1/*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL ES 2.0 Module
3 * -------------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *      http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Texture unit usage tests.
22 *
23 * \todo [2012-07-12 nuutti] Come up with a good way to make these tests faster.
24 *//*--------------------------------------------------------------------*/
25
26#include "es2fTextureUnitTests.hpp"
27#include "glsTextureTestUtil.hpp"
28#include "gluTextureUtil.hpp"
29#include "gluContextInfo.hpp"
30#include "tcuTextureUtil.hpp"
31#include "tcuImageCompare.hpp"
32#include "tcuMatrix.hpp"
33#include "tcuRenderTarget.hpp"
34#include "sglrContextUtil.hpp"
35#include "sglrReferenceContext.hpp"
36#include "sglrGLContext.hpp"
37#include "deStringUtil.hpp"
38#include "deRandom.hpp"
39
40#include "glwEnums.hpp"
41#include "glwFunctions.hpp"
42
43using tcu::Vec2;
44using tcu::Vec3;
45using tcu::Vec4;
46using tcu::IVec2;
47using tcu::Mat3;
48using std::vector;
49using std::string;
50using namespace glw; // GL types
51
52namespace deqp
53{
54
55using namespace gls::TextureTestUtil;
56
57namespace gles2
58{
59namespace Functional
60{
61
62static const int VIEWPORT_WIDTH			= 128;
63static const int VIEWPORT_HEIGHT		= 128;
64
65static const int TEXTURE_WIDTH_2D		= 128;
66static const int TEXTURE_HEIGHT_2D		= 128;
67
68// \note Cube map texture size is larger in order to make minifications possible - otherwise would need to display different faces at same time.
69static const int TEXTURE_WIDTH_CUBE		= 256;
70static const int TEXTURE_HEIGHT_CUBE	= 256;
71
72static const int GRID_CELL_SIZE			= 8;
73
74static const GLenum s_testFormats[] =
75{
76	GL_RGB,
77	GL_RGBA,
78	GL_ALPHA,
79	GL_LUMINANCE,
80	GL_LUMINANCE_ALPHA
81};
82
83static const GLenum s_testDataTypes[] =
84{
85	GL_UNSIGNED_BYTE,
86	GL_UNSIGNED_SHORT_5_6_5,
87	GL_UNSIGNED_SHORT_4_4_4_4,
88	GL_UNSIGNED_SHORT_5_5_5_1,
89};
90
91static const GLenum s_testWrapModes[] =
92{
93	GL_CLAMP_TO_EDGE,
94	GL_REPEAT,
95	GL_MIRRORED_REPEAT,
96};
97
98static const GLenum s_testMinFilters[] =
99{
100	GL_NEAREST,
101	GL_LINEAR,
102	GL_NEAREST_MIPMAP_NEAREST,
103	GL_LINEAR_MIPMAP_NEAREST,
104	GL_NEAREST_MIPMAP_LINEAR,
105	GL_LINEAR_MIPMAP_LINEAR
106};
107
108static const GLenum s_testNonMipmapMinFilters[] =
109{
110	GL_NEAREST,
111	GL_LINEAR
112};
113
114static const GLenum s_testMagFilters[] =
115{
116	GL_NEAREST,
117	GL_LINEAR
118};
119
120static const GLenum s_cubeFaceTargets[] =
121{
122	GL_TEXTURE_CUBE_MAP_POSITIVE_X,
123	GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
124	GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
125	GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
126	GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
127	GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
128};
129
130static string generateMultiTexFragmentShader(int numUnits, const GLenum* unitTypes)
131{
132	// The fragment shader calculates the average of a set of textures.
133
134	string samplersStr;
135	string matricesStr;
136	string lookupsStr;
137
138	string colorMultiplier = "(1.0/" + de::toString(numUnits) + ".0)";
139
140	for (int ndx = 0; ndx < numUnits; ndx++)
141	{
142		string			ndxStr				= de::toString(ndx);
143		string			samplerName			= "u_sampler" + ndxStr;
144		string			transformationName	= "u_trans" + ndxStr;
145		const char*		samplerType			= unitTypes[ndx] == GL_TEXTURE_2D ? "sampler2D" : "samplerCube";
146		const char*		lookupFunc			= unitTypes[ndx] == GL_TEXTURE_2D ? "texture2D" : "textureCube";
147
148		samplersStr += string("") + "uniform mediump " + samplerType + " " + samplerName + ";\n";
149		matricesStr += "uniform mediump mat3 " + transformationName + ";\n";
150
151		string lookupCoord = transformationName + "*vec3(v_coord, 1.0)";
152
153		if (unitTypes[ndx] == GL_TEXTURE_2D)
154			lookupCoord = "vec2(" + lookupCoord + ")";
155
156		lookupsStr += "\tcolor += " + colorMultiplier + "*" + lookupFunc + "(" + samplerName + ", " + lookupCoord + ");\n";
157	}
158
159	return
160		samplersStr +
161		matricesStr +
162		"varying mediump vec2 v_coord;\n"
163		"\n"
164		"void main (void)\n"
165		"{\n"
166		"	mediump vec4 color = vec4(0.0);\n" +
167		lookupsStr +
168		"	gl_FragColor = color;\n"
169		"}\n";
170}
171
172static sglr::pdec::ShaderProgramDeclaration generateShaderProgramDeclaration (int numUnits, const GLenum* unitTypes)
173{
174	sglr::pdec::ShaderProgramDeclaration decl;
175
176	decl << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT);
177	decl << sglr::pdec::VertexAttribute("a_coord", rr::GENERICVECTYPE_FLOAT);
178	decl << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT);
179	decl << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT);
180
181	for (int ndx = 0; ndx < numUnits; ++ndx)
182	{
183		string	samplerName			= "u_sampler" + de::toString(ndx);
184		string	transformationName	= "u_trans" + de::toString(ndx);
185
186		decl << sglr::pdec::Uniform(samplerName, (unitTypes[ndx] == GL_TEXTURE_2D) ? (glu::TYPE_SAMPLER_2D) : (glu::TYPE_SAMPLER_CUBE));
187		decl << sglr::pdec::Uniform(transformationName, glu::TYPE_FLOAT_MAT3);
188	}
189
190	decl << sglr::pdec::VertexSource("attribute highp vec4 a_position;\n"
191									 "attribute mediump vec2 a_coord;\n"
192									 "varying mediump vec2 v_coord;\n"
193									 "\n"
194									 "void main (void)\n"
195									 "{\n"
196									 "	gl_Position = a_position;\n"
197									 "	v_coord = a_coord;\n"
198									 "}\n");
199	decl << sglr::pdec::FragmentSource(generateMultiTexFragmentShader(numUnits, unitTypes));
200
201	return decl;
202}
203
204// Calculates values to be used in calculateLod().
