1//===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/CodeGen/CGFunctionInfo.h"
26#include "clang/Frontend/CodeGenOptions.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/CallSite.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include <sstream>
35using namespace clang;
36using namespace CodeGen;
37
38/***/
39
40static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
41  switch (CC) {
42  default: return llvm::CallingConv::C;
43  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
44  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
45  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
46  case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
47  case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
48  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
49  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
50  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
51  // TODO: Add support for __pascal to LLVM.
52  case CC_X86Pascal: return llvm::CallingConv::C;
53  // TODO: Add support for __vectorcall to LLVM.
54  case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
55  case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
56  case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
57  }
58}
59
60/// Derives the 'this' type for codegen purposes, i.e. ignoring method
61/// qualification.
62/// FIXME: address space qualification?
63static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
64  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
65  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
66}
67
68/// Returns the canonical formal type of the given C++ method.
69static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
70  return MD->getType()->getCanonicalTypeUnqualified()
71           .getAs<FunctionProtoType>();
72}
73
74/// Returns the "extra-canonicalized" return type, which discards
75/// qualifiers on the return type.  Codegen doesn't care about them,
76/// and it makes ABI code a little easier to be able to assume that
77/// all parameter and return types are top-level unqualified.
78static CanQualType GetReturnType(QualType RetTy) {
79  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
80}
81
82/// Arrange the argument and result information for a value of the given
83/// unprototyped freestanding function type.
84const CGFunctionInfo &
85CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
86  // When translating an unprototyped function type, always use a
87  // variadic type.
88  return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
89                                 /*instanceMethod=*/false,
90                                 /*chainCall=*/false, None,
91                                 FTNP->getExtInfo(), RequiredArgs(0));
92}
93
94/// Arrange the LLVM function layout for a value of the given function
95/// type, on top of any implicit parameters already stored.
96static const CGFunctionInfo &
97arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
98                        SmallVectorImpl<CanQualType> &prefix,
99                        CanQual<FunctionProtoType> FTP) {
100  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
101  // FIXME: Kill copy.
102  prefix.append(FTP->param_type_begin(), FTP->param_type_end());
103  CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
104  return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
105                                     /*chainCall=*/false, prefix,
106                                     FTP->getExtInfo(), required);
107}
108
109/// Arrange the argument and result information for a value of the
110/// given freestanding function type.
111const CGFunctionInfo &
112CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
113  SmallVector<CanQualType, 16> argTypes;
114  return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
115                                   FTP);
116}
117
118static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
119  // Set the appropriate calling convention for the Function.
120  if (D->hasAttr<StdCallAttr>())
121    return CC_X86StdCall;
122
123  if (D->hasAttr<FastCallAttr>())
124    return CC_X86FastCall;
125
126  if (D->hasAttr<ThisCallAttr>())
127    return CC_X86ThisCall;
128
129  if (D->hasAttr<VectorCallAttr>())
130    return CC_X86VectorCall;
131
132  if (D->hasAttr<PascalAttr>())
133    return CC_X86Pascal;
134
135  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
136    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
137
138  if (D->hasAttr<IntelOclBiccAttr>())
139    return CC_IntelOclBicc;
140
141  if (D->hasAttr<MSABIAttr>())
142    return IsWindows ? CC_C : CC_X86_64Win64;
143
144  if (D->hasAttr<SysVABIAttr>())
145    return IsWindows ? CC_X86_64SysV : CC_C;
146
147  return CC_C;
148}
149
150/// Arrange the argument and result information for a call to an
151/// unknown C++ non-static member function of the given abstract type.
152/// (Zero value of RD means we don't have any meaningful "this" argument type,
153///  so fall back to a generic pointer type).
154/// The member function must be an ordinary function, i.e. not a
155/// constructor or destructor.
156const CGFunctionInfo &
157CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
158                                   const FunctionProtoType *FTP) {
159  SmallVector<CanQualType, 16> argTypes;
160
161  // Add the 'this' pointer.
162  if (RD)
163    argTypes.push_back(GetThisType(Context, RD));
164  else
165    argTypes.push_back(Context.VoidPtrTy);
166
167  return ::arrangeLLVMFunctionInfo(
168      *this, true, argTypes,
169      FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
170}
171
172/// Arrange the argument and result information for a declaration or
173/// definition of the given C++ non-static member function.  The
174/// member function must be an ordinary function, i.e. not a
175/// constructor or destructor.
176const CGFunctionInfo &
177CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
178  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
179  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
180
181  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
182
183  if (MD->isInstance()) {
184    // The abstract case is perfectly fine.
185    const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
186    return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
187  }
188
189  return arrangeFreeFunctionType(prototype);
190}
191
192const CGFunctionInfo &
193CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
194                                            StructorType Type) {
195
196  SmallVector<CanQualType, 16> argTypes;
197  argTypes.push_back(GetThisType(Context, MD->getParent()));
198
199  GlobalDecl GD;
200  if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
201    GD = GlobalDecl(CD, toCXXCtorType(Type));
202  } else {
203    auto *DD = dyn_cast<CXXDestructorDecl>(MD);
204    GD = GlobalDecl(DD, toCXXDtorType(Type));
205  }
206
207  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
208
209  // Add the formal parameters.
210  argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
211
212  TheCXXABI.buildStructorSignature(MD, Type, argTypes);
213
214  RequiredArgs required =
215      (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
216
217  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
218  CanQualType resultType = TheCXXABI.HasThisReturn(GD)
219                               ? argTypes.front()
220                               : TheCXXABI.hasMostDerivedReturn(GD)
221                                     ? CGM.getContext().VoidPtrTy
222                                     : Context.VoidTy;
223  return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
224                                 /*chainCall=*/false, argTypes, extInfo,
225                                 required);
226}
227
228/// Arrange a call to a C++ method, passing the given arguments.
229const CGFunctionInfo &
230CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
231                                        const CXXConstructorDecl *D,
232                                        CXXCtorType CtorKind,
233                                        unsigned ExtraArgs) {
234  // FIXME: Kill copy.
235  SmallVector<CanQualType, 16> ArgTypes;
236  for (const auto &Arg : args)
237    ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
238
239  CanQual<FunctionProtoType> FPT = GetFormalType(D);
240  RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
241  GlobalDecl GD(D, CtorKind);
242  CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
243                               ? ArgTypes.front()
244                               : TheCXXABI.hasMostDerivedReturn(GD)
245                                     ? CGM.getContext().VoidPtrTy
246                                     : Context.VoidTy;
247
248  FunctionType::ExtInfo Info = FPT->getExtInfo();
249  return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
250                                 /*chainCall=*/false, ArgTypes, Info,
251                                 Required);
252}
253
254/// Arrange the argument and result information for the declaration or
255/// definition of the given function.
256const CGFunctionInfo &
257CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
258  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
259    if (MD->isInstance())
260      return arrangeCXXMethodDeclaration(MD);
261
262  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
263
264  assert(isa<FunctionType>(FTy));
265
266  // When declaring a function without a prototype, always use a
267  // non-variadic type.
268  if (isa<FunctionNoProtoType>(FTy)) {
269    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
270    return arrangeLLVMFunctionInfo(
271        noProto->getReturnType(), /*instanceMethod=*/false,
272        /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
273  }
274
275  assert(isa<FunctionProtoType>(FTy));
276  return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
277}
278
279/// Arrange the argument and result information for the declaration or
280/// definition of an Objective-C method.
281const CGFunctionInfo &
282CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
283  // It happens that this is the same as a call with no optional
284  // arguments, except also using the formal 'self' type.
285  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
286}
287
288/// Arrange the argument and result information for the function type
289/// through which to perform a send to the given Objective-C method,
290/// using the given receiver type.  The receiver type is not always
291/// the 'self' type of the method or even an Objective-C pointer type.
292/// This is *not* the right method for actually performing such a
293/// message send, due to the possibility of optional arguments.
294const CGFunctionInfo &
295CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
296                                              QualType receiverType) {
297  SmallVector<CanQualType, 16> argTys;
298  argTys.push_back(Context.getCanonicalParamType(receiverType));
299  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
300  // FIXME: Kill copy?
301  for (const auto *I : MD->params()) {
302    argTys.push_back(Context.getCanonicalParamType(I->getType()));
303  }
304
305  FunctionType::ExtInfo einfo;
306  bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
307  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
308
309  if (getContext().getLangOpts().ObjCAutoRefCount &&
310      MD->hasAttr<NSReturnsRetainedAttr>())
311    einfo = einfo.withProducesResult(true);
312
313  RequiredArgs required =
314    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
315
316  return arrangeLLVMFunctionInfo(
317      GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
318      /*chainCall=*/false, argTys, einfo, required);
319}
320
321const CGFunctionInfo &
322CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
323  // FIXME: Do we need to handle ObjCMethodDecl?
324  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
325
326  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
327    return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
328
329  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
330    return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
331
332  return arrangeFunctionDeclaration(FD);
333}
334
335/// Arrange a thunk that takes 'this' as the first parameter followed by
336/// varargs.  Return a void pointer, regardless of the actual return type.
337/// The body of the thunk will end in a musttail call to a function of the
338/// correct type, and the caller will bitcast the function to the correct
339/// prototype.
340const CGFunctionInfo &
341CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
342  assert(MD->isVirtual() && "only virtual memptrs have thunks");
343  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
344  CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
345  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
346                                 /*chainCall=*/false, ArgTys,
347                                 FTP->getExtInfo(), RequiredArgs(1));
348}
349
350const CGFunctionInfo &
351CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
352                                   CXXCtorType CT) {
353  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
354
355  CanQual<FunctionProtoType> FTP = GetFormalType(CD);
356  SmallVector<CanQualType, 2> ArgTys;
357  const CXXRecordDecl *RD = CD->getParent();
358  ArgTys.push_back(GetThisType(Context, RD));
359  if (CT == Ctor_CopyingClosure)
360    ArgTys.push_back(*FTP->param_type_begin());
361  if (RD->getNumVBases() > 0)
362    ArgTys.push_back(Context.IntTy);
363  CallingConv CC = Context.getDefaultCallingConvention(
364      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
365  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
366                                 /*chainCall=*/false, ArgTys,
367                                 FunctionType::ExtInfo(CC), RequiredArgs::All);
368}
369
370/// Arrange a call as unto a free function, except possibly with an
371/// additional number of formal parameters considered required.
372static const CGFunctionInfo &
373arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
374                            CodeGenModule &CGM,
375                            const CallArgList &args,
376                            const FunctionType *fnType,
377                            unsigned numExtraRequiredArgs,
378                            bool chainCall) {
379  assert(args.size() >= numExtraRequiredArgs);
380
381  // In most cases, there are no optional arguments.
382  RequiredArgs required = RequiredArgs::All;
383
384  // If we have a variadic prototype, the required arguments are the
385  // extra prefix plus the arguments in the prototype.
386  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
387    if (proto->isVariadic())
388      required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
389
390  // If we don't have a prototype at all, but we're supposed to
391  // explicitly use the variadic convention for unprototyped calls,
392  // treat all of the arguments as required but preserve the nominal
393  // possibility of variadics.
394  } else if (CGM.getTargetCodeGenInfo()
395                .isNoProtoCallVariadic(args,
396                                       cast<FunctionNoProtoType>(fnType))) {
397    required = RequiredArgs(args.size());
398  }
399
400  // FIXME: Kill copy.
401  SmallVector<CanQualType, 16> argTypes;
402  for (const auto &arg : args)
403    argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
404  return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
405                                     /*instanceMethod=*/false, chainCall,
406                                     argTypes, fnType->getExtInfo(), required);
407}
408
409/// Figure out the rules for calling a function with the given formal
410/// type using the given arguments.  The arguments are necessary
411/// because the function might be unprototyped, in which case it's
412/// target-dependent in crazy ways.
413const CGFunctionInfo &
414CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
415                                      const FunctionType *fnType,
416                                      bool chainCall) {
417  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
418                                     chainCall ? 1 : 0, chainCall);
419}
420
421/// A block function call is essentially a free-function call with an
422/// extra implicit argument.
423const CGFunctionInfo &
424CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
425                                       const FunctionType *fnType) {
426  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
427                                     /*chainCall=*/false);
428}
429
430const CGFunctionInfo &
431CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
432                                      const CallArgList &args,
433                                      FunctionType::ExtInfo info,
434                                      RequiredArgs required) {
435  // FIXME: Kill copy.
436  SmallVector<CanQualType, 16> argTypes;
437  for (const auto &Arg : args)
438    argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
439  return arrangeLLVMFunctionInfo(
440      GetReturnType(resultType), /*instanceMethod=*/false,
441      /*chainCall=*/false, argTypes, info, required);
442}
443
444/// Arrange a call to a C++ method, passing the given arguments.
445const CGFunctionInfo &
446CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
447                                   const FunctionProtoType *FPT,
448                                   RequiredArgs required) {
449  // FIXME: Kill copy.
450  SmallVector<CanQualType, 16> argTypes;
451  for (const auto &Arg : args)
452    argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
453
454  FunctionType::ExtInfo info = FPT->getExtInfo();
455  return arrangeLLVMFunctionInfo(
456      GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
457      /*chainCall=*/false, argTypes, info, required);
458}
459
460const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
461    QualType resultType, const FunctionArgList &args,
462    const FunctionType::ExtInfo &info, bool isVariadic) {
463  // FIXME: Kill copy.
464  SmallVector<CanQualType, 16> argTypes;
465  for (auto Arg : args)
466    argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
467
468  RequiredArgs required =
469    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
470  return arrangeLLVMFunctionInfo(
471      GetReturnType(resultType), /*instanceMethod=*/false,
472      /*chainCall=*/false, argTypes, info, required);
473}
474
475const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
476  return arrangeLLVMFunctionInfo(
477      getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
478      None, FunctionType::ExtInfo(), RequiredArgs::All);
479}
480
481/// Arrange the argument and result information for an abstract value
482/// of a given function type.  This is the method which all of the
483/// above functions ultimately defer to.
484const CGFunctionInfo &
485CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
486                                      bool instanceMethod,
487                                      bool chainCall,
488                                      ArrayRef<CanQualType> argTypes,
489                                      FunctionType::ExtInfo info,
490                                      RequiredArgs required) {
491  assert(std::all_of(argTypes.begin(), argTypes.end(),
492                     std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
493
494  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
495
496  // Lookup or create unique function info.
