1//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the C++ related Decl classes.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/AST/DeclCXX.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeLoc.h"
22#include "clang/Basic/IdentifierTable.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallPtrSet.h"
25using namespace clang;
26
27//===----------------------------------------------------------------------===//
28// Decl Allocation/Deallocation Method Implementations
29//===----------------------------------------------------------------------===//
30
31void AccessSpecDecl::anchor() { }
32
33AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
34  return new (C, ID) AccessSpecDecl(EmptyShell());
35}
36
37void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
38  ExternalASTSource *Source = C.getExternalSource();
39  assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
40  assert(Source && "getFromExternalSource with no external source");
41
42  for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
43    I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
44        reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
45  Impl.Decls.setLazy(false);
46}
47
48CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
49  : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
50    Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
51    Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
52    HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
53    HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true),
54    HasInClassInitializer(false), HasUninitializedReferenceMember(false),
55    NeedOverloadResolutionForMoveConstructor(false),
56    NeedOverloadResolutionForMoveAssignment(false),
57    NeedOverloadResolutionForDestructor(false),
58    DefaultedMoveConstructorIsDeleted(false),
59    DefaultedMoveAssignmentIsDeleted(false),
60    DefaultedDestructorIsDeleted(false),
61    HasTrivialSpecialMembers(SMF_All),
62    DeclaredNonTrivialSpecialMembers(0),
63    HasIrrelevantDestructor(true),
64    HasConstexprNonCopyMoveConstructor(false),
65    DefaultedDefaultConstructorIsConstexpr(true),
66    HasConstexprDefaultConstructor(false),
67    HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
68    UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
69    ImplicitCopyConstructorHasConstParam(true),
70    ImplicitCopyAssignmentHasConstParam(true),
71    HasDeclaredCopyConstructorWithConstParam(false),
72    HasDeclaredCopyAssignmentWithConstParam(false),
73    IsLambda(false), IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0),
74    Bases(), VBases(),
75    Definition(D), FirstFriend() {
76}
77
78CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
79  return Bases.get(Definition->getASTContext().getExternalSource());
80}
81
82CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
83  return VBases.get(Definition->getASTContext().getExternalSource());
84}
85
86CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
87                             DeclContext *DC, SourceLocation StartLoc,
88                             SourceLocation IdLoc, IdentifierInfo *Id,
89                             CXXRecordDecl *PrevDecl)
90    : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
91      DefinitionData(PrevDecl ? PrevDecl->DefinitionData
92                              : DefinitionDataPtr(this)),
93      TemplateOrInstantiation() {}
94
95CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
96                                     DeclContext *DC, SourceLocation StartLoc,
97                                     SourceLocation IdLoc, IdentifierInfo *Id,
98                                     CXXRecordDecl* PrevDecl,
99                                     bool DelayTypeCreation) {
100  CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
101                                               IdLoc, Id, PrevDecl);
102  R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
103
104  // FIXME: DelayTypeCreation seems like such a hack
105  if (!DelayTypeCreation)
106    C.getTypeDeclType(R, PrevDecl);
107  return R;
108}
109
110CXXRecordDecl *
111CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
112                            TypeSourceInfo *Info, SourceLocation Loc,
113                            bool Dependent, bool IsGeneric,
114                            LambdaCaptureDefault CaptureDefault) {
115  CXXRecordDecl *R =
116      new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
117                                nullptr, nullptr);
118  R->IsBeingDefined = true;
119  R->DefinitionData =
120      new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
121                                          CaptureDefault);
122  R->MayHaveOutOfDateDef = false;
123  R->setImplicit(true);
124  C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
125  return R;
126}
127
128CXXRecordDecl *
129CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
130  CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
131      CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
132      nullptr, nullptr);
133  R->MayHaveOutOfDateDef = false;
134  return R;
135}
136
137void
138CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
139                        unsigned NumBases) {
140  ASTContext &C = getASTContext();
141
142  if (!data().Bases.isOffset() && data().NumBases > 0)
143    C.Deallocate(data().getBases());
144
145  if (NumBases) {
146    // C++ [dcl.init.aggr]p1:
147    //   An aggregate is [...] a class with [...] no base classes [...].
148    data().Aggregate = false;
149
150    // C++ [class]p4:
151    //   A POD-struct is an aggregate class...
152    data().PlainOldData = false;
153  }
154
155  // The set of seen virtual base types.
156  llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
157
158  // The virtual bases of this class.
159  SmallVector<const CXXBaseSpecifier *, 8> VBases;
160
161  data().Bases = new(C) CXXBaseSpecifier [NumBases];
162  data().NumBases = NumBases;
163  for (unsigned i = 0; i < NumBases; ++i) {
164    data().getBases()[i] = *Bases[i];
165    // Keep track of inherited vbases for this base class.
166    const CXXBaseSpecifier *Base = Bases[i];
167    QualType BaseType = Base->getType();
168    // Skip dependent types; we can't do any checking on them now.
169    if (BaseType->isDependentType())
170      continue;
171    CXXRecordDecl *BaseClassDecl
172      = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
173
174    // A class with a non-empty base class is not empty.
175    // FIXME: Standard ref?
176    if (!BaseClassDecl->isEmpty()) {
177      if (!data().Empty) {
178        // C++0x [class]p7:
179        //   A standard-layout class is a class that:
180        //    [...]
181        //    -- either has no non-static data members in the most derived
182        //       class and at most one base class with non-static data members,
183        //       or has no base classes with non-static data members, and
184        // If this is the second non-empty base, then neither of these two
185        // clauses can be true.
186        data().IsStandardLayout = false;
187      }
188
189      data().Empty = false;
190      data().HasNoNonEmptyBases = false;
191    }
192
193    // C++ [class.virtual]p1:
194    //   A class that declares or inherits a virtual function is called a
195    //   polymorphic class.
196    if (BaseClassDecl->isPolymorphic())
197      data().Polymorphic = true;
198
199    // C++0x [class]p7:
200    //   A standard-layout class is a class that: [...]
201    //    -- has no non-standard-layout base classes
202    if (!BaseClassDecl->isStandardLayout())
203      data().IsStandardLayout = false;
204
205    // Record if this base is the first non-literal field or base.
206    if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
207      data().HasNonLiteralTypeFieldsOrBases = true;
208
209    // Now go through all virtual bases of this base and add them.
210    for (const auto &VBase : BaseClassDecl->vbases()) {
211      // Add this base if it's not already in the list.
212      if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
213        VBases.push_back(&VBase);
214
215        // C++11 [class.copy]p8:
216        //   The implicitly-declared copy constructor for a class X will have
217        //   the form 'X::X(const X&)' if each [...] virtual base class B of X
218        //   has a copy constructor whose first parameter is of type
219        //   'const B&' or 'const volatile B&' [...]
220        if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
221          if (!VBaseDecl->hasCopyConstructorWithConstParam())
222            data().ImplicitCopyConstructorHasConstParam = false;
223      }
224    }
225
226    if (Base->isVirtual()) {
227      // Add this base if it's not already in the list.
228      if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
229        VBases.push_back(Base);
230
231      // C++0x [meta.unary.prop] is_empty:
232      //    T is a class type, but not a union type, with ... no virtual base
233      //    classes
234      data().Empty = false;
235
236      // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
237      //   A [default constructor, copy/move constructor, or copy/move assignment
238      //   operator for a class X] is trivial [...] if:
239      //    -- class X has [...] no virtual base classes
240      data().HasTrivialSpecialMembers &= SMF_Destructor;
241
242      // C++0x [class]p7:
243      //   A standard-layout class is a class that: [...]
244      //    -- has [...] no virtual base classes
245      data().IsStandardLayout = false;
246
247      // C++11 [dcl.constexpr]p4:
248      //   In the definition of a constexpr constructor [...]
249      //    -- the class shall not have any virtual base classes
250      data().DefaultedDefaultConstructorIsConstexpr = false;
251    } else {
252      // C++ [class.ctor]p5:
253      //   A default constructor is trivial [...] if:
254      //    -- all the direct base classes of its class have trivial default
255      //       constructors.
256      if (!BaseClassDecl->hasTrivialDefaultConstructor())
257        data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
258
259      // C++0x [class.copy]p13:
260      //   A copy/move constructor for class X is trivial if [...]
261      //    [...]
262      //    -- the constructor selected to copy/move each direct base class
263      //       subobject is trivial, and
264      if (!BaseClassDecl->hasTrivialCopyConstructor())
265        data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
266      // If the base class doesn't have a simple move constructor, we'll eagerly
267      // declare it and perform overload resolution to determine which function
268      // it actually calls. If it does have a simple move constructor, this
269      // check is correct.
270      if (!BaseClassDecl->hasTrivialMoveConstructor())
271        data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
272
273      // C++0x [class.copy]p27:
274      //   A copy/move assignment operator for class X is trivial if [...]
275      //    [...]
276      //    -- the assignment operator selected to copy/move each direct base
277      //       class subobject is trivial, and
278      if (!BaseClassDecl->hasTrivialCopyAssignment())
279        data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
280      // If the base class doesn't have a simple move assignment, we'll eagerly
281      // declare it and perform overload resolution to determine which function
282      // it actually calls. If it does have a simple move assignment, this
283      // check is correct.