205static Vec4 calculateLodDerivateParts(const Mat3& transformation)
206{
207	// Calculate transformed coordinates of three corners.
208	Vec2 trans00 = (transformation * Vec3(0.0f, 0.0f, 1.0f)).xy();
209	Vec2 trans01 = (transformation * Vec3(0.0f, 1.0f, 1.0f)).xy();
210	Vec2 trans10 = (transformation * Vec3(1.0f, 0.0f, 1.0f)).xy();
211
212	return Vec4(trans10.x() - trans00.x(),
213				trans01.x() - trans00.x(),
214				trans10.y() - trans00.y(),
215				trans01.y() - trans00.y());
216}
217
218// Calculates the maximum allowed lod from derivates
219static float calculateLodMax(const Vec4& derivateParts, const tcu::IVec2& textureSize, const Vec2& screenDerivate)
220{
221	float dudx = derivateParts.x() * (float)textureSize.x() * screenDerivate.x();
222	float dudy = derivateParts.y() * (float)textureSize.x() * screenDerivate.y();
223	float dvdx = derivateParts.z() * (float)textureSize.y() * screenDerivate.x();
224	float dvdy = derivateParts.w() * (float)textureSize.y() * screenDerivate.y();
225
226	return deFloatLog2(de::max(de::abs(dudx), de::abs(dudy)) + de::max(de::abs(dvdx), de::abs(dvdy)));
227}
228
229// Calculates the minimum allowed lod from derivates
230static float calculateLodMin(const Vec4& derivateParts, const tcu::IVec2& textureSize, const Vec2& screenDerivate)
231{
232	float dudx = derivateParts.x() * (float)textureSize.x() * screenDerivate.x();
233	float dudy = derivateParts.y() * (float)textureSize.x() * screenDerivate.y();
234	float dvdx = derivateParts.z() * (float)textureSize.y() * screenDerivate.x();
235	float dvdy = derivateParts.w() * (float)textureSize.y() * screenDerivate.y();
236
237	return deFloatLog2(de::max(de::max(de::abs(dudx), de::abs(dudy)), de::max(de::abs(dvdx), de::abs(dvdy))));
238}
239
240class MultiTexShader : public sglr::ShaderProgram
241{
242public:
243							MultiTexShader	(deUint32 randSeed, int numUnits, const vector<GLenum>& unitTypes);
244
245	void					setUniforms		(sglr::Context& context, deUint32 program) const;
246	void					makeSafeLods	(const vector<IVec2>& textureSizes, const IVec2& viewportSize); // Modifies texture coordinates so that LODs aren't too close to x.5 or 0.0 .
247
248private:
249	void					shadeVertices	(const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
250	void					shadeFragments	(rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
251
252	int						m_numUnits;
253	vector<GLenum>			m_unitTypes;		// 2d or cube map.
254	vector<Mat3>			m_transformations;
255	vector<Vec4>			m_lodDerivateParts;	// Parts of lod derivates; computed in init(), used in eval().
256};
257
258MultiTexShader::MultiTexShader (deUint32 randSeed, int numUnits, const vector<GLenum>& unitTypes)
259	: sglr::ShaderProgram	(generateShaderProgramDeclaration(numUnits, &unitTypes[0]))
260	, m_numUnits			(numUnits)
261	, m_unitTypes			(unitTypes)
262{
263	// 2d-to-cube-face transformations.
264	// \note 2d coordinates range from 0 to 1 and cube face coordinates from -1 to 1, so scaling is done as well.