497  llvm::FoldingSetNodeID ID;
498  CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
499                          resultType, argTypes);
500
501  void *insertPos = nullptr;
502  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
503  if (FI)
504    return *FI;
505
506  // Construct the function info.  We co-allocate the ArgInfos.
507  FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
508                              resultType, argTypes, required);
509  FunctionInfos.InsertNode(FI, insertPos);
510
511  bool inserted = FunctionsBeingProcessed.insert(FI).second;
512  (void)inserted;
513  assert(inserted && "Recursively being processed?");
514
515  // Compute ABI information.
516  getABIInfo().computeInfo(*FI);
517
518  // Loop over all of the computed argument and return value info.  If any of
519  // them are direct or extend without a specified coerce type, specify the
520  // default now.
521  ABIArgInfo &retInfo = FI->getReturnInfo();
522  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
523    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
524
525  for (auto &I : FI->arguments())
526    if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
527      I.info.setCoerceToType(ConvertType(I.type));
528
529  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
530  assert(erased && "Not in set?");
531
532  return *FI;
533}
534
535CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
536                                       bool instanceMethod,
537                                       bool chainCall,
538                                       const FunctionType::ExtInfo &info,
539                                       CanQualType resultType,
540                                       ArrayRef<CanQualType> argTypes,
541                                       RequiredArgs required) {
542  void *buffer = operator new(sizeof(CGFunctionInfo) +
543                              sizeof(ArgInfo) * (argTypes.size() + 1));
544  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
545  FI->CallingConvention = llvmCC;
546  FI->EffectiveCallingConvention = llvmCC;
547  FI->ASTCallingConvention = info.getCC();
548  FI->InstanceMethod = instanceMethod;
549  FI->ChainCall = chainCall;
550  FI->NoReturn = info.getNoReturn();
551  FI->ReturnsRetained = info.getProducesResult();
552  FI->Required = required;
553  FI->HasRegParm = info.getHasRegParm();
554  FI->RegParm = info.getRegParm();
555  FI->ArgStruct = nullptr;
556  FI->NumArgs = argTypes.size();
557  FI->getArgsBuffer()[0].type = resultType;
558  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
559    FI->getArgsBuffer()[i + 1].type = argTypes[i];
560  return FI;
561}
562
563/***/
564
565namespace {
566// ABIArgInfo::Expand implementation.
567
568// Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
569struct TypeExpansion {
570  enum TypeExpansionKind {
571    // Elements of constant arrays are expanded recursively.
572    TEK_ConstantArray,
573    // Record fields are expanded recursively (but if record is a union, only
574    // the field with the largest size is expanded).
575    TEK_Record,
576    // For complex types, real and imaginary parts are expanded recursively.
577    TEK_Complex,
578    // All other types are not expandable.
579    TEK_None
580  };
581
582  const TypeExpansionKind Kind;
583
584  TypeExpansion(TypeExpansionKind K) : Kind(K) {}
585  virtual ~TypeExpansion() {}
586};
587
588struct ConstantArrayExpansion : TypeExpansion {
589  QualType EltTy;
590  uint64_t NumElts;
591
592  ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
593      : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
594  static bool classof(const TypeExpansion *TE) {
595    return TE->Kind == TEK_ConstantArray;
596  }
597};
598
599struct RecordExpansion : TypeExpansion {
600  SmallVector<const CXXBaseSpecifier *, 1> Bases;
601
602  SmallVector<const FieldDecl *, 1> Fields;
603
604  RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
605                  SmallVector<const FieldDecl *, 1> &&Fields)
606      : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
607  static bool classof(const TypeExpansion *TE) {
608    return TE->Kind == TEK_Record;
609  }
610};
611
612struct ComplexExpansion : TypeExpansion {
613  QualType EltTy;
614
615  ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
616  static bool classof(const TypeExpansion *TE) {
617    return TE->Kind == TEK_Complex;
618  }
619};
620
621struct NoExpansion : TypeExpansion {
622  NoExpansion() : TypeExpansion(TEK_None) {}
623  static bool classof(const TypeExpansion *TE) {
624    return TE->Kind == TEK_None;
625  }
626};
627}  // namespace
628
629static std::unique_ptr<TypeExpansion>
630getTypeExpansion(QualType Ty, const ASTContext &Context) {
631  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
632    return llvm::make_unique<ConstantArrayExpansion>(
633        AT->getElementType(), AT->getSize().getZExtValue());
634  }
635  if (const RecordType *RT = Ty->getAs<RecordType>()) {
636    SmallVector<const CXXBaseSpecifier *, 1> Bases;
637    SmallVector<const FieldDecl *, 1> Fields;
638    const RecordDecl *RD = RT->getDecl();
639    assert(!RD->hasFlexibleArrayMember() &&
640           "Cannot expand structure with flexible array.");
641    if (RD->isUnion()) {
642      // Unions can be here only in degenerative cases - all the fields are same
643      // after flattening. Thus we have to use the "largest" field.
644      const FieldDecl *LargestFD = nullptr;
645      CharUnits UnionSize = CharUnits::Zero();
646
647      for (const auto *FD : RD->fields()) {
648        // Skip zero length bitfields.
649        if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
650          continue;
651        assert(!FD->isBitField() &&
652               "Cannot expand structure with bit-field members.");
653        CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
654        if (UnionSize < FieldSize) {
655          UnionSize = FieldSize;
656          LargestFD = FD;
657        }
658      }
659      if (LargestFD)
660        Fields.push_back(LargestFD);
661    } else {
662      if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
663        assert(!CXXRD->isDynamicClass() &&
664               "cannot expand vtable pointers in dynamic classes");
665        for (const CXXBaseSpecifier &BS : CXXRD->bases())
666          Bases.push_back(&BS);
667      }
668
669      for (const auto *FD : RD->fields()) {
670        // Skip zero length bitfields.
671        if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
672          continue;
673        assert(!FD->isBitField() &&
674               "Cannot expand structure with bit-field members.");
675        Fields.push_back(FD);
676      }
677    }
678    return llvm::make_unique<RecordExpansion>(std::move(Bases),
679                                              std::move(Fields));
680  }
681  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
682    return llvm::make_unique<ComplexExpansion>(CT->getElementType());
683  }
684  return llvm::make_unique<NoExpansion>();
685}
686
687static int getExpansionSize(QualType Ty, const ASTContext &Context) {
688  auto Exp = getTypeExpansion(Ty, Context);
689  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
690    return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
691  }
692  if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
693    int Res = 0;
694    for (auto BS : RExp->Bases)
695      Res += getExpansionSize(BS->getType(), Context);
696    for (auto FD : RExp->Fields)
697      Res += getExpansionSize(FD->getType(), Context);
698    return Res;
699  }
700  if (isa<ComplexExpansion>(Exp.get()))
701    return 2;
702  assert(isa<NoExpansion>(Exp.get()));
703  return 1;
704}
705
706void
707CodeGenTypes::getExpandedTypes(QualType Ty,
708                               SmallVectorImpl<llvm::Type *>::iterator &TI) {
709  auto Exp = getTypeExpansion(Ty, Context);
710  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
711    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
712      getExpandedTypes(CAExp->EltTy, TI);
713    }
714  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
715    for (auto BS : RExp->Bases)
716      getExpandedTypes(BS->getType(), TI);
717    for (auto FD : RExp->Fields)
718      getExpandedTypes(FD->getType(), TI);
719  } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
720    llvm::Type *EltTy = ConvertType(CExp->EltTy);
721    *TI++ = EltTy;
722    *TI++ = EltTy;
723  } else {
724    assert(isa<NoExpansion>(Exp.get()));
725    *TI++ = ConvertType(Ty);
726  }
727}
728
729void CodeGenFunction::ExpandTypeFromArgs(
730    QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
731  assert(LV.isSimple() &&
732         "Unexpected non-simple lvalue during struct expansion.");
733
734  auto Exp = getTypeExpansion(Ty, getContext());
735  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
736    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
737      llvm::Value *EltAddr =
738          Builder.CreateConstGEP2_32(nullptr, LV.getAddress(), 0, i);
739      LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
740      ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
741    }
742  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
743    llvm::Value *This = LV.getAddress();
744    for (const CXXBaseSpecifier *BS : RExp->Bases) {
745      // Perform a single step derived-to-base conversion.
746      llvm::Value *Base =
747          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
748                                /*NullCheckValue=*/false, SourceLocation());
749      LValue SubLV = MakeAddrLValue(Base, BS->getType());
750
751      // Recurse onto bases.
752      ExpandTypeFromArgs(BS->getType(), SubLV, AI);
753    }
754    for (auto FD : RExp->Fields) {
755      // FIXME: What are the right qualifiers here?
756      LValue SubLV = EmitLValueForField(LV, FD);
757      ExpandTypeFromArgs(FD->getType(), SubLV, AI);
758    }
759  } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
760    llvm::Value *RealAddr =
761        Builder.CreateStructGEP(nullptr, LV.getAddress(), 0, "real");
762    EmitStoreThroughLValue(RValue::get(*AI++),
763                           MakeAddrLValue(RealAddr, CExp->EltTy));
764    llvm::Value *ImagAddr =
765        Builder.CreateStructGEP(nullptr, LV.getAddress(), 1, "imag");
766    EmitStoreThroughLValue(RValue::get(*AI++),
767                           MakeAddrLValue(ImagAddr, CExp->EltTy));
768  } else {
769    assert(isa<NoExpansion>(Exp.get()));
770    EmitStoreThroughLValue(RValue::get(*AI++), LV);
771  }
772}
773
774void CodeGenFunction::ExpandTypeToArgs(
775    QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
776    SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
777  auto Exp = getTypeExpansion(Ty, getContext());
778  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
779    llvm::Value *Addr = RV.getAggregateAddr();
780    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
781      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(nullptr, Addr, 0, i);
782      RValue EltRV =
783          convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
784      ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
785    }
786  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
787    llvm::Value *This = RV.getAggregateAddr();
788    for (const CXXBaseSpecifier *BS : RExp->Bases) {
789      // Perform a single step derived-to-base conversion.
790      llvm::Value *Base =
791          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
792                                /*NullCheckValue=*/false, SourceLocation());
793      RValue BaseRV = RValue::getAggregate(Base);
794
795      // Recurse onto bases.
796      ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
797                       IRCallArgPos);
798    }
799
800    LValue LV = MakeAddrLValue(This, Ty);
801    for (auto FD : RExp->Fields) {
802      RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
803      ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
804                       IRCallArgPos);
805    }
806  } else if (isa<ComplexExpansion>(Exp.get())) {
807    ComplexPairTy CV = RV.getComplexVal();
808    IRCallArgs[IRCallArgPos++] = CV.first;
809    IRCallArgs[IRCallArgPos++] = CV.second;
810  } else {
811    assert(isa<NoExpansion>(Exp.get()));
812    assert(RV.isScalar() &&
813           "Unexpected non-scalar rvalue during struct expansion.");
814
815    // Insert a bitcast as needed.
816    llvm::Value *V = RV.getScalarVal();
817    if (IRCallArgPos < IRFuncTy->getNumParams() &&
818        V->getType() != IRFuncTy->getParamType(IRCallArgPos))
819      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
820
821    IRCallArgs[IRCallArgPos++] = V;
822  }
823}
824
825/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
826/// accessing some number of bytes out of it, try to gep into the struct to get
827/// at its inner goodness.  Dive as deep as possible without entering an element
828/// with an in-memory size smaller than DstSize.
829static llvm::Value *
830EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
831                                   llvm::StructType *SrcSTy,
832                                   uint64_t DstSize, CodeGenFunction &CGF) {
833  // We can't dive into a zero-element struct.
834  if (SrcSTy->getNumElements() == 0) return SrcPtr;
835
836  llvm::Type *FirstElt = SrcSTy->getElementType(0);
837
838  // If the first elt is at least as large as what we're looking for, or if the
839  // first element is the same size as the whole struct, we can enter it. The
840  // comparison must be made on the store size and not the alloca size. Using
841  // the alloca size may overstate the size of the load.
842  uint64_t FirstEltSize =
843    CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
844  if (FirstEltSize < DstSize &&
845      FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
846    return SrcPtr;
847
848  // GEP into the first element.
849  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcSTy, SrcPtr, 0, 0, "coerce.dive");
850
851  // If the first element is a struct, recurse.
852  llvm::Type *SrcTy =
853    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
854  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
855    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
856
857  return SrcPtr;
858}
859
860/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
861/// are either integers or pointers.  This does a truncation of the value if it
862/// is too large or a zero extension if it is too small.
863///
864/// This behaves as if the value were coerced through memory, so on big-endian
865/// targets the high bits are preserved in a truncation, while little-endian
866/// targets preserve the low bits.
867static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
868                                             llvm::Type *Ty,
869                                             CodeGenFunction &CGF) {
870  if (Val->getType() == Ty)
871    return Val;
872
873  if (isa<llvm::PointerType>(Val->getType())) {
874    // If this is Pointer->Pointer avoid conversion to and from int.
875    if (isa<llvm::PointerType>(Ty))
876      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
877
878    // Convert the pointer to an integer so we can play with its width.
879    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
880  }
881
882  llvm::Type *DestIntTy = Ty;
883  if (isa<llvm::PointerType>(DestIntTy))
884    DestIntTy = CGF.IntPtrTy;
885
886  if (Val->getType() != DestIntTy) {
887    const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
888    if (DL.isBigEndian()) {
889      // Preserve the high bits on big-endian targets.
890      // That is what memory coercion does.
891      uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
892      uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
893
894      if (SrcSize > DstSize) {
895        Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
896        Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
897      } else {
898        Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
899        Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
900      }
901    } else {
902      // Little-endian targets preserve the low bits. No shifts required.
903      Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
904    }
905  }
906
907  if (isa<llvm::PointerType>(Ty))
908    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
909  return Val;
910}
911
912
913
914/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
915/// a pointer to an object of type \arg Ty.
916///
917/// This safely handles the case when the src type is smaller than the
918/// destination type; in this situation the values of bits which not
919/// present in the src are undefined.