284      if (!BaseClassDecl->hasTrivialMoveAssignment())
285        data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
286
287      // C++11 [class.ctor]p6:
288      //   If that user-written default constructor would satisfy the
289      //   requirements of a constexpr constructor, the implicitly-defined
290      //   default constructor is constexpr.
291      if (!BaseClassDecl->hasConstexprDefaultConstructor())
292        data().DefaultedDefaultConstructorIsConstexpr = false;
293    }
294
295    // C++ [class.ctor]p3:
296    //   A destructor is trivial if all the direct base classes of its class
297    //   have trivial destructors.
298    if (!BaseClassDecl->hasTrivialDestructor())
299      data().HasTrivialSpecialMembers &= ~SMF_Destructor;
300
301    if (!BaseClassDecl->hasIrrelevantDestructor())
302      data().HasIrrelevantDestructor = false;
303
304    // C++11 [class.copy]p18:
305    //   The implicitly-declared copy assignment oeprator for a class X will
306    //   have the form 'X& X::operator=(const X&)' if each direct base class B
307    //   of X has a copy assignment operator whose parameter is of type 'const
308    //   B&', 'const volatile B&', or 'B' [...]
309    if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
310      data().ImplicitCopyAssignmentHasConstParam = false;
311
312    // C++11 [class.copy]p8:
313    //   The implicitly-declared copy constructor for a class X will have
314    //   the form 'X::X(const X&)' if each direct [...] base class B of X
315    //   has a copy constructor whose first parameter is of type
316    //   'const B&' or 'const volatile B&' [...]
317    if (!BaseClassDecl->hasCopyConstructorWithConstParam())
318      data().ImplicitCopyConstructorHasConstParam = false;
319
320    // A class has an Objective-C object member if... or any of its bases
321    // has an Objective-C object member.
322    if (BaseClassDecl->hasObjectMember())
323      setHasObjectMember(true);
324
325    if (BaseClassDecl->hasVolatileMember())
326      setHasVolatileMember(true);
327
328    // Keep track of the presence of mutable fields.
329    if (BaseClassDecl->hasMutableFields())
330      data().HasMutableFields = true;
331
332    if (BaseClassDecl->hasUninitializedReferenceMember())
333      data().HasUninitializedReferenceMember = true;
334
335    addedClassSubobject(BaseClassDecl);
336  }
337
338  if (VBases.empty()) {
339    data().IsParsingBaseSpecifiers = false;
340    return;
341  }
342
343  // Create base specifier for any direct or indirect virtual bases.
344  data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
345  data().NumVBases = VBases.size();
346  for (int I = 0, E = VBases.size(); I != E; ++I) {
347    QualType Type = VBases[I]->getType();
348    if (!Type->isDependentType())
349      addedClassSubobject(Type->getAsCXXRecordDecl());
350    data().getVBases()[I] = *VBases[I];
351  }
352
353  data().IsParsingBaseSpecifiers = false;
354}
355
356void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
357  // C++11 [class.copy]p11:
358  //   A defaulted copy/move constructor for a class X is defined as
359  //   deleted if X has:
360  //    -- a direct or virtual base class B that cannot be copied/moved [...]
361  //    -- a non-static data member of class type M (or array thereof)
362  //       that cannot be copied or moved [...]
363  if (!Subobj->hasSimpleMoveConstructor())
364    data().NeedOverloadResolutionForMoveConstructor = true;
365
366  // C++11 [class.copy]p23:
367  //   A defaulted copy/move assignment operator for a class X is defined as
368  //   deleted if X has:
369  //    -- a direct or virtual base class B that cannot be copied/moved [...]
370  //    -- a non-static data member of class type M (or array thereof)
371  //        that cannot be copied or moved [...]
372  if (!Subobj->hasSimpleMoveAssignment())
373    data().NeedOverloadResolutionForMoveAssignment = true;
374
375  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
376  //   A defaulted [ctor or dtor] for a class X is defined as
377  //   deleted if X has:
378  //    -- any direct or virtual base class [...] has a type with a destructor
379  //       that is deleted or inaccessible from the defaulted [ctor or dtor].
380  //    -- any non-static data member has a type with a destructor
381  //       that is deleted or inaccessible from the defaulted [ctor or dtor].
382  if (!Subobj->hasSimpleDestructor()) {
383    data().NeedOverloadResolutionForMoveConstructor = true;
384    data().NeedOverloadResolutionForDestructor = true;
385  }
386}
387
388/// Callback function for CXXRecordDecl::forallBases that acknowledges
389/// that it saw a base class.
390static bool SawBase(const CXXRecordDecl *, void *) {
391  return true;
392}
393
394bool CXXRecordDecl::hasAnyDependentBases() const {
395  if (!isDependentContext())
396    return false;
397
398  return !forallBases(SawBase, nullptr);
399}
400
401bool CXXRecordDecl::isTriviallyCopyable() const {
402  // C++0x [class]p5:
403  //   A trivially copyable class is a class that:
404  //   -- has no non-trivial copy constructors,
405  if (hasNonTrivialCopyConstructor()) return false;
406  //   -- has no non-trivial move constructors,
407  if (hasNonTrivialMoveConstructor()) return false;
408  //   -- has no non-trivial copy assignment operators,
409  if (hasNonTrivialCopyAssignment()) return false;
410  //   -- has no non-trivial move assignment operators, and
411  if (hasNonTrivialMoveAssignment()) return false;
412  //   -- has a trivial destructor.
413  if (!hasTrivialDestructor()) return false;
414
415  return true;
416}
417
418void CXXRecordDecl::markedVirtualFunctionPure() {
419  // C++ [class.abstract]p2:
420  //   A class is abstract if it has at least one pure virtual function.
421  data().Abstract = true;
422}
423
424void CXXRecordDecl::addedMember(Decl *D) {
425  if (!D->isImplicit() &&
426      !isa<FieldDecl>(D) &&
427      !isa<IndirectFieldDecl>(D) &&
428      (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
429        cast<TagDecl>(D)->getTagKind() == TTK_Interface))
430    data().HasOnlyCMembers = false;
431
432  // Ignore friends and invalid declarations.
433  if (D->getFriendObjectKind() || D->isInvalidDecl())
434    return;
435
436  FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
437  if (FunTmpl)
438    D = FunTmpl->getTemplatedDecl();
439
440  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
441    if (Method->isVirtual()) {
442      // C++ [dcl.init.aggr]p1:
443      //   An aggregate is an array or a class with [...] no virtual functions.
444      data().Aggregate = false;
445
446      // C++ [class]p4:
447      //   A POD-struct is an aggregate class...
448      data().PlainOldData = false;
449
450      // Virtual functions make the class non-empty.
451      // FIXME: Standard ref?
452      data().Empty = false;
453
454      // C++ [class.virtual]p1:
455      //   A class that declares or inherits a virtual function is called a
456      //   polymorphic class.
457      data().Polymorphic = true;
458
459      // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
460      //   A [default constructor, copy/move constructor, or copy/move
461      //   assignment operator for a class X] is trivial [...] if:
462      //    -- class X has no virtual functions [...]
463      data().HasTrivialSpecialMembers &= SMF_Destructor;
464
465      // C++0x [class]p7:
466      //   A standard-layout class is a class that: [...]
467      //    -- has no virtual functions
468      data().IsStandardLayout = false;
469    }
470  }
471
472  // Notify the listener if an implicit member was added after the definition
473  // was completed.
474  if (!isBeingDefined() && D->isImplicit())
475    if (ASTMutationListener *L = getASTMutationListener())
476      L->AddedCXXImplicitMember(data().Definition, D);
477
478  // The kind of special member this declaration is, if any.
479  unsigned SMKind = 0;
480
481  // Handle constructors.
482  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
483    if (!Constructor->isImplicit()) {
484      // Note that we have a user-declared constructor.
485      data().UserDeclaredConstructor = true;
486
487      // C++ [class]p4:
488      //   A POD-struct is an aggregate class [...]
489      // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
490      // type is technically an aggregate in C++0x since it wouldn't be in 03.
491      data().PlainOldData = false;
492    }
493
494    // Technically, "user-provided" is only defined for special member
495    // functions, but the intent of the standard is clearly that it should apply
496    // to all functions.
497    bool UserProvided = Constructor->isUserProvided();
498
499    if (Constructor->isDefaultConstructor()) {
500      SMKind |= SMF_DefaultConstructor;
501
502      if (UserProvided)
503        data().UserProvidedDefaultConstructor = true;
504      if (Constructor->isConstexpr())
505        data().HasConstexprDefaultConstructor = true;
506    }
507
508    if (!FunTmpl) {
509      unsigned Quals;
510      if (Constructor->isCopyConstructor(Quals)) {
511        SMKind |= SMF_CopyConstructor;
512
513        if (Quals & Qualifiers::Const)
514          data().HasDeclaredCopyConstructorWithConstParam = true;
515      } else if (Constructor->isMoveConstructor())
516        SMKind |= SMF_MoveConstructor;
517    }
518
519    // Record if we see any constexpr constructors which are neither copy
520    // nor move constructors.
521    if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
522      data().HasConstexprNonCopyMoveConstructor = true;
523
524    // C++ [dcl.init.aggr]p1:
525    //   An aggregate is an array or a class with no user-declared
526    //   constructors [...].
527    // C++11 [dcl.init.aggr]p1:
528    //   An aggregate is an array or a class with no user-provided
529    //   constructors [...].
