1/*
2**********************************************************************
3*   Copyright (C) 2000-2015, International Business Machines
4*   Corporation and others.  All Rights Reserved.
5**********************************************************************
6*   file name:  ucnv_lmb.cpp
7*   encoding:   US-ASCII
8*   tab size:   4 (not used)
9*   indentation:4
10*
11*   created on: 2000feb09
12*   created by: Brendan Murray
13*   extensively hacked up by: Jim Snyder-Grant
14*
15* Modification History:
16*
17*   Date        Name             Description
18*
19*   06/20/2000  helena           OS/400 port changes; mostly typecast.
20*   06/27/2000  Jim Snyder-Grant Deal with partial characters and small buffers.
21*                                Add comments to document LMBCS format and implementation
22*                                restructured order & breakdown of functions
23*   06/28/2000  helena           Major rewrite for the callback API changes.
24*/
25
26#include "unicode/utypes.h"
27
28#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
29
30#include "unicode/ucnv_err.h"
31#include "unicode/ucnv.h"
32#include "unicode/uset.h"
33#include "cmemory.h"
34#include "cstring.h"
35#include "uassert.h"
36#include "ucnv_imp.h"
37#include "ucnv_bld.h"
38#include "ucnv_cnv.h"
39
40#ifdef EBCDIC_RTL
41    #include "ascii_a.h"
42#endif
43
44/*
45  LMBCS
46
47  (Lotus Multi-Byte Character Set)
48
49  LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
50  databases and in Lotus 1-2-3 files. Programmers who work with the APIs
51  into these products will sometimes need to deal with strings in this format.
52
53  The code in this file provides an implementation for an ICU converter of
54  LMBCS to and from Unicode.
55
56  Since the LMBCS character set is only sparsely documented in existing
57  printed or online material, we have added  extensive annotation to this
58  file to serve as a guide to understanding LMBCS.
59
60  LMBCS was originally designed with these four sometimes-competing design goals:
61
62  -Provide encodings for the characters in 12 existing national standards
63   (plus a few other characters)
64  -Minimal memory footprint
65  -Maximal speed of conversion into the existing national character sets
66  -No need to track a changing state as you interpret a string.
67
68
69  All of the national character sets LMBCS was trying to encode are 'ANSI'
70  based, in that the bytes from 0x20 - 0x7F are almost exactly the
71  same common Latin unaccented characters and symbols in all character sets.
72
73  So, in order to help meet the speed & memory design goals, the common ANSI
74  bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
75
76  The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
77  follows:
78
79  [G] D1 [D2]
80
81  That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
82  data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
83*/
84#define ULMBCS_CHARSIZE_MAX      3
85/*
86  The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
87  We often have to figure out if byte values are below or above this, so we
88  use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
89  characters just above & below the common lower-ANSI  range */
90#define ULMBCS_C0END           0x1F
91#define ULMBCS_C1START         0x80
92/*
93  Since LMBCS is always dealing in byte units. we create a local type here for
94  dealing with these units of LMBCS code units:
95
96*/
97typedef uint8_t ulmbcs_byte_t;
98
99/*
100   Most of the values less than 0x20 are reserved in LMBCS to announce
101   which national  character standard is being used for the 'D' bytes.
102   In the comments we show the common name and the IBM character-set ID
103   for these character-set announcers:
104*/
105
106#define ULMBCS_GRP_L1         0x01   /* Latin-1    :ibm-850  */
107#define ULMBCS_GRP_GR         0x02   /* Greek      :ibm-851  */
108#define ULMBCS_GRP_HE         0x03   /* Hebrew     :ibm-1255 */
109#define ULMBCS_GRP_AR         0x04   /* Arabic     :ibm-1256 */
110#define ULMBCS_GRP_RU         0x05   /* Cyrillic   :ibm-1251 */
111#define ULMBCS_GRP_L2         0x06   /* Latin-2    :ibm-852  */
112#define ULMBCS_GRP_TR         0x08   /* Turkish    :ibm-1254 */
113#define ULMBCS_GRP_TH         0x0B   /* Thai       :ibm-874  */
114#define ULMBCS_GRP_JA         0x10   /* Japanese   :ibm-943  */
115#define ULMBCS_GRP_KO         0x11   /* Korean     :ibm-1261 */
116#define ULMBCS_GRP_TW         0x12   /* Chinese SC :ibm-950  */
117#define ULMBCS_GRP_CN         0x13   /* Chinese TC :ibm-1386 */
118
119/*
120   So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
121   character is one of those 12 values, you can interpret the remaining bytes of
122   that character as coming from one of those character sets. Since the lower
123   ANSI bytes already are represented in single bytes, using one of the character
124   set announcers is used to announce a character that starts with a byte of
125   0x80 or greater.
126
127   The character sets are  arranged so that the single byte sets all appear
128   before the multi-byte character sets. When we need to tell whether a
129   group byte is for a single byte char set or not we use this define: */
130
131#define ULMBCS_DOUBLEOPTGROUP_START  0x10
132
133/*
134However, to fully understand LMBCS, you must also understand a series of
135exceptions & optimizations made in service of the design goals.
136
137First, those of you who are character set mavens may have noticed that
138the 'double-byte' character sets are actually multi-byte character sets
139that can have 1 or two bytes, even in the upper-ascii range. To force
140each group byte to introduce a fixed-width encoding (to make it faster to
141count characters), we use a convention of doubling up on the group byte
142to introduce any single-byte character > 0x80 in an otherwise double-byte
143character set. So, for example, the LMBCS sequence x10 x10 xAE is the
144same as '0xAE' in the Japanese code page 943.
145
146Next, you will notice that the list of group bytes has some gaps.
147These are used in various ways.
148
149We reserve a few special single byte values for common control
150characters. These are in the same place as their ANSI eqivalents for speed.