920static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
921                                      llvm::Type *Ty,
922                                      CodeGenFunction &CGF) {
923  llvm::Type *SrcTy =
924    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
925
926  // If SrcTy and Ty are the same, just do a load.
927  if (SrcTy == Ty)
928    return CGF.Builder.CreateLoad(SrcPtr);
929
930  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
931
932  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
933    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
934    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
935  }
936
937  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
938
939  // If the source and destination are integer or pointer types, just do an
940  // extension or truncation to the desired type.
941  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
942      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
943    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
944    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
945  }
946
947  // If load is legal, just bitcast the src pointer.
948  if (SrcSize >= DstSize) {
949    // Generally SrcSize is never greater than DstSize, since this means we are
950    // losing bits. However, this can happen in cases where the structure has
951    // additional padding, for example due to a user specified alignment.
952    //
953    // FIXME: Assert that we aren't truncating non-padding bits when have access
954    // to that information.
955    llvm::Value *Casted =
956      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
957    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
958    // FIXME: Use better alignment / avoid requiring aligned load.
959    Load->setAlignment(1);
960    return Load;
961  }
962
963  // Otherwise do coercion through memory. This is stupid, but
964  // simple.
965  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
966  llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
967  llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
968  llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
969  // FIXME: Use better alignment.
970  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
971      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
972      1, false);
973  return CGF.Builder.CreateLoad(Tmp);
974}
975
976// Function to store a first-class aggregate into memory.  We prefer to
977// store the elements rather than the aggregate to be more friendly to
978// fast-isel.
979// FIXME: Do we need to recurse here?
980static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
981                          llvm::Value *DestPtr, bool DestIsVolatile,
982                          bool LowAlignment) {
983  // Prefer scalar stores to first-class aggregate stores.
984  if (llvm::StructType *STy =
985        dyn_cast<llvm::StructType>(Val->getType())) {
986    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
987      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(STy, DestPtr, 0, i);
988      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
989      llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
990                                                    DestIsVolatile);
991      if (LowAlignment)
992        SI->setAlignment(1);
993    }
994  } else {
995    llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
996    if (LowAlignment)
997      SI->setAlignment(1);
998  }
999}
1000
1001/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1002/// where the source and destination may have different types.
1003///
1004/// This safely handles the case when the src type is larger than the
1005/// destination type; the upper bits of the src will be lost.
1006static void CreateCoercedStore(llvm::Value *Src,
1007                               llvm::Value *DstPtr,
1008                               bool DstIsVolatile,
1009                               CodeGenFunction &CGF) {
1010  llvm::Type *SrcTy = Src->getType();
1011  llvm::Type *DstTy =
1012    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1013  if (SrcTy == DstTy) {
1014    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1015    return;
1016  }
1017
1018  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1019
1020  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1021    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
1022    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1023  }
1024
1025  // If the source and destination are integer or pointer types, just do an
1026  // extension or truncation to the desired type.
1027  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1028      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1029    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1030    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1031    return;
1032  }
1033
1034  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1035
1036  // If store is legal, just bitcast the src pointer.
1037  if (SrcSize <= DstSize) {
1038    llvm::Value *Casted =
1039      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1040    // FIXME: Use better alignment / avoid requiring aligned store.
1041    BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
1042  } else {
1043    // Otherwise do coercion through memory. This is stupid, but
1044    // simple.
1045
1046    // Generally SrcSize is never greater than DstSize, since this means we are
1047    // losing bits. However, this can happen in cases where the structure has
1048    // additional padding, for example due to a user specified alignment.
1049    //
1050    // FIXME: Assert that we aren't truncating non-padding bits when have access
1051    // to that information.
1052    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
1053    CGF.Builder.CreateStore(Src, Tmp);
1054    llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
1055    llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
1056    llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
1057    // FIXME: Use better alignment.
1058    CGF.Builder.CreateMemCpy(DstCasted, Casted,
1059        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1060        1, false);
1061  }
1062}
1063
1064namespace {
1065
1066/// Encapsulates information about the way function arguments from
1067/// CGFunctionInfo should be passed to actual LLVM IR function.
1068class ClangToLLVMArgMapping {
1069  static const unsigned InvalidIndex = ~0U;
1070  unsigned InallocaArgNo;
1071  unsigned SRetArgNo;
1072  unsigned TotalIRArgs;
1073
1074  /// Arguments of LLVM IR function corresponding to single Clang argument.
1075  struct IRArgs {
1076    unsigned PaddingArgIndex;
1077    // Argument is expanded to IR arguments at positions
1078    // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1079    unsigned FirstArgIndex;
1080    unsigned NumberOfArgs;
1081
1082    IRArgs()
1083        : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1084          NumberOfArgs(0) {}
1085  };
1086
1087  SmallVector<IRArgs, 8> ArgInfo;
1088
1089public:
1090  ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1091                        bool OnlyRequiredArgs = false)
1092      : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1093        ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1094    construct(Context, FI, OnlyRequiredArgs);
1095  }
1096
1097  bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1098  unsigned getInallocaArgNo() const {
1099    assert(hasInallocaArg());
1100    return InallocaArgNo;
1101  }
1102
1103  bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1104  unsigned getSRetArgNo() const {
1105    assert(hasSRetArg());
1106    return SRetArgNo;
1107  }
1108
1109  unsigned totalIRArgs() const { return TotalIRArgs; }
1110
1111  bool hasPaddingArg(unsigned ArgNo) const {
1112    assert(ArgNo < ArgInfo.size());
1113    return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1114  }
1115  unsigned getPaddingArgNo(unsigned ArgNo) const {
1116    assert(hasPaddingArg(ArgNo));
1117    return ArgInfo[ArgNo].PaddingArgIndex;
1118  }
1119
1120  /// Returns index of first IR argument corresponding to ArgNo, and their
1121  /// quantity.
1122  std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1123    assert(ArgNo < ArgInfo.size());
1124    return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1125                          ArgInfo[ArgNo].NumberOfArgs);
1126  }
1127
1128private:
1129  void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1130                 bool OnlyRequiredArgs);
1131};
1132
1133void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1134                                      const CGFunctionInfo &FI,
1135                                      bool OnlyRequiredArgs) {
1136  unsigned IRArgNo = 0;
1137  bool SwapThisWithSRet = false;
1138  const ABIArgInfo &RetAI = FI.getReturnInfo();
1139
1140  if (RetAI.getKind() == ABIArgInfo::Indirect) {
1141    SwapThisWithSRet = RetAI.isSRetAfterThis();
1142    SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1143  }
1144
1145  unsigned ArgNo = 0;
1146  unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1147  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1148       ++I, ++ArgNo) {
1149    assert(I != FI.arg_end());
1150    QualType ArgType = I->type;
1151    const ABIArgInfo &AI = I->info;
1152    // Collect data about IR arguments corresponding to Clang argument ArgNo.
1153    auto &IRArgs = ArgInfo[ArgNo];
1154
1155    if (AI.getPaddingType())
1156      IRArgs.PaddingArgIndex = IRArgNo++;
1157
1158    switch (AI.getKind()) {
1159    case ABIArgInfo::Extend:
1160    case ABIArgInfo::Direct: {
1161      // FIXME: handle sseregparm someday...
1162      llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1163      if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1164        IRArgs.NumberOfArgs = STy->getNumElements();
1165      } else {
1166        IRArgs.NumberOfArgs = 1;
1167      }
1168      break;
1169    }
1170    case ABIArgInfo::Indirect:
1171      IRArgs.NumberOfArgs = 1;
1172      break;
1173    case ABIArgInfo::Ignore:
1174    case ABIArgInfo::InAlloca:
1175      // ignore and inalloca doesn't have matching LLVM parameters.
1176      IRArgs.NumberOfArgs = 0;
1177      break;
1178    case ABIArgInfo::Expand: {
1179      IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1180      break;
1181    }
1182    }
1183
1184    if (IRArgs.NumberOfArgs > 0) {
1185      IRArgs.FirstArgIndex = IRArgNo;
1186      IRArgNo += IRArgs.NumberOfArgs;
1187    }
1188
1189    // Skip over the sret parameter when it comes second.  We already handled it
1190    // above.
1191    if (IRArgNo == 1 && SwapThisWithSRet)
1192      IRArgNo++;
1193  }
1194  assert(ArgNo == ArgInfo.size());
1195
1196  if (FI.usesInAlloca())
1197    InallocaArgNo = IRArgNo++;
1198
1199  TotalIRArgs = IRArgNo;
1200}
1201}  // namespace
1202
1203/***/
1204
1205bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1206  return FI.getReturnInfo().isIndirect();
1207}
1208
1209bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1210  return ReturnTypeUsesSRet(FI) &&
1211         getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1212}
1213
1214bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1215  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1216    switch (BT->getKind()) {
1217    default:
1218      return false;
1219    case BuiltinType::Float:
1220      return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1221    case BuiltinType::Double:
1222      return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1223    case BuiltinType::LongDouble:
1224      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1225    }
1226  }
1227
1228  return false;
1229}
1230
1231bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1232  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1233    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1234      if (BT->getKind() == BuiltinType::LongDouble)
1235        return getTarget().useObjCFP2RetForComplexLongDouble();
1236    }
1237  }
1238
1239  return false;
1240}
1241
1242llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1243  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1244  return GetFunctionType(FI);
1245}
1246
1247llvm::FunctionType *
1248CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1249
1250  bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1251  (void)Inserted;
1252  assert(Inserted && "Recursively being processed?");
1253
1254  llvm::Type *resultType = nullptr;
1255  const ABIArgInfo &retAI = FI.getReturnInfo();
1256  switch (retAI.getKind()) {
1257  case ABIArgInfo::Expand:
1258    llvm_unreachable("Invalid ABI kind for return argument");
1259
1260  case ABIArgInfo::Extend:
1261  case ABIArgInfo::Direct:
1262    resultType = retAI.getCoerceToType();
1263    break;
1264
1265  case ABIArgInfo::InAlloca:
1266    if (retAI.getInAllocaSRet()) {
1267      // sret things on win32 aren't void, they return the sret pointer.
1268      QualType ret = FI.getReturnType();
1269      llvm::Type *ty = ConvertType(ret);
1270      unsigned addressSpace = Context.getTargetAddressSpace(ret);
1271      resultType = llvm::PointerType::get(ty, addressSpace);
1272    } else {
1273      resultType = llvm::Type::getVoidTy(getLLVMContext());
1274    }
1275    break;
1276
1277  case ABIArgInfo::Indirect: {
1278    assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
1279    resultType = llvm::Type::getVoidTy(getLLVMContext());
1280    break;
1281  }
1282
1283  case ABIArgInfo::Ignore:
1284    resultType = llvm::Type::getVoidTy(getLLVMContext());
1285    break;
1286  }
1287
1288  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1289  SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1290
1291  // Add type for sret argument.
1292  if (IRFunctionArgs.hasSRetArg()) {
1293    QualType Ret = FI.getReturnType();
1294    llvm::Type *Ty = ConvertType(Ret);
1295    unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1296    ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1297        llvm::PointerType::get(Ty, AddressSpace);
1298  }
1299
1300  // Add type for inalloca argument.
1301  if (IRFunctionArgs.hasInallocaArg()) {
1302    auto ArgStruct = FI.getArgStruct();
1303    assert(ArgStruct);
1304    ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1305  }
1306
1307  // Add in all of the required arguments.
1308  unsigned ArgNo = 0;
1309  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1310                                     ie = it + FI.getNumRequiredArgs();
1311  for (; it != ie; ++it, ++ArgNo) {
1312    const ABIArgInfo &ArgInfo = it->info;
1313
1314    // Insert a padding type to ensure proper alignment.
1315    if (IRFunctionArgs.hasPaddingArg(ArgNo))
1316      ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1317          ArgInfo.getPaddingType();
1318
1319    unsigned FirstIRArg, NumIRArgs;
1320    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1321
1322    switch (ArgInfo.getKind()) {
1323    case ABIArgInfo::Ignore:
1324    case ABIArgInfo::InAlloca:
1325      assert(NumIRArgs == 0);
1326      break;
1327
1328    case ABIArgInfo::Indirect: {
1329      assert(NumIRArgs == 1);
1330      // indirect arguments are always on the stack, which is addr space #0.
1331      llvm::Type *LTy = ConvertTypeForMem(it->type);
1332      ArgTypes[FirstIRArg] = LTy->getPointerTo();
1333      break;
1334    }
1335
1336    case ABIArgInfo::Extend:
1337    case ABIArgInfo::Direct: {
1338      // Fast-isel and the optimizer generally like scalar values better than
1339      // FCAs, so we flatten them if this is safe to do for this argument.
1340      llvm::Type *argType = ArgInfo.getCoerceToType();
1341      llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1342      if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1343        assert(NumIRArgs == st->getNumElements());
1344        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1345          ArgTypes[FirstIRArg + i] = st->getElementType(i);
1346      } else {
1347        assert(NumIRArgs == 1);
1348        ArgTypes[FirstIRArg] = argType;
1349      }
1350      break;
1351    }
1352
1353    case ABIArgInfo::Expand:
1354      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1355      getExpandedTypes(it->type, ArgTypesIter);
1356      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1357      break;
1358    }
1359  }
1360
1361  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1362  assert(Erased && "Not in set?");
1363
1364  return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1365}
1366
1367llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1368  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1369  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1370
1371  if (!isFuncTypeConvertible(FPT))
1372    return llvm::StructType::get(getLLVMContext());
1373
1374  const CGFunctionInfo *Info;
1375  if (isa<CXXDestructorDecl>(MD))
1376    Info =
1377        &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1378  else
1379    Info = &arrangeCXXMethodDeclaration(MD);
1380  return GetFunctionType(*Info);
1381}
1382
1383void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1384                                           const Decl *TargetDecl,
1385                                           AttributeListType &PAL,
1386                                           unsigned &CallingConv,
1387                                           bool AttrOnCallSite) {
1388  llvm::AttrBuilder FuncAttrs;
1389  llvm::AttrBuilder RetAttrs;
1390  bool HasOptnone = false;
1391
1392  CallingConv = FI.getEffectiveCallingConvention();
1393
1394  if (FI.isNoReturn())
1395    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1396
1397  // FIXME: handle sseregparm someday...