530    if (getASTContext().getLangOpts().CPlusPlus11
531          ? UserProvided : !Constructor->isImplicit())
532      data().Aggregate = false;
533  }
534
535  // Handle destructors.
536  if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
537    SMKind |= SMF_Destructor;
538
539    if (DD->isUserProvided())
540      data().HasIrrelevantDestructor = false;
541    // If the destructor is explicitly defaulted and not trivial or not public
542    // or if the destructor is deleted, we clear HasIrrelevantDestructor in
543    // finishedDefaultedOrDeletedMember.
544
545    // C++11 [class.dtor]p5:
546    //   A destructor is trivial if [...] the destructor is not virtual.
547    if (DD->isVirtual())
548      data().HasTrivialSpecialMembers &= ~SMF_Destructor;
549  }
550
551  // Handle member functions.
552  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
553    if (Method->isCopyAssignmentOperator()) {
554      SMKind |= SMF_CopyAssignment;
555
556      const ReferenceType *ParamTy =
557        Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
558      if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
559        data().HasDeclaredCopyAssignmentWithConstParam = true;
560    }
561
562    if (Method->isMoveAssignmentOperator())
563      SMKind |= SMF_MoveAssignment;
564
565    // Keep the list of conversion functions up-to-date.
566    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
567      // FIXME: We use the 'unsafe' accessor for the access specifier here,
568      // because Sema may not have set it yet. That's really just a misdesign
569      // in Sema. However, LLDB *will* have set the access specifier correctly,
570      // and adds declarations after the class is technically completed,
571      // so completeDefinition()'s overriding of the access specifiers doesn't
572      // work.
573      AccessSpecifier AS = Conversion->getAccessUnsafe();
574
575      if (Conversion->getPrimaryTemplate()) {
576        // We don't record specializations.
577      } else {
578        ASTContext &Ctx = getASTContext();
579        ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
580        NamedDecl *Primary =
581            FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
582        if (Primary->getPreviousDecl())
583          Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
584                              Primary, AS);
585        else
586          Conversions.addDecl(Ctx, Primary, AS);
587      }
588    }
589
590    if (SMKind) {
591      // If this is the first declaration of a special member, we no longer have
592      // an implicit trivial special member.
593      data().HasTrivialSpecialMembers &=
594        data().DeclaredSpecialMembers | ~SMKind;
595
596      if (!Method->isImplicit() && !Method->isUserProvided()) {
597        // This method is user-declared but not user-provided. We can't work out
598        // whether it's trivial yet (not until we get to the end of the class).
599        // We'll handle this method in finishedDefaultedOrDeletedMember.
600      } else if (Method->isTrivial())
601        data().HasTrivialSpecialMembers |= SMKind;
602      else
603        data().DeclaredNonTrivialSpecialMembers |= SMKind;
604
605      // Note when we have declared a declared special member, and suppress the
606      // implicit declaration of this special member.
607      data().DeclaredSpecialMembers |= SMKind;
608
609      if (!Method->isImplicit()) {
610        data().UserDeclaredSpecialMembers |= SMKind;
611
612        // C++03 [class]p4:
613        //   A POD-struct is an aggregate class that has [...] no user-defined
614        //   copy assignment operator and no user-defined destructor.
615        //
616        // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
617        // aggregates could not have any constructors, clear it even for an
618        // explicitly defaulted or deleted constructor.
619        // type is technically an aggregate in C++0x since it wouldn't be in 03.
620        //
621        // Also, a user-declared move assignment operator makes a class non-POD.
622        // This is an extension in C++03.
623        data().PlainOldData = false;
624      }
625    }
626
627    return;
628  }
629
630  // Handle non-static data members.
631  if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
632    // C++ [class.bit]p2:
633    //   A declaration for a bit-field that omits the identifier declares an
634    //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
635    //   initialized.
636    if (Field->isUnnamedBitfield())
637      return;
638
639    // C++ [dcl.init.aggr]p1:
640    //   An aggregate is an array or a class (clause 9) with [...] no
641    //   private or protected non-static data members (clause 11).
642    //
643    // A POD must be an aggregate.
644    if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
645      data().Aggregate = false;
646      data().PlainOldData = false;
647    }
648
649    // C++0x [class]p7:
650    //   A standard-layout class is a class that:
651    //    [...]
652    //    -- has the same access control for all non-static data members,
653    switch (D->getAccess()) {
654    case AS_private:    data().HasPrivateFields = true;   break;
655    case AS_protected:  data().HasProtectedFields = true; break;
656    case AS_public:     data().HasPublicFields = true;    break;
657    case AS_none:       llvm_unreachable("Invalid access specifier");
658    };
659    if ((data().HasPrivateFields + data().HasProtectedFields +
660         data().HasPublicFields) > 1)
661      data().IsStandardLayout = false;
662
663    // Keep track of the presence of mutable fields.
664    if (Field->isMutable())
665      data().HasMutableFields = true;
666
667    // C++11 [class.union]p8, DR1460:
668    //   If X is a union, a non-static data member of X that is not an anonymous
669    //   union is a variant member of X.
670    if (isUnion() && !Field->isAnonymousStructOrUnion())
671      data().HasVariantMembers = true;
672
673    // C++0x [class]p9:
674    //   A POD struct is a class that is both a trivial class and a
675    //   standard-layout class, and has no non-static data members of type
676    //   non-POD struct, non-POD union (or array of such types).
677    //
678    // Automatic Reference Counting: the presence of a member of Objective-C pointer type
679    // that does not explicitly have no lifetime makes the class a non-POD.
680    ASTContext &Context = getASTContext();
681    QualType T = Context.getBaseElementType(Field->getType());
682    if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
683      if (!Context.getLangOpts().ObjCAutoRefCount) {
684        setHasObjectMember(true);
685      } else if (T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
686        // Objective-C Automatic Reference Counting:
687        //   If a class has a non-static data member of Objective-C pointer
688        //   type (or array thereof), it is a non-POD type and its
689        //   default constructor (if any), copy constructor, move constructor,
690        //   copy assignment operator, move assignment operator, and destructor are
691        //   non-trivial.
692        setHasObjectMember(true);
693        struct DefinitionData &Data = data();
694        Data.PlainOldData = false;
695        Data.HasTrivialSpecialMembers = 0;
696        Data.HasIrrelevantDestructor = false;
697      }
698    } else if (!T.isCXX98PODType(Context))
699      data().PlainOldData = false;
700
701    if (T->isReferenceType()) {
702      if (!Field->hasInClassInitializer())
703        data().HasUninitializedReferenceMember = true;
704
705      // C++0x [class]p7:
706      //   A standard-layout class is a class that:
707      //    -- has no non-static data members of type [...] reference,
708      data().IsStandardLayout = false;
709    }
710
711    // Record if this field is the first non-literal or volatile field or base.
712    if (!T->isLiteralType(Context) || T.isVolatileQualified())
713      data().HasNonLiteralTypeFieldsOrBases = true;
714
715    if (Field->hasInClassInitializer() ||
716        (Field->isAnonymousStructOrUnion() &&
717         Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
718      data().HasInClassInitializer = true;
719
720      // C++11 [class]p5:
721      //   A default constructor is trivial if [...] no non-static data member
722      //   of its class has a brace-or-equal-initializer.
723      data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
724
725      // C++11 [dcl.init.aggr]p1:
726      //   An aggregate is a [...] class with [...] no
727      //   brace-or-equal-initializers for non-static data members.
728      //
729      // This rule was removed in C++1y.
730      if (!getASTContext().getLangOpts().CPlusPlus14)
731        data().Aggregate = false;
732
733      // C++11 [class]p10:
734      //   A POD struct is [...] a trivial class.
735      data().PlainOldData = false;
736    }
737
738    // C++11 [class.copy]p23:
739    //   A defaulted copy/move assignment operator for a class X is defined
740    //   as deleted if X has:
741    //    -- a non-static data member of reference type
742    if (T->isReferenceType())
743      data().DefaultedMoveAssignmentIsDeleted = true;
744
745    if (const RecordType *RecordTy = T->getAs<RecordType>()) {
746      CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
747      if (FieldRec->getDefinition()) {
748        addedClassSubobject(FieldRec);
749
750        // We may need to perform overload resolution to determine whether a
751        // field can be moved if it's const or volatile qualified.
752        if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
753          data().NeedOverloadResolutionForMoveConstructor = true;
754          data().NeedOverloadResolutionForMoveAssignment = true;
755        }
756
757        // C++11 [class.ctor]p5, C++11 [class.copy]p11:
758        //   A defaulted [special member] for a class X is defined as
759        //   deleted if:
760        //    -- X is a union-like class that has a variant member with a
761        //       non-trivial [corresponding special member]
762        if (isUnion()) {
763          if (FieldRec->hasNonTrivialMoveConstructor())
764            data().DefaultedMoveConstructorIsDeleted = true;
765          if (FieldRec->hasNonTrivialMoveAssignment())
766            data().DefaultedMoveAssignmentIsDeleted = true;
767          if (FieldRec->hasNonTrivialDestructor())
768            data().DefaultedDestructorIsDeleted = true;
769        }
770
771        // C++0x [class.ctor]p5:
772        //   A default constructor is trivial [...] if:
773        //    -- for all the non-static data members of its class that are of
774        //       class type (or array thereof), each such class has a trivial
775        //       default constructor.
776        if (!FieldRec->hasTrivialDefaultConstructor())
777          data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
778
779        // C++0x [class.copy]p13:
780        //   A copy/move constructor for class X is trivial if [...]