151*/
152
153#define ULMBCS_HT    0x09   /* Fixed control char - Horizontal Tab */
154#define ULMBCS_LF    0x0A   /* Fixed control char - Line Feed */
155#define ULMBCS_CR    0x0D   /* Fixed control char - Carriage Return */
156
157/* Then, 1-2-3 reserved a special single-byte character to put at the
158beginning of internal 'system' range names: */
159
160#define ULMBCS_123SYSTEMRANGE  0x19
161
162/* Then we needed a place to put all the other ansi control characters
163that must be moved to different values because LMBCS reserves those
164values for other purposes. To represent the control characters, we start
165with a first byte of 0xF & add the control chaarcter value as the
166second byte */
167#define ULMBCS_GRP_CTRL       0x0F
168
169/* For the C0 controls (less than 0x20), we add 0x20 to preserve the
170useful doctrine that any byte less than 0x20 in a LMBCS char must be
171the first byte of a character:*/
172#define ULMBCS_CTRLOFFSET      0x20
173
174/*
175Where to put the characters that aren't part of any of the 12 national
176character sets? The first thing that was done, in the earlier years of
177LMBCS, was to use up the spaces of the form
178
179  [G] D1,
180
181 where  'G' was one of the single-byte character groups, and
182 D1 was less than 0x80. These sequences are gathered together
183 into a Lotus-invented doublebyte character set to represent a
184 lot of stray values. Internally, in this implementation, we track this
185 as group '0', as a place to tuck this exceptions list.*/
186
187#define ULMBCS_GRP_EXCEPT     0x00
188/*
189 Finally, as the durability and usefulness of UNICODE became clear,
190 LOTUS added a new group 0x14 to hold Unicode values not otherwise
191 represented in LMBCS: */
192#define ULMBCS_GRP_UNICODE    0x14
193/* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
194(Big-Endian) characters. The exception comes when the UTF16
195representation would have a zero as the second byte. In that case,
196'F6' is used in its place, and the bytes are swapped. (This prevents
197LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
1980xF6xx is in the middle of the Private Use Area.)*/
199#define ULMBCS_UNICOMPATZERO   0xF6
200
201/* It is also useful in our code to have a constant for the size of
202a LMBCS char that holds a literal Unicode value */
203#define ULMBCS_UNICODE_SIZE      3
204
205/*
206To squish the LMBCS representations down even further, and to make
207translations even faster,sometimes the optimization group byte can be dropped
208from a LMBCS character. This is decided on a process-by-process basis. The
209group byte that is dropped is called the 'optimization group'.
210
211For Notes, the optimzation group is always 0x1.*/
212#define ULMBCS_DEFAULTOPTGROUP 0x1
213/* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
214file.
215
216 In any case, when using ICU, you either pass in the
217optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
218etc.). Using plain 'LMBCS' as the name of the converter will give you
219LMBCS-1.
220
221
222*** Implementation strategy ***
223
224
225Because of the extensive use of other character sets, the LMBCS converter
226keeps a mapping between optimization groups and IBM character sets, so that
227ICU converters can be created and used as needed. */
228
229/* As you can see, even though any byte below 0x20 could be an optimization
230byte, only those at 0x13 or below can map to an actual converter. To limit
231some loops and searches, we define a value for that last group converter:*/
232
233#define ULMBCS_GRP_LAST       0x13   /* last LMBCS group that has a converter */
234
235static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
236   /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
237   /* 0x0001 */ "ibm-850",
238   /* 0x0002 */ "ibm-851",
239   /* 0x0003 */ "windows-1255",
240   /* 0x0004 */ "windows-1256",
241   /* 0x0005 */ "windows-1251",
242   /* 0x0006 */ "ibm-852",
243   /* 0x0007 */ NULL,      /* Unused */
244   /* 0x0008 */ "windows-1254",
245   /* 0x0009 */ NULL,      /* Control char HT */
246   /* 0x000A */ NULL,      /* Control char LF */
247   /* 0x000B */ "windows-874",
248   /* 0x000C */ NULL,      /* Unused */
249   /* 0x000D */ NULL,      /* Control char CR */
250   /* 0x000E */ NULL,      /* Unused */
251   /* 0x000F */ NULL,      /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
252   /* 0x0010 */ "windows-932",
253   /* 0x0011 */ "windows-949",
254   /* 0x0012 */ "windows-950",
255   /* 0x0013 */ "windows-936"
256
257   /* The rest are null, including the 0x0014 Unicode compatibility region
258   and 0x0019, the 1-2-3 system range control char */
259};
260
261
262/* That's approximately all the data that's needed for translating
263  LMBCS to Unicode.
264
265