1398  if (TargetDecl) {
1399    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1400      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1401    if (TargetDecl->hasAttr<NoThrowAttr>())
1402      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1403    if (TargetDecl->hasAttr<NoReturnAttr>())
1404      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1405    if (TargetDecl->hasAttr<NoDuplicateAttr>())
1406      FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1407
1408    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1409      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1410      if (FPT && FPT->isNothrow(getContext()))
1411        FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1412      // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1413      // These attributes are not inherited by overloads.
1414      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1415      if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1416        FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1417    }
1418
1419    // 'const' and 'pure' attribute functions are also nounwind.
1420    if (TargetDecl->hasAttr<ConstAttr>()) {
1421      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1422      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1423    } else if (TargetDecl->hasAttr<PureAttr>()) {
1424      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1425      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1426    }
1427    if (TargetDecl->hasAttr<RestrictAttr>())
1428      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1429    if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1430      RetAttrs.addAttribute(llvm::Attribute::NonNull);
1431
1432    HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1433  }
1434
1435  // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1436  if (!HasOptnone) {
1437    if (CodeGenOpts.OptimizeSize)
1438      FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1439    if (CodeGenOpts.OptimizeSize == 2)
1440      FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1441  }
1442
1443  if (CodeGenOpts.DisableRedZone)
1444    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1445  if (CodeGenOpts.NoImplicitFloat)
1446    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1447  if (CodeGenOpts.EnableSegmentedStacks &&
1448      !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1449    FuncAttrs.addAttribute("split-stack");
1450
1451  if (AttrOnCallSite) {
1452    // Attributes that should go on the call site only.
1453    if (!CodeGenOpts.SimplifyLibCalls)
1454      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1455  } else {
1456    // Attributes that should go on the function, but not the call site.
1457    if (!CodeGenOpts.DisableFPElim) {
1458      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1459    } else if (CodeGenOpts.OmitLeafFramePointer) {
1460      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1461      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1462    } else {
1463      FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1464      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1465    }
1466
1467    FuncAttrs.addAttribute("less-precise-fpmad",
1468                           llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1469    FuncAttrs.addAttribute("no-infs-fp-math",
1470                           llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1471    FuncAttrs.addAttribute("no-nans-fp-math",
1472                           llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1473    FuncAttrs.addAttribute("unsafe-fp-math",
1474                           llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1475    FuncAttrs.addAttribute("use-soft-float",
1476                           llvm::toStringRef(CodeGenOpts.SoftFloat));
1477    FuncAttrs.addAttribute("stack-protector-buffer-size",
1478                           llvm::utostr(CodeGenOpts.SSPBufferSize));
1479
1480    if (!CodeGenOpts.StackRealignment)
1481      FuncAttrs.addAttribute("no-realign-stack");
1482
1483    // Add target-cpu and target-features work if they differ from the defaults.
1484    std::string &CPU = getTarget().getTargetOpts().CPU;
1485    if (CPU != "" && CPU != getTarget().getTriple().getArchName())
1486      FuncAttrs.addAttribute("target-cpu", getTarget().getTargetOpts().CPU);
1487
1488    // TODO: FeaturesAsWritten gets us the features on the command line,
1489    // for canonicalization purposes we might want to avoid putting features
1490    // in the target-features set if we know it'll be one of the default
1491    // features in the backend, e.g. corei7-avx and +avx.
1492    std::vector<std::string> &Features =
1493        getTarget().getTargetOpts().FeaturesAsWritten;
1494    if (!Features.empty()) {
1495      std::stringstream S;
1496      std::copy(Features.begin(), Features.end(),
1497                std::ostream_iterator<std::string>(S, ","));
1498      // The drop_back gets rid of the trailing space.
1499      FuncAttrs.addAttribute("target-features",
1500                             StringRef(S.str()).drop_back(1));
1501    }
1502  }
1503
1504  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1505
1506  QualType RetTy = FI.getReturnType();
1507  const ABIArgInfo &RetAI = FI.getReturnInfo();
1508  switch (RetAI.getKind()) {
1509  case ABIArgInfo::Extend:
1510    if (RetTy->hasSignedIntegerRepresentation())
1511      RetAttrs.addAttribute(llvm::Attribute::SExt);
1512    else if (RetTy->hasUnsignedIntegerRepresentation())
1513      RetAttrs.addAttribute(llvm::Attribute::ZExt);
1514    // FALL THROUGH
1515  case ABIArgInfo::Direct:
1516    if (RetAI.getInReg())
1517      RetAttrs.addAttribute(llvm::Attribute::InReg);
1518    break;
1519  case ABIArgInfo::Ignore:
1520    break;
1521
1522  case ABIArgInfo::InAlloca:
1523  case ABIArgInfo::Indirect: {
1524    // inalloca and sret disable readnone and readonly
1525    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1526      .removeAttribute(llvm::Attribute::ReadNone);
1527    break;
1528  }
1529
1530  case ABIArgInfo::Expand:
1531    llvm_unreachable("Invalid ABI kind for return argument");
1532  }
1533
1534  if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1535    QualType PTy = RefTy->getPointeeType();
1536    if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1537      RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1538                                        .getQuantity());
1539    else if (getContext().getTargetAddressSpace(PTy) == 0)
1540      RetAttrs.addAttribute(llvm::Attribute::NonNull);
1541  }
1542
1543  // Attach return attributes.
1544  if (RetAttrs.hasAttributes()) {
1545    PAL.push_back(llvm::AttributeSet::get(
1546        getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1547  }
1548
1549  // Attach attributes to sret.
1550  if (IRFunctionArgs.hasSRetArg()) {
1551    llvm::AttrBuilder SRETAttrs;
1552    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1553    if (RetAI.getInReg())
1554      SRETAttrs.addAttribute(llvm::Attribute::InReg);
1555    PAL.push_back(llvm::AttributeSet::get(
1556        getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1557  }
1558
1559  // Attach attributes to inalloca argument.
1560  if (IRFunctionArgs.hasInallocaArg()) {
1561    llvm::AttrBuilder Attrs;
1562    Attrs.addAttribute(llvm::Attribute::InAlloca);
1563    PAL.push_back(llvm::AttributeSet::get(
1564        getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1565  }
1566
1567  unsigned ArgNo = 0;
1568  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1569                                          E = FI.arg_end();
1570       I != E; ++I, ++ArgNo) {
1571    QualType ParamType = I->type;
1572    const ABIArgInfo &AI = I->info;
1573    llvm::AttrBuilder Attrs;
1574
1575    // Add attribute for padding argument, if necessary.
1576    if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1577      if (AI.getPaddingInReg())
1578        PAL.push_back(llvm::AttributeSet::get(
1579            getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1580            llvm::Attribute::InReg));
1581    }
1582
1583    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1584    // have the corresponding parameter variable.  It doesn't make
1585    // sense to do it here because parameters are so messed up.
1586    switch (AI.getKind()) {
1587    case ABIArgInfo::Extend:
1588      if (ParamType->isSignedIntegerOrEnumerationType())
1589        Attrs.addAttribute(llvm::Attribute::SExt);
1590      else if (ParamType->isUnsignedIntegerOrEnumerationType())
1591        Attrs.addAttribute(llvm::Attribute::ZExt);
1592      // FALL THROUGH
1593    case ABIArgInfo::Direct:
1594      if (ArgNo == 0 && FI.isChainCall())
1595        Attrs.addAttribute(llvm::Attribute::Nest);
1596      else if (AI.getInReg())
1597        Attrs.addAttribute(llvm::Attribute::InReg);
1598      break;
1599
1600    case ABIArgInfo::Indirect:
1601      if (AI.getInReg())
1602        Attrs.addAttribute(llvm::Attribute::InReg);
1603
1604      if (AI.getIndirectByVal())
1605        Attrs.addAttribute(llvm::Attribute::ByVal);
1606
1607      Attrs.addAlignmentAttr(AI.getIndirectAlign());
1608
1609      // byval disables readnone and readonly.
1610      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1611        .removeAttribute(llvm::Attribute::ReadNone);
1612      break;
1613
1614    case ABIArgInfo::Ignore:
1615    case ABIArgInfo::Expand:
1616      continue;
1617
1618    case ABIArgInfo::InAlloca:
1619      // inalloca disables readnone and readonly.
1620      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1621          .removeAttribute(llvm::Attribute::ReadNone);
1622      continue;
1623    }
1624
1625    if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1626      QualType PTy = RefTy->getPointeeType();
1627      if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1628        Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1629                                       .getQuantity());
1630      else if (getContext().getTargetAddressSpace(PTy) == 0)
1631        Attrs.addAttribute(llvm::Attribute::NonNull);
1632    }
1633
1634    if (Attrs.hasAttributes()) {
1635      unsigned FirstIRArg, NumIRArgs;
1636      std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1637      for (unsigned i = 0; i < NumIRArgs; i++)
1638        PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1639                                              FirstIRArg + i + 1, Attrs));
1640    }
1641  }
1642  assert(ArgNo == FI.arg_size());
1643
1644  if (FuncAttrs.hasAttributes())
1645    PAL.push_back(llvm::
1646                  AttributeSet::get(getLLVMContext(),
1647                                    llvm::AttributeSet::FunctionIndex,
1648                                    FuncAttrs));
1649}
1650
1651/// An argument came in as a promoted argument; demote it back to its
1652/// declared type.
1653static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1654                                         const VarDecl *var,
1655                                         llvm::Value *value) {
1656  llvm::Type *varType = CGF.ConvertType(var->getType());
1657
1658  // This can happen with promotions that actually don't change the
1659  // underlying type, like the enum promotions.
1660  if (value->getType() == varType) return value;
1661
1662  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1663         && "unexpected promotion type");
1664
1665  if (isa<llvm::IntegerType>(varType))
1666    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1667
1668  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1669}
1670
1671/// Returns the attribute (either parameter attribute, or function
1672/// attribute), which declares argument ArgNo to be non-null.
1673static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1674                                         QualType ArgType, unsigned ArgNo) {
1675  // FIXME: __attribute__((nonnull)) can also be applied to:
1676  //   - references to pointers, where the pointee is known to be
1677  //     nonnull (apparently a Clang extension)
1678  //   - transparent unions containing pointers
1679  // In the former case, LLVM IR cannot represent the constraint. In
1680  // the latter case, we have no guarantee that the transparent union
1681  // is in fact passed as a pointer.
1682  if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1683    return nullptr;
1684  // First, check attribute on parameter itself.
1685  if (PVD) {
1686    if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1687      return ParmNNAttr;
1688  }
1689  // Check function attributes.
1690  if (!FD)
1691    return nullptr;
1692  for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1693    if (NNAttr->isNonNull(ArgNo))
1694      return NNAttr;
1695  }
1696  return nullptr;
1697}
1698
1699void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1700                                         llvm::Function *Fn,
1701                                         const FunctionArgList &Args) {
1702  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1703    // Naked functions don't have prologues.
1704    return;
1705
1706  // If this is an implicit-return-zero function, go ahead and
1707  // initialize the return value.  TODO: it might be nice to have
1708  // a more general mechanism for this that didn't require synthesized
1709  // return statements.
1710  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1711    if (FD->hasImplicitReturnZero()) {
1712      QualType RetTy = FD->getReturnType().getUnqualifiedType();
1713      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1714      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1715      Builder.CreateStore(Zero, ReturnValue);
1716    }
1717  }
1718
1719  // FIXME: We no longer need the types from FunctionArgList; lift up and
1720  // simplify.
1721
1722  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1723  // Flattened function arguments.
1724  SmallVector<llvm::Argument *, 16> FnArgs;
1725  FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1726  for (auto &Arg : Fn->args()) {
1727    FnArgs.push_back(&Arg);
1728  }
1729  assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1730
1731  // If we're using inalloca, all the memory arguments are GEPs off of the last
1732  // parameter, which is a pointer to the complete memory area.
1733  llvm::Value *ArgStruct = nullptr;
1734  if (IRFunctionArgs.hasInallocaArg()) {
1735    ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
1736    assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1737  }
1738
1739  // Name the struct return parameter.
1740  if (IRFunctionArgs.hasSRetArg()) {
1741    auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1742    AI->setName("agg.result");
1743    AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1744                                        llvm::Attribute::NoAlias));
1745  }
1746
1747  // Track if we received the parameter as a pointer (indirect, byval, or
1748  // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1749  // into a local alloca for us.
1750  enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1751  typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1752  SmallVector<ValueAndIsPtr, 16> ArgVals;
1753  ArgVals.reserve(Args.size());
1754
1755  // Create a pointer value for every parameter declaration.  This usually
1756  // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1757  // any cleanups or do anything that might unwind.  We do that separately, so
1758  // we can push the cleanups in the correct order for the ABI.
1759  assert(FI.arg_size() == Args.size() &&
1760         "Mismatch between function signature & arguments.");
1761  unsigned ArgNo = 0;
1762  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1763  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1764       i != e; ++i, ++info_it, ++ArgNo) {
1765    const VarDecl *Arg = *i;
1766    QualType Ty = info_it->type;
1767    const ABIArgInfo &ArgI = info_it->info;
1768
1769    bool isPromoted =
1770      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1771
1772    unsigned FirstIRArg, NumIRArgs;
1773    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1774
1775    switch (ArgI.getKind()) {
1776    case ABIArgInfo::InAlloca: {
1777      assert(NumIRArgs == 0);
1778      llvm::Value *V =
1779          Builder.CreateStructGEP(FI.getArgStruct(), ArgStruct,
1780                                  ArgI.getInAllocaFieldIndex(), Arg->getName());
1781      ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1782      break;
1783    }
1784
1785    case ABIArgInfo::Indirect: {
1786      assert(NumIRArgs == 1);
1787      llvm::Value *V = FnArgs[FirstIRArg];
1788
1789      if (!hasScalarEvaluationKind(Ty)) {
1790        // Aggregates and complex variables are accessed by reference.  All we
1791        // need to do is realign the value, if requested
1792        if (ArgI.getIndirectRealign()) {
1793          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1794
1795          // Copy from the incoming argument pointer to the temporary with the
1796          // appropriate alignment.
1797          //
1798          // FIXME: We should have a common utility for generating an aggregate
1799          // copy.