781        //    [...]
782        //    -- for each non-static data member of X that is of class type (or
783        //       an array thereof), the constructor selected to copy/move that
784        //       member is trivial;
785        if (!FieldRec->hasTrivialCopyConstructor())
786          data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
787        // If the field doesn't have a simple move constructor, we'll eagerly
788        // declare the move constructor for this class and we'll decide whether
789        // it's trivial then.
790        if (!FieldRec->hasTrivialMoveConstructor())
791          data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
792
793        // C++0x [class.copy]p27:
794        //   A copy/move assignment operator for class X is trivial if [...]
795        //    [...]
796        //    -- for each non-static data member of X that is of class type (or
797        //       an array thereof), the assignment operator selected to
798        //       copy/move that member is trivial;
799        if (!FieldRec->hasTrivialCopyAssignment())
800          data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
801        // If the field doesn't have a simple move assignment, we'll eagerly
802        // declare the move assignment for this class and we'll decide whether
803        // it's trivial then.
804        if (!FieldRec->hasTrivialMoveAssignment())
805          data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
806
807        if (!FieldRec->hasTrivialDestructor())
808          data().HasTrivialSpecialMembers &= ~SMF_Destructor;
809        if (!FieldRec->hasIrrelevantDestructor())
810          data().HasIrrelevantDestructor = false;
811        if (FieldRec->hasObjectMember())
812          setHasObjectMember(true);
813        if (FieldRec->hasVolatileMember())
814          setHasVolatileMember(true);
815
816        // C++0x [class]p7:
817        //   A standard-layout class is a class that:
818        //    -- has no non-static data members of type non-standard-layout
819        //       class (or array of such types) [...]
820        if (!FieldRec->isStandardLayout())
821          data().IsStandardLayout = false;
822
823        // C++0x [class]p7:
824        //   A standard-layout class is a class that:
825        //    [...]
826        //    -- has no base classes of the same type as the first non-static
827        //       data member.
828        // We don't want to expend bits in the state of the record decl
829        // tracking whether this is the first non-static data member so we
830        // cheat a bit and use some of the existing state: the empty bit.
831        // Virtual bases and virtual methods make a class non-empty, but they
832        // also make it non-standard-layout so we needn't check here.
833        // A non-empty base class may leave the class standard-layout, but not
834        // if we have arrived here, and have at least one non-static data
835        // member. If IsStandardLayout remains true, then the first non-static
836        // data member must come through here with Empty still true, and Empty
837        // will subsequently be set to false below.
838        if (data().IsStandardLayout && data().Empty) {
839          for (const auto &BI : bases()) {
840            if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
841              data().IsStandardLayout = false;
842              break;
843            }
844          }
845        }
846
847        // Keep track of the presence of mutable fields.
848        if (FieldRec->hasMutableFields())
849          data().HasMutableFields = true;
850
851        // C++11 [class.copy]p13:
852        //   If the implicitly-defined constructor would satisfy the
853        //   requirements of a constexpr constructor, the implicitly-defined
854        //   constructor is constexpr.
855        // C++11 [dcl.constexpr]p4:
856        //    -- every constructor involved in initializing non-static data
857        //       members [...] shall be a constexpr constructor
858        if (!Field->hasInClassInitializer() &&
859            !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
860          // The standard requires any in-class initializer to be a constant
861          // expression. We consider this to be a defect.
862          data().DefaultedDefaultConstructorIsConstexpr = false;
863
864        // C++11 [class.copy]p8:
865        //   The implicitly-declared copy constructor for a class X will have
866        //   the form 'X::X(const X&)' if [...] for all the non-static data
867        //   members of X that are of a class type M (or array thereof), each
868        //   such class type has a copy constructor whose first parameter is
869        //   of type 'const M&' or 'const volatile M&'.
870        if (!FieldRec->hasCopyConstructorWithConstParam())
871          data().ImplicitCopyConstructorHasConstParam = false;
872
873        // C++11 [class.copy]p18:
874        //   The implicitly-declared copy assignment oeprator for a class X will
875        //   have the form 'X& X::operator=(const X&)' if [...] for all the
876        //   non-static data members of X that are of a class type M (or array
877        //   thereof), each such class type has a copy assignment operator whose
878        //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
879        if (!FieldRec->hasCopyAssignmentWithConstParam())
880          data().ImplicitCopyAssignmentHasConstParam = false;
881
882        if (FieldRec->hasUninitializedReferenceMember() &&
883            !Field->hasInClassInitializer())
884          data().HasUninitializedReferenceMember = true;
885
886        // C++11 [class.union]p8, DR1460:
887        //   a non-static data member of an anonymous union that is a member of
888        //   X is also a variant member of X.
889        if (FieldRec->hasVariantMembers() &&
890            Field->isAnonymousStructOrUnion())
891          data().HasVariantMembers = true;
892      }
893    } else {
894      // Base element type of field is a non-class type.
895      if (!T->isLiteralType(Context) ||
896          (!Field->hasInClassInitializer() && !isUnion()))
897        data().DefaultedDefaultConstructorIsConstexpr = false;
898
899      // C++11 [class.copy]p23:
900      //   A defaulted copy/move assignment operator for a class X is defined
901      //   as deleted if X has:
902      //    -- a non-static data member of const non-class type (or array
903      //       thereof)
904      if (T.isConstQualified())
905        data().DefaultedMoveAssignmentIsDeleted = true;
906    }
907
908    // C++0x [class]p7:
909    //   A standard-layout class is a class that:
910    //    [...]
911    //    -- either has no non-static data members in the most derived
912    //       class and at most one base class with non-static data members,
913    //       or has no base classes with non-static data members, and
914    // At this point we know that we have a non-static data member, so the last
915    // clause holds.
916    if (!data().HasNoNonEmptyBases)
917      data().IsStandardLayout = false;
918
919    // If this is not a zero-length bit-field, then the class is not empty.
920    if (data().Empty) {
921      if (!Field->isBitField() ||
922          (!Field->getBitWidth()->isTypeDependent() &&
923           !Field->getBitWidth()->isValueDependent() &&
924           Field->getBitWidthValue(Context) != 0))
925        data().Empty = false;
926    }
927  }
928
929  // Handle using declarations of conversion functions.
930  if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
931    if (Shadow->getDeclName().getNameKind()
932          == DeclarationName::CXXConversionFunctionName) {
933      ASTContext &Ctx = getASTContext();
934      data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
935    }
936  }
937}
938
939void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
940  assert(!D->isImplicit() && !D->isUserProvided());
941
942  // The kind of special member this declaration is, if any.
943  unsigned SMKind = 0;
944
945  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
946    if (Constructor->isDefaultConstructor()) {
947      SMKind |= SMF_DefaultConstructor;
948      if (Constructor->isConstexpr())
949        data().HasConstexprDefaultConstructor = true;
950    }
951    if (Constructor->isCopyConstructor())
952      SMKind |= SMF_CopyConstructor;
953    else if (Constructor->isMoveConstructor())
954      SMKind |= SMF_MoveConstructor;
955    else if (Constructor->isConstexpr())
956      // We may now know that the constructor is constexpr.
957      data().HasConstexprNonCopyMoveConstructor = true;
958  } else if (isa<CXXDestructorDecl>(D)) {
959    SMKind |= SMF_Destructor;
960    if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
961      data().HasIrrelevantDestructor = false;
962  } else if (D->isCopyAssignmentOperator())
963    SMKind |= SMF_CopyAssignment;
964  else if (D->isMoveAssignmentOperator())
965    SMKind |= SMF_MoveAssignment;
966
967  // Update which trivial / non-trivial special members we have.
968  // addedMember will have skipped this step for this member.
969  if (D->isTrivial())
970    data().HasTrivialSpecialMembers |= SMKind;
971  else
972    data().DeclaredNonTrivialSpecialMembers |= SMKind;
973}
974
975bool CXXRecordDecl::isCLike() const {
976  if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
977      !TemplateOrInstantiation.isNull())
978    return false;
979  if (!hasDefinition())
980    return true;
981
982  return isPOD() && data().HasOnlyCMembers;
983}
984
985bool CXXRecordDecl::isGenericLambda() const {
986  if (!isLambda()) return false;
987  return getLambdaData().IsGenericLambda;
988}
989
990CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
991  if (!isLambda()) return nullptr;
992  DeclarationName Name =
993    getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
994  DeclContext::lookup_result Calls = lookup(Name);
995
996  assert(!Calls.empty() && "Missing lambda call operator!");
997  assert(Calls.size() == 1 && "More than one lambda call operator!");
998
999  NamedDecl *CallOp = Calls.front();
1000  if (FunctionTemplateDecl *CallOpTmpl =
1001                    dyn_cast<FunctionTemplateDecl>(CallOp))
1002    return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1003
1004  return cast<CXXMethodDecl>(CallOp);
1005}
1006
1007CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1008  if (!isLambda()) return nullptr;
1009  DeclarationName Name =
1010    &getASTContext().Idents.get(getLambdaStaticInvokerName());
1011  DeclContext::lookup_result Invoker = lookup(Name);
1012  if (Invoker.empty()) return nullptr;
1013  assert(Invoker.size() == 1 && "More than one static invoker operator!");
1014  NamedDecl *InvokerFun = Invoker.front();
1015  if (FunctionTemplateDecl *InvokerTemplate =
1016                  dyn_cast<FunctionTemplateDecl>(InvokerFun))
1017    return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1018
1019  return cast<CXXMethodDecl>(InvokerFun);
1020}
1021
1022void CXXRecordDecl::getCaptureFields(
1023       llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1024       FieldDecl *&ThisCapture) const {
1025  Captures.clear();
1026  ThisCapture = nullptr;
1027
1028  LambdaDefinitionData &Lambda = getLambdaData();
1029  RecordDecl::field_iterator Field = field_begin();
1030  for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1031       C != CEnd; ++C, ++Field) {
1032    if (C->capturesThis())
1033      ThisCapture = *Field;
1034    else if (C->capturesVariable())
1035      Captures[C->getCapturedVar()] = *Field;
1036  }
1037  assert(Field == field_end());
1038}
1039
1040TemplateParameterList *
1041CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1042  if (!isLambda()) return nullptr;
1043  CXXMethodDecl *CallOp = getLambdaCallOperator();
1044  if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1045    return Tmpl->getTemplateParameters();
1046  return nullptr;
1047}
1048
1049static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1050  QualType T =
1051      cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1052          ->getConversionType();
1053  return Context.getCanonicalType(T);
1054}
1055
1056/// Collect the visible conversions of a base class.