265	static const float s_cubeTransforms[][3*3] =
266	{
267		// Face -X: (x, y, 1) -> (-1, -(2*y-1), +(2*x-1))
268		{  0.0f,  0.0f, -1.0f,
269		   0.0f, -2.0f,  1.0f,
270		   2.0f,  0.0f, -1.0f },
271		// Face +X: (x, y, 1) -> (+1, -(2*y-1), -(2*x-1))
272		{  0.0f,  0.0f,  1.0f,
273		   0.0f, -2.0f,  1.0f,
274		  -2.0f,  0.0f,  1.0f },
275		// Face -Y: (x, y, 1) -> (+(2*x-1), -1, -(2*y-1))
276		{  2.0f,  0.0f, -1.0f,
277		   0.0f,  0.0f, -1.0f,
278		   0.0f, -2.0f,  1.0f },
279		// Face +Y: (x, y, 1) -> (+(2*x-1), +1, +(2*y-1))
280		{  2.0f,  0.0f, -1.0f,
281		   0.0f,  0.0f,  1.0f,
282		   0.0f,  2.0f, -1.0f },
283		// Face -Z: (x, y, 1) -> (-(2*x-1), -(2*y-1), -1)
284		{ -2.0f,  0.0f,  1.0f,
285		   0.0f, -2.0f,  1.0f,
286		   0.0f,  0.0f, -1.0f },
287		// Face +Z: (x, y, 1) -> (+(2*x-1), -(2*y-1), +1)
288		{  2.0f,  0.0f, -1.0f,
289		   0.0f, -2.0f,  1.0f,
290		   0.0f,  0.0f,  1.0f }
291	};
292
293	// Generate transformation matrices.
294
295	de::Random rnd(randSeed);
296
297	m_transformations.reserve(m_numUnits);
298	m_lodDerivateParts.reserve(m_numUnits);
299
300	DE_ASSERT((int)m_unitTypes.size() == m_numUnits);
301
302	for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
303	{
304		if (m_unitTypes[unitNdx] == GL_TEXTURE_2D)
305		{
306			float rotAngle				= rnd.getFloat(0.0f, 2.0f*DE_PI);
307			float xScaleFactor			= rnd.getFloat(0.7f, 1.5f);
308			float yScaleFactor			= rnd.getFloat(0.7f, 1.5f);
309			float xShearAmount			= rnd.getFloat(0.0f, 0.5f);
310			float yShearAmount			= rnd.getFloat(0.0f, 0.5f);
311			float xTranslationAmount	= rnd.getFloat(-0.5f, 0.5f);
312			float yTranslationAmount	= rnd.getFloat(-0.5f, 0.5f);
313
314			float tempOffsetData[3*3] = // For temporarily centering the coordinates to get nicer transformations.
315			{
316				1.0f,  0.0f, -0.5f,
317				0.0f,  1.0f, -0.5f,
318				0.0f,  0.0f,  1.0f
319			};
320			float rotTransfData[3*3] =
321			{
322				deFloatCos(rotAngle),	-deFloatSin(rotAngle),	0.0f,
323				deFloatSin(rotAngle),	deFloatCos(rotAngle),	0.0f,
324				0.0f,					0.0f,					1.0f
325			};
326			float scaleTransfData[3*3] =
327			{
328				xScaleFactor,	0.0f,			0.0f,
329				0.0f,			yScaleFactor,	0.0f,
330				0.0f,			0.0f,			1.0f
331			};
332			float xShearTransfData[3*3] =
333			{
334				1.0f,			xShearAmount,	0.0f,
335				0.0f,			1.0f,			0.0f,
336				0.0f,			0.0f,			1.0f
337			};
338			float yShearTransfData[3*3] =
339			{
340				1.0f,			0.0f,			0.0f,
341				yShearAmount,	1.0f,			0.0f,
342				0.0f,			0.0f,			1.0f
343			};
344			float translationTransfData[3*3] =
345			{
346				1.0f,	0.0f,	xTranslationAmount,
347				0.0f,	1.0f,	yTranslationAmount,
348				0.0f,	0.0f,	1.0f
349			};
350
351			Mat3 transformation =
352				Mat3(tempOffsetData) *
353				Mat3(translationTransfData) *
354				Mat3(rotTransfData) *
355				Mat3(scaleTransfData) *
356				Mat3(xShearTransfData) *
357				Mat3(yShearTransfData) *
358				(Mat3(tempOffsetData) * (-1.0f));
359
360			// Calculate parts of lod derivates.
361			m_lodDerivateParts.push_back(calculateLodDerivateParts(transformation));
362
363			m_transformations.push_back(transformation);
364		}
365		else
366		{
367			DE_ASSERT(m_unitTypes[unitNdx] == GL_TEXTURE_CUBE_MAP);
368			DE_STATIC_ASSERT((int)tcu::CUBEFACE_LAST == DE_LENGTH_OF_ARRAY(s_cubeTransforms));
369
370			float planarTransData[3*3];
371
372			// In case of a cube map, we only want to render one face, so the transformation needs to be restricted - only enlarging scaling is done.
373
374			for (int i = 0; i < DE_LENGTH_OF_ARRAY(planarTransData); i++)
375			{
376				if (i == 0 || i == 4)
377					planarTransData[i] = rnd.getFloat(0.1f, 0.9f); // Two first diagonal cells control the scaling.
378				else if (i == 8)
379					planarTransData[i] = 1.0f;
380				else
381					planarTransData[i] = 0.0f;
382			}
383
384			int		faceNdx			= rnd.getInt(0, (int)tcu::CUBEFACE_LAST - 1);
385			Mat3	planarTrans		(planarTransData);									// Planar, face-agnostic transformation.
386			Mat3	finalTrans		= Mat3(s_cubeTransforms[faceNdx]) * planarTrans;	// Final transformation from planar to cube map coordinates, including the transformation just generated.