1800          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1801          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1802          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1803          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1804          Builder.CreateMemCpy(Dst,
1805                               Src,
1806                               llvm::ConstantInt::get(IntPtrTy,
1807                                                      Size.getQuantity()),
1808                               ArgI.getIndirectAlign(),
1809                               false);
1810          V = AlignedTemp;
1811        }
1812        ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1813      } else {
1814        // Load scalar value from indirect argument.
1815        CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1816        V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1817                             Arg->getLocStart());
1818
1819        if (isPromoted)
1820          V = emitArgumentDemotion(*this, Arg, V);
1821        ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1822      }
1823      break;
1824    }
1825
1826    case ABIArgInfo::Extend:
1827    case ABIArgInfo::Direct: {
1828
1829      // If we have the trivial case, handle it with no muss and fuss.
1830      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1831          ArgI.getCoerceToType() == ConvertType(Ty) &&
1832          ArgI.getDirectOffset() == 0) {
1833        assert(NumIRArgs == 1);
1834        auto AI = FnArgs[FirstIRArg];
1835        llvm::Value *V = AI;
1836
1837        if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1838          if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1839                             PVD->getFunctionScopeIndex()))
1840            AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1841                                                AI->getArgNo() + 1,
1842                                                llvm::Attribute::NonNull));
1843
1844          QualType OTy = PVD->getOriginalType();
1845          if (const auto *ArrTy =
1846              getContext().getAsConstantArrayType(OTy)) {
1847            // A C99 array parameter declaration with the static keyword also
1848            // indicates dereferenceability, and if the size is constant we can
1849            // use the dereferenceable attribute (which requires the size in
1850            // bytes).
1851            if (ArrTy->getSizeModifier() == ArrayType::Static) {
1852              QualType ETy = ArrTy->getElementType();
1853              uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1854              if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1855                  ArrSize) {
1856                llvm::AttrBuilder Attrs;
1857                Attrs.addDereferenceableAttr(
1858                  getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1859                AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1860                                                    AI->getArgNo() + 1, Attrs));
1861              } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1862                AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1863                                                    AI->getArgNo() + 1,
1864                                                    llvm::Attribute::NonNull));
1865              }
1866            }
1867          } else if (const auto *ArrTy =
1868                     getContext().getAsVariableArrayType(OTy)) {
1869            // For C99 VLAs with the static keyword, we don't know the size so
1870            // we can't use the dereferenceable attribute, but in addrspace(0)
1871            // we know that it must be nonnull.
1872            if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1873                !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1874              AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1875                                                  AI->getArgNo() + 1,
1876                                                  llvm::Attribute::NonNull));
1877          }
1878
1879          const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1880          if (!AVAttr)
1881            if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1882              AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1883          if (AVAttr) {
1884            llvm::Value *AlignmentValue =
1885              EmitScalarExpr(AVAttr->getAlignment());
1886            llvm::ConstantInt *AlignmentCI =
1887              cast<llvm::ConstantInt>(AlignmentValue);
1888            unsigned Alignment =
1889              std::min((unsigned) AlignmentCI->getZExtValue(),
1890                       +llvm::Value::MaximumAlignment);
1891
1892            llvm::AttrBuilder Attrs;
1893            Attrs.addAlignmentAttr(Alignment);
1894            AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1895                                                AI->getArgNo() + 1, Attrs));
1896          }
1897        }
1898
1899        if (Arg->getType().isRestrictQualified())
1900          AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1901                                              AI->getArgNo() + 1,
1902                                              llvm::Attribute::NoAlias));
1903
1904        // Ensure the argument is the correct type.
1905        if (V->getType() != ArgI.getCoerceToType())
1906          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1907
1908        if (isPromoted)
1909          V = emitArgumentDemotion(*this, Arg, V);
1910
1911        if (const CXXMethodDecl *MD =
1912            dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1913          if (MD->isVirtual() && Arg == CXXABIThisDecl)
1914            V = CGM.getCXXABI().
1915                adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1916        }
1917
1918        // Because of merging of function types from multiple decls it is
1919        // possible for the type of an argument to not match the corresponding
1920        // type in the function type. Since we are codegening the callee
1921        // in here, add a cast to the argument type.
1922        llvm::Type *LTy = ConvertType(Arg->getType());
1923        if (V->getType() != LTy)
1924          V = Builder.CreateBitCast(V, LTy);
1925
1926        ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1927        break;
1928      }
1929
1930      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1931
1932      // The alignment we need to use is the max of the requested alignment for
1933      // the argument plus the alignment required by our access code below.
1934      unsigned AlignmentToUse =
1935        CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1936      AlignmentToUse = std::max(AlignmentToUse,
1937                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1938
1939      Alloca->setAlignment(AlignmentToUse);
1940      llvm::Value *V = Alloca;
1941      llvm::Value *Ptr = V;    // Pointer to store into.
1942
1943      // If the value is offset in memory, apply the offset now.
1944      if (unsigned Offs = ArgI.getDirectOffset()) {
1945        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1946        Ptr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), Ptr, Offs);
1947        Ptr = Builder.CreateBitCast(Ptr,
1948                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1949      }
1950
1951      // Fast-isel and the optimizer generally like scalar values better than
1952      // FCAs, so we flatten them if this is safe to do for this argument.
1953      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1954      if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
1955          STy->getNumElements() > 1) {
1956        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1957        llvm::Type *DstTy =
1958          cast<llvm::PointerType>(Ptr->getType())->getElementType();
1959        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1960
1961        if (SrcSize <= DstSize) {
1962          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1963
1964          assert(STy->getNumElements() == NumIRArgs);
1965          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1966            auto AI = FnArgs[FirstIRArg + i];
1967            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1968            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, Ptr, 0, i);
1969            Builder.CreateStore(AI, EltPtr);
1970          }
1971        } else {
1972          llvm::AllocaInst *TempAlloca =
1973            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1974          TempAlloca->setAlignment(AlignmentToUse);
1975          llvm::Value *TempV = TempAlloca;
1976
1977          assert(STy->getNumElements() == NumIRArgs);
1978          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1979            auto AI = FnArgs[FirstIRArg + i];
1980            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1981            llvm::Value *EltPtr =
1982                Builder.CreateConstGEP2_32(ArgI.getCoerceToType(), TempV, 0, i);
1983            Builder.CreateStore(AI, EltPtr);
1984          }
1985
1986          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1987        }
1988      } else {
1989        // Simple case, just do a coerced store of the argument into the alloca.
1990        assert(NumIRArgs == 1);
1991        auto AI = FnArgs[FirstIRArg];
1992        AI->setName(Arg->getName() + ".coerce");
1993        CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
1994      }
1995
1996
1997      // Match to what EmitParmDecl is expecting for this type.
1998      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1999        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
2000        if (isPromoted)
2001          V = emitArgumentDemotion(*this, Arg, V);
2002        ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
2003      } else {
2004        ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
2005      }
2006      break;
2007    }
2008
2009    case ABIArgInfo::Expand: {
2010      // If this structure was expanded into multiple arguments then
2011      // we need to create a temporary and reconstruct it from the
2012      // arguments.
2013      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
2014      CharUnits Align = getContext().getDeclAlign(Arg);
2015      Alloca->setAlignment(Align.getQuantity());
2016      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
2017      ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
2018
2019      auto FnArgIter = FnArgs.begin() + FirstIRArg;
2020      ExpandTypeFromArgs(Ty, LV, FnArgIter);
2021      assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2022      for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2023        auto AI = FnArgs[FirstIRArg + i];
2024        AI->setName(Arg->getName() + "." + Twine(i));
2025      }
2026      break;
2027    }
2028
2029    case ABIArgInfo::Ignore:
2030      assert(NumIRArgs == 0);
2031      // Initialize the local variable appropriately.
2032      if (!hasScalarEvaluationKind(Ty)) {
2033        ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
2034      } else {
2035        llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2036        ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
2037      }
2038      break;
2039    }
2040  }
2041
2042  if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2043    for (int I = Args.size() - 1; I >= 0; --I)
2044      EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2045                   I + 1);
2046  } else {
2047    for (unsigned I = 0, E = Args.size(); I != E; ++I)
2048      EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2049                   I + 1);
2050  }
2051}
2052
2053static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2054  while (insn->use_empty()) {
2055    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2056    if (!bitcast) return;
2057
2058    // This is "safe" because we would have used a ConstantExpr otherwise.
2059    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2060    bitcast->eraseFromParent();
2061  }
2062}
2063
2064/// Try to emit a fused autorelease of a return result.
2065static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2066                                                    llvm::Value *result) {
2067  // We must be immediately followed the cast.
2068  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2069  if (BB->empty()) return nullptr;
2070  if (&BB->back() != result) return nullptr;
2071
2072  llvm::Type *resultType = result->getType();
2073
2074  // result is in a BasicBlock and is therefore an Instruction.
2075  llvm::Instruction *generator = cast<llvm::Instruction>(result);
2076
2077  SmallVector<llvm::Instruction*,4> insnsToKill;
2078
2079  // Look for:
2080  //  %generator = bitcast %type1* %generator2 to %type2*
2081  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2082    // We would have emitted this as a constant if the operand weren't
2083    // an Instruction.
2084    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2085
2086    // Require the generator to be immediately followed by the cast.
2087    if (generator->getNextNode() != bitcast)
2088      return nullptr;
2089
2090    insnsToKill.push_back(bitcast);
2091  }
2092
2093  // Look for:
2094  //   %generator = call i8* @objc_retain(i8* %originalResult)
2095  // or
2096  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2097  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2098  if (!call) return nullptr;
2099
2100  bool doRetainAutorelease;
2101
2102  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
2103    doRetainAutorelease = true;
2104  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
2105                                          .objc_retainAutoreleasedReturnValue) {
2106    doRetainAutorelease = false;
2107
2108    // If we emitted an assembly marker for this call (and the
2109    // ARCEntrypoints field should have been set if so), go looking
2110    // for that call.  If we can't find it, we can't do this
2111    // optimization.  But it should always be the immediately previous
2112    // instruction, unless we needed bitcasts around the call.
2113    if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
2114      llvm::Instruction *prev = call->getPrevNode();
2115      assert(prev);
2116      if (isa<llvm::BitCastInst>(prev)) {
2117        prev = prev->getPrevNode();
2118        assert(prev);
2119      }
2120      assert(isa<llvm::CallInst>(prev));
2121      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2122               CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
2123      insnsToKill.push_back(prev);
2124    }
2125  } else {
2126    return nullptr;
2127  }
2128
2129  result = call->getArgOperand(0);
2130  insnsToKill.push_back(call);
2131
2132  // Keep killing bitcasts, for sanity.  Note that we no longer care
2133  // about precise ordering as long as there's exactly one use.
2134  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2135    if (!bitcast->hasOneUse()) break;
2136    insnsToKill.push_back(bitcast);
2137    result = bitcast->getOperand(0);
2138  }
2139
2140  // Delete all the unnecessary instructions, from latest to earliest.
2141  for (SmallVectorImpl<llvm::Instruction*>::iterator
2142         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2143    (*i)->eraseFromParent();
2144
2145  // Do the fused retain/autorelease if we were asked to.
2146  if (doRetainAutorelease)
2147    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2148
2149  // Cast back to the result type.
2150  return CGF.Builder.CreateBitCast(result, resultType);
2151}
2152
2153/// If this is a +1 of the value of an immutable 'self', remove it.
2154static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2155                                          llvm::Value *result) {
2156  // This is only applicable to a method with an immutable 'self'.
2157  const ObjCMethodDecl *method =
2158    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2159  if (!method) return nullptr;
2160  const VarDecl *self = method->getSelfDecl();
2161  if (!self->getType().isConstQualified()) return nullptr;
2162
2163  // Look for a retain call.
2164  llvm::CallInst *retainCall =
2165    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2166  if (!retainCall ||
2167      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
2168    return nullptr;
2169
2170  // Look for an ordinary load of 'self'.
2171  llvm::Value *retainedValue = retainCall->getArgOperand(0);
2172  llvm::LoadInst *load =
2173    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2174  if (!load || load->isAtomic() || load->isVolatile() ||
2175      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
2176    return nullptr;
2177
2178  // Okay!  Burn it all down.  This relies for correctness on the
2179  // assumption that the retain is emitted as part of the return and
2180  // that thereafter everything is used "linearly".
2181  llvm::Type *resultType = result->getType();
2182  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2183  assert(retainCall->use_empty());
2184  retainCall->eraseFromParent();
2185  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2186
2187  return CGF.Builder.CreateBitCast(load, resultType);
2188}
2189
2190/// Emit an ARC autorelease of the result of a function.
2191///
2192/// \return the value to actually return from the function
2193static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2194                                            llvm::Value *result) {
2195  // If we're returning 'self', kill the initial retain.  This is a
2196  // heuristic attempt to "encourage correctness" in the really unfortunate
2197  // case where we have a return of self during a dealloc and we desperately
2198  // need to avoid the possible autorelease.
2199  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2200    return self;
2201
2202  // At -O0, try to emit a fused retain/autorelease.
2203  if (CGF.shouldUseFusedARCCalls())
2204    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2205      return fused;
2206
2207  return CGF.EmitARCAutoreleaseReturnValue(result);
2208}
2209
2210/// Heuristically search for a dominating store to the return-value slot.
2211static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2212  // If there are multiple uses of the return-value slot, just check
2213  // for something immediately preceding the IP.  Sometimes this can
2214  // happen with how we generate implicit-returns; it can also happen
2215  // with noreturn cleanups.
2216  if (!CGF.ReturnValue->hasOneUse()) {
2217    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2218    if (IP->empty()) return nullptr;
2219    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
2220    if (!store) return nullptr;
2221    if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
2222    assert(!store->isAtomic() && !store->isVolatile()); // see below
2223    return store;
2224  }
2225
2226  llvm::StoreInst *store =
2227    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
2228  if (!store) return nullptr;
2229
2230  // These aren't actually possible for non-coerced returns, and we
2231  // only care about non-coerced returns on this code path.
2232  assert(!store->isAtomic() && !store->isVolatile());
2233
2234  // Now do a first-and-dirty dominance check: just walk up the
2235  // single-predecessors chain from the current insertion point.
2236  llvm::BasicBlock *StoreBB = store->getParent();
2237  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2238  while (IP != StoreBB) {
2239    if (!(IP = IP->getSinglePredecessor()))
2240      return nullptr;
2241  }
2242
2243  // Okay, the store's basic block dominates the insertion point; we
2244  // can do our thing.
