1/*
2*******************************************************************************
3* Copyright (C) 1997-2015, International Business Machines Corporation and    *
4* others. All Rights Reserved.                                                *
5*******************************************************************************
6*
7* File DECIMFMT.CPP
8*
9* Modification History:
10*
11*   Date        Name        Description
12*   02/19/97    aliu        Converted from java.
13*   03/20/97    clhuang     Implemented with new APIs.
14*   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
15*   04/3/97     aliu        Rewrote parsing and formatting completely, and
16*                           cleaned up and debugged.  Actually works now.
17*                           Implemented NAN and INF handling, for both parsing
18*                           and formatting.  Extensive testing & debugging.
19*   04/10/97    aliu        Modified to compile on AIX.
20*   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
21*                           Changed DigitCount to int per code review.
22*   07/09/97    helena      Made ParsePosition into a class.
23*   08/26/97    aliu        Extensive changes to applyPattern; completely
24*                           rewritten from the Java.
25*   09/09/97    aliu        Ported over support for exponential formats.
26*   07/20/98    stephen     JDK 1.2 sync up.
27*                             Various instances of '0' replaced with 'NULL'
28*                             Check for grouping size in subFormat()
29*                             Brought subParse() in line with Java 1.2
30*                             Added method appendAffix()
31*   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
32*   02/22/99    stephen     Removed character literals for EBCDIC safety
33*   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
34*   06/28/99    stephen     Fixed bugs in toPattern().
35*   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
36*                             fPadPosition
37********************************************************************************
38*/
39
40#include "unicode/utypes.h"
41
42#if !UCONFIG_NO_FORMATTING
43
44#include "fphdlimp.h"
45#include "unicode/decimfmt.h"
46#include "unicode/choicfmt.h"
47#include "unicode/ucurr.h"
48#include "unicode/ustring.h"
49#include "unicode/dcfmtsym.h"
50#include "unicode/ures.h"
51#include "unicode/uchar.h"
52#include "unicode/uniset.h"
53#include "unicode/curramt.h"
54#include "unicode/currpinf.h"
55#include "unicode/plurrule.h"
56#include "unicode/utf16.h"
57#include "unicode/numsys.h"
58#include "unicode/localpointer.h"
59#include "uresimp.h"
60#include "ucurrimp.h"
61#include "charstr.h"
62#include "cmemory.h"
63#include "patternprops.h"
64#include "digitlst.h"
65#include "cstring.h"
66#include "umutex.h"
67#include "uassert.h"
68#include "putilimp.h"
69#include <math.h>
70#include "hash.h"
71#include "decfmtst.h"
72#include "dcfmtimp.h"
73#include "plurrule_impl.h"
74#include "decimalformatpattern.h"
75#include "fmtableimp.h"
76
77/*
78 * On certain platforms, round is a macro defined in math.h
79 * This undefine is to avoid conflict between the macro and
80 * the function defined below.
81 */
82#ifdef round
83#undef round
84#endif
85
86
87U_NAMESPACE_BEGIN
88
89#ifdef FMT_DEBUG
90#include <stdio.h>
91static void _debugout(const char *f, int l, const UnicodeString& s) {
92    char buf[2000];
93    s.extract((int32_t) 0, s.length(), buf, "utf-8");
94    printf("%s:%d: %s\n", f,l, buf);
95}
96#define debugout(x) _debugout(__FILE__,__LINE__,x)
97#define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
98static const UnicodeString dbg_null("<NULL>","");
99#define DEREFSTR(x)   ((x!=NULL)?(*x):(dbg_null))
100#else
101#define debugout(x)
102#define debug(x)
103#endif
104
105
106
107/* == Fastpath calculation. ==
108 */
109#if UCONFIG_FORMAT_FASTPATHS_49
110inline DecimalFormatInternal& internalData(uint8_t *reserved) {
111  return *reinterpret_cast<DecimalFormatInternal*>(reserved);
112}
113inline const DecimalFormatInternal& internalData(const uint8_t *reserved) {
114  return *reinterpret_cast<const DecimalFormatInternal*>(reserved);
115}
116#else
117#endif
118
119/* For currency parsing purose,
120 * Need to remember all prefix patterns and suffix patterns of
121 * every currency format pattern,
122 * including the pattern of default currecny style
123 * and plural currency style. And the patterns are set through applyPattern.