1057///
1058/// \param Record a base class of the class we're considering
1059/// \param InVirtual whether this base class is a virtual base (or a base
1060///   of a virtual base)
1061/// \param Access the access along the inheritance path to this base
1062/// \param ParentHiddenTypes the conversions provided by the inheritors
1063///   of this base
1064/// \param Output the set to which to add conversions from non-virtual bases
1065/// \param VOutput the set to which to add conversions from virtual bases
1066/// \param HiddenVBaseCs the set of conversions which were hidden in a
1067///   virtual base along some inheritance path
1068static void CollectVisibleConversions(ASTContext &Context,
1069                                      CXXRecordDecl *Record,
1070                                      bool InVirtual,
1071                                      AccessSpecifier Access,
1072                  const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1073                                      ASTUnresolvedSet &Output,
1074                                      UnresolvedSetImpl &VOutput,
1075                           llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1076  // The set of types which have conversions in this class or its
1077  // subclasses.  As an optimization, we don't copy the derived set
1078  // unless it might change.
1079  const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1080  llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1081
1082  // Collect the direct conversions and figure out which conversions
1083  // will be hidden in the subclasses.
1084  CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1085  CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1086  if (ConvI != ConvE) {
1087    HiddenTypesBuffer = ParentHiddenTypes;
1088    HiddenTypes = &HiddenTypesBuffer;
1089
1090    for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1091      CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1092      bool Hidden = ParentHiddenTypes.count(ConvType);
1093      if (!Hidden)
1094        HiddenTypesBuffer.insert(ConvType);
1095
1096      // If this conversion is hidden and we're in a virtual base,
1097      // remember that it's hidden along some inheritance path.
1098      if (Hidden && InVirtual)
1099        HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1100
1101      // If this conversion isn't hidden, add it to the appropriate output.
1102      else if (!Hidden) {
1103        AccessSpecifier IAccess
1104          = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1105
1106        if (InVirtual)
1107          VOutput.addDecl(I.getDecl(), IAccess);
1108        else
1109          Output.addDecl(Context, I.getDecl(), IAccess);
1110      }
1111    }
1112  }
1113
1114  // Collect information recursively from any base classes.
1115  for (const auto &I : Record->bases()) {
1116    const RecordType *RT = I.getType()->getAs<RecordType>();
1117    if (!RT) continue;
1118
1119    AccessSpecifier BaseAccess
1120      = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1121    bool BaseInVirtual = InVirtual || I.isVirtual();
1122
1123    CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1124    CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1125                              *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1126  }
1127}
1128
1129/// Collect the visible conversions of a class.
1130///
1131/// This would be extremely straightforward if it weren't for virtual
1132/// bases.  It might be worth special-casing that, really.
1133static void CollectVisibleConversions(ASTContext &Context,
1134                                      CXXRecordDecl *Record,
1135                                      ASTUnresolvedSet &Output) {
1136  // The collection of all conversions in virtual bases that we've
1137  // found.  These will be added to the output as long as they don't
1138  // appear in the hidden-conversions set.
1139  UnresolvedSet<8> VBaseCs;
1140
1141  // The set of conversions in virtual bases that we've determined to
1142  // be hidden.
1143  llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1144
1145  // The set of types hidden by classes derived from this one.
1146  llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1147
1148  // Go ahead and collect the direct conversions and add them to the
1149  // hidden-types set.
1150  CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1151  CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1152  Output.append(Context, ConvI, ConvE);
1153  for (; ConvI != ConvE; ++ConvI)
1154    HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1155
1156  // Recursively collect conversions from base classes.
1157  for (const auto &I : Record->bases()) {
1158    const RecordType *RT = I.getType()->getAs<RecordType>();
1159    if (!RT) continue;
1160
1161    CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1162                              I.isVirtual(), I.getAccessSpecifier(),
1163                              HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1164  }
1165
1166  // Add any unhidden conversions provided by virtual bases.
1167  for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1168         I != E; ++I) {
1169    if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1170      Output.addDecl(Context, I.getDecl(), I.getAccess());
1171  }
1172}
1173
1174/// getVisibleConversionFunctions - get all conversion functions visible
1175/// in current class; including conversion function templates.
1176llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1177CXXRecordDecl::getVisibleConversionFunctions() {
1178  ASTContext &Ctx = getASTContext();
1179
1180  ASTUnresolvedSet *Set;
1181  if (bases_begin() == bases_end()) {
1182    // If root class, all conversions are visible.
1183    Set = &data().Conversions.get(Ctx);
1184  } else {
1185    Set = &data().VisibleConversions.get(Ctx);
1186    // If visible conversion list is not evaluated, evaluate it.
1187    if (!data().ComputedVisibleConversions) {
1188      CollectVisibleConversions(Ctx, this, *Set);
1189      data().ComputedVisibleConversions = true;
1190    }
1191  }
1192  return llvm::make_range(Set->begin(), Set->end());
1193}
1194
1195void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1196  // This operation is O(N) but extremely rare.  Sema only uses it to
1197  // remove UsingShadowDecls in a class that were followed by a direct
1198  // declaration, e.g.:
1199  //   class A : B {
1200  //     using B::operator int;
1201  //     operator int();
1202  //   };
1203  // This is uncommon by itself and even more uncommon in conjunction
1204  // with sufficiently large numbers of directly-declared conversions
1205  // that asymptotic behavior matters.
1206
1207  ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1208  for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1209    if (Convs[I].getDecl() == ConvDecl) {
1210      Convs.erase(I);
1211      assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1212             && "conversion was found multiple times in unresolved set");
1213      return;
1214    }
1215  }
1216
1217  llvm_unreachable("conversion not found in set!");
1218}
1219
1220CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1221  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1222    return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1223
1224  return nullptr;
1225}
1226
1227void
1228CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1229                                             TemplateSpecializationKind TSK) {
1230  assert(TemplateOrInstantiation.isNull() &&
1231         "Previous template or instantiation?");
1232  assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1233  TemplateOrInstantiation
1234    = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1235}
1236
1237TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1238  if (const ClassTemplateSpecializationDecl *Spec
1239        = dyn_cast<ClassTemplateSpecializationDecl>(this))
1240    return Spec->getSpecializationKind();
1241
1242  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1243    return MSInfo->getTemplateSpecializationKind();
1244
1245  return TSK_Undeclared;
1246}
1247
1248void
1249CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1250  if (ClassTemplateSpecializationDecl *Spec
1251      = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1252    Spec->setSpecializationKind(TSK);
1253    return;
1254  }
1255
1256  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1257    MSInfo->setTemplateSpecializationKind(TSK);
1258    return;
1259  }
1260
1261  llvm_unreachable("Not a class template or member class specialization");
1262}
1263
1264const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1265  // If it's a class template specialization, find the template or partial
1266  // specialization from which it was instantiated.
1267  if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1268    auto From = TD->getInstantiatedFrom();
1269    if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1270      while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1271        if (NewCTD->isMemberSpecialization())
1272          break;
1273        CTD = NewCTD;
1274      }
1275      return CTD->getTemplatedDecl();
1276    }
1277    if (auto *CTPSD =
1278            From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1279      while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1280        if (NewCTPSD->isMemberSpecialization())
1281          break;
1282        CTPSD = NewCTPSD;
1283      }
1284      return CTPSD;
1285    }
1286  }
1287
1288  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1289    if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1290      const CXXRecordDecl *RD = this;
1291      while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1292        RD = NewRD;
1293      return RD;
1294    }
1295  }
1296
1297  assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1298         "couldn't find pattern for class template instantiation");
1299  return nullptr;
1300}
1301
1302CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1303  ASTContext &Context = getASTContext();
1304  QualType ClassType = Context.getTypeDeclType(this);
1305
1306  DeclarationName Name
1307    = Context.DeclarationNames.getCXXDestructorName(
1308                                          Context.getCanonicalType(ClassType));
1309
1310  DeclContext::lookup_result R = lookup(Name);
1311  if (R.empty())
1312    return nullptr;
1313
1314  CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
1315  return Dtor;
1316}
1317
1318void CXXRecordDecl::completeDefinition() {
1319  completeDefinition(nullptr);
1320}
1321
1322void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1323  RecordDecl::completeDefinition();
1324
1325  // If the class may be abstract (but hasn't been marked as such), check for
1326  // any pure final overriders.