387
388			// Calculate parts of lod derivates.
389			m_lodDerivateParts.push_back(calculateLodDerivateParts(planarTrans));
390
391			m_transformations.push_back(finalTrans);
392		}
393	}
394}
395
396void MultiTexShader::setUniforms (sglr::Context& ctx, deUint32 program) const
397{
398	ctx.useProgram(program);
399
400	// Sampler and matrix uniforms.
401
402	for (int ndx = 0; ndx < m_numUnits; ndx++)
403	{
404		string			ndxStr		= de::toString(ndx);
405
406		ctx.uniform1i(ctx.getUniformLocation(program, ("u_sampler" + ndxStr).c_str()), ndx);
407		ctx.uniformMatrix3fv(ctx.getUniformLocation(program, ("u_trans" + ndxStr).c_str()), 1, GL_FALSE, (GLfloat*)&m_transformations[ndx].getColumnMajorData()[0]);
408	}
409}
410
411void MultiTexShader::makeSafeLods (const vector<IVec2>& textureSizes, const IVec2& viewportSize)
412{
413	DE_ASSERT((int)textureSizes.size() == m_numUnits);
414
415	static const float shrinkScaleMatData[3*3] =
416	{
417		0.95f,	0.0f,	0.0f,
418		0.0f,	0.95f,	0.0f,
419		0.0f,	0.0f,	1.0f
420	};
421	Mat3 shrinkScaleMat(shrinkScaleMatData);
422
423	Vec2 screenDerivate(1.0f / (float)viewportSize.x(), 1.0f / (float)viewportSize.y());
424
425	for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
426	{
427		// As long as LOD is too close to 0.0 or is positive and too close to a something-and-a-half (0.5, 1.5, 2.5 etc) or allowed lod range could round to different levels, zoom in a little to get a safer LOD.
428		for (;;)
429		{
430			const float threshold = 0.1f;
431			const float epsilon	= 0.01f;
432
433			const float lodMax = calculateLodMax(m_lodDerivateParts[unitNdx], textureSizes[unitNdx], screenDerivate);
434			const float lodMin = calculateLodMin(m_lodDerivateParts[unitNdx], textureSizes[unitNdx], screenDerivate);
435
436			const deInt32 maxLevel = (lodMax + epsilon < 0.5f) ? (0) : (deCeilFloatToInt32(lodMax + epsilon + 0.5f) - 1);
437			const deInt32 minLevel = (lodMin - epsilon < 0.5f) ? (0) : (deCeilFloatToInt32(lodMin - epsilon + 0.5f) - 1);
438
439			if (de::abs(lodMax) < threshold || (lodMax > 0.0f && de::abs(deFloatFrac(lodMax) - 0.5f) < threshold) ||
440				de::abs(lodMin) < threshold || (lodMin > 0.0f && de::abs(deFloatFrac(lodMin) - 0.5f) < threshold) ||
441				maxLevel != minLevel)
442			{
443				m_transformations[unitNdx] = shrinkScaleMat * m_transformations[unitNdx];
444				m_lodDerivateParts[unitNdx] = calculateLodDerivateParts(m_transformations[unitNdx]);
445			}
446			else
447				break;
448		}
449	}
450}
451
452void MultiTexShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
453{
454	for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
455	{
456		rr::VertexPacket& packet = *(packets[packetNdx]);
457
458		packet.position		= rr::readVertexAttribFloat(inputs[0], packet.instanceNdx, packet.vertexNdx);
459		packet.outputs[0]	= rr::readVertexAttribFloat(inputs[1], packet.instanceNdx, packet.vertexNdx);
460	}
461}
462
463void MultiTexShader::shadeFragments	(rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
464{
465	DE_ASSERT((int)m_unitTypes.size() == m_numUnits);
466	DE_ASSERT((int)m_transformations.size() == m_numUnits);
467	DE_ASSERT((int)m_lodDerivateParts.size() == m_numUnits);
468
469	for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
470	{
471		rr::FragmentPacket& packet				= packets[packetNdx];
472		const float			colorMultiplier		= 1.0f / (float)m_numUnits;
473		Vec4				outColors[4]		= { Vec4(0.0f), Vec4(0.0f), Vec4(0.0f), Vec4(0.0f) };
474
475		for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
476		{
477			tcu::Vec4 texSamples[4];
478
479			// Read tex coords
480			const tcu::Vec2 texCoords[4] =
481			{
482				rr::readTriangleVarying<float>(packet, context, 0, 0).xy(),
483				rr::readTriangleVarying<float>(packet, context, 0, 1).xy(),
484				rr::readTriangleVarying<float>(packet, context, 0, 2).xy(),
485				rr::readTriangleVarying<float>(packet, context, 0, 3).xy(),
486			};
487
488			if (m_unitTypes[unitNdx] == GL_TEXTURE_2D)
489			{
490				// Transform
491				const tcu::Vec2 transformedTexCoords[4] =
492				{
493					(m_transformations[unitNdx] * Vec3(texCoords[0].x(), texCoords[0].y(), 1.0f)).xy(),
494					(m_transformations[unitNdx] * Vec3(texCoords[1].x(), texCoords[1].y(), 1.0f)).xy(),