124 */
125struct AffixPatternsForCurrency : public UMemory {
126	// negative prefix pattern
127	UnicodeString negPrefixPatternForCurrency;
128	// negative suffix pattern
129	UnicodeString negSuffixPatternForCurrency;
130	// positive prefix pattern
131	UnicodeString posPrefixPatternForCurrency;
132	// positive suffix pattern
133	UnicodeString posSuffixPatternForCurrency;
134	int8_t patternType;
135
136	AffixPatternsForCurrency(const UnicodeString& negPrefix,
137							 const UnicodeString& negSuffix,
138							 const UnicodeString& posPrefix,
139							 const UnicodeString& posSuffix,
140							 int8_t type) {
141		negPrefixPatternForCurrency = negPrefix;
142		negSuffixPatternForCurrency = negSuffix;
143		posPrefixPatternForCurrency = posPrefix;
144		posSuffixPatternForCurrency = posSuffix;
145		patternType = type;
146	}
147#ifdef FMT_DEBUG
148  void dump() const  {
149    debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
150              negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
151              negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" +
152              posPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
153              posSuffixPatternForCurrency + (UnicodeString)"\" )");
154  }
155#endif
156};
157
158/* affix for currency formatting when the currency sign in the pattern
159 * equals to 3, such as the pattern contains 3 currency sign or
160 * the formatter style is currency plural format style.
161 */
162struct AffixesForCurrency : public UMemory {
163	// negative prefix
164	UnicodeString negPrefixForCurrency;
165	// negative suffix
166	UnicodeString negSuffixForCurrency;
167	// positive prefix
168	UnicodeString posPrefixForCurrency;
169	// positive suffix
170	UnicodeString posSuffixForCurrency;
171
172	int32_t formatWidth;
173
174	AffixesForCurrency(const UnicodeString& negPrefix,
175					   const UnicodeString& negSuffix,
176					   const UnicodeString& posPrefix,
177					   const UnicodeString& posSuffix) {
178		negPrefixForCurrency = negPrefix;
179		negSuffixForCurrency = negSuffix;
180		posPrefixForCurrency = posPrefix;
181		posSuffixForCurrency = posSuffix;
182	}
183#ifdef FMT_DEBUG
184  void dump() const {
185    debugout( UnicodeString("AffixesForCurrency( -=\"") +
186              negPrefixForCurrency + (UnicodeString)"\"/\"" +
187              negSuffixForCurrency + (UnicodeString)"\" +=\"" +
188              posPrefixForCurrency + (UnicodeString)"\"/\"" +
189              posSuffixForCurrency + (UnicodeString)"\" )");
190  }
191#endif
192};
193
194U_CDECL_BEGIN
195
196/**
197 * @internal ICU 4.2
198 */
199static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
200
201/**
202 * @internal ICU 4.2
203 */
204static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
205
206
207static UBool
208U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
209    const AffixesForCurrency* affix_1 =
210        (AffixesForCurrency*)val1.pointer;
211    const AffixesForCurrency* affix_2 =
212        (AffixesForCurrency*)val2.pointer;
213    return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
214           affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
215           affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
216           affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
217}
218
219
220static UBool
221U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
222    const AffixPatternsForCurrency* affix_1 =
223        (AffixPatternsForCurrency*)val1.pointer;
224    const AffixPatternsForCurrency* affix_2 =
225        (AffixPatternsForCurrency*)val2.pointer;
226    return affix_1->negPrefixPatternForCurrency ==
227           affix_2->negPrefixPatternForCurrency &&
228           affix_1->negSuffixPatternForCurrency ==
229           affix_2->negSuffixPatternForCurrency &&
230           affix_1->posPrefixPatternForCurrency ==
231           affix_2->posPrefixPatternForCurrency &&
232           affix_1->posSuffixPatternForCurrency ==
233           affix_2->posSuffixPatternForCurrency &&
234           affix_1->patternType == affix_2->patternType;
235}
236
237U_CDECL_END
238
239
240
241
242// *****************************************************************************
243// class DecimalFormat
244// *****************************************************************************
245
246UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
247
248// Constants for characters used in programmatic (unlocalized) patterns.
