1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include "main.h"
12#include <functional>
13#include <Eigen/Array>
14
15using namespace std;
16
17template<typename Scalar> struct AddIfNull {
18    const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
19    enum { Cost = NumTraits<Scalar>::AddCost };
20};
21
22template<typename MatrixType> void cwiseops(const MatrixType& m)
23{
24  typedef typename MatrixType::Scalar Scalar;
25  typedef typename NumTraits<Scalar>::Real RealScalar;
26  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
27
28  int rows = m.rows();
29  int cols = m.cols();
30
31  MatrixType m1 = MatrixType::Random(rows, cols),
32             m2 = MatrixType::Random(rows, cols),
33             m3(rows, cols),
34             m4(rows, cols),
35             mzero = MatrixType::Zero(rows, cols),
36             mones = MatrixType::Ones(rows, cols),
37             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
38                              ::Identity(rows, rows);
39  VectorType vzero = VectorType::Zero(rows),
40             vones = VectorType::Ones(rows),
41             v3(rows);
42
43  int r = ei_random<int>(0, rows-1),
44      c = ei_random<int>(0, cols-1);
45
46  Scalar s1 = ei_random<Scalar>();
47
48  // test Zero, Ones, Constant, and the set* variants
49  m3 = MatrixType::Constant(rows, cols, s1);
50  for (int j=0; j<cols; ++j)
51    for (int i=0; i<rows; ++i)
52    {
53      VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
54      VERIFY_IS_APPROX(mones(i,j), Scalar(1));
55      VERIFY_IS_APPROX(m3(i,j), s1);
56    }
57  VERIFY(mzero.isZero());
58  VERIFY(mones.isOnes());
59  VERIFY(m3.isConstant(s1));
60  VERIFY(identity.isIdentity());
61  VERIFY_IS_APPROX(m4.setConstant(s1), m3);
62  VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
63  VERIFY_IS_APPROX(m4.setZero(), mzero);
64  VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
65  VERIFY_IS_APPROX(m4.setOnes(), mones);
66  VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
67  m4.fill(s1);
68  VERIFY_IS_APPROX(m4, m3);
69
70  VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
71  VERIFY_IS_APPROX(v3.setZero(rows), vzero);
72  VERIFY_IS_APPROX(v3.setOnes(rows), vones);
73
74  m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
75
76  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
77  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
78  VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());
79
80  VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
81  VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
82  m3 = m1; m3.cwise() += 1;
83  VERIFY_IS_APPROX(m1 + mones, m3);
84  m3 = m1; m3.cwise() -= 1;
85  VERIFY_IS_APPROX(m1 - mones, m3);
86
87  VERIFY_IS_APPROX(m2, m2.cwise() * mones);
88  VERIFY_IS_APPROX(m1.cwise() * m2,  m2.cwise() * m1);
89  m3 = m1;
90  m3.cwise() *= m2;
91  VERIFY_IS_APPROX(m3, m1.cwise() * m2);
92
93  VERIFY_IS_APPROX(mones,    m2.cwise()/m2);
94  if(NumTraits<Scalar>::HasFloatingPoint)
95  {
96    VERIFY_IS_APPROX(m1.cwise() / m2,    m1.cwise() * (m2.cwise().inverse()));
97    m3 = m1.cwise().abs().cwise().sqrt();
98    VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
99    VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
100    VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());
101
102    VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
103    m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
104    VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
105    m3 = m1.cwise().abs();
106    VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
107
108//     VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos());
109    VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
110    m3 = m1;
111    m3.cwise() /= m2;
112    VERIFY_IS_APPROX(m3, m1.cwise() / m2);
113  }
114
115  // check min
116  VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
117  VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
118  VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );
119
120  // check max
121  VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
122  VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
123  VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
124
125  VERIFY( (m1.cwise() == m1).all() );
126  VERIFY( (m1.cwise() != m2).any() );
127  VERIFY(!(m1.cwise() == (m1+mones)).any() );
128  if (rows*cols>1)
129  {
130    m3 = m1;
131    m3(r,c) += 1;
132    VERIFY( (m1.cwise() == m3).any() );
133    VERIFY( !(m1.cwise() == m3).all() );
134  }
135  VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
136  VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
137  VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
138  VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
139
140  VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
141  VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
142  VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
143}
144
145void test_eigen2_cwiseop()
146{
147  for(int i = 0; i < g_repeat ; i++) {
148    CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
149    CALL_SUBTEST_2( cwiseops(Matrix4d()) );
150    CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) );
151    CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) );
152    CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) );
153    CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) );
154  }
155}
156