1327  if (mayBeAbstract()) {
1328    CXXFinalOverriderMap MyFinalOverriders;
1329    if (!FinalOverriders) {
1330      getFinalOverriders(MyFinalOverriders);
1331      FinalOverriders = &MyFinalOverriders;
1332    }
1333
1334    bool Done = false;
1335    for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1336                                     MEnd = FinalOverriders->end();
1337         M != MEnd && !Done; ++M) {
1338      for (OverridingMethods::iterator SO = M->second.begin(),
1339                                    SOEnd = M->second.end();
1340           SO != SOEnd && !Done; ++SO) {
1341        assert(SO->second.size() > 0 &&
1342               "All virtual functions have overridding virtual functions");
1343
1344        // C++ [class.abstract]p4:
1345        //   A class is abstract if it contains or inherits at least one
1346        //   pure virtual function for which the final overrider is pure
1347        //   virtual.
1348        if (SO->second.front().Method->isPure()) {
1349          data().Abstract = true;
1350          Done = true;
1351          break;
1352        }
1353      }
1354    }
1355  }
1356
1357  // Set access bits correctly on the directly-declared conversions.
1358  for (conversion_iterator I = conversion_begin(), E = conversion_end();
1359       I != E; ++I)
1360    I.setAccess((*I)->getAccess());
1361}
1362
1363bool CXXRecordDecl::mayBeAbstract() const {
1364  if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1365      isDependentContext())
1366    return false;
1367
1368  for (const auto &B : bases()) {
1369    CXXRecordDecl *BaseDecl
1370      = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
1371    if (BaseDecl->isAbstract())
1372      return true;
1373  }
1374
1375  return false;
1376}
1377
1378void CXXMethodDecl::anchor() { }
1379
1380bool CXXMethodDecl::isStatic() const {
1381  const CXXMethodDecl *MD = getCanonicalDecl();
1382
1383  if (MD->getStorageClass() == SC_Static)
1384    return true;
1385
1386  OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1387  return isStaticOverloadedOperator(OOK);
1388}
1389
1390static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1391                                 const CXXMethodDecl *BaseMD) {
1392  for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
1393         E = DerivedMD->end_overridden_methods(); I != E; ++I) {
1394    const CXXMethodDecl *MD = *I;
1395    if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1396      return true;
1397    if (recursivelyOverrides(MD, BaseMD))
1398      return true;
1399  }
1400  return false;
1401}
1402
1403CXXMethodDecl *
1404CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1405                                             bool MayBeBase) {
1406  if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1407    return this;
1408
1409  // Lookup doesn't work for destructors, so handle them separately.
1410  if (isa<CXXDestructorDecl>(this)) {
1411    CXXMethodDecl *MD = RD->getDestructor();
1412    if (MD) {
1413      if (recursivelyOverrides(MD, this))
1414        return MD;
1415      if (MayBeBase && recursivelyOverrides(this, MD))
1416        return MD;
1417    }
1418    return nullptr;
1419  }
1420
1421  for (auto *ND : RD->lookup(getDeclName())) {
1422    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND);
1423    if (!MD)
1424      continue;
1425    if (recursivelyOverrides(MD, this))
1426      return MD;
1427    if (MayBeBase && recursivelyOverrides(this, MD))
1428      return MD;
1429  }
1430
1431  for (const auto &I : RD->bases()) {
1432    const RecordType *RT = I.getType()->getAs<RecordType>();
1433    if (!RT)
1434      continue;
1435    const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1436    CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1437    if (T)
1438      return T;
1439  }
1440
1441  return nullptr;
1442}
1443
1444CXXMethodDecl *
1445CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1446                      SourceLocation StartLoc,
1447                      const DeclarationNameInfo &NameInfo,
1448                      QualType T, TypeSourceInfo *TInfo,
1449                      StorageClass SC, bool isInline,
1450                      bool isConstexpr, SourceLocation EndLocation) {
1451  return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
1452                                   T, TInfo, SC, isInline, isConstexpr,
1453                                   EndLocation);
1454}
1455
1456CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1457  return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
1458                                   DeclarationNameInfo(), QualType(), nullptr,
1459                                   SC_None, false, false, SourceLocation());
1460}
1461
1462bool CXXMethodDecl::isUsualDeallocationFunction() const {
1463  if (getOverloadedOperator() != OO_Delete &&
1464      getOverloadedOperator() != OO_Array_Delete)
1465    return false;
1466
1467  // C++ [basic.stc.dynamic.deallocation]p2:
1468  //   A template instance is never a usual deallocation function,
1469  //   regardless of its signature.
1470  if (getPrimaryTemplate())
1471    return false;
1472
1473  // C++ [basic.stc.dynamic.deallocation]p2:
1474  //   If a class T has a member deallocation function named operator delete
1475  //   with exactly one parameter, then that function is a usual (non-placement)
1476  //   deallocation function. [...]
1477  if (getNumParams() == 1)
1478    return true;
1479
1480  // C++ [basic.stc.dynamic.deallocation]p2:
1481  //   [...] If class T does not declare such an operator delete but does
1482  //   declare a member deallocation function named operator delete with
1483  //   exactly two parameters, the second of which has type std::size_t (18.1),
1484  //   then this function is a usual deallocation function.
1485  ASTContext &Context = getASTContext();
1486  if (getNumParams() != 2 ||
1487      !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1488                                      Context.getSizeType()))
1489    return false;
1490
1491  // This function is a usual deallocation function if there are no
1492  // single-parameter deallocation functions of the same kind.
1493  DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
1494  for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
1495       I != E; ++I) {
1496    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
1497      if (FD->getNumParams() == 1)
1498        return false;
1499  }
1500
1501  return true;
1502}
1503
1504bool CXXMethodDecl::isCopyAssignmentOperator() const {
1505  // C++0x [class.copy]p17:
1506  //  A user-declared copy assignment operator X::operator= is a non-static
1507  //  non-template member function of class X with exactly one parameter of
1508  //  type X, X&, const X&, volatile X& or const volatile X&.
1509  if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1510      /*non-static*/ isStatic() ||
1511      /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1512      getNumParams() != 1)
1513    return false;
1514
1515  QualType ParamType = getParamDecl(0)->getType();
1516  if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1517    ParamType = Ref->getPointeeType();
1518
1519  ASTContext &Context = getASTContext();
1520  QualType ClassType
1521    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1522  return Context.hasSameUnqualifiedType(ClassType, ParamType);
1523}
1524
1525bool CXXMethodDecl::isMoveAssignmentOperator() const {
1526  // C++0x [class.copy]p19:
1527  //  A user-declared move assignment operator X::operator= is a non-static
1528  //  non-template member function of class X with exactly one parameter of type
1529  //  X&&, const X&&, volatile X&&, or const volatile X&&.
1530  if (getOverloadedOperator() != OO_Equal || isStatic() ||
1531      getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1532      getNumParams() != 1)
1533    return false;
1534
1535  QualType ParamType = getParamDecl(0)->getType();
1536  if (!isa<RValueReferenceType>(ParamType))
1537    return false;
1538  ParamType = ParamType->getPointeeType();
1539
1540  ASTContext &Context = getASTContext();
1541  QualType ClassType
1542    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1543  return Context.hasSameUnqualifiedType(ClassType, ParamType);
1544}
1545
1546void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1547  assert(MD->isCanonicalDecl() && "Method is not canonical!");
1548  assert(!MD->getParent()->isDependentContext() &&
1549         "Can't add an overridden method to a class template!");
1550  assert(MD->isVirtual() && "Method is not virtual!");
1551
1552  getASTContext().addOverriddenMethod(this, MD);
1553}
1554
1555CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1556  if (isa<CXXConstructorDecl>(this)) return nullptr;
1557  return getASTContext().overridden_methods_begin(this);
1558}
1559
1560CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1561  if (isa<CXXConstructorDecl>(this)) return nullptr;
1562  return getASTContext().overridden_methods_end(this);
1563}
1564
1565unsigned CXXMethodDecl::size_overridden_methods() const {
1566  if (isa<CXXConstructorDecl>(this)) return 0;
1567  return getASTContext().overridden_methods_size(this);
1568}
1569
1570QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1571  // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1572  // If the member function is declared const, the type of this is const X*,
1573  // if the member function is declared volatile, the type of this is
1574  // volatile X*, and if the member function is declared const volatile,
1575  // the type of this is const volatile X*.
1576
1577  assert(isInstance() && "No 'this' for static methods!");
1578
1579  QualType ClassTy = C.getTypeDeclType(getParent());
1580  ClassTy = C.getQualifiedType(ClassTy,
1581                               Qualifiers::fromCVRMask(getTypeQualifiers()));
1582  return C.getPointerType(ClassTy);
1583}
1584
1585bool CXXMethodDecl::hasInlineBody() const {
1586  // If this function is a template instantiation, look at the template from
1587  // which it was instantiated.