249#define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
250#define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
251#define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
252#define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
253#define kPatternPerMill              ((UChar)0x2030)
254#define kPatternPercent              ((UChar)0x0025) /*'%'*/
255#define kPatternDigit                ((UChar)0x0023) /*'#'*/
256#define kPatternSeparator            ((UChar)0x003B) /*';'*/
257#define kPatternExponent             ((UChar)0x0045) /*'E'*/
258#define kPatternPlus                 ((UChar)0x002B) /*'+'*/
259#define kPatternMinus                ((UChar)0x002D) /*'-'*/
260#define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
261#define kQuote                       ((UChar)0x0027) /*'\''*/
262/**
263 * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
264 * is used in patterns and substitued with either the currency symbol,
265 * or if it is doubled, with the international currency symbol.  If the
266 * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
267 * replaced with the monetary decimal separator.
268 */
269#define kCurrencySign                ((UChar)0x00A4)
270#define kDefaultPad                  ((UChar)0x0020) /* */
271
272const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
273const int32_t DecimalFormat::kDoubleFractionDigits = 340;
274
275const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
276
277/**
278 * These are the tags we expect to see in normal resource bundle files associated
279 * with a locale.
280 */
281const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
282static const char fgNumberElements[]="NumberElements";
283static const char fgLatn[]="latn";
284static const char fgPatterns[]="patterns";
285static const char fgDecimalFormat[]="decimalFormat";
286static const char fgCurrencyFormat[]="currencyFormat";
287
288static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
289
290inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
291inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
292
293static void copyString(const UnicodeString& src, UBool isBogus, UnicodeString *& dest, UErrorCode &status) {
294    if (U_FAILURE(status)) {
295        return;
296    }
297    if (isBogus) {
298        delete dest;
299        dest = NULL;
300    } else {
301        if (dest != NULL) {
302            *dest = src;
303        } else {
304            dest = new UnicodeString(src);
305            if (dest == NULL) {
306                status = U_MEMORY_ALLOCATION_ERROR;
307                return;
308            }
309        }
310    }
311}
312
313
314//------------------------------------------------------------------------------
315// Constructs a DecimalFormat instance in the default locale.
316
317DecimalFormat::DecimalFormat(UErrorCode& status) {
318    init();
319    UParseError parseError;
320    construct(status, parseError);
321}
322
323//------------------------------------------------------------------------------
324// Constructs a DecimalFormat instance with the specified number format
325// pattern in the default locale.
326
327DecimalFormat::DecimalFormat(const UnicodeString& pattern,
328                             UErrorCode& status) {
329    init();
330    UParseError parseError;
331    construct(status, parseError, &pattern);
332}
333
334//------------------------------------------------------------------------------
335// Constructs a DecimalFormat instance with the specified number format
336// pattern and the number format symbols in the default locale.  The
337// created instance owns the symbols.
338
339DecimalFormat::DecimalFormat(const UnicodeString& pattern,
340                             DecimalFormatSymbols* symbolsToAdopt,
341                             UErrorCode& status) {
342    init();
343    UParseError parseError;
344    if (symbolsToAdopt == NULL)
345        status = U_ILLEGAL_ARGUMENT_ERROR;
346    construct(status, parseError, &pattern, symbolsToAdopt);
347}
348
349DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
350                    DecimalFormatSymbols* symbolsToAdopt,
351                    UParseError& parseErr,
352                    UErrorCode& status) {
353    init();
354    if (symbolsToAdopt == NULL)
355        status = U_ILLEGAL_ARGUMENT_ERROR;
356    construct(status,parseErr, &pattern, symbolsToAdopt);
357}
358
359//------------------------------------------------------------------------------
360// Constructs a DecimalFormat instance with the specified number format
361// pattern and the number format symbols in the default locale.  The
362// created instance owns the clone of the symbols.