266However, to translate Unicode to LMBCS, we need some more support.
267
268That's because there are often more than one possible mappings from a Unicode
269code point back into LMBCS. The first thing we do is look up into a table
270to figure out if there are more than one possible mappings. This table,
271arranged by Unicode values (including ranges) either lists which group
272to use, or says that it could go into one or more of the SBCS sets, or
273into one or more of the DBCS sets.  (If the character exists in both DBCS &
274SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
275length as small as possible. Here's the two special markers we use to indicate
276ambiguous mappings: */
277
278#define ULMBCS_AMBIGUOUS_SBCS   0x80   /* could fit in more than one
279                                          LMBCS sbcs native encoding
280                                          (example: most accented latin) */
281#define ULMBCS_AMBIGUOUS_MBCS   0x81   /* could fit in more than one
282                                          LMBCS mbcs native encoding
283                                          (example: Unihan) */
284#define ULMBCS_AMBIGUOUS_ALL   0x82
285/* And here's a simple way to see if a group falls in an appropriate range */
286#define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
287                  ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
288                  (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
289                  (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
290                  (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
291                  ((agroup) == ULMBCS_AMBIGUOUS_ALL)
292
293
294/* The table & some code to use it: */
295
296
297static const struct _UniLMBCSGrpMap
298{
299   const UChar uniStartRange;
300   const UChar uniEndRange;
301   const ulmbcs_byte_t  GrpType;
302} UniLMBCSGrpMap[]
303=
304{
305
306    {0x0001, 0x001F,  ULMBCS_GRP_CTRL},
307    {0x0080, 0x009F,  ULMBCS_GRP_CTRL},
308    {0x00A0, 0x00A6,  ULMBCS_AMBIGUOUS_SBCS},
309    {0x00A7, 0x00A8,  ULMBCS_AMBIGUOUS_ALL},
310    {0x00A9, 0x00AF,  ULMBCS_AMBIGUOUS_SBCS},
311    {0x00B0, 0x00B1,  ULMBCS_AMBIGUOUS_ALL},
312    {0x00B2, 0x00B3,  ULMBCS_AMBIGUOUS_SBCS},
313    {0x00B4, 0x00B4,  ULMBCS_AMBIGUOUS_ALL},
314    {0x00B5, 0x00B5,  ULMBCS_AMBIGUOUS_SBCS},
315    {0x00B6, 0x00B6,  ULMBCS_AMBIGUOUS_ALL},
316    {0x00B7, 0x00D6,  ULMBCS_AMBIGUOUS_SBCS},
317    {0x00D7, 0x00D7,  ULMBCS_AMBIGUOUS_ALL},
318    {0x00D8, 0x00F6,  ULMBCS_AMBIGUOUS_SBCS},
319    {0x00F7, 0x00F7,  ULMBCS_AMBIGUOUS_ALL},
320    {0x00F8, 0x01CD,  ULMBCS_AMBIGUOUS_SBCS},
321    {0x01CE, 0x01CE,  ULMBCS_GRP_TW },
322    {0x01CF, 0x02B9,  ULMBCS_AMBIGUOUS_SBCS},
323    {0x02BA, 0x02BA,  ULMBCS_GRP_CN},
324    {0x02BC, 0x02C8,  ULMBCS_AMBIGUOUS_SBCS},
325    {0x02C9, 0x02D0,  ULMBCS_AMBIGUOUS_MBCS},
326    {0x02D8, 0x02DD,  ULMBCS_AMBIGUOUS_SBCS},
327    {0x0384, 0x0390,  ULMBCS_AMBIGUOUS_SBCS},
328    {0x0391, 0x03A9,  ULMBCS_AMBIGUOUS_ALL},
329    {0x03AA, 0x03B0,  ULMBCS_AMBIGUOUS_SBCS},
330    {0x03B1, 0x03C9,  ULMBCS_AMBIGUOUS_ALL},
331    {0x03CA, 0x03CE,  ULMBCS_AMBIGUOUS_SBCS},
332    {0x0400, 0x0400,  ULMBCS_GRP_RU},
333    {0x0401, 0x0401,  ULMBCS_AMBIGUOUS_ALL},
334    {0x0402, 0x040F,  ULMBCS_GRP_RU},
335    {0x0410, 0x0431,  ULMBCS_AMBIGUOUS_ALL},
336    {0x0432, 0x044E,  ULMBCS_GRP_RU},
337    {0x044F, 0x044F,  ULMBCS_AMBIGUOUS_ALL},
338    {0x0450, 0x0491,  ULMBCS_GRP_RU},
339    {0x05B0, 0x05F2,  ULMBCS_GRP_HE},
340    {0x060C, 0x06AF,  ULMBCS_GRP_AR},
341    {0x0E01, 0x0E5B,  ULMBCS_GRP_TH},
342    {0x200C, 0x200F,  ULMBCS_AMBIGUOUS_SBCS},
343    {0x2010, 0x2010,  ULMBCS_AMBIGUOUS_MBCS},
344    {0x2013, 0x2014,  ULMBCS_AMBIGUOUS_SBCS},
345    {0x2015, 0x2015,  ULMBCS_AMBIGUOUS_MBCS},
346    {0x2016, 0x2016,  ULMBCS_AMBIGUOUS_MBCS},
347    {0x2017, 0x2017,  ULMBCS_AMBIGUOUS_SBCS},
348    {0x2018, 0x2019,  ULMBCS_AMBIGUOUS_ALL},
349    {0x201A, 0x201B,  ULMBCS_AMBIGUOUS_SBCS},
350    {0x201C, 0x201D,  ULMBCS_AMBIGUOUS_ALL},
351    {0x201E, 0x201F,  ULMBCS_AMBIGUOUS_SBCS},
352    {0x2020, 0x2021,  ULMBCS_AMBIGUOUS_ALL},
353    {0x2022, 0x2024,  ULMBCS_AMBIGUOUS_SBCS},
354    {0x2025, 0x2025,  ULMBCS_AMBIGUOUS_MBCS},
355    {0x2026, 0x2026,  ULMBCS_AMBIGUOUS_ALL},
356    {0x2027, 0x2027,  ULMBCS_GRP_TW},
357    {0x2030, 0x2030,  ULMBCS_AMBIGUOUS_ALL},
358    {0x2031, 0x2031,  ULMBCS_AMBIGUOUS_SBCS},
359    {0x2032, 0x2033,  ULMBCS_AMBIGUOUS_MBCS},
360    {0x2035, 0x2035,  ULMBCS_AMBIGUOUS_MBCS},
361    {0x2039, 0x203A,  ULMBCS_AMBIGUOUS_SBCS},
362    {0x203B, 0x203B,  ULMBCS_AMBIGUOUS_MBCS},
363    {0x203C, 0x203C,  ULMBCS_GRP_EXCEPT},
364    {0x2074, 0x2074,  ULMBCS_GRP_KO},
365    {0x207F, 0x207F,  ULMBCS_GRP_EXCEPT},
366    {0x2081, 0x2084,  ULMBCS_GRP_KO},
367    {0x20A4, 0x20AC,  ULMBCS_AMBIGUOUS_SBCS},