495					(m_transformations[unitNdx] * Vec3(texCoords[2].x(), texCoords[2].y(), 1.0f)).xy(),
496					(m_transformations[unitNdx] * Vec3(texCoords[3].x(), texCoords[3].y(), 1.0f)).xy(),
497				};
498
499				// Sample
500				m_uniforms[2*unitNdx].sampler.tex2D->sample4(texSamples, transformedTexCoords);
501			}
502			else
503			{
504				DE_ASSERT(m_unitTypes[unitNdx] == GL_TEXTURE_CUBE_MAP);
505
506				// Transform
507				const tcu::Vec3 transformedTexCoords[4] =
508				{
509					m_transformations[unitNdx] * Vec3(texCoords[0].x(), texCoords[0].y(), 1.0f),
510					m_transformations[unitNdx] * Vec3(texCoords[1].x(), texCoords[1].y(), 1.0f),
511					m_transformations[unitNdx] * Vec3(texCoords[2].x(), texCoords[2].y(), 1.0f),
512					m_transformations[unitNdx] * Vec3(texCoords[3].x(), texCoords[3].y(), 1.0f),
513				};
514
515				// Sample
516				m_uniforms[2*unitNdx].sampler.texCube->sample4(texSamples, transformedTexCoords);
517			}
518
519			// Add to sum
520			for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
521				outColors[fragNdx] += colorMultiplier * texSamples[fragNdx];
522		}
523
524		// output
525		for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
526			rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, outColors[fragNdx]);
527	}
528}
529
530class TextureUnitCase : public TestCase
531{
532public:
533	enum CaseType
534	{
535		CASE_ONLY_2D = 0,
536		CASE_ONLY_CUBE,
537		CASE_MIXED,
538
539		CASE_LAST
540	};
541								TextureUnitCase		(Context& context, const char* name, const char* desc, int numUnits /* \note If non-positive, use all units */, CaseType caseType, deUint32 randSeed);
542								~TextureUnitCase	(void);
543
544	void						init				(void);
545	void						deinit				(void);
546	IterateResult				iterate				(void);
547
548private:
549	struct TextureParameters
550	{
551		GLenum format;
552		GLenum dataType;
553		GLenum wrapModeS;
554		GLenum wrapModeT;
555		GLenum minFilter;
556		GLenum magFilter;
557	};
558
559								TextureUnitCase		(const TextureUnitCase& other);
560	TextureUnitCase&			operator=			(const TextureUnitCase& other);
561
562	void						render				(sglr::Context& context);
563
564	const int					m_numUnitsParam;
565	const CaseType				m_caseType;
566	const deUint32				m_randSeed;
567
568	int							m_numTextures;	//!< \note Needed in addition to m_numUnits since same texture may be bound to many texture units.
569	int							m_numUnits;		//!< = m_numUnitsParam > 0 ? m_numUnitsParam : implementationDefinedMaximum
570
571	vector<GLenum>				m_textureTypes;
572	vector<TextureParameters>	m_textureParams;
573	vector<tcu::Texture2D*>		m_textures2d;
574	vector<tcu::TextureCube*>	m_texturesCube;
575	vector<int>					m_unitTextures;	//!< Which texture is used in a particular unit.
576	vector<int>					m_ndx2dOrCube;	//!< Index of a texture in either m_textures2d or m_texturesCube, depending on texture type.
577	MultiTexShader*				m_shader;
578};
579
580TextureUnitCase::TextureUnitCase (Context& context, const char* name, const char* desc, int numUnits, CaseType caseType, deUint32 randSeed)
581	: TestCase			(context, tcu::NODETYPE_SELF_VALIDATE, name, desc)
582	, m_numUnitsParam	(numUnits)
583	, m_caseType		(caseType)
584	, m_randSeed		(randSeed)
585	, m_shader			(DE_NULL)
586{
587}
588
589TextureUnitCase::~TextureUnitCase (void)
590{
591	TextureUnitCase::deinit();
592}
593
594void TextureUnitCase::deinit (void)
595{
596	for (vector<tcu::Texture2D*>::iterator i = m_textures2d.begin(); i != m_textures2d.end(); i++)
597		delete *i;
598	m_textures2d.clear();
599
600	for (vector<tcu::TextureCube*>::iterator i = m_texturesCube.begin(); i != m_texturesCube.end(); i++)
601		delete *i;
602	m_texturesCube.clear();
603
604	delete m_shader;
605	m_shader = DE_NULL;
606}
607
608void TextureUnitCase::init (void)
609{
610	m_numUnits = m_numUnitsParam > 0 ? m_numUnitsParam : m_context.getContextInfo().getInt(GL_MAX_TEXTURE_IMAGE_UNITS);
611
612	// Make the textures.
613
614	try
615	{
616		tcu::TestLog&	log	= m_testCtx.getLog();
617		de::Random		rnd	(m_randSeed);
618
619		if (rnd.getFloat() < 0.7f)
620			m_numTextures = m_numUnits;											// In most cases use one unit per texture.
621		else
622			m_numTextures = rnd.getInt(deMax32(1, m_numUnits - 2), m_numUnits);	// Sometimes assign same texture to multiple units.