363
364DecimalFormat::DecimalFormat(const UnicodeString& pattern,
365                             const DecimalFormatSymbols& symbols,
366                             UErrorCode& status) {
367    init();
368    UParseError parseError;
369    construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
370}
371
372//------------------------------------------------------------------------------
373// Constructs a DecimalFormat instance with the specified number format
374// pattern, the number format symbols, and the number format style.
375// The created instance owns the clone of the symbols.
376
377DecimalFormat::DecimalFormat(const UnicodeString& pattern,
378                             DecimalFormatSymbols* symbolsToAdopt,
379                             UNumberFormatStyle style,
380                             UErrorCode& status) {
381    init();
382    fStyle = style;
383    UParseError parseError;
384    construct(status, parseError, &pattern, symbolsToAdopt);
385}
386
387//-----------------------------------------------------------------------------
388// Common DecimalFormat initialization.
389//    Put all fields of an uninitialized object into a known state.
390//    Common code, shared by all constructors.
391//    Can not fail. Leave the object in good enough shape that the destructor
392//    or assignment operator can run successfully.
393void
394DecimalFormat::init() {
395    fPosPrefixPattern = 0;
396    fPosSuffixPattern = 0;
397    fNegPrefixPattern = 0;
398    fNegSuffixPattern = 0;
399    fCurrencyChoice = 0;
400    fMultiplier = NULL;
401    fScale = 0;
402    fGroupingSize = 0;
403    fGroupingSize2 = 0;
404    fDecimalSeparatorAlwaysShown = FALSE;
405    fSymbols = NULL;
406    fUseSignificantDigits = FALSE;
407    fMinSignificantDigits = 1;
408    fMaxSignificantDigits = 6;
409    fUseExponentialNotation = FALSE;
410    fMinExponentDigits = 0;
411    fExponentSignAlwaysShown = FALSE;
412    fBoolFlags.clear();
413    fRoundingIncrement = 0;
414    fRoundingMode = kRoundHalfEven;
415    fPad = 0;
416    fFormatWidth = 0;
417    fPadPosition = kPadBeforePrefix;
418    fStyle = UNUM_DECIMAL;
419    fCurrencySignCount = fgCurrencySignCountZero;
420    fAffixPatternsForCurrency = NULL;
421    fAffixesForCurrency = NULL;
422    fPluralAffixesForCurrency = NULL;
423    fCurrencyPluralInfo = NULL;
424    fCurrencyUsage = UCURR_USAGE_STANDARD;
425#if UCONFIG_HAVE_PARSEALLINPUT
426    fParseAllInput = UNUM_MAYBE;
427#endif
428
429#if UCONFIG_FORMAT_FASTPATHS_49
430    DecimalFormatInternal &data = internalData(fReserved);
431    data.fFastFormatStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
432    data.fFastParseStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
433#endif
434    fStaticSets = NULL;
435}
436
437//------------------------------------------------------------------------------
438// Constructs a DecimalFormat instance with the specified number format
439// pattern and the number format symbols in the desired locale.  The
440// created instance owns the symbols.