1588  const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1589  if (!CheckFn)
1590    CheckFn = this;
1591
1592  const FunctionDecl *fn;
1593  return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1594}
1595
1596bool CXXMethodDecl::isLambdaStaticInvoker() const {
1597  const CXXRecordDecl *P = getParent();
1598  if (P->isLambda()) {
1599    if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
1600      if (StaticInvoker == this) return true;
1601      if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
1602        return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
1603    }
1604  }
1605  return false;
1606}
1607
1608CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1609                                       TypeSourceInfo *TInfo, bool IsVirtual,
1610                                       SourceLocation L, Expr *Init,
1611                                       SourceLocation R,
1612                                       SourceLocation EllipsisLoc)
1613  : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1614    LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
1615    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1616{
1617}
1618
1619CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1620                                       FieldDecl *Member,
1621                                       SourceLocation MemberLoc,
1622                                       SourceLocation L, Expr *Init,
1623                                       SourceLocation R)
1624  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1625    LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1626    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1627{
1628}
1629
1630CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1631                                       IndirectFieldDecl *Member,
1632                                       SourceLocation MemberLoc,
1633                                       SourceLocation L, Expr *Init,
1634                                       SourceLocation R)
1635  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1636    LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1637    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1638{
1639}
1640
1641CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1642                                       TypeSourceInfo *TInfo,
1643                                       SourceLocation L, Expr *Init,
1644                                       SourceLocation R)
1645  : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
1646    LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
1647    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1648{
1649}
1650
1651CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1652                                       FieldDecl *Member,
1653                                       SourceLocation MemberLoc,
1654                                       SourceLocation L, Expr *Init,
1655                                       SourceLocation R,
1656                                       VarDecl **Indices,
1657                                       unsigned NumIndices)
1658  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1659    LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1660    IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1661{
1662  VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1663  memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1664}
1665
1666CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1667                                               FieldDecl *Member,
1668                                               SourceLocation MemberLoc,
1669                                               SourceLocation L, Expr *Init,
1670                                               SourceLocation R,
1671                                               VarDecl **Indices,
1672                                               unsigned NumIndices) {
1673  void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1674                               sizeof(VarDecl *) * NumIndices,
1675                               llvm::alignOf<CXXCtorInitializer>());
1676  return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1677                                      Indices, NumIndices);
1678}
1679
1680TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1681  if (isBaseInitializer())
1682    return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1683  else
1684    return TypeLoc();
1685}
1686
1687const Type *CXXCtorInitializer::getBaseClass() const {
1688  if (isBaseInitializer())
1689    return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1690  else
1691    return nullptr;
1692}
1693
1694SourceLocation CXXCtorInitializer::getSourceLocation() const {
1695  if (isInClassMemberInitializer())
1696    return getAnyMember()->getLocation();
1697
1698  if (isAnyMemberInitializer())
1699    return getMemberLocation();
1700
1701  if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
1702    return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
1703
1704  return SourceLocation();
1705}
1706
1707SourceRange CXXCtorInitializer::getSourceRange() const {
1708  if (isInClassMemberInitializer()) {
1709    FieldDecl *D = getAnyMember();
1710    if (Expr *I = D->getInClassInitializer())
1711      return I->getSourceRange();
1712    return SourceRange();
1713  }
1714
1715  return SourceRange(getSourceLocation(), getRParenLoc());
1716}
1717
1718void CXXConstructorDecl::anchor() { }
1719
1720CXXConstructorDecl *
1721CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1722  return new (C, ID) CXXConstructorDecl(C, nullptr, SourceLocation(),
1723                                        DeclarationNameInfo(), QualType(),
1724                                        nullptr, false, false, false, false);
1725}
1726
1727CXXConstructorDecl *
1728CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1729                           SourceLocation StartLoc,
1730                           const DeclarationNameInfo &NameInfo,
1731                           QualType T, TypeSourceInfo *TInfo,
1732                           bool isExplicit, bool isInline,
1733                           bool isImplicitlyDeclared, bool isConstexpr) {
1734  assert(NameInfo.getName().getNameKind()
1735         == DeclarationName::CXXConstructorName &&
1736         "Name must refer to a constructor");
1737  return new (C, RD) CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1738                                        isExplicit, isInline,
1739                                        isImplicitlyDeclared, isConstexpr);
1740}
1741
1742CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
1743  return CtorInitializers.get(getASTContext().getExternalSource());
1744}
1745
1746CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
1747  assert(isDelegatingConstructor() && "Not a delegating constructor!");
1748  Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
1749  if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
1750    return Construct->getConstructor();
1751
1752  return nullptr;
1753}
1754
1755bool CXXConstructorDecl::isDefaultConstructor() const {
1756  // C++ [class.ctor]p5:
1757  //   A default constructor for a class X is a constructor of class
1758  //   X that can be called without an argument.
1759  return (getNumParams() == 0) ||
1760         (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1761}
1762
1763bool
1764CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1765  return isCopyOrMoveConstructor(TypeQuals) &&
1766         getParamDecl(0)->getType()->isLValueReferenceType();
1767}
1768
1769bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1770  return isCopyOrMoveConstructor(TypeQuals) &&
1771    getParamDecl(0)->getType()->isRValueReferenceType();
1772}
1773
1774/// \brief Determine whether this is a copy or move constructor.
1775bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1776  // C++ [class.copy]p2:
1777  //   A non-template constructor for class X is a copy constructor
1778  //   if its first parameter is of type X&, const X&, volatile X& or
1779  //   const volatile X&, and either there are no other parameters
1780  //   or else all other parameters have default arguments (8.3.6).
1781  // C++0x [class.copy]p3:
1782  //   A non-template constructor for class X is a move constructor if its
1783  //   first parameter is of type X&&, const X&&, volatile X&&, or
1784  //   const volatile X&&, and either there are no other parameters or else
1785  //   all other parameters have default arguments.
1786  if ((getNumParams() < 1) ||
1787      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1788      (getPrimaryTemplate() != nullptr) ||
1789      (getDescribedFunctionTemplate() != nullptr))
1790    return false;
1791
1792  const ParmVarDecl *Param = getParamDecl(0);
1793
1794  // Do we have a reference type?
1795  const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1796  if (!ParamRefType)
1797    return false;
1798
1799  // Is it a reference to our class type?
1800  ASTContext &Context = getASTContext();
1801
1802  CanQualType PointeeType
1803    = Context.getCanonicalType(ParamRefType->getPointeeType());
1804  CanQualType ClassTy
1805    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1806  if (PointeeType.getUnqualifiedType() != ClassTy)
1807    return false;
1808
1809  // FIXME: other qualifiers?
1810
1811  // We have a copy or move constructor.
1812  TypeQuals = PointeeType.getCVRQualifiers();
1813  return true;
1814}
1815
1816bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1817  // C++ [class.conv.ctor]p1:
1818  //   A constructor declared without the function-specifier explicit
1819  //   that can be called with a single parameter specifies a
1820  //   conversion from the type of its first parameter to the type of
1821  //   its class. Such a constructor is called a converting
1822  //   constructor.
1823  if (isExplicit() && !AllowExplicit)
1824    return false;
1825
1826  return (getNumParams() == 0 &&
1827          getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1828         (getNumParams() == 1) ||
1829         (getNumParams() > 1 &&
1830          (getParamDecl(1)->hasDefaultArg() ||
1831           getParamDecl(1)->isParameterPack()));
1832}
1833
1834bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1835  if ((getNumParams() < 1) ||
1836      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1837      (getDescribedFunctionTemplate() != nullptr))
1838    return false;
1839
1840  const ParmVarDecl *Param = getParamDecl(0);
1841
1842  ASTContext &Context = getASTContext();
1843  CanQualType ParamType = Context.getCanonicalType(Param->getType());
1844
1845  // Is it the same as our our class type?