623
624		log << tcu::TestLog::Message << ("Using " + de::toString(m_numUnits) + " texture unit(s) and " + de::toString(m_numTextures) + " texture(s)").c_str() << tcu::TestLog::EndMessage;
625
626		m_textureTypes.reserve(m_numTextures);
627		m_textureParams.reserve(m_numTextures);
628		m_ndx2dOrCube.reserve(m_numTextures);
629
630		// Generate textures.
631
632		for (int texNdx = 0; texNdx < m_numTextures; texNdx++)
633		{
634			// Either fixed or randomized target types (2d or cube), and randomized parameters for every texture.
635
636			TextureParameters	params;
637			bool				is2d		= m_caseType == CASE_ONLY_2D	? true :
638											  m_caseType == CASE_ONLY_CUBE	? false :
639																			  rnd.getBool();
640
641			GLenum				type		= is2d ? GL_TEXTURE_2D : GL_TEXTURE_CUBE_MAP;
642			const int			texWidth	= is2d ? TEXTURE_WIDTH_2D : TEXTURE_WIDTH_CUBE;
643			const int			texHeight	= is2d ? TEXTURE_HEIGHT_2D : TEXTURE_HEIGHT_CUBE;
644			bool				mipmaps		= (deIsPowerOfTwo32(texWidth) && deIsPowerOfTwo32(texHeight));
645			int					numLevels	= mipmaps ? deLog2Floor32(de::max(texWidth, texHeight))+1 : 1;
646
647			params.wrapModeS	= s_testWrapModes	[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
648			params.wrapModeT	= s_testWrapModes	[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
649			params.magFilter	= s_testMagFilters	[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testMagFilters) - 1)];
650			params.dataType		= s_testDataTypes	[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testDataTypes) - 1)];
651
652			// Certain minification filters are only used when using mipmaps.
653			if (mipmaps)
654				params.minFilter = s_testMinFilters[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testMinFilters) - 1)];
655			else
656				params.minFilter = s_testNonMipmapMinFilters[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testNonMipmapMinFilters) - 1)];
657
658			// Format may depend on data type.
659			if (params.dataType == GL_UNSIGNED_SHORT_5_6_5)
660				params.format = GL_RGB;
661			else if (params.dataType == GL_UNSIGNED_SHORT_4_4_4_4 || params.dataType == GL_UNSIGNED_SHORT_5_5_5_1)
662				params.format = GL_RGBA;
663			else
664				params.format = s_testFormats[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testFormats) - 1)];
665
666			m_textureTypes.push_back(type);
667			m_textureParams.push_back(params);
668
669			// Create new texture.
670
671			if (is2d)
672			{
673				m_ndx2dOrCube.push_back((int)m_textures2d.size()); // Remember the index this texture has in the 2d array.
674				m_textures2d.push_back(new tcu::Texture2D(glu::mapGLTransferFormat(params.format, params.dataType), texWidth, texHeight));
675			}
676			else
677			{
678				m_ndx2dOrCube.push_back((int)m_texturesCube.size()); // Remember the index this texture has in the cube array.
679				DE_ASSERT(texWidth == texHeight);
680				m_texturesCube.push_back(new tcu::TextureCube(glu::mapGLTransferFormat(params.format, params.dataType), texWidth));
681			}
682
683			tcu::TextureFormatInfo	fmtInfo		= tcu::getTextureFormatInfo(is2d ? m_textures2d.back()->getFormat() : m_texturesCube.back()->getFormat());
684			Vec4					cBias		= fmtInfo.valueMin;
685			Vec4					cScale		= fmtInfo.valueMax-fmtInfo.valueMin;
686
687			// Fill with grid texture.
688
689			int numFaces = is2d ? 1 : (int)tcu::CUBEFACE_LAST;
690
691			for (int face = 0; face < numFaces; face++)
692			{
693				deUint32 rgb	= rnd.getUint32() & 0x00ffffff;
694				deUint32 alpha0	= 0xff000000;
695				deUint32 alpha1	= 0xff000000;
696
697				if (params.format == GL_ALPHA) // \note This needs alpha to be visible.
698				{
699					alpha0 &= rnd.getUint32();
700					alpha1 = ~alpha0;
701				}
702
703				deUint32 colorA = alpha0 | rgb;
704				deUint32 colorB = alpha1 | ~rgb;
705
706				for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
707				{
708					if (is2d)
709						m_textures2d.back()->allocLevel(levelNdx);
710					else
711						m_texturesCube.back()->allocLevel((tcu::CubeFace)face, levelNdx);
712
713					int curCellSize = deMax32(1, GRID_CELL_SIZE >> levelNdx); // \note Scale grid cell size for mipmaps.
714
715					tcu::PixelBufferAccess access = is2d ? m_textures2d.back()->getLevel(levelNdx) : m_texturesCube.back()->getLevelFace(levelNdx, (tcu::CubeFace)face);
716					tcu::fillWithGrid(access, curCellSize, toVec4(tcu::RGBA(colorA))*cScale + cBias, toVec4(tcu::RGBA(colorB))*cScale + cBias);
717				}
718			}
719		}
720
721		// Assign a texture index to each unit.
722
723		m_unitTextures.reserve(m_numUnits);
724
725		// \note Every texture is used at least once.
726		for (int i = 0; i < m_numTextures; i++)
727			m_unitTextures.push_back(i);
728
729		// Assign a random texture to remaining units.