368    {0x2103, 0x2109,  ULMBCS_AMBIGUOUS_MBCS},
369    {0x2111, 0x2120,  ULMBCS_AMBIGUOUS_SBCS},
370    /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
371    {0x2121, 0x2121,  ULMBCS_AMBIGUOUS_MBCS},
372    {0x2122, 0x2126,  ULMBCS_AMBIGUOUS_SBCS},
373    {0x212B, 0x212B,  ULMBCS_AMBIGUOUS_MBCS},
374    {0x2135, 0x2135,  ULMBCS_AMBIGUOUS_SBCS},
375    {0x2153, 0x2154,  ULMBCS_GRP_KO},
376    {0x215B, 0x215E,  ULMBCS_GRP_EXCEPT},
377    {0x2160, 0x2179,  ULMBCS_AMBIGUOUS_MBCS},
378    {0x2190, 0x2193,  ULMBCS_AMBIGUOUS_ALL},
379    {0x2194, 0x2195,  ULMBCS_GRP_EXCEPT},
380    {0x2196, 0x2199,  ULMBCS_AMBIGUOUS_MBCS},
381    {0x21A8, 0x21A8,  ULMBCS_GRP_EXCEPT},
382    {0x21B8, 0x21B9,  ULMBCS_GRP_CN},
383    {0x21D0, 0x21D1,  ULMBCS_GRP_EXCEPT},
384    {0x21D2, 0x21D2,  ULMBCS_AMBIGUOUS_MBCS},
385    {0x21D3, 0x21D3,  ULMBCS_GRP_EXCEPT},
386    {0x21D4, 0x21D4,  ULMBCS_AMBIGUOUS_MBCS},
387    {0x21D5, 0x21D5,  ULMBCS_GRP_EXCEPT},
388    {0x21E7, 0x21E7,  ULMBCS_GRP_CN},
389    {0x2200, 0x2200,  ULMBCS_AMBIGUOUS_MBCS},
390    {0x2201, 0x2201,  ULMBCS_GRP_EXCEPT},
391    {0x2202, 0x2202,  ULMBCS_AMBIGUOUS_MBCS},
392    {0x2203, 0x2203,  ULMBCS_AMBIGUOUS_MBCS},
393    {0x2204, 0x2206,  ULMBCS_GRP_EXCEPT},
394    {0x2207, 0x2208,  ULMBCS_AMBIGUOUS_MBCS},
395    {0x2209, 0x220A,  ULMBCS_GRP_EXCEPT},
396    {0x220B, 0x220B,  ULMBCS_AMBIGUOUS_MBCS},
397    {0x220F, 0x2215,  ULMBCS_AMBIGUOUS_MBCS},
398    {0x2219, 0x2219,  ULMBCS_GRP_EXCEPT},
399    {0x221A, 0x221A,  ULMBCS_AMBIGUOUS_MBCS},
400    {0x221B, 0x221C,  ULMBCS_GRP_EXCEPT},
401    {0x221D, 0x221E,  ULMBCS_AMBIGUOUS_MBCS},
402    {0x221F, 0x221F,  ULMBCS_GRP_EXCEPT},
403    {0x2220, 0x2220,  ULMBCS_AMBIGUOUS_MBCS},
404    {0x2223, 0x222A,  ULMBCS_AMBIGUOUS_MBCS},
405    {0x222B, 0x223D,  ULMBCS_AMBIGUOUS_MBCS},
406    {0x2245, 0x2248,  ULMBCS_GRP_EXCEPT},
407    {0x224C, 0x224C,  ULMBCS_GRP_TW},
408    {0x2252, 0x2252,  ULMBCS_AMBIGUOUS_MBCS},
409    {0x2260, 0x2261,  ULMBCS_AMBIGUOUS_MBCS},
410    {0x2262, 0x2265,  ULMBCS_GRP_EXCEPT},
411    {0x2266, 0x226F,  ULMBCS_AMBIGUOUS_MBCS},
412    {0x2282, 0x2283,  ULMBCS_AMBIGUOUS_MBCS},
413    {0x2284, 0x2285,  ULMBCS_GRP_EXCEPT},
414    {0x2286, 0x2287,  ULMBCS_AMBIGUOUS_MBCS},
415    {0x2288, 0x2297,  ULMBCS_GRP_EXCEPT},
416    {0x2299, 0x22BF,  ULMBCS_AMBIGUOUS_MBCS},
417    {0x22C0, 0x22C0,  ULMBCS_GRP_EXCEPT},
418    {0x2310, 0x2310,  ULMBCS_GRP_EXCEPT},
419    {0x2312, 0x2312,  ULMBCS_AMBIGUOUS_MBCS},
420    {0x2318, 0x2321,  ULMBCS_GRP_EXCEPT},
421    {0x2318, 0x2321,  ULMBCS_GRP_CN},
422    {0x2460, 0x24E9,  ULMBCS_AMBIGUOUS_MBCS},
423    {0x2500, 0x2500,  ULMBCS_AMBIGUOUS_SBCS},
424    {0x2501, 0x2501,  ULMBCS_AMBIGUOUS_MBCS},
425    {0x2502, 0x2502,  ULMBCS_AMBIGUOUS_ALL},
426    {0x2503, 0x2503,  ULMBCS_AMBIGUOUS_MBCS},
427    {0x2504, 0x2505,  ULMBCS_GRP_TW},
428    {0x2506, 0x2665,  ULMBCS_AMBIGUOUS_ALL},
429    {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
430    {0x2667, 0x2669,  ULMBCS_AMBIGUOUS_SBCS},
431    {0x266A, 0x266A,  ULMBCS_AMBIGUOUS_ALL},
432    {0x266B, 0x266C,  ULMBCS_AMBIGUOUS_SBCS},
433    {0x266D, 0x266D,  ULMBCS_AMBIGUOUS_MBCS},
434    {0x266E, 0x266E,  ULMBCS_AMBIGUOUS_SBCS},
435    {0x266F, 0x266F,  ULMBCS_GRP_JA},
436    {0x2670, 0x2E7F,  ULMBCS_AMBIGUOUS_SBCS},
437    {0x2E80, 0xF861,  ULMBCS_AMBIGUOUS_MBCS},
438    {0xF862, 0xF8FF,  ULMBCS_GRP_EXCEPT},
439    {0xF900, 0xFA2D,  ULMBCS_AMBIGUOUS_MBCS},
440    {0xFB00, 0xFEFF,  ULMBCS_AMBIGUOUS_SBCS},
441    {0xFF01, 0xFFEE,  ULMBCS_AMBIGUOUS_MBCS},
442    {0xFFFF, 0xFFFF,  ULMBCS_GRP_UNICODE}
443};
444
445static ulmbcs_byte_t
446FindLMBCSUniRange(UChar uniChar)
447{
448   const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
449
450   while (uniChar > pTable->uniEndRange)
451   {
452      pTable++;
453   }
454
455   if (uniChar >= pTable->uniStartRange)
456   {
457      return pTable->GrpType;
458   }
459   return ULMBCS_GRP_UNICODE;
460}
461
462/*
463We also ask the creator of a converter to send in a preferred locale
464that we can use in resolving ambiguous mappings. They send the locale
465in as a string, and we map it, if possible, to one of the
466LMBCS groups. We use this table, and the associated code, to
467do the lookup: */
468
469/**************************************************
470  This table maps locale ID's to LMBCS opt groups.
471  The default return is group 0x01. Note that for
472  performance reasons, the table is sorted in
473  increasing alphabetic order, with the notable
474  exception of zhTW. This is to force the check
475  for Traditonal Chinese before dropping back to
476  Simplified.
477
478  Note too that the Latin-1 groups have been
479  commented out because it's the default, and
480  this shortens the table, allowing a serial
481  search to go quickly.