1846  CanQualType ClassTy
1847    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1848  if (ParamType.getUnqualifiedType() != ClassTy)
1849    return false;
1850
1851  return true;
1852}
1853
1854const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1855  // Hack: we store the inherited constructor in the overridden method table
1856  method_iterator It = getASTContext().overridden_methods_begin(this);
1857  if (It == getASTContext().overridden_methods_end(this))
1858    return nullptr;
1859
1860  return cast<CXXConstructorDecl>(*It);
1861}
1862
1863void
1864CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1865  // Hack: we store the inherited constructor in the overridden method table
1866  assert(getASTContext().overridden_methods_size(this) == 0 &&
1867         "Base ctor already set.");
1868  getASTContext().addOverriddenMethod(this, BaseCtor);
1869}
1870
1871void CXXDestructorDecl::anchor() { }
1872
1873CXXDestructorDecl *
1874CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1875  return new (C, ID)
1876      CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
1877                        QualType(), nullptr, false, false);
1878}
1879
1880CXXDestructorDecl *
1881CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1882                          SourceLocation StartLoc,
1883                          const DeclarationNameInfo &NameInfo,
1884                          QualType T, TypeSourceInfo *TInfo,
1885                          bool isInline, bool isImplicitlyDeclared) {
1886  assert(NameInfo.getName().getNameKind()
1887         == DeclarationName::CXXDestructorName &&
1888         "Name must refer to a destructor");
1889  return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1890                                       isInline, isImplicitlyDeclared);
1891}
1892
1893void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD) {
1894  auto *First = cast<CXXDestructorDecl>(getFirstDecl());
1895  if (OD && !First->OperatorDelete) {
1896    First->OperatorDelete = OD;
1897    if (auto *L = getASTMutationListener())
1898      L->ResolvedOperatorDelete(First, OD);
1899  }
1900}
1901
1902void CXXConversionDecl::anchor() { }
1903
1904CXXConversionDecl *
1905CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1906  return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
1907                                       DeclarationNameInfo(), QualType(),
1908                                       nullptr, false, false, false,
1909                                       SourceLocation());
1910}
1911
1912CXXConversionDecl *
1913CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1914                          SourceLocation StartLoc,
1915                          const DeclarationNameInfo &NameInfo,
1916                          QualType T, TypeSourceInfo *TInfo,
1917                          bool isInline, bool isExplicit,
1918                          bool isConstexpr, SourceLocation EndLocation) {
1919  assert(NameInfo.getName().getNameKind()
1920         == DeclarationName::CXXConversionFunctionName &&
1921         "Name must refer to a conversion function");
1922  return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1923                                       isInline, isExplicit, isConstexpr,
1924                                       EndLocation);
1925}
1926
1927bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
1928  return isImplicit() && getParent()->isLambda() &&
1929         getConversionType()->isBlockPointerType();
1930}
1931
1932void LinkageSpecDecl::anchor() { }
1933
1934LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1935                                         DeclContext *DC,
1936                                         SourceLocation ExternLoc,
1937                                         SourceLocation LangLoc,
1938                                         LanguageIDs Lang,
1939                                         bool HasBraces) {
1940  return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
1941}
1942
1943LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
1944                                                     unsigned ID) {
1945  return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
1946                                     SourceLocation(), lang_c, false);
1947}
1948
1949void UsingDirectiveDecl::anchor() { }
1950
1951UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1952                                               SourceLocation L,
1953                                               SourceLocation NamespaceLoc,
1954                                           NestedNameSpecifierLoc QualifierLoc,
1955                                               SourceLocation IdentLoc,
1956                                               NamedDecl *Used,
1957                                               DeclContext *CommonAncestor) {
1958  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1959    Used = NS->getOriginalNamespace();
1960  return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1961                                        IdentLoc, Used, CommonAncestor);
1962}
1963
1964UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
1965                                                           unsigned ID) {
1966  return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
1967                                        SourceLocation(),
1968                                        NestedNameSpecifierLoc(),
1969                                        SourceLocation(), nullptr, nullptr);
1970}
1971
1972NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1973  if (NamespaceAliasDecl *NA =
1974        dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1975    return NA->getNamespace();
1976  return cast_or_null<NamespaceDecl>(NominatedNamespace);
1977}
1978
1979NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
1980                             SourceLocation StartLoc, SourceLocation IdLoc,
1981                             IdentifierInfo *Id, NamespaceDecl *PrevDecl)
1982    : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
1983      redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
1984      AnonOrFirstNamespaceAndInline(nullptr, Inline) {
1985  setPreviousDecl(PrevDecl);
1986
1987  if (PrevDecl)
1988    AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
1989}
1990
1991NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
1992                                     bool Inline, SourceLocation StartLoc,
1993                                     SourceLocation IdLoc, IdentifierInfo *Id,
1994                                     NamespaceDecl *PrevDecl) {
1995  return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
1996                                   PrevDecl);
1997}
1998
1999NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2000  return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2001                                   SourceLocation(), nullptr, nullptr);
2002}
2003
2004NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2005  return getNextRedeclaration();
2006}
2007NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2008  return getPreviousDecl();
2009}
2010NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2011  return getMostRecentDecl();
2012}
2013
2014void NamespaceAliasDecl::anchor() { }
2015
2016NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2017  return getNextRedeclaration();
2018}
2019NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2020  return getPreviousDecl();
2021}
2022NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2023  return getMostRecentDecl();
2024}
2025
2026NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2027                                               SourceLocation UsingLoc,
2028                                               SourceLocation AliasLoc,
2029                                               IdentifierInfo *Alias,
2030                                           NestedNameSpecifierLoc QualifierLoc,
2031                                               SourceLocation IdentLoc,
2032                                               NamedDecl *Namespace) {
2033  // FIXME: Preserve the aliased namespace as written.
2034  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2035    Namespace = NS->getOriginalNamespace();
2036  return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2037                                        QualifierLoc, IdentLoc, Namespace);
2038}
2039
2040NamespaceAliasDecl *
2041NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2042  return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2043                                        SourceLocation(), nullptr,
2044                                        NestedNameSpecifierLoc(),
2045                                        SourceLocation(), nullptr);
2046}
2047
2048void UsingShadowDecl::anchor() { }
2049
2050UsingShadowDecl *
2051UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2052  return new (C, ID) UsingShadowDecl(C, nullptr, SourceLocation(),
2053                                     nullptr, nullptr);
2054}
2055
2056UsingDecl *UsingShadowDecl::getUsingDecl() const {
2057  const UsingShadowDecl *Shadow = this;
2058  while (const UsingShadowDecl *NextShadow =
2059         dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2060    Shadow = NextShadow;
2061  return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2062}
2063
2064void UsingDecl::anchor() { }
2065
2066void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2067  assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2068         "declaration already in set");
2069  assert(S->getUsingDecl() == this);
2070
2071  if (FirstUsingShadow.getPointer())
2072    S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2073  FirstUsingShadow.setPointer(S);
2074}
2075
2076void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2077  assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2078         "declaration not in set");
2079  assert(S->getUsingDecl() == this);
2080
2081  // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2082
2083  if (FirstUsingShadow.getPointer() == S) {
2084    FirstUsingShadow.setPointer(
2085      dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2086    S->UsingOrNextShadow = this;
2087    return;
2088  }
2089
2090  UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2091  while (Prev->UsingOrNextShadow != S)
2092    Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2093  Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2094  S->UsingOrNextShadow = this;
2095}
2096
2097UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2098                             NestedNameSpecifierLoc QualifierLoc,
2099                             const DeclarationNameInfo &NameInfo,
2100                             bool HasTypename) {
2101  return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2102}
2103
2104UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2105  return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2106                               NestedNameSpecifierLoc(), DeclarationNameInfo(),
2107                               false);
2108}
2109
2110SourceRange UsingDecl::getSourceRange() const {
2111  SourceLocation Begin = isAccessDeclaration()
2112    ? getQualifierLoc().getBeginLoc() : UsingLocation;
2113  return SourceRange(Begin, getNameInfo().getEndLoc());
2114}
2115
2116void UnresolvedUsingValueDecl::anchor() { }
2117
2118UnresolvedUsingValueDecl *
2119UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2120                                 SourceLocation UsingLoc,
2121                                 NestedNameSpecifierLoc QualifierLoc,
2122                                 const DeclarationNameInfo &NameInfo) {
2123  return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2124                                              QualifierLoc, NameInfo);
2125}
2126
2127UnresolvedUsingValueDecl *
2128UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2129  return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2130                                              SourceLocation(),
2131                                              NestedNameSpecifierLoc(),
2132                                              DeclarationNameInfo());
2133}
2134
2135SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2136  SourceLocation Begin = isAccessDeclaration()
2137    ? getQualifierLoc().getBeginLoc() : UsingLocation;
2138  return SourceRange(Begin, getNameInfo().getEndLoc());
2139}
2140
2141void UnresolvedUsingTypenameDecl::anchor() { }
2142
2143UnresolvedUsingTypenameDecl *
2144UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2145                                    SourceLocation UsingLoc,
2146                                    SourceLocation TypenameLoc,
2147                                    NestedNameSpecifierLoc QualifierLoc,
2148                                    SourceLocation TargetNameLoc,
2149                                    DeclarationName TargetName) {
2150  return new (C, DC) UnresolvedUsingTypenameDecl(
2151      DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2152      TargetName.getAsIdentifierInfo());
2153}
2154
2155UnresolvedUsingTypenameDecl *
2156UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2157  return new (C, ID) UnresolvedUsingTypenameDecl(
2158      nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2159      SourceLocation(), nullptr);
2160}
2161
2162void StaticAssertDecl::anchor() { }
2163
2164StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2165                                           SourceLocation StaticAssertLoc,
2166                                           Expr *AssertExpr,
2167                                           StringLiteral *Message,
2168                                           SourceLocation RParenLoc,
2169                                           bool Failed) {
2170  return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2171                                      RParenLoc, Failed);
2172}
2173
2174StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2175                                                       unsigned ID) {
2176  return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2177                                      nullptr, SourceLocation(), false);
2178}
2179
2180MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2181                                       SourceLocation L, DeclarationName N,
2182                                       QualType T, TypeSourceInfo *TInfo,
2183                                       SourceLocation StartL,
2184                                       IdentifierInfo *Getter,
2185                                       IdentifierInfo *Setter) {
2186  return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
2187}
2188
2189MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
2190                                                   unsigned ID) {
2191  return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
2192                                    DeclarationName(), QualType(), nullptr,
2193                                    SourceLocation(), nullptr, nullptr);
2194}
2195
2196static const char *getAccessName(AccessSpecifier AS) {
2197  switch (AS) {
2198    case AS_none:
2199      llvm_unreachable("Invalid access specifier!");
2200    case AS_public:
2201      return "public";
2202    case AS_private:
2203      return "private";
2204    case AS_protected:
2205      return "protected";
2206  }
2207  llvm_unreachable("Invalid access specifier!");
2208}
2209
2210const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2211                                           AccessSpecifier AS) {
2212  return DB << getAccessName(AS);
2213}
2214
2215const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2216                                           AccessSpecifier AS) {
2217  return DB << getAccessName(AS);
2218}
2219