441
442void
443DecimalFormat::construct(UErrorCode&            status,
444                         UParseError&           parseErr,
445                         const UnicodeString*   pattern,
446                         DecimalFormatSymbols*  symbolsToAdopt)
447{
448    fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
449    fRoundingIncrement = NULL;
450    fRoundingMode = kRoundHalfEven;
451    fPad = kPatternPadEscape;
452    fPadPosition = kPadBeforePrefix;
453    if (U_FAILURE(status))
454        return;
455
456    fPosPrefixPattern = fPosSuffixPattern = NULL;
457    fNegPrefixPattern = fNegSuffixPattern = NULL;
458    setMultiplier(1);
459    fGroupingSize = 3;
460    fGroupingSize2 = 0;
461    fDecimalSeparatorAlwaysShown = FALSE;
462    fUseExponentialNotation = FALSE;
463    fMinExponentDigits = 0;
464
465    if (fSymbols == NULL)
466    {
467        fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
468        if (fSymbols == 0) {
469            status = U_MEMORY_ALLOCATION_ERROR;
470            return;
471        }
472    }
473    fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
474    if (U_FAILURE(status)) {
475        return;
476    }
477    UErrorCode nsStatus = U_ZERO_ERROR;
478    NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
479    if (U_FAILURE(nsStatus)) {
480        status = nsStatus;
481        return;
482    }
483
484    UnicodeString str;
485    // Uses the default locale's number format pattern if there isn't
486    // one specified.
487    if (pattern == NULL)
488    {
489        int32_t len = 0;
490        UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
491
492        UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
493        resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
494        resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
495        const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
496        if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
497            status = U_ZERO_ERROR;
498            resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
499            resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
500            resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
501            resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
502        }
503        str.setTo(TRUE, resStr, len);
504        pattern = &str;
505        ures_close(resource);
506        ures_close(top);
507    }
508
509    delete ns;
510
511    if (U_FAILURE(status))
512    {
513        return;
514    }
515
516    if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
517        // If it looks like we are going to use a currency pattern
518        // then do the time consuming lookup.
519        setCurrencyForSymbols();
520    } else {
521        setCurrencyInternally(NULL, status);
522    }
523
524    const UnicodeString* patternUsed;
525    UnicodeString currencyPluralPatternForOther;
526    // apply pattern
527    if (fStyle == UNUM_CURRENCY_PLURAL) {
528        fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
529        if (U_FAILURE(status)) {
530            return;
531        }
532
533        // the pattern used in format is not fixed until formatting,
534        // in which, the number is known and
535        // will be used to pick the right pattern based on plural count.
536        // Here, set the pattern as the pattern of plural count == "other".
537        // For most locale, the patterns are probably the same for all
538        // plural count. If not, the right pattern need to be re-applied
539        // during format.
540        fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
541        patternUsed = &currencyPluralPatternForOther;
542        // TODO: not needed?
543        setCurrencyForSymbols();
544
545    } else {
546        patternUsed = pattern;
547    }
548
549    if (patternUsed->indexOf(kCurrencySign) != -1) {
550        // initialize for currency, not only for plural format,
551        // but also for mix parsing
552        if (fCurrencyPluralInfo == NULL) {
553           fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
554           if (U_FAILURE(status)) {
555               return;
556           }
557        }
558        // need it for mix parsing
559        setupCurrencyAffixPatterns(status);
560        // expanded affixes for plural names
561        if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
562            setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
563        }
564    }
565
566    applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
567
568    // expand affixes
569    if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
570        expandAffixAdjustWidth(NULL);
571    }
572
573    // If it was a currency format, apply the appropriate rounding by
574    // resetting the currency. NOTE: this copies fCurrency on top of itself.
575    if (fCurrencySignCount != fgCurrencySignCountZero) {
576        setCurrencyInternally(getCurrency(), status);
577    }
578#if UCONFIG_FORMAT_FASTPATHS_49
579    DecimalFormatInternal &data = internalData(fReserved);
580    data.fFastFormatStatus = kFastpathNO; // allow it to be calculated
581    data.fFastParseStatus = kFastpathNO; // allow it to be calculated
582    handleChanged();
583#endif
584}
585
586
587void
588DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
589    if (U_FAILURE(status)) {
590        return;
591    }
592    UParseError parseErr;
593    fAffixPatternsForCurrency = initHashForAffixPattern(status);
594    if (U_FAILURE(status)) {
595        return;
596    }
597
598    NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
599    if (U_FAILURE(status)) {
600        return;
601    }
602
603    // Save the default currency patterns of this locale.