482 *************************************************/
483
484static const struct _LocaleLMBCSGrpMap
485{
486   const char    *LocaleID;
487   const ulmbcs_byte_t OptGroup;
488} LocaleLMBCSGrpMap[] =
489{
490    {"ar", ULMBCS_GRP_AR},
491    {"be", ULMBCS_GRP_RU},
492    {"bg", ULMBCS_GRP_L2},
493   /* {"ca", ULMBCS_GRP_L1}, */
494    {"cs", ULMBCS_GRP_L2},
495   /* {"da", ULMBCS_GRP_L1}, */
496   /* {"de", ULMBCS_GRP_L1}, */
497    {"el", ULMBCS_GRP_GR},
498   /* {"en", ULMBCS_GRP_L1}, */
499   /* {"es", ULMBCS_GRP_L1}, */
500   /* {"et", ULMBCS_GRP_L1}, */
501   /* {"fi", ULMBCS_GRP_L1}, */
502   /* {"fr", ULMBCS_GRP_L1}, */
503    {"he", ULMBCS_GRP_HE},
504    {"hu", ULMBCS_GRP_L2},
505   /* {"is", ULMBCS_GRP_L1}, */
506   /* {"it", ULMBCS_GRP_L1}, */
507    {"iw", ULMBCS_GRP_HE},
508    {"ja", ULMBCS_GRP_JA},
509    {"ko", ULMBCS_GRP_KO},
510   /* {"lt", ULMBCS_GRP_L1}, */
511   /* {"lv", ULMBCS_GRP_L1}, */
512    {"mk", ULMBCS_GRP_RU},
513   /* {"nl", ULMBCS_GRP_L1}, */
514   /* {"no", ULMBCS_GRP_L1}, */
515    {"pl", ULMBCS_GRP_L2},
516   /* {"pt", ULMBCS_GRP_L1}, */
517    {"ro", ULMBCS_GRP_L2},
518    {"ru", ULMBCS_GRP_RU},
519    {"sh", ULMBCS_GRP_L2},
520    {"sk", ULMBCS_GRP_L2},
521    {"sl", ULMBCS_GRP_L2},
522    {"sq", ULMBCS_GRP_L2},
523    {"sr", ULMBCS_GRP_RU},
524   /* {"sv", ULMBCS_GRP_L1}, */
525    {"th", ULMBCS_GRP_TH},
526    {"tr", ULMBCS_GRP_TR},
527    {"uk", ULMBCS_GRP_RU},
528   /* {"vi", ULMBCS_GRP_L1}, */
529    {"zhTW", ULMBCS_GRP_TW},
530    {"zh", ULMBCS_GRP_CN},
531    {NULL, ULMBCS_GRP_L1}
532};
533
534
535static ulmbcs_byte_t
536FindLMBCSLocale(const char *LocaleID)
537{
538   const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
539
540   if ((!LocaleID) || (!*LocaleID))
541   {
542      return 0;
543   }
544
545   while (pTable->LocaleID)
546   {
547      if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
548      {
549         /* First char matches - check whole name, for entry-length */
550         if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
551            return pTable->OptGroup;
552      }
553      else
554      if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
555         break;
556      pTable++;
557   }
558   return ULMBCS_GRP_L1;
559}
560
561
562/*
563  Before we get to the main body of code, here's how we hook up to the rest
564  of ICU. ICU converters are required to define a structure that includes
565  some function pointers, and some common data, in the style of a C++
566  vtable. There is also room in there for converter-specific data. LMBCS
567  uses that converter-specific data to keep track of the 12 subconverters
568  we use, the optimization group, and the group (if any) that matches the
569  locale. We have one structure instantiated for each of the 12 possible
570  optimization groups. To avoid typos & to avoid boring the reader, we
571  put the declarations of these structures and functions into macros. To see
572  the definitions of these structures, see unicode\ucnv_bld.h
573*/
574
575typedef struct
576  {
577    UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1];    /* Converter per Opt. grp. */
578    uint8_t    OptGroup;                  /* default Opt. grp. for this LMBCS session */
579    uint8_t    localeConverterIndex;      /* reasonable locale match for index */
580  }
581UConverterDataLMBCS;
582
583static void _LMBCSClose(UConverter * _this);
584
585#define DECLARE_LMBCS_DATA(n) \
586static const UConverterImpl _LMBCSImpl##n={\
587    UCNV_LMBCS_##n,\
588    NULL,NULL,\
589    _LMBCSOpen##n,\
590    _LMBCSClose,\
591    NULL,\
592    _LMBCSToUnicodeWithOffsets,\
593    _LMBCSToUnicodeWithOffsets,\
594    _LMBCSFromUnicode,\
595    _LMBCSFromUnicode,\
596    NULL,\
597    NULL,\
598    NULL,\
599    NULL,\
600    _LMBCSSafeClone,\
601    ucnv_getCompleteUnicodeSet\
602};\
603static const UConverterStaticData _LMBCSStaticData##n={\
604  sizeof(UConverterStaticData),\
605 "LMBCS-"  #n,\
606    0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
607    { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
608};\
609const UConverterSharedData _LMBCSData##n={\
610    sizeof(UConverterSharedData), ~((uint32_t) 0),\
611    NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \
612    0 \
613};
614
615 /* The only function we needed to duplicate 12 times was the 'open'
616function, which will do basically the same thing except set a  different
617optimization group. So, we put the common stuff into a worker function,
618and set up another macro to stamp out the 12 open functions:*/
619#define DEFINE_LMBCS_OPEN(n) \
620static void \
621   _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
622{ _LMBCSOpenWorker(_this, pArgs, err, n); }
623
624
625
626/* Here's the open worker & the common close function */
627static void
628_LMBCSOpenWorker(UConverter*  _this,
629                 UConverterLoadArgs *pArgs,
630                 UErrorCode*  err,
631                 ulmbcs_byte_t OptGroup)
632{
633    UConverterDataLMBCS * extraInfo = _this->extraInfo =
634        (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
635    if(extraInfo != NULL)
636    {
637        UConverterNamePieces stackPieces;
638        UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
639        ulmbcs_byte_t i;
640
641        uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
642
643        stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
644
645        for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
646        {
647            if(OptGroupByteToCPName[i] != NULL) {
648                extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
649            }
650        }
651
652        if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
653            _LMBCSClose(_this);
654            return;
655        }
656        extraInfo->OptGroup = OptGroup;
657        extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
658    }
659    else
660    {
661        *err = U_MEMORY_ALLOCATION_ERROR;
662    }
663}
664
665static void
666_LMBCSClose(UConverter *   _this)
667{
668    if (_this->extraInfo != NULL)
669    {
670        ulmbcs_byte_t Ix;
671        UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
672
673        for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
674        {
675           if (extraInfo->OptGrpConverter[Ix] != NULL)
676              ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
677        }
678        if (!_this->isExtraLocal) {
679            uprv_free (_this->extraInfo);
680            _this->extraInfo = NULL;
681        }
682    }
683}
684
685typedef struct LMBCSClone {
686    UConverter cnv;
687    UConverterDataLMBCS lmbcs;
688} LMBCSClone;
689
690static UConverter *
691_LMBCSSafeClone(const UConverter *cnv,
692                void *stackBuffer,
693                int32_t *pBufferSize,
694                UErrorCode *status) {
695    LMBCSClone *newLMBCS;
696    UConverterDataLMBCS *extraInfo;
697    int32_t i;
698
699    if(*pBufferSize<=0) {
700        *pBufferSize=(int32_t)sizeof(LMBCSClone);
701        return NULL;
702    }
703
704    extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
705    newLMBCS=(LMBCSClone *)stackBuffer;
706
707    /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
708
709    uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
710
711    /* share the subconverters */
712    for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
713        if(extraInfo->OptGrpConverter[i] != NULL) {
714            ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
715        }
716    }
717
718    newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
719    newLMBCS->cnv.isExtraLocal = TRUE;
720    return &newLMBCS->cnv;
721}
722
723/*
724 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
725 * which added all code points except for U+F6xx
726 * because those cannot be represented in the Unicode group.
727 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
728 * which means that LMBCS can convert all Unicode code points after all.
729 * We now simply use ucnv_getCompleteUnicodeSet().