2245  return store;
2246}
2247
2248void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2249                                         bool EmitRetDbgLoc,
2250                                         SourceLocation EndLoc) {
2251  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2252    // Naked functions don't have epilogues.
2253    Builder.CreateUnreachable();
2254    return;
2255  }
2256
2257  // Functions with no result always return void.
2258  if (!ReturnValue) {
2259    Builder.CreateRetVoid();
2260    return;
2261  }
2262
2263  llvm::DebugLoc RetDbgLoc;
2264  llvm::Value *RV = nullptr;
2265  QualType RetTy = FI.getReturnType();
2266  const ABIArgInfo &RetAI = FI.getReturnInfo();
2267
2268  switch (RetAI.getKind()) {
2269  case ABIArgInfo::InAlloca:
2270    // Aggregrates get evaluated directly into the destination.  Sometimes we
2271    // need to return the sret value in a register, though.
2272    assert(hasAggregateEvaluationKind(RetTy));
2273    if (RetAI.getInAllocaSRet()) {
2274      llvm::Function::arg_iterator EI = CurFn->arg_end();
2275      --EI;
2276      llvm::Value *ArgStruct = EI;
2277      llvm::Value *SRet = Builder.CreateStructGEP(
2278          nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2279      RV = Builder.CreateLoad(SRet, "sret");
2280    }
2281    break;
2282
2283  case ABIArgInfo::Indirect: {
2284    auto AI = CurFn->arg_begin();
2285    if (RetAI.isSRetAfterThis())
2286      ++AI;
2287    switch (getEvaluationKind(RetTy)) {
2288    case TEK_Complex: {
2289      ComplexPairTy RT =
2290        EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
2291                          EndLoc);
2292      EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
2293                         /*isInit*/ true);
2294      break;
2295    }
2296    case TEK_Aggregate:
2297      // Do nothing; aggregrates get evaluated directly into the destination.
2298      break;
2299    case TEK_Scalar:
2300      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2301                        MakeNaturalAlignAddrLValue(AI, RetTy),
2302                        /*isInit*/ true);
2303      break;
2304    }
2305    break;
2306  }
2307
2308  case ABIArgInfo::Extend:
2309  case ABIArgInfo::Direct:
2310    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2311        RetAI.getDirectOffset() == 0) {
2312      // The internal return value temp always will have pointer-to-return-type
2313      // type, just do a load.
2314
2315      // If there is a dominating store to ReturnValue, we can elide
2316      // the load, zap the store, and usually zap the alloca.
2317      if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
2318        // Reuse the debug location from the store unless there is
2319        // cleanup code to be emitted between the store and return
2320        // instruction.
2321        if (EmitRetDbgLoc && !AutoreleaseResult)
2322          RetDbgLoc = SI->getDebugLoc();
2323        // Get the stored value and nuke the now-dead store.
2324        RV = SI->getValueOperand();
2325        SI->eraseFromParent();
2326
2327        // If that was the only use of the return value, nuke it as well now.
2328        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
2329          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
2330          ReturnValue = nullptr;
2331        }
2332
2333      // Otherwise, we have to do a simple load.
2334      } else {
2335        RV = Builder.CreateLoad(ReturnValue);
2336      }
2337    } else {
2338      llvm::Value *V = ReturnValue;
2339      // If the value is offset in memory, apply the offset now.
2340      if (unsigned Offs = RetAI.getDirectOffset()) {
2341        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
2342        V = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), V, Offs);
2343        V = Builder.CreateBitCast(V,
2344                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2345      }
2346
2347      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2348    }
2349
2350    // In ARC, end functions that return a retainable type with a call
2351    // to objc_autoreleaseReturnValue.
2352    if (AutoreleaseResult) {
2353      assert(getLangOpts().ObjCAutoRefCount &&
2354             !FI.isReturnsRetained() &&
2355             RetTy->isObjCRetainableType());
2356      RV = emitAutoreleaseOfResult(*this, RV);
2357    }
2358
2359    break;
2360
2361  case ABIArgInfo::Ignore:
2362    break;
2363
2364  case ABIArgInfo::Expand:
2365    llvm_unreachable("Invalid ABI kind for return argument");
2366  }
2367
2368  llvm::Instruction *Ret;
2369  if (RV) {
2370    if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2371      if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) {
2372        SanitizerScope SanScope(this);
2373        llvm::Value *Cond = Builder.CreateICmpNE(
2374            RV, llvm::Constant::getNullValue(RV->getType()));
2375        llvm::Constant *StaticData[] = {
2376            EmitCheckSourceLocation(EndLoc),
2377            EmitCheckSourceLocation(RetNNAttr->getLocation()),
2378        };
2379        EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2380                  "nonnull_return", StaticData, None);
2381      }
2382    }
2383    Ret = Builder.CreateRet(RV);
2384  } else {
2385    Ret = Builder.CreateRetVoid();
2386  }
2387
2388  if (RetDbgLoc)
2389    Ret->setDebugLoc(std::move(RetDbgLoc));
2390}
2391
2392static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2393  const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2394  return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2395}
2396
2397static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2398  // FIXME: Generate IR in one pass, rather than going back and fixing up these
2399  // placeholders.
2400  llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2401  llvm::Value *Placeholder =
2402      llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2403  Placeholder = CGF.Builder.CreateLoad(Placeholder);
2404  return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2405                               Ty.getQualifiers(),
2406                               AggValueSlot::IsNotDestructed,
2407                               AggValueSlot::DoesNotNeedGCBarriers,
2408                               AggValueSlot::IsNotAliased);
2409}
2410
2411void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2412                                          const VarDecl *param,
2413                                          SourceLocation loc) {
2414  // StartFunction converted the ABI-lowered parameter(s) into a
2415  // local alloca.  We need to turn that into an r-value suitable
2416  // for EmitCall.
2417  llvm::Value *local = GetAddrOfLocalVar(param);
2418
2419  QualType type = param->getType();
2420
2421  // For the most part, we just need to load the alloca, except:
2422  // 1) aggregate r-values are actually pointers to temporaries, and
2423  // 2) references to non-scalars are pointers directly to the aggregate.
2424  // I don't know why references to scalars are different here.
2425  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2426    if (!hasScalarEvaluationKind(ref->getPointeeType()))
2427      return args.add(RValue::getAggregate(local), type);
2428
2429    // Locals which are references to scalars are represented
2430    // with allocas holding the pointer.
2431    return args.add(RValue::get(Builder.CreateLoad(local)), type);
2432  }
2433
2434  assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2435         "cannot emit delegate call arguments for inalloca arguments!");
2436
2437  args.add(convertTempToRValue(local, type, loc), type);
2438}
2439
2440static bool isProvablyNull(llvm::Value *addr) {
2441  return isa<llvm::ConstantPointerNull>(addr);
2442}
2443
2444static bool isProvablyNonNull(llvm::Value *addr) {
2445  return isa<llvm::AllocaInst>(addr);
2446}
2447
2448/// Emit the actual writing-back of a writeback.
2449static void emitWriteback(CodeGenFunction &CGF,
2450                          const CallArgList::Writeback &writeback) {
2451  const LValue &srcLV = writeback.Source;
2452  llvm::Value *srcAddr = srcLV.getAddress();
2453  assert(!isProvablyNull(srcAddr) &&
2454         "shouldn't have writeback for provably null argument");
2455
2456  llvm::BasicBlock *contBB = nullptr;
2457
2458  // If the argument wasn't provably non-null, we need to null check
2459  // before doing the store.
2460  bool provablyNonNull = isProvablyNonNull(srcAddr);
2461  if (!provablyNonNull) {
2462    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2463    contBB = CGF.createBasicBlock("icr.done");
2464
2465    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2466    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2467    CGF.EmitBlock(writebackBB);
2468  }
2469
2470  // Load the value to writeback.
2471  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2472
2473  // Cast it back, in case we're writing an id to a Foo* or something.
2474  value = CGF.Builder.CreateBitCast(value,
2475               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2476                            "icr.writeback-cast");
2477
2478  // Perform the writeback.
2479
2480  // If we have a "to use" value, it's something we need to emit a use
2481  // of.  This has to be carefully threaded in: if it's done after the
2482  // release it's potentially undefined behavior (and the optimizer
2483  // will ignore it), and if it happens before the retain then the
2484  // optimizer could move the release there.
2485  if (writeback.ToUse) {
2486    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2487
2488    // Retain the new value.  No need to block-copy here:  the block's
2489    // being passed up the stack.
2490    value = CGF.EmitARCRetainNonBlock(value);
2491
2492    // Emit the intrinsic use here.
2493    CGF.EmitARCIntrinsicUse(writeback.ToUse);
2494
2495    // Load the old value (primitively).
2496    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2497
2498    // Put the new value in place (primitively).
2499    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2500
2501    // Release the old value.
2502    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2503
2504  // Otherwise, we can just do a normal lvalue store.
2505  } else {
2506    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2507  }
2508
2509  // Jump to the continuation block.
2510  if (!provablyNonNull)
2511    CGF.EmitBlock(contBB);
2512}
2513
2514static void emitWritebacks(CodeGenFunction &CGF,
2515                           const CallArgList &args) {
2516  for (const auto &I : args.writebacks())
2517    emitWriteback(CGF, I);
2518}
2519
2520static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2521                                            const CallArgList &CallArgs) {
2522  assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2523  ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2524    CallArgs.getCleanupsToDeactivate();
2525  // Iterate in reverse to increase the likelihood of popping the cleanup.
2526  for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2527         I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2528    CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2529    I->IsActiveIP->eraseFromParent();
2530  }
2531}
2532
2533static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2534  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2535    if (uop->getOpcode() == UO_AddrOf)
2536      return uop->getSubExpr();
2537  return nullptr;
2538}
2539
2540/// Emit an argument that's being passed call-by-writeback.  That is,
2541/// we are passing the address of
2542static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2543                             const ObjCIndirectCopyRestoreExpr *CRE) {
2544  LValue srcLV;
2545
2546  // Make an optimistic effort to emit the address as an l-value.
2547  // This can fail if the the argument expression is more complicated.
2548  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2549    srcLV = CGF.EmitLValue(lvExpr);
2550
2551  // Otherwise, just emit it as a scalar.
2552  } else {
2553    llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2554
2555    QualType srcAddrType =
2556      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2557    srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2558  }
2559  llvm::Value *srcAddr = srcLV.getAddress();
2560
2561  // The dest and src types don't necessarily match in LLVM terms
2562  // because of the crazy ObjC compatibility rules.
2563
2564  llvm::PointerType *destType =
2565    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2566
2567  // If the address is a constant null, just pass the appropriate null.
2568  if (isProvablyNull(srcAddr)) {
2569    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2570             CRE->getType());
2571    return;
2572  }
2573
2574  // Create the temporary.
2575  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2576                                           "icr.temp");
2577  // Loading an l-value can introduce a cleanup if the l-value is __weak,
2578  // and that cleanup will be conditional if we can't prove that the l-value
2579  // isn't null, so we need to register a dominating point so that the cleanups
2580  // system will make valid IR.
2581  CodeGenFunction::ConditionalEvaluation condEval(CGF);
2582
2583  // Zero-initialize it if we're not doing a copy-initialization.
2584  bool shouldCopy = CRE->shouldCopy();
2585  if (!shouldCopy) {
2586    llvm::Value *null =
2587      llvm::ConstantPointerNull::get(
2588        cast<llvm::PointerType>(destType->getElementType()));
2589    CGF.Builder.CreateStore(null, temp);
2590  }
2591
2592  llvm::BasicBlock *contBB = nullptr;
2593  llvm::BasicBlock *originBB = nullptr;
2594
2595  // If the address is *not* known to be non-null, we need to switch.
2596  llvm::Value *finalArgument;
2597
2598  bool provablyNonNull = isProvablyNonNull(srcAddr);
2599  if (provablyNonNull) {
2600    finalArgument = temp;
2601  } else {
2602    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2603
2604    finalArgument = CGF.Builder.CreateSelect(isNull,
2605                                   llvm::ConstantPointerNull::get(destType),
2606                                             temp, "icr.argument");
2607
2608    // If we need to copy, then the load has to be conditional, which
2609    // means we need control flow.
2610    if (shouldCopy) {
2611      originBB = CGF.Builder.GetInsertBlock();
2612      contBB = CGF.createBasicBlock("icr.cont");
2613      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2614      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2615      CGF.EmitBlock(copyBB);
2616      condEval.begin(CGF);
2617    }
2618  }
2619
2620  llvm::Value *valueToUse = nullptr;
2621
2622  // Perform a copy if necessary.
2623  if (shouldCopy) {
2624    RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2625    assert(srcRV.isScalar());
2626
2627    llvm::Value *src = srcRV.getScalarVal();
2628    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2629                                    "icr.cast");
2630
2631    // Use an ordinary store, not a store-to-lvalue.
2632    CGF.Builder.CreateStore(src, temp);
2633
2634    // If optimization is enabled, and the value was held in a
2635    // __strong variable, we need to tell the optimizer that this
2636    // value has to stay alive until we're doing the store back.
2637    // This is because the temporary is effectively unretained,
2638    // and so otherwise we can violate the high-level semantics.
2639    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2640        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2641      valueToUse = src;
2642    }
2643  }
2644
2645  // Finish the control flow if we needed it.
2646  if (shouldCopy && !provablyNonNull) {
2647    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2648    CGF.EmitBlock(contBB);
2649
2650    // Make a phi for the value to intrinsically use.
2651    if (valueToUse) {
2652      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2653                                                      "icr.to-use");
2654      phiToUse->addIncoming(valueToUse, copyBB);
2655      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2656                            originBB);
2657      valueToUse = phiToUse;
2658    }
2659
2660    condEval.end(CGF);
2661  }
2662
2663  args.addWriteback(srcLV, temp, valueToUse);
2664  args.add(RValue::get(finalArgument), CRE->getType());
2665}
2666
2667void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2668  assert(!StackBase && !StackCleanup.isValid());
2669
2670  // Save the stack.
2671  llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2672  StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2673
2674  // Control gets really tied up in landing pads, so we have to spill the
2675  // stacksave to an alloca to avoid violating SSA form.