604    // Here, chose onlyApplyPatternWithoutExpandAffix without
605    // expanding the affix patterns into affixes.
606    UnicodeString currencyPattern;
607    UErrorCode error = U_ZERO_ERROR;
608
609    UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
610    UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
611    resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
612    resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
613    int32_t patLen = 0;
614    const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
615    if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
616        error = U_ZERO_ERROR;
617        resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
618        resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
619        patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
620    }
621    ures_close(numElements);
622    ures_close(resource);
623    delete ns;
624
625    if (U_SUCCESS(error)) {
626        applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
627                                       parseErr, status);
628        AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
629                                                    *fNegPrefixPattern,
630                                                    *fNegSuffixPattern,
631                                                    *fPosPrefixPattern,
632                                                    *fPosSuffixPattern,
633                                                    UCURR_SYMBOL_NAME);
634        fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
635    }
636
637    // save the unique currency plural patterns of this locale.
638    Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
639    const UHashElement* element = NULL;
640    int32_t pos = UHASH_FIRST;
641    Hashtable pluralPatternSet;
642    while ((element = pluralPtn->nextElement(pos)) != NULL) {
643        const UHashTok valueTok = element->value;
644        const UnicodeString* value = (UnicodeString*)valueTok.pointer;
645        const UHashTok keyTok = element->key;
646        const UnicodeString* key = (UnicodeString*)keyTok.pointer;
647        if (pluralPatternSet.geti(*value) != 1) {
648            pluralPatternSet.puti(*value, 1, status);
649            applyPatternWithoutExpandAffix(*value, false, parseErr, status);
650            AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
651                                                    *fNegPrefixPattern,
652                                                    *fNegSuffixPattern,
653                                                    *fPosPrefixPattern,
654                                                    *fPosSuffixPattern,
655                                                    UCURR_LONG_NAME);
656            fAffixPatternsForCurrency->put(*key, affixPtn, status);
657        }
658    }
659}
660
661
662void
663DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
664                                    UBool setupForCurrentPattern,
665                                    UBool setupForPluralPattern,
666                                    UErrorCode& status) {
667    if (U_FAILURE(status)) {
668        return;
669    }
670    UParseError parseErr;
671    if (setupForCurrentPattern) {
672        if (fAffixesForCurrency) {
673            deleteHashForAffix(fAffixesForCurrency);
674        }
675        fAffixesForCurrency = initHashForAffix(status);
676        if (U_SUCCESS(status)) {
677            applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
678            const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
679            StringEnumeration* keywords = pluralRules->getKeywords(status);
680            if (U_SUCCESS(status)) {
681                const UnicodeString* pluralCount;
682                while ((pluralCount = keywords->snext(status)) != NULL) {
683                    if ( U_SUCCESS(status) ) {
684                        expandAffixAdjustWidth(pluralCount);
685                        AffixesForCurrency* affix = new AffixesForCurrency(
686                            fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
687                        fAffixesForCurrency->put(*pluralCount, affix, status);
688                    }
689                }
690            }
691            delete keywords;
692        }
693    }
694
695    if (U_FAILURE(status)) {
696        return;
697    }
698
699    if (setupForPluralPattern) {
700        if (fPluralAffixesForCurrency) {
701            deleteHashForAffix(fPluralAffixesForCurrency);
702        }
703        fPluralAffixesForCurrency = initHashForAffix(status);
704        if (U_SUCCESS(status)) {
705            const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
706            StringEnumeration* keywords = pluralRules->getKeywords(status);
707            if (U_SUCCESS(status)) {
