
1002  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
1003
1004  static NodeType* getEntryNode(::clang::CFGBlock *BB)
1005  { return BB; }
1006
1007  static inline ChildIteratorType child_begin(NodeType* N)
1008  { return N->succ_begin(); }
1009
1010  static inline ChildIteratorType child_end(NodeType* N)
1011  { return N->succ_end(); }
1012};
1013
1014template <> struct GraphTraits< const ::clang::CFGBlock *> {
1015  typedef const ::clang::CFGBlock NodeType;
1016  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
1017
1018  static NodeType* getEntryNode(const clang::CFGBlock *BB)
1019  { return BB; }
1020
1021  static inline ChildIteratorType child_begin(NodeType* N)
1022  { return N->succ_begin(); }
1023
1024  static inline ChildIteratorType child_end(NodeType* N)
1025  { return N->succ_end(); }
1026};
1027
1028template <> struct GraphTraits<Inverse< ::clang::CFGBlock*> > {
1029  typedef ::clang::CFGBlock NodeType;
1030  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
1031
1032  static NodeType *getEntryNode(Inverse< ::clang::CFGBlock*> G)
1033  { return G.Graph; }
1034
1035  static inline ChildIteratorType child_begin(NodeType* N)
1036  { return N->pred_begin(); }
1037
1038  static inline ChildIteratorType child_end(NodeType* N)
1039  { return N->pred_end(); }
1040};
1041
1042template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
1043  typedef const ::clang::CFGBlock NodeType;
1044  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
1045
1046  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
1047  { return G.Graph; }
1048
1049  static inline ChildIteratorType child_begin(NodeType* N)
1050  { return N->pred_begin(); }
1051
1052  static inline ChildIteratorType child_end(NodeType* N)
1053  { return N->pred_end(); }
1054};
1055
1056// Traits for: CFG
1057
1058template <> struct GraphTraits< ::clang::CFG* >
1059    : public GraphTraits< ::clang::CFGBlock *>  {
1060
1061  typedef ::clang::CFG::graph_iterator nodes_iterator;
1062
1063  static NodeType     *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
1064  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
1065  static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
1066  static unsigned              size(::clang::CFG* F) { return F->size(); }
1067};
1068
1069template <> struct GraphTraits<const ::clang::CFG* >
1070    : public GraphTraits<const ::clang::CFGBlock *>  {
1071
1072  typedef ::clang::CFG::const_graph_iterator nodes_iterator;
1073
1074  static NodeType *getEntryNode( const ::clang::CFG* F) {
1075    return &F->getEntry();
1076  }
1077  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
1078    return F->nodes_begin();
1079  }
1080  static nodes_iterator nodes_end( const ::clang::CFG* F) {
1081    return F->nodes_end();
1082  }
1083  static unsigned size(const ::clang::CFG* F) {
1084    return F->size();
1085  }
1086};
1087
1088template <> struct GraphTraits<Inverse< ::clang::CFG*> >
1089  : public GraphTraits<Inverse< ::clang::CFGBlock*> > {
1090
1091  typedef ::clang::CFG::graph_iterator nodes_iterator;
1092
1093  static NodeType *getEntryNode( ::clang::CFG* F) { return &F->getExit(); }
1094  static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
1095  static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
1096};
1097
1098template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
1099  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
1100
1101  typedef ::clang::CFG::const_graph_iterator nodes_iterator;
1102
1103  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
1104  static nodes_iterator nodes_begin(const ::clang::CFG* F) {
1105    return F->nodes_begin();
1106  }
1107  static nodes_iterator nodes_end(const ::clang::CFG* F) {
1108    return F->nodes_end();
1109  }
1110};
1111} // end llvm namespace
1112#endif
1113