2676  // TODO: This is dead if we never emit the cleanup.  We should create the
2677  // alloca and store lazily on the first cleanup emission.
2678  StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2679  CGF.Builder.CreateStore(StackBase, StackBaseMem);
2680  CGF.pushStackRestore(EHCleanup, StackBaseMem);
2681  StackCleanup = CGF.EHStack.getInnermostEHScope();
2682  assert(StackCleanup.isValid());
2683}
2684
2685void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2686  if (StackBase) {
2687    CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2688    llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2689    // We could load StackBase from StackBaseMem, but in the non-exceptional
2690    // case we can skip it.
2691    CGF.Builder.CreateCall(F, StackBase);
2692  }
2693}
2694
2695static void emitNonNullArgCheck(CodeGenFunction &CGF, RValue RV,
2696                                QualType ArgType, SourceLocation ArgLoc,
2697                                const FunctionDecl *FD, unsigned ParmNum) {
2698  if (!CGF.SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2699    return;
2700  auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2701  unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2702  auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2703  if (!NNAttr)
2704    return;
2705  CodeGenFunction::SanitizerScope SanScope(&CGF);
2706  assert(RV.isScalar());
2707  llvm::Value *V = RV.getScalarVal();
2708  llvm::Value *Cond =
2709      CGF.Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2710  llvm::Constant *StaticData[] = {
2711      CGF.EmitCheckSourceLocation(ArgLoc),
2712      CGF.EmitCheckSourceLocation(NNAttr->getLocation()),
2713      llvm::ConstantInt::get(CGF.Int32Ty, ArgNo + 1),
2714  };
2715  CGF.EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2716                "nonnull_arg", StaticData, None);
2717}
2718
2719void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2720                                   ArrayRef<QualType> ArgTypes,
2721                                   CallExpr::const_arg_iterator ArgBeg,
2722                                   CallExpr::const_arg_iterator ArgEnd,
2723                                   const FunctionDecl *CalleeDecl,
2724                                   unsigned ParamsToSkip) {
2725  // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2726  // because arguments are destroyed left to right in the callee.
2727  if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2728    // Insert a stack save if we're going to need any inalloca args.
2729    bool HasInAllocaArgs = false;
2730    for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2731         I != E && !HasInAllocaArgs; ++I)
2732      HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2733    if (HasInAllocaArgs) {
2734      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2735      Args.allocateArgumentMemory(*this);
2736    }
2737
2738    // Evaluate each argument.
2739    size_t CallArgsStart = Args.size();
2740    for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2741      CallExpr::const_arg_iterator Arg = ArgBeg + I;
2742      EmitCallArg(Args, *Arg, ArgTypes[I]);
2743      emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2744                          CalleeDecl, ParamsToSkip + I);
2745    }
2746
2747    // Un-reverse the arguments we just evaluated so they match up with the LLVM
2748    // IR function.
2749    std::reverse(Args.begin() + CallArgsStart, Args.end());
2750    return;
2751  }
2752
2753  for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2754    CallExpr::const_arg_iterator Arg = ArgBeg + I;
2755    assert(Arg != ArgEnd);
2756    EmitCallArg(Args, *Arg, ArgTypes[I]);
2757    emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2758                        CalleeDecl, ParamsToSkip + I);
2759  }
2760}
2761
2762namespace {
2763
2764struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2765  DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2766      : Addr(Addr), Ty(Ty) {}
2767
2768  llvm::Value *Addr;
2769  QualType Ty;
2770
2771  void Emit(CodeGenFunction &CGF, Flags flags) override {
2772    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2773    assert(!Dtor->isTrivial());
2774    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2775                              /*Delegating=*/false, Addr);
2776  }
2777};
2778
2779}
2780
2781struct DisableDebugLocationUpdates {
2782  CodeGenFunction &CGF;
2783  bool disabledDebugInfo;
2784  DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2785    if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2786      CGF.disableDebugInfo();
2787  }
2788  ~DisableDebugLocationUpdates() {
2789    if (disabledDebugInfo)
2790      CGF.enableDebugInfo();
2791  }
2792};
2793
2794void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2795                                  QualType type) {
2796  DisableDebugLocationUpdates Dis(*this, E);
2797  if (const ObjCIndirectCopyRestoreExpr *CRE
2798        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2799    assert(getLangOpts().ObjCAutoRefCount);
2800    assert(getContext().hasSameType(E->getType(), type));
2801    return emitWritebackArg(*this, args, CRE);
2802  }
2803
2804  assert(type->isReferenceType() == E->isGLValue() &&
2805         "reference binding to unmaterialized r-value!");
2806
2807  if (E->isGLValue()) {
2808    assert(E->getObjectKind() == OK_Ordinary);
2809    return args.add(EmitReferenceBindingToExpr(E), type);
2810  }
2811
2812  bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2813
2814  // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2815  // However, we still have to push an EH-only cleanup in case we unwind before
2816  // we make it to the call.
2817  if (HasAggregateEvalKind &&
2818      CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2819    // If we're using inalloca, use the argument memory.  Otherwise, use a
2820    // temporary.
2821    AggValueSlot Slot;
2822    if (args.isUsingInAlloca())
2823      Slot = createPlaceholderSlot(*this, type);
2824    else
2825      Slot = CreateAggTemp(type, "agg.tmp");
2826
2827    const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2828    bool DestroyedInCallee =
2829        RD && RD->hasNonTrivialDestructor() &&
2830        CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2831    if (DestroyedInCallee)
2832      Slot.setExternallyDestructed();
2833
2834    EmitAggExpr(E, Slot);
2835    RValue RV = Slot.asRValue();
2836    args.add(RV, type);
2837
2838    if (DestroyedInCallee) {
2839      // Create a no-op GEP between the placeholder and the cleanup so we can
2840      // RAUW it successfully.  It also serves as a marker of the first
2841      // instruction where the cleanup is active.
2842      pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2843      // This unreachable is a temporary marker which will be removed later.
2844      llvm::Instruction *IsActive = Builder.CreateUnreachable();
2845      args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2846    }
2847    return;
2848  }
2849
2850  if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2851      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2852    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2853    assert(L.isSimple());
2854    if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2855      args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2856    } else {
2857      // We can't represent a misaligned lvalue in the CallArgList, so copy
2858      // to an aligned temporary now.
2859      llvm::Value *tmp = CreateMemTemp(type);
2860      EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2861                        L.getAlignment());
2862      args.add(RValue::getAggregate(tmp), type);
2863    }
2864    return;
2865  }
2866
2867  args.add(EmitAnyExprToTemp(E), type);
2868}
2869
2870QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2871  // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2872  // implicitly widens null pointer constants that are arguments to varargs
2873  // functions to pointer-sized ints.
2874  if (!getTarget().getTriple().isOSWindows())
2875    return Arg->getType();
2876
2877  if (Arg->getType()->isIntegerType() &&
2878      getContext().getTypeSize(Arg->getType()) <
2879          getContext().getTargetInfo().getPointerWidth(0) &&
2880      Arg->isNullPointerConstant(getContext(),
2881                                 Expr::NPC_ValueDependentIsNotNull)) {
2882    return getContext().getIntPtrType();
2883  }
2884
2885  return Arg->getType();
2886}
2887
2888// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2889// optimizer it can aggressively ignore unwind edges.
2890void
2891CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2892  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2893      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2894    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2895                      CGM.getNoObjCARCExceptionsMetadata());
2896}
2897
2898/// Emits a call to the given no-arguments nounwind runtime function.
2899llvm::CallInst *
2900CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2901                                         const llvm::Twine &name) {
2902  return EmitNounwindRuntimeCall(callee, None, name);
2903}
2904
2905/// Emits a call to the given nounwind runtime function.
2906llvm::CallInst *
2907CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2908                                         ArrayRef<llvm::Value*> args,
2909                                         const llvm::Twine &name) {
2910  llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2911  call->setDoesNotThrow();
2912  return call;
2913}
2914
2915/// Emits a simple call (never an invoke) to the given no-arguments
2916/// runtime function.
2917llvm::CallInst *
2918CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2919                                 const llvm::Twine &name) {
2920  return EmitRuntimeCall(callee, None, name);
2921}
2922
2923/// Emits a simple call (never an invoke) to the given runtime
2924/// function.
2925llvm::CallInst *
2926CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2927                                 ArrayRef<llvm::Value*> args,
2928                                 const llvm::Twine &name) {
2929  llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2930  call->setCallingConv(getRuntimeCC());
2931  return call;
2932}
2933
2934/// Emits a call or invoke to the given noreturn runtime function.
2935void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2936                                               ArrayRef<llvm::Value*> args) {
2937  if (getInvokeDest()) {
2938    llvm::InvokeInst *invoke =
2939      Builder.CreateInvoke(callee,
2940                           getUnreachableBlock(),
2941                           getInvokeDest(),
2942                           args);
2943    invoke->setDoesNotReturn();
2944    invoke->setCallingConv(getRuntimeCC());
2945  } else {
2946    llvm::CallInst *call = Builder.CreateCall(callee, args);
2947    call->setDoesNotReturn();
2948    call->setCallingConv(getRuntimeCC());
2949    Builder.CreateUnreachable();
2950  }
2951  PGO.setCurrentRegionUnreachable();
2952}
2953
2954/// Emits a call or invoke instruction to the given nullary runtime
2955/// function.
2956llvm::CallSite
2957CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2958                                         const Twine &name) {
2959  return EmitRuntimeCallOrInvoke(callee, None, name);
2960}
2961
2962/// Emits a call or invoke instruction to the given runtime function.
2963llvm::CallSite
2964CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2965                                         ArrayRef<llvm::Value*> args,
2966                                         const Twine &name) {
2967  llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2968  callSite.setCallingConv(getRuntimeCC());
2969  return callSite;
2970}
2971
2972llvm::CallSite
2973CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2974                                  const Twine &Name) {
2975  return EmitCallOrInvoke(Callee, None, Name);
2976}
2977
2978/// Emits a call or invoke instruction to the given function, depending
2979/// on the current state of the EH stack.
2980llvm::CallSite
2981CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2982                                  ArrayRef<llvm::Value *> Args,
2983                                  const Twine &Name) {
2984  llvm::BasicBlock *InvokeDest = getInvokeDest();
2985
2986  llvm::Instruction *Inst;
2987  if (!InvokeDest)
2988    Inst = Builder.CreateCall(Callee, Args, Name);
2989  else {
2990    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2991    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2992    EmitBlock(ContBB);
2993  }
2994
2995  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2996  // optimizer it can aggressively ignore unwind edges.
2997  if (CGM.getLangOpts().ObjCAutoRefCount)
2998    AddObjCARCExceptionMetadata(Inst);
2999
3000  return llvm::CallSite(Inst);
3001}
3002
3003/// \brief Store a non-aggregate value to an address to initialize it.  For
3004/// initialization, a non-atomic store will be used.
3005static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3006                                        LValue Dst) {
3007  if (Src.isScalar())
3008    CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3009  else
3010    CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3011}
3012
3013void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3014                                                  llvm::Value *New) {
3015  DeferredReplacements.push_back(std::make_pair(Old, New));
3016}
3017
3018RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3019                                 llvm::Value *Callee,
3020                                 ReturnValueSlot ReturnValue,
3021                                 const CallArgList &CallArgs,
3022                                 const Decl *TargetDecl,
3023                                 llvm::Instruction **callOrInvoke) {
3024  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3025
3026  // Handle struct-return functions by passing a pointer to the
3027  // location that we would like to return into.
3028  QualType RetTy = CallInfo.getReturnType();
3029  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3030
3031  llvm::FunctionType *IRFuncTy =
3032    cast<llvm::FunctionType>(
3033                  cast<llvm::PointerType>(Callee->getType())->getElementType());
3034
3035  // If we're using inalloca, insert the allocation after the stack save.
3036  // FIXME: Do this earlier rather than hacking it in here!
3037  llvm::AllocaInst *ArgMemory = nullptr;
3038  if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3039    llvm::Instruction *IP = CallArgs.getStackBase();
3040    llvm::AllocaInst *AI;
3041    if (IP) {
3042      IP = IP->getNextNode();
3043      AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3044    } else {
3045      AI = CreateTempAlloca(ArgStruct, "argmem");
3046    }
3047    AI->setUsedWithInAlloca(true);
3048    assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3049    ArgMemory = AI;
3050  }
3051
3052  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3053  SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3054
3055  // If the call returns a temporary with struct return, create a temporary
3056  // alloca to hold the result, unless one is given to us.
3057  llvm::Value *SRetPtr = nullptr;
3058  if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3059    SRetPtr = ReturnValue.getValue();
3060    if (!SRetPtr)
3061      SRetPtr = CreateMemTemp(RetTy);
3062    if (IRFunctionArgs.hasSRetArg()) {
3063      IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
3064    } else {
3065      llvm::Value *Addr =
3066          Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3067                                  RetAI.getInAllocaFieldIndex());
3068      Builder.CreateStore(SRetPtr, Addr);
3069    }
3070  }
3071
3072  assert(CallInfo.arg_size() == CallArgs.size() &&
3073         "Mismatch between function signature & arguments.");
3074  unsigned ArgNo = 0;
3075  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3076  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3077       I != E; ++I, ++info_it, ++ArgNo) {
3078    const ABIArgInfo &ArgInfo = info_it->info;
3079    RValue RV = I->RV;
3080
3081    CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
3082
3083    // Insert a padding argument to ensure proper alignment.
3084    if (IRFunctionArgs.hasPaddingArg(ArgNo))
3085      IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3086          llvm::UndefValue::get(ArgInfo.getPaddingType());
3087
3088    unsigned FirstIRArg, NumIRArgs;
3089    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3090
3091    switch (ArgInfo.getKind()) {
3092    case ABIArgInfo::InAlloca: {
3093      assert(NumIRArgs == 0);
3094      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3095      if (RV.isAggregate()) {
3096        // Replace the placeholder with the appropriate argument slot GEP.
3097        llvm::Instruction *Placeholder =
3098            cast<llvm::Instruction>(RV.getAggregateAddr());
3099        CGBuilderTy::InsertPoint IP = Builder.saveIP();
3100        Builder.SetInsertPoint(Placeholder);
3101        llvm::Value *Addr =
3102            Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3103                                    ArgInfo.getInAllocaFieldIndex());
3104        Builder.restoreIP(IP);
3105        deferPlaceholderReplacement(Placeholder, Addr);
3106      } else {
3107        // Store the RValue into the argument struct.