708                const UnicodeString* pluralCount;
709                while ((pluralCount = keywords->snext(status)) != NULL) {
710                    if ( U_SUCCESS(status) ) {
711                        UnicodeString ptn;
712                        fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
713                        applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
714                        AffixesForCurrency* affix = new AffixesForCurrency(
715                            fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
716                        fPluralAffixesForCurrency->put(*pluralCount, affix, status);
717                    }
718                }
719            }
720            delete keywords;
721        }
722    }
723}
724
725
726//------------------------------------------------------------------------------
727
728DecimalFormat::~DecimalFormat()
729{
730    delete fPosPrefixPattern;
731    delete fPosSuffixPattern;
732    delete fNegPrefixPattern;
733    delete fNegSuffixPattern;
734    delete fCurrencyChoice;
735    delete fMultiplier;
736    delete fSymbols;
737    delete fRoundingIncrement;
738    deleteHashForAffixPattern();
739    deleteHashForAffix(fAffixesForCurrency);
740    deleteHashForAffix(fPluralAffixesForCurrency);
741    delete fCurrencyPluralInfo;
742}
743
744//------------------------------------------------------------------------------
745// copy constructor
746
747DecimalFormat::DecimalFormat(const DecimalFormat &source) :
748    NumberFormat(source) {
749    init();
750    *this = source;
751}
752
753//------------------------------------------------------------------------------
754// assignment operator
755
756template <class T>
757static void _copy_ptr(T** pdest, const T* source) {
758    if (source == NULL) {
759        delete *pdest;
760        *pdest = NULL;
761    } else if (*pdest == NULL) {
762        *pdest = new T(*source);
763    } else {
764        **pdest = *source;
765    }
766}
767
768template <class T>
769static void _clone_ptr(T** pdest, const T* source) {
770    delete *pdest;
771    if (source == NULL) {
772        *pdest = NULL;
773    } else {
774        *pdest = static_cast<T*>(source->clone());
775    }
776}
777
778DecimalFormat&
779DecimalFormat::operator=(const DecimalFormat& rhs)
780{
781    if(this != &rhs) {
782        UErrorCode status = U_ZERO_ERROR;
783        NumberFormat::operator=(rhs);
784        fStaticSets     = DecimalFormatStaticSets::getStaticSets(status);
785        fPositivePrefix = rhs.fPositivePrefix;
786        fPositiveSuffix = rhs.fPositiveSuffix;
787        fNegativePrefix = rhs.fNegativePrefix;
788        fNegativeSuffix = rhs.fNegativeSuffix;
789        _copy_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
790        _copy_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
791        _copy_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
792        _copy_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
793        _clone_ptr(&fCurrencyChoice, rhs.fCurrencyChoice);
794        setRoundingIncrement(rhs.getRoundingIncrement());
795        fRoundingMode = rhs.fRoundingMode;
796        setMultiplier(rhs.getMultiplier());
797        fGroupingSize = rhs.fGroupingSize;
798        fGroupingSize2 = rhs.fGroupingSize2;
799        fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
800        _copy_ptr(&fSymbols, rhs.fSymbols);
801        fUseExponentialNotation = rhs.fUseExponentialNotation;
802        fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
803        fBoolFlags = rhs.fBoolFlags;
804        /*Bertrand A. D. Update 98.03.17*/
805        fCurrencySignCount = rhs.fCurrencySignCount;
806        /*end of Update*/
807        fMinExponentDigits = rhs.fMinExponentDigits;
808
809        /* sfb 990629 */
810        fFormatWidth = rhs.fFormatWidth;
811        fPad = rhs.fPad;
812        fPadPosition = rhs.fPadPosition;
813        /* end sfb */
814        fMinSignificantDigits = rhs.fMinSignificantDigits;
815        fMaxSignificantDigits = rhs.fMaxSignificantDigits;
816        fUseSignificantDigits = rhs.fUseSignificantDigits;
817        fFormatPattern = rhs.fFormatPattern;
818        fCurrencyUsage = rhs.fCurrencyUsage;
819        fStyle = rhs.fStyle;
820        _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
821        deleteHashForAffixPattern();
822        if (rhs.fAffixPatternsForCurrency) {
823            UErrorCode status = U_ZERO_ERROR;
824            fAffixPatternsForCurrency = initHashForAffixPattern(status);
825            copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
826                                    fAffixPatternsForCurrency, status);
827        }
828        deleteHashForAffix(fAffixesForCurrency);
829        if (rhs.fAffixesForCurrency) {
830            UErrorCode status = U_ZERO_ERROR;
831            fAffixesForCurrency = initHashForAffixPattern(status);