730 *
731 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
732 */
733
734/*
735   Here's the basic helper function that we use when converting from
736   Unicode to LMBCS, and we suspect that a Unicode character will fit into
737   one of the 12 groups. The return value is the number of bytes written
738   starting at pStartLMBCS (if any).
739*/
740
741static size_t
742LMBCSConversionWorker (
743   UConverterDataLMBCS * extraInfo,    /* subconverters, opt & locale groups */
744   ulmbcs_byte_t group,                /* The group to try */
745   ulmbcs_byte_t  * pStartLMBCS,              /* where to put the results */
746   UChar * pUniChar,                   /* The input unicode character */
747   ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
748   UBool * groups_tried                /* output: track any unsuccessful groups */
749)
750{
751   ulmbcs_byte_t  * pLMBCS = pStartLMBCS;
752   UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
753
754   int bytesConverted;
755   uint32_t value;
756   ulmbcs_byte_t firstByte;
757
758   U_ASSERT(xcnv);
759   U_ASSERT(group<ULMBCS_GRP_UNICODE);
760
761   bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
762
763   /* get the first result byte */
764   if(bytesConverted > 0) {
765      firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
766   } else {
767      /* most common failure mode is an unassigned character */
768      groups_tried[group] = TRUE;
769      return 0;
770   }
771
772   *lastConverterIndex = group;
773
774   /* All initial byte values in lower ascii range should have been caught by now,
775      except with the exception group.
776    */
777   U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
778
779   /* use converted data: first write 0, 1 or two group bytes */
780   if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
781   {
782      *pLMBCS++ = group;
783      if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
784      {
785         *pLMBCS++ = group;
786      }
787   }
788
789  /* don't emit control chars */
790   if ( bytesConverted == 1 && firstByte < 0x20 )
791      return 0;
792
793
794   /* then move over the converted data */
795   switch(bytesConverted)
796   {
797   case 4:
798      *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
799   case 3: /*fall through*/
800      *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
801   case 2: /*fall through*/
802      *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
803   case 1: /*fall through*/
804      *pLMBCS++ = (ulmbcs_byte_t)value;
805   default:
806      /* will never occur */
807      break;
808   }
809
810   return (pLMBCS - pStartLMBCS);
811}
812
813
814/* This is a much simpler version of above, when we
815know we are writing LMBCS using the Unicode group
816*/
817static size_t
818LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
819{
820     /* encode into LMBCS Unicode range */
821   uint8_t LowCh =   (uint8_t)(uniChar & 0x00FF);
822   uint8_t HighCh  = (uint8_t)(uniChar >> 8);
823
824   *pLMBCS++ = ULMBCS_GRP_UNICODE;
825
826   if (LowCh == 0)
827   {
828      *pLMBCS++ = ULMBCS_UNICOMPATZERO;
829      *pLMBCS++ = HighCh;
830   }
831   else
832   {
833      *pLMBCS++ = HighCh;
834      *pLMBCS++ = LowCh;
835   }
836   return ULMBCS_UNICODE_SIZE;
837}
838
839
840
841/* The main Unicode to LMBCS conversion function */
842static void
843_LMBCSFromUnicode(UConverterFromUnicodeArgs*     args,
844                  UErrorCode*     err)
845{
846   ulmbcs_byte_t lastConverterIndex = 0;
847   UChar uniChar;
848   ulmbcs_byte_t  LMBCS[ULMBCS_CHARSIZE_MAX];
849   ulmbcs_byte_t  * pLMBCS;
850   int32_t bytes_written;
851   UBool groups_tried[ULMBCS_GRP_LAST+1];
852   UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
853   int sourceIndex = 0;
854
855   /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
856      If that succeeds, see if it will all fit into the target & copy it over
857      if it does.
858
859      We try conversions in the following order:
860
861      1. Single-byte ascii & special fixed control chars (&null)
862      2. Look up group in table & try that (could be
863            A) Unicode group
864            B) control group,
865            C) national encoding,
866               or ambiguous SBCS or MBCS group (on to step 4...)
867
868      3. If its ambiguous, try this order:
869         A) The optimization group
870         B) The locale group
871         C) The last group that succeeded with this string.
872         D) every other group that's relevent (single or double)
873         E) If its single-byte ambiguous, try the exceptions group
874
875      4. And as a grand fallback: Unicode
876   */
877
878    /*Fix for SPR#DJOE66JFN3 (Lotus)*/
879    ulmbcs_byte_t OldConverterIndex = 0;
880
881   while (args->source < args->sourceLimit && !U_FAILURE(*err))
882   {
883      /*Fix for SPR#DJOE66JFN3 (Lotus)*/
884      OldConverterIndex = extraInfo->localeConverterIndex;
885
886      if (args->target >= args->targetLimit)
887      {
888         *err = U_BUFFER_OVERFLOW_ERROR;
889         break;
890      }
891      uniChar = *(args->source);
892      bytes_written = 0;
893      pLMBCS = LMBCS;
894
895      /* check cases in rough order of how common they are, for speed */
896
897      /* single byte matches: strategy 1 */
898      /*Fix for SPR#DJOE66JFN3 (Lotus)*/
899      if((uniChar>=0x80) && (uniChar<=0xff)
900      /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
901        &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
902      {
903            extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
904      }
905      if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
906          uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
907          uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
908          )
909      {
910         *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
911         bytes_written = 1;
912      }
913
914
915      if (!bytes_written)
916      {
917         /* Check by UNICODE range (Strategy 2) */
918         ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
919
920         if (group == ULMBCS_GRP_UNICODE)  /* (Strategy 2A) */
921         {
922            pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
923
924            bytes_written = (int32_t)(pLMBCS - LMBCS);
925         }
926         else if (group == ULMBCS_GRP_CTRL)  /* (Strategy 2B) */
927         {
928            /* Handle control characters here */
929            if (uniChar <= ULMBCS_C0END)
930            {
931               *pLMBCS++ = ULMBCS_GRP_CTRL;
932               *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
933            }
934            else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
935            {
936               *pLMBCS++ = ULMBCS_GRP_CTRL;
937               *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
938            }