730		while ((int)m_unitTextures.size() < m_numUnits)
731			m_unitTextures.push_back(rnd.getInt(0, m_numTextures - 1));
732
733		rnd.shuffle(m_unitTextures.begin(), m_unitTextures.end());
734
735		// Create shader.
736
737		vector<GLenum> unitTypes;
738		unitTypes.reserve(m_numUnits);
739		for (int i = 0; i < m_numUnits; i++)
740			unitTypes.push_back(m_textureTypes[m_unitTextures[i]]);
741
742		DE_ASSERT(m_shader == DE_NULL);
743		m_shader = new MultiTexShader(rnd.getUint32(), m_numUnits, unitTypes);
744	}
745	catch (const std::exception&)
746	{
747		// Clean up to save memory.
748		TextureUnitCase::deinit();
749		throw;
750	}
751}
752
753TextureUnitCase::IterateResult TextureUnitCase::iterate (void)
754{
755	glu::RenderContext&			renderCtx			= m_context.getRenderContext();
756	const tcu::RenderTarget&	renderTarget		= renderCtx.getRenderTarget();
757	tcu::TestLog&				log					= m_testCtx.getLog();
758	de::Random					rnd					(m_randSeed);
759
760	int							viewportWidth		= deMin32(VIEWPORT_WIDTH, renderTarget.getWidth());
761	int							viewportHeight		= deMin32(VIEWPORT_HEIGHT, renderTarget.getHeight());
762	int							viewportX			= rnd.getInt(0, renderTarget.getWidth() - viewportWidth);
763	int							viewportY			= rnd.getInt(0, renderTarget.getHeight() - viewportHeight);
764
765	tcu::Surface				gles2Frame			(viewportWidth, viewportHeight);
766	tcu::Surface				refFrame			(viewportWidth, viewportHeight);
767
768	{
769		// First we do some tricks to make the LODs safer wrt. precision issues. See MultiTexShader::makeSafeLods().
770
771		vector<IVec2> texSizes;
772		texSizes.reserve(m_numUnits);
773
774		for (int i = 0; i < m_numUnits; i++)
775		{
776			int		texNdx			= m_unitTextures[i];
777			int		texNdxInType	= m_ndx2dOrCube[texNdx];
778			GLenum	type			= m_textureTypes[texNdx];
779
780			switch (type)
781			{
782				case GL_TEXTURE_2D:			texSizes.push_back(IVec2(m_textures2d[texNdxInType]->getWidth(),	m_textures2d[texNdxInType]->getHeight()));	break;
783				case GL_TEXTURE_CUBE_MAP:	texSizes.push_back(IVec2(m_texturesCube[texNdxInType]->getSize(),	m_texturesCube[texNdxInType]->getSize()));	break;
784				default:
785					DE_ASSERT(DE_FALSE);
786			}
787		}
788
789		m_shader->makeSafeLods(texSizes, IVec2(viewportWidth, viewportHeight));
790	}
791
792	// Render using GLES2.
793	{
794		sglr::GLContext context(renderCtx, log, sglr::GLCONTEXT_LOG_CALLS|sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(viewportX, viewportY, viewportWidth, viewportHeight));
795
796		render(context);
797
798		context.readPixels(gles2Frame, 0, 0, viewportWidth, viewportHeight);
799	}
800
801	// Render reference image.
802	{
803		sglr::ReferenceContextBuffers	buffers	(tcu::PixelFormat(8,8,8,renderTarget.getPixelFormat().alphaBits?8:0), 0 /* depth */, 0 /* stencil */, viewportWidth, viewportHeight);
804		sglr::ReferenceContext			context	(sglr::ReferenceContextLimits(renderCtx), buffers.getColorbuffer(), buffers.getDepthbuffer(), buffers.getStencilbuffer());
805
806		render(context);
807
808		context.readPixels(refFrame, 0, 0, viewportWidth, viewportHeight);
809	}
810
811	// Compare images.
812	const float		threshold	= 0.001f;
813	bool			isOk		= tcu::fuzzyCompare(log, "ComparisonResult", "Image comparison result", refFrame, gles2Frame, threshold, tcu::COMPARE_LOG_RESULT);
814
815	// Store test result.
816	m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS	: QP_TEST_RESULT_FAIL,
817							isOk ? "Pass"				: "Image comparison failed");
818
819	return STOP;
820}
821
822void TextureUnitCase::render (sglr::Context& context)
823{
824	// Setup textures.
825
826	vector<deUint32>	textureGLNames;
827	vector<bool>		isTextureSetUp(m_numTextures, false); // \note Same texture may be bound to multiple units, but we only want to set up parameters and data once per texture.
828
829	textureGLNames.resize(m_numTextures);
830	context.genTextures(m_numTextures, &textureGLNames[0]);
831
832	for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
833	{
834		int texNdx = m_unitTextures[unitNdx];
835
836		// Bind texture to unit.
837		context.activeTexture(GL_TEXTURE0 + unitNdx);
838		context.bindTexture(m_textureTypes[texNdx], textureGLNames[texNdx]);
839
840		if (!isTextureSetUp[texNdx])
841		{
842			// Binding this texture for first time, so set parameters and data.