3108        llvm::Value *Addr =
3109            Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3110                                    ArgInfo.getInAllocaFieldIndex());
3111        unsigned AS = Addr->getType()->getPointerAddressSpace();
3112        llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3113        // There are some cases where a trivial bitcast is not avoidable.  The
3114        // definition of a type later in a translation unit may change it's type
3115        // from {}* to (%struct.foo*)*.
3116        if (Addr->getType() != MemType)
3117          Addr = Builder.CreateBitCast(Addr, MemType);
3118        LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
3119        EmitInitStoreOfNonAggregate(*this, RV, argLV);
3120      }
3121      break;
3122    }
3123
3124    case ABIArgInfo::Indirect: {
3125      assert(NumIRArgs == 1);
3126      if (RV.isScalar() || RV.isComplex()) {
3127        // Make a temporary alloca to pass the argument.
3128        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3129        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
3130          AI->setAlignment(ArgInfo.getIndirectAlign());
3131        IRCallArgs[FirstIRArg] = AI;
3132
3133        LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
3134        EmitInitStoreOfNonAggregate(*this, RV, argLV);
3135      } else {
3136        // We want to avoid creating an unnecessary temporary+copy here;
3137        // however, we need one in three cases:
3138        // 1. If the argument is not byval, and we are required to copy the
3139        //    source.  (This case doesn't occur on any common architecture.)
3140        // 2. If the argument is byval, RV is not sufficiently aligned, and
3141        //    we cannot force it to be sufficiently aligned.
3142        // 3. If the argument is byval, but RV is located in an address space
3143        //    different than that of the argument (0).
3144        llvm::Value *Addr = RV.getAggregateAddr();
3145        unsigned Align = ArgInfo.getIndirectAlign();
3146        const llvm::DataLayout *TD = &CGM.getDataLayout();
3147        const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
3148        const unsigned ArgAddrSpace =
3149            (FirstIRArg < IRFuncTy->getNumParams()
3150                 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3151                 : 0);
3152        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3153            (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
3154             llvm::getOrEnforceKnownAlignment(Addr, Align, *TD) < Align) ||
3155            (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3156          // Create an aligned temporary, and copy to it.
3157          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3158          if (Align > AI->getAlignment())
3159            AI->setAlignment(Align);
3160          IRCallArgs[FirstIRArg] = AI;
3161          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3162        } else {
3163          // Skip the extra memcpy call.
3164          IRCallArgs[FirstIRArg] = Addr;
3165        }
3166      }
3167      break;
3168    }
3169
3170    case ABIArgInfo::Ignore:
3171      assert(NumIRArgs == 0);
3172      break;
3173
3174    case ABIArgInfo::Extend:
3175    case ABIArgInfo::Direct: {
3176      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3177          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3178          ArgInfo.getDirectOffset() == 0) {
3179        assert(NumIRArgs == 1);
3180        llvm::Value *V;
3181        if (RV.isScalar())
3182          V = RV.getScalarVal();
3183        else
3184          V = Builder.CreateLoad(RV.getAggregateAddr());
3185
3186        // We might have to widen integers, but we should never truncate.
3187        if (ArgInfo.getCoerceToType() != V->getType() &&
3188            V->getType()->isIntegerTy())
3189          V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3190
3191        // If the argument doesn't match, perform a bitcast to coerce it.  This
3192        // can happen due to trivial type mismatches.
3193        if (FirstIRArg < IRFuncTy->getNumParams() &&
3194            V->getType() != IRFuncTy->getParamType(FirstIRArg))
3195          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3196        IRCallArgs[FirstIRArg] = V;
3197        break;
3198      }
3199
3200      // FIXME: Avoid the conversion through memory if possible.
3201      llvm::Value *SrcPtr;
3202      if (RV.isScalar() || RV.isComplex()) {
3203        SrcPtr = CreateMemTemp(I->Ty, "coerce");
3204        LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
3205        EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3206      } else
3207        SrcPtr = RV.getAggregateAddr();
3208
3209      // If the value is offset in memory, apply the offset now.
3210      if (unsigned Offs = ArgInfo.getDirectOffset()) {
3211        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
3212        SrcPtr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), SrcPtr, Offs);
3213        SrcPtr = Builder.CreateBitCast(SrcPtr,
3214                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
3215
3216      }
3217
3218      // Fast-isel and the optimizer generally like scalar values better than
3219      // FCAs, so we flatten them if this is safe to do for this argument.
3220      llvm::StructType *STy =
3221            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3222      if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3223        llvm::Type *SrcTy =
3224          cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
3225        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3226        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3227
3228        // If the source type is smaller than the destination type of the
3229        // coerce-to logic, copy the source value into a temp alloca the size
3230        // of the destination type to allow loading all of it. The bits past
3231        // the source value are left undef.
3232        if (SrcSize < DstSize) {
3233          llvm::AllocaInst *TempAlloca
3234            = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
3235          Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
3236          SrcPtr = TempAlloca;
3237        } else {
3238          SrcPtr = Builder.CreateBitCast(SrcPtr,
3239                                         llvm::PointerType::getUnqual(STy));
3240        }
3241
3242        assert(NumIRArgs == STy->getNumElements());
3243        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3244          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, SrcPtr, 0, i);
3245          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
3246          // We don't know what we're loading from.
3247          LI->setAlignment(1);
3248          IRCallArgs[FirstIRArg + i] = LI;
3249        }
3250      } else {
3251        // In the simple case, just pass the coerced loaded value.
3252        assert(NumIRArgs == 1);
3253        IRCallArgs[FirstIRArg] =
3254            CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this);
3255      }
3256
3257      break;
3258    }
3259
3260    case ABIArgInfo::Expand:
3261      unsigned IRArgPos = FirstIRArg;
3262      ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3263      assert(IRArgPos == FirstIRArg + NumIRArgs);
3264      break;
3265    }
3266  }
3267
3268  if (ArgMemory) {
3269    llvm::Value *Arg = ArgMemory;
3270    if (CallInfo.isVariadic()) {
3271      // When passing non-POD arguments by value to variadic functions, we will
3272      // end up with a variadic prototype and an inalloca call site.  In such
3273      // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3274      // the callee.
3275      unsigned CalleeAS =
3276          cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3277      Callee = Builder.CreateBitCast(
3278          Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3279    } else {
3280      llvm::Type *LastParamTy =
3281          IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3282      if (Arg->getType() != LastParamTy) {
3283#ifndef NDEBUG
3284        // Assert that these structs have equivalent element types.
3285        llvm::StructType *FullTy = CallInfo.getArgStruct();
3286        llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3287            cast<llvm::PointerType>(LastParamTy)->getElementType());
3288        assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3289        for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3290                                                DE = DeclaredTy->element_end(),
3291                                                FI = FullTy->element_begin();
3292             DI != DE; ++DI, ++FI)
3293          assert(*DI == *FI);
3294#endif
3295        Arg = Builder.CreateBitCast(Arg, LastParamTy);
3296      }
3297    }
3298    assert(IRFunctionArgs.hasInallocaArg());
3299    IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3300  }
3301
3302  if (!CallArgs.getCleanupsToDeactivate().empty())
3303    deactivateArgCleanupsBeforeCall(*this, CallArgs);
3304
3305  // If the callee is a bitcast of a function to a varargs pointer to function
3306  // type, check to see if we can remove the bitcast.  This handles some cases
3307  // with unprototyped functions.
3308  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3309    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3310      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3311      llvm::FunctionType *CurFT =
3312        cast<llvm::FunctionType>(CurPT->getElementType());
3313      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3314
3315      if (CE->getOpcode() == llvm::Instruction::BitCast &&
3316          ActualFT->getReturnType() == CurFT->getReturnType() &&
3317          ActualFT->getNumParams() == CurFT->getNumParams() &&
3318          ActualFT->getNumParams() == IRCallArgs.size() &&
3319          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3320        bool ArgsMatch = true;
3321        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3322          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3323            ArgsMatch = false;
3324            break;
3325          }
3326
3327        // Strip the cast if we can get away with it.  This is a nice cleanup,
3328        // but also allows us to inline the function at -O0 if it is marked
3329        // always_inline.
3330        if (ArgsMatch)
3331          Callee = CalleeF;
3332      }
3333    }
3334
3335  assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3336  for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3337    // Inalloca argument can have different type.
3338    if (IRFunctionArgs.hasInallocaArg() &&
3339        i == IRFunctionArgs.getInallocaArgNo())
3340      continue;
3341    if (i < IRFuncTy->getNumParams())
3342      assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3343  }
3344
3345  unsigned CallingConv;
3346  CodeGen::AttributeListType AttributeList;
3347  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3348                             CallingConv, true);
3349  llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3350                                                     AttributeList);
3351
3352  llvm::BasicBlock *InvokeDest = nullptr;
3353  if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3354                          llvm::Attribute::NoUnwind) ||
3355      currentFunctionUsesSEHTry())
3356    InvokeDest = getInvokeDest();
3357
3358  llvm::CallSite CS;
3359  if (!InvokeDest) {
3360    CS = Builder.CreateCall(Callee, IRCallArgs);
3361  } else {
3362    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3363    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3364    EmitBlock(Cont);
3365  }
3366  if (callOrInvoke)
3367    *callOrInvoke = CS.getInstruction();
3368
3369  if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3370      !CS.hasFnAttr(llvm::Attribute::NoInline))
3371    Attrs =
3372        Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3373                           llvm::Attribute::AlwaysInline);
3374
3375  // Disable inlining inside SEH __try blocks.
3376  if (isSEHTryScope())
3377    Attrs =
3378        Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3379                           llvm::Attribute::NoInline);
3380
3381  CS.setAttributes(Attrs);
3382  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3383
3384  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3385  // optimizer it can aggressively ignore unwind edges.
3386  if (CGM.getLangOpts().ObjCAutoRefCount)
3387    AddObjCARCExceptionMetadata(CS.getInstruction());
3388
3389  // If the call doesn't return, finish the basic block and clear the
3390  // insertion point; this allows the rest of IRgen to discard
3391  // unreachable code.
3392  if (CS.doesNotReturn()) {
3393    Builder.CreateUnreachable();
3394    Builder.ClearInsertionPoint();
3395
3396    // FIXME: For now, emit a dummy basic block because expr emitters in
3397    // generally are not ready to handle emitting expressions at unreachable
3398    // points.
3399    EnsureInsertPoint();
3400
3401    // Return a reasonable RValue.
3402    return GetUndefRValue(RetTy);
3403  }
3404
3405  llvm::Instruction *CI = CS.getInstruction();
3406  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3407    CI->setName("call");
3408
3409  // Emit any writebacks immediately.  Arguably this should happen
3410  // after any return-value munging.
3411  if (CallArgs.hasWritebacks())
3412    emitWritebacks(*this, CallArgs);
3413
3414  // The stack cleanup for inalloca arguments has to run out of the normal
3415  // lexical order, so deactivate it and run it manually here.
3416  CallArgs.freeArgumentMemory(*this);
3417
3418  RValue Ret = [&] {
3419    switch (RetAI.getKind()) {
3420    case ABIArgInfo::InAlloca:
3421    case ABIArgInfo::Indirect:
3422      return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3423
3424    case ABIArgInfo::Ignore:
3425      // If we are ignoring an argument that had a result, make sure to
3426      // construct the appropriate return value for our caller.
3427      return GetUndefRValue(RetTy);
3428
3429    case ABIArgInfo::Extend:
3430    case ABIArgInfo::Direct: {
3431      llvm::Type *RetIRTy = ConvertType(RetTy);
3432      if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3433        switch (getEvaluationKind(RetTy)) {
3434        case TEK_Complex: {
3435          llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3436          llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3437          return RValue::getComplex(std::make_pair(Real, Imag));
3438        }
3439        case TEK_Aggregate: {
3440          llvm::Value *DestPtr = ReturnValue.getValue();
3441          bool DestIsVolatile = ReturnValue.isVolatile();
3442
3443          if (!DestPtr) {
3444            DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3445            DestIsVolatile = false;
3446          }
3447          BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3448          return RValue::getAggregate(DestPtr);
3449        }
3450        case TEK_Scalar: {
3451          // If the argument doesn't match, perform a bitcast to coerce it.  This
3452          // can happen due to trivial type mismatches.
3453          llvm::Value *V = CI;
3454          if (V->getType() != RetIRTy)
3455            V = Builder.CreateBitCast(V, RetIRTy);
3456          return RValue::get(V);
3457        }
3458        }
3459        llvm_unreachable("bad evaluation kind");
3460      }
3461
3462      llvm::Value *DestPtr = ReturnValue.getValue();
3463      bool DestIsVolatile = ReturnValue.isVolatile();
3464
3465      if (!DestPtr) {
3466        DestPtr = CreateMemTemp(RetTy, "coerce");
3467        DestIsVolatile = false;
3468      }
3469
3470      // If the value is offset in memory, apply the offset now.
3471      llvm::Value *StorePtr = DestPtr;
3472      if (unsigned Offs = RetAI.getDirectOffset()) {
3473        StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3474        StorePtr =
3475            Builder.CreateConstGEP1_32(Builder.getInt8Ty(), StorePtr, Offs);
3476        StorePtr = Builder.CreateBitCast(StorePtr,
3477                           llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3478      }
3479      CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3480
3481      return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3482    }
3483
3484    case ABIArgInfo::Expand:
3485      llvm_unreachable("Invalid ABI kind for return argument");
3486    }
3487
3488    llvm_unreachable("Unhandled ABIArgInfo::Kind");
3489  } ();
3490
3491  if (Ret.isScalar() && TargetDecl) {
3492    if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3493      llvm::Value *OffsetValue = nullptr;
3494      if (const auto *Offset = AA->getOffset())
3495        OffsetValue = EmitScalarExpr(Offset);
3496
3497      llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3498      llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3499      EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3500                              OffsetValue);
3501    }
3502  }
3503
3504  return Ret;
3505}
3506
3507/* VarArg handling */
3508
3509llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3510  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3511}
3512