939            bytes_written = (int32_t)(pLMBCS - LMBCS);
940         }
941         else if (group < ULMBCS_GRP_UNICODE)  /* (Strategy 2C) */
942         {
943            /* a specific converter has been identified - use it */
944            bytes_written = (int32_t)LMBCSConversionWorker (
945                              extraInfo, group, pLMBCS, &uniChar,
946                              &lastConverterIndex, groups_tried);
947         }
948         if (!bytes_written)    /* the ambiguous group cases  (Strategy 3) */
949         {
950            uprv_memset(groups_tried, 0, sizeof(groups_tried));
951
952            /* check for non-default optimization group (Strategy 3A )*/
953            if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
954            {
955                /*zhujin: upgrade, merge #39299 here (Lotus) */
956                /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
957
958                if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
959                {
960                  bytes_written = LMBCSConversionWorker (extraInfo,
961                     ULMBCS_GRP_L1, pLMBCS, &uniChar,
962                     &lastConverterIndex, groups_tried);
963
964                  if(!bytes_written)
965                  {
966                     bytes_written = LMBCSConversionWorker (extraInfo,
967                         ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
968                         &lastConverterIndex, groups_tried);
969                  }
970                  if(!bytes_written)
971                  {
972                      bytes_written = LMBCSConversionWorker (extraInfo,
973                          extraInfo->localeConverterIndex, pLMBCS, &uniChar,
974                          &lastConverterIndex, groups_tried);
975                  }
976                }
977                else
978                {
979                     bytes_written = LMBCSConversionWorker (extraInfo,
980                         extraInfo->localeConverterIndex, pLMBCS, &uniChar,
981                         &lastConverterIndex, groups_tried);
982                }
983            }
984            /* check for locale optimization group (Strategy 3B) */
985            if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
986            {
987                bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
988                        extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
989            }
990            /* check for last optimization group used for this string (Strategy 3C) */
991            if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
992            {
993                bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
994                        lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
995            }
996            if (!bytes_written)
997            {
998               /* just check every possible matching converter (Strategy 3D) */
999               ulmbcs_byte_t grp_start;
1000               ulmbcs_byte_t grp_end;
1001               ulmbcs_byte_t grp_ix;
1002               grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1003                        ? ULMBCS_DOUBLEOPTGROUP_START
1004                        :  ULMBCS_GRP_L1);
1005               grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1006                        ? ULMBCS_GRP_LAST
1007                        :  ULMBCS_GRP_TH);
1008               if(group == ULMBCS_AMBIGUOUS_ALL)
1009               {
1010                   grp_start = ULMBCS_GRP_L1;
1011                   grp_end = ULMBCS_GRP_LAST;
1012               }
1013               for (grp_ix = grp_start;
1014                   grp_ix <= grp_end && !bytes_written;
1015                    grp_ix++)
1016               {
1017                  if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1018                  {
1019                     bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1020                       grp_ix, pLMBCS, &uniChar,
1021                       &lastConverterIndex, groups_tried);
1022                  }
1023               }
1024                /* a final conversion fallback to the exceptions group if its likely
1025                     to be single byte  (Strategy 3E) */
1026               if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1027               {
1028                  bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1029                     ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1030                     &lastConverterIndex, groups_tried);
1031               }
1032            }
1033            /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1034            if (!bytes_written)
1035            {
1036
1037               pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1038               bytes_written = (int32_t)(pLMBCS - LMBCS);
1039            }
1040         }
1041      }
1042
1043      /* we have a translation. increment source and write as much as posible to target */
1044      args->source++;
1045      pLMBCS = LMBCS;
1046      while (args->target < args->targetLimit && bytes_written--)
1047      {
1048         *(args->target)++ = *pLMBCS++;
1049         if (args->offsets)
1050         {
1051            *(args->offsets)++ = sourceIndex;
1052         }
1053      }
1054      sourceIndex++;
1055      if (bytes_written > 0)
1056      {
1057         /* write any bytes that didn't fit in target to the error buffer,
1058            common code will move this to target if we get called back with
1059            enough target room
1060         */
1061         uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1062         *err = U_BUFFER_OVERFLOW_ERROR;
1063         args->converter->charErrorBufferLength = (int8_t)bytes_written;
1064         while (bytes_written--)
1065         {
1066            *pErrorBuffer++ = *pLMBCS++;
1067         }
1068      }
1069      /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1070      extraInfo->localeConverterIndex = OldConverterIndex;
1071   }
1072}
1073
1074
1075/* Now, the Unicode from LMBCS section */
1076
1077
1078/* A function to call when we are looking at the Unicode group byte in LMBCS */
1079static UChar
1080GetUniFromLMBCSUni(char const ** ppLMBCSin)  /* Called with LMBCS-style Unicode byte stream */
1081{
1082   uint8_t  HighCh = *(*ppLMBCSin)++;  /* Big-endian Unicode in LMBCS compatibility group*/
1083   uint8_t  LowCh  = *(*ppLMBCSin)++;
1084
1085   if (HighCh == ULMBCS_UNICOMPATZERO )
1086   {
1087      HighCh = LowCh;
1088      LowCh = 0; /* zero-byte in LSB special character */
1089   }
1090   return (UChar)((HighCh << 8) | LowCh);
1091}
1092
1093
1094
1095/* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1096   bytes left in source up to  sourceLimit.Errors appropriately if not.
1097   If we reach the limit, then update the source pointer to there to consume
1098   all input as required by ICU converter semantics.