832            copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
833        }
834        deleteHashForAffix(fPluralAffixesForCurrency);
835        if (rhs.fPluralAffixesForCurrency) {
836            UErrorCode status = U_ZERO_ERROR;
837            fPluralAffixesForCurrency = initHashForAffixPattern(status);
838            copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
839        }
840#if UCONFIG_FORMAT_FASTPATHS_49
841        DecimalFormatInternal &data    = internalData(fReserved);
842        const DecimalFormatInternal &rhsData = internalData(rhs.fReserved);
843        data = rhsData;
844#endif
845    }
846    return *this;
847}
848
849//------------------------------------------------------------------------------
850
851UBool
852DecimalFormat::operator==(const Format& that) const
853{
854    if (this == &that)
855        return TRUE;
856
857    // NumberFormat::operator== guarantees this cast is safe
858    const DecimalFormat* other = (DecimalFormat*)&that;
859
860#ifdef FMT_DEBUG
861    // This code makes it easy to determine why two format objects that should
862    // be equal aren't.
863    UBool first = TRUE;
864    if (!NumberFormat::operator==(that)) {
865        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
866        debug("NumberFormat::!=");
867    } else {
868    if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
869              fPositivePrefix == other->fPositivePrefix)
870           || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
871               *fPosPrefixPattern  == *other->fPosPrefixPattern))) {
872        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
873        debug("Pos Prefix !=");
874    }
875    if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
876           fPositiveSuffix == other->fPositiveSuffix)
877          || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
878              *fPosSuffixPattern  == *other->fPosSuffixPattern))) {
879        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
880        debug("Pos Suffix !=");
881    }
882    if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
883           fNegativePrefix == other->fNegativePrefix)
884          || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
885              *fNegPrefixPattern  == *other->fNegPrefixPattern))) {
886        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
887        debug("Neg Prefix ");
888        if (fNegPrefixPattern == NULL) {
889            debug("NULL(");
890            debugout(fNegativePrefix);
891            debug(")");
892        } else {
893            debugout(*fNegPrefixPattern);
894        }
895        debug(" != ");
896        if (other->fNegPrefixPattern == NULL) {
897            debug("NULL(");
898            debugout(other->fNegativePrefix);
899            debug(")");
900        } else {
901            debugout(*other->fNegPrefixPattern);
902        }
903    }
904    if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
905           fNegativeSuffix == other->fNegativeSuffix)
906          || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
907              *fNegSuffixPattern  == *other->fNegSuffixPattern))) {
908        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
909        debug("Neg Suffix ");
910        if (fNegSuffixPattern == NULL) {
911            debug("NULL(");
912            debugout(fNegativeSuffix);
913            debug(")");
914        } else {
915            debugout(*fNegSuffixPattern);
916        }
917        debug(" != ");
918        if (other->fNegSuffixPattern == NULL) {
919            debug("NULL(");
920            debugout(other->fNegativeSuffix);
921            debug(")");
922        } else {
923            debugout(*other->fNegSuffixPattern);
924        }
925    }
926    if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
927          || (fRoundingIncrement != NULL &&
928              other->fRoundingIncrement != NULL &&
929              *fRoundingIncrement == *other->fRoundingIncrement))) {
930        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
931        debug("Rounding Increment !=");
932              }
933    if (fRoundingMode != other->fRoundingMode) {
934        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
935        printf("Rounding Mode %d != %d", (int)fRoundingMode, (int)other->fRoundingMode);
936    }
937    if (getMultiplier() != other->getMultiplier()) {
938        if (first) { printf("[ "); first = FALSE; }
939        printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
940    }
941    if (fGroupingSize != other->fGroupingSize) {
942        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
943        printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
944    }
945    if (fGroupingSize2 != other->fGroupingSize2) {
946        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