843
844			context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_S, m_textureParams[texNdx].wrapModeS);
845			context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_T, m_textureParams[texNdx].wrapModeT);
846			context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_MIN_FILTER, m_textureParams[texNdx].minFilter);
847			context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_MAG_FILTER, m_textureParams[texNdx].magFilter);
848
849			if (m_textureTypes[texNdx] == GL_TEXTURE_2D)
850			{
851				int						ndx2d		= m_ndx2dOrCube[texNdx];
852				const tcu::Texture2D*	texture		= m_textures2d[ndx2d];
853				bool					mipmaps		= (deIsPowerOfTwo32(texture->getWidth()) && deIsPowerOfTwo32(texture->getHeight()));
854				int						numLevels	= mipmaps ? deLog2Floor32(de::max(texture->getWidth(), texture->getHeight()))+1 : 1;
855
856				context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
857
858				for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
859				{
860					tcu::ConstPixelBufferAccess		access	= texture->getLevel(levelNdx);
861					int								width	= access.getWidth();
862					int								height	= access.getHeight();
863
864					DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
865
866					context.texImage2D(GL_TEXTURE_2D, levelNdx, m_textureParams[texNdx].format, width, height, 0, m_textureParams[texNdx].format, m_textureParams[texNdx].dataType, access.getDataPtr());
867				}
868			}
869			else
870			{
871				DE_ASSERT(m_textureTypes[texNdx] == GL_TEXTURE_CUBE_MAP);
872
873				int							ndxCube		= m_ndx2dOrCube[texNdx];
874				const tcu::TextureCube*		texture		= m_texturesCube[ndxCube];
875				bool						mipmaps		= deIsPowerOfTwo32(texture->getSize()) != DE_FALSE;
876				int							numLevels	= mipmaps ? deLog2Floor32(texture->getSize())+1 : 1;
877
878				context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
879
880				for (int face = 0; face < (int)tcu::CUBEFACE_LAST; face++)
881				{
882					for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
883					{
884						tcu::ConstPixelBufferAccess		access	= texture->getLevelFace(levelNdx, (tcu::CubeFace)face);
885						int								width	= access.getWidth();
886						int								height	= access.getHeight();
887
888						DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
889
890						context.texImage2D(s_cubeFaceTargets[face], levelNdx, m_textureParams[texNdx].format, width, height, 0, m_textureParams[texNdx].format, m_textureParams[texNdx].dataType, access.getDataPtr());
891					}
892				}
893			}
894
895			isTextureSetUp[texNdx] = true; // Don't set up this texture's parameters and data again later.
896		}
897	}
898
899	GLU_EXPECT_NO_ERROR(context.getError(), "Set textures");
900
901	// Setup shader
902
903	deUint32 shaderID = context.createProgram(m_shader);
904
905	// Draw.
906
907	context.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
908	context.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
909	m_shader->setUniforms(context, shaderID);
910	sglr::drawQuad(context, shaderID, Vec3(-1.0f, -1.0f, 0.0f), Vec3(1.0f, 1.0f, 0.0f));
911	GLU_EXPECT_NO_ERROR(context.getError(), "Draw");
912
913	// Delete previously generated texture names.
914
915	context.deleteTextures(m_numTextures, &textureGLNames[0]);
916	GLU_EXPECT_NO_ERROR(context.getError(), "Delete textures");
917}
918
919TextureUnitTests::TextureUnitTests (Context& context)
920	: TestCaseGroup(context, "units", "Texture Unit Usage Tests")
921{
922}
923
924TextureUnitTests::~TextureUnitTests (void)
925{
926}
927
928void TextureUnitTests::init (void)
929{
930	const int numTestsPerGroup = 10;
931
932	static const int unitCounts[] =
933	{
934		2,
935		4,
936		8,
937		-1 // \note Negative stands for the implementation-specified maximum.
938	};
939
940	for (int unitCountNdx = 0; unitCountNdx < DE_LENGTH_OF_ARRAY(unitCounts); unitCountNdx++)
941	{
942		int numUnits = unitCounts[unitCountNdx];
943
944		string countGroupName = (unitCounts[unitCountNdx] < 0 ? "all" : de::toString(numUnits)) + "_units";
945
946		tcu::TestCaseGroup* countGroup = new tcu::TestCaseGroup(m_testCtx, countGroupName.c_str(), "");
947		addChild(countGroup);
948
949		DE_STATIC_ASSERT((int)TextureUnitCase::CASE_ONLY_2D == 0);
950
951		for (int caseType = (int)TextureUnitCase::CASE_ONLY_2D; caseType < (int)TextureUnitCase::CASE_LAST; caseType++)
952		{
953			const char* caseTypeGroupName = (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_2D	? "only_2d" :
954											(TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_CUBE	? "only_cube" :
955											(TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_MIXED		? "mixed" :
956																													  DE_NULL;
957			DE_ASSERT(caseTypeGroupName != DE_NULL);
958
959			tcu::TestCaseGroup* caseTypeGroup = new tcu::TestCaseGroup(m_testCtx, caseTypeGroupName, "");
960			countGroup->addChild(caseTypeGroup);
961
962			for (int testNdx = 0; testNdx < numTestsPerGroup; testNdx++)
963				caseTypeGroup->addChild(new TextureUnitCase(m_context, de::toString(testNdx).c_str(), "", numUnits, (TextureUnitCase::CaseType)caseType, (deUint32)deInt32Hash(testNdx)));
964		}
965	}
966}
967
968} // Functional
969} // gles2
970} // deqp
971