1099*/
1100
1101#define CHECK_SOURCE_LIMIT(index) \
1102     if (args->source+index > args->sourceLimit){\
1103         *err = U_TRUNCATED_CHAR_FOUND;\
1104         args->source = args->sourceLimit;\
1105         return 0xffff;}
1106
1107/* Return the Unicode representation for the current LMBCS character */
1108
1109static UChar32
1110_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs*   args,
1111                         UErrorCode*   err)
1112{
1113    UChar32 uniChar = 0;    /* an output UNICODE char */
1114    ulmbcs_byte_t   CurByte; /* A byte from the input stream */
1115
1116    /* error check */
1117    if (args->source >= args->sourceLimit)
1118    {
1119        *err = U_ILLEGAL_ARGUMENT_ERROR;
1120        return 0xffff;
1121    }
1122    /* Grab first byte & save address for error recovery */
1123    CurByte = *((ulmbcs_byte_t  *) (args->source++));
1124
1125    /*
1126    * at entry of each if clause:
1127    * 1. 'CurByte' points at the first byte of a LMBCS character
1128    * 2. '*source'points to the next byte of the source stream after 'CurByte'
1129    *
1130    * the job of each if clause is:
1131    * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1132    * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1133    */
1134
1135    /* First lets check the simple fixed values. */
1136
1137    if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1138    ||  (CurByte == 0)
1139    ||  CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1140    ||  CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1141    {
1142        uniChar = CurByte;
1143    }
1144    else
1145    {
1146        UConverterDataLMBCS * extraInfo;
1147        ulmbcs_byte_t group;
1148        UConverterSharedData *cnv;
1149
1150        if (CurByte == ULMBCS_GRP_CTRL)  /* Control character group - no opt group update */
1151        {
1152            ulmbcs_byte_t  C0C1byte;
1153            CHECK_SOURCE_LIMIT(1);
1154            C0C1byte = *(args->source)++;
1155            uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1156        }
1157        else
1158        if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1159        {
1160            CHECK_SOURCE_LIMIT(2);
1161
1162            /* don't check for error indicators fffe/ffff below */
1163            return GetUniFromLMBCSUni(&(args->source));
1164        }
1165        else if (CurByte <= ULMBCS_CTRLOFFSET)
1166        {
1167            group = CurByte;                   /* group byte is in the source */
1168            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1169            if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1170            {
1171                /* this is not a valid group byte - no converter*/
1172                *err = U_INVALID_CHAR_FOUND;
1173            }
1174            else if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1175            {
1176
1177                CHECK_SOURCE_LIMIT(2);
1178
1179                /* check for LMBCS doubled-group-byte case */
1180                if (*args->source == group) {
1181                    /* single byte */
1182                    ++args->source;
1183                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1184                    ++args->source;
1185                } else {
1186                    /* double byte */
1187                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1188                    args->source += 2;
1189                }
1190            }
1191            else {                                  /* single byte conversion */
1192                CHECK_SOURCE_LIMIT(1);
1193                CurByte = *(args->source)++;
1194
1195                if (CurByte >= ULMBCS_C1START)
1196                {
1197                    uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1198                }
1199                else
1200                {
1201                    /* The non-optimizable oddballs where there is an explicit byte
1202                    * AND the second byte is not in the upper ascii range
1203                    */
1204                    char bytes[2];
1205
1206                    extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1207                    cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1208
1209                    /* Lookup value must include opt group */
1210                    bytes[0] = group;
1211                    bytes[1] = CurByte;
1212                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1213                }
1214            }
1215        }
1216        else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1217        {
1218            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1219            group = extraInfo->OptGroup;
1220            cnv = extraInfo->OptGrpConverter[group];
1221            if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1222            {
1223                if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1224                {
1225                    CHECK_SOURCE_LIMIT(0);
1226
1227                    /* let the MBCS conversion consume CurByte again */
1228                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1229                }
1230                else
1231                {
1232                    CHECK_SOURCE_LIMIT(1);
1233                    /* let the MBCS conversion consume CurByte again */
1234                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1235                    ++args->source;
1236                }
1237            }
1238            else                                   /* single byte conversion */
1239            {
1240                uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1241            }
1242        }
1243    }
1244    return uniChar;
1245}
1246
1247
1248/* The exported function that converts lmbcs to one or more
1249   UChars - currently UTF-16
1250*/
1251static void
1252_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs*    args,
1253                     UErrorCode*    err)
1254{
1255   char LMBCS [ULMBCS_CHARSIZE_MAX];
1256   UChar uniChar;    /* one output UNICODE char */
1257   const char * saveSource; /* beginning of current code point */
1258   const char * pStartLMBCS = args->source;  /* beginning of whole string */
1259   const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1260   int8_t savebytes = 0;
1261
1262   /* Process from source to limit, or until error */
1263   while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1264   {
1265      saveSource = args->source; /* beginning of current code point */
1266
1267      if (args->converter->toULength) /* reassemble char from previous call */
1268      {
1269        const char *saveSourceLimit;
1270        size_t size_old = args->converter->toULength;
1271
1272         /* limit from source is either remainder of temp buffer, or user limit on source */
1273        size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1274        size_t size_new_maybe_2 = args->sourceLimit - args->source;
1275        size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1276
1277
1278        uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1279        uprv_memcpy(LMBCS + size_old, args->source, size_new);
1280        saveSourceLimit = args->sourceLimit;
1281        args->source = errSource = LMBCS;
1282        args->sourceLimit = LMBCS+size_old+size_new;
1283        savebytes = (int8_t)(size_old+size_new);
1284        uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1285        args->source = saveSource + ((args->source - LMBCS) - size_old);
1286        args->sourceLimit = saveSourceLimit;
1287
1288        if (*err == U_TRUNCATED_CHAR_FOUND)
1289        {
1290            /* evil special case: source buffers so small a char spans more than 2 buffers */
1291            args->converter->toULength = savebytes;
1292            uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1293            args->source = args->sourceLimit;
1294            *err = U_ZERO_ERROR;
1295            return;
1296         }
1297         else
1298         {
1299            /* clear the partial-char marker */
1300            args->converter->toULength = 0;
1301         }
1302      }
1303      else
1304      {
1305         errSource = saveSource;
1306         uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1307         savebytes = (int8_t)(args->source - saveSource);
1308      }
1309      if (U_SUCCESS(*err))
1310      {
1311         if (uniChar < 0xfffe)
1312         {
1313            *(args->target)++ = uniChar;
1314            if(args->offsets)
1315            {
1316               *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1317            }
1318         }
1319         else if (uniChar == 0xfffe)
1320         {
1321            *err = U_INVALID_CHAR_FOUND;
1322         }
1323         else /* if (uniChar == 0xffff) */
1324         {
1325            *err = U_ILLEGAL_CHAR_FOUND;
1326         }
1327      }
1328   }
1329   /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1330   if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1331   {
1332      *err = U_BUFFER_OVERFLOW_ERROR;
1333   }
1334   else if (U_FAILURE(*err))
1335   {
1336      /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1337      args->converter->toULength = savebytes;
1338      if (savebytes > 0) {
1339         uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1340      }
1341      if (*err == U_TRUNCATED_CHAR_FOUND) {
1342         *err = U_ZERO_ERROR;
1343      }
1344   }
1345}
1346
1347/* And now, the macroized declarations of data & functions: */
1348DEFINE_LMBCS_OPEN(1)
1349DEFINE_LMBCS_OPEN(2)
1350DEFINE_LMBCS_OPEN(3)
1351DEFINE_LMBCS_OPEN(4)
1352DEFINE_LMBCS_OPEN(5)
1353DEFINE_LMBCS_OPEN(6)
1354DEFINE_LMBCS_OPEN(8)
1355DEFINE_LMBCS_OPEN(11)
1356DEFINE_LMBCS_OPEN(16)
1357DEFINE_LMBCS_OPEN(17)
1358DEFINE_LMBCS_OPEN(18)
1359DEFINE_LMBCS_OPEN(19)
1360
1361
1362DECLARE_LMBCS_DATA(1)
1363DECLARE_LMBCS_DATA(2)
1364DECLARE_LMBCS_DATA(3)
1365DECLARE_LMBCS_DATA(4)
1366DECLARE_LMBCS_DATA(5)
1367DECLARE_LMBCS_DATA(6)
1368DECLARE_LMBCS_DATA(8)
1369DECLARE_LMBCS_DATA(11)
1370DECLARE_LMBCS_DATA(16)
1371DECLARE_LMBCS_DATA(17)
1372DECLARE_LMBCS_DATA(18)
1373DECLARE_LMBCS_DATA(19)
1374
1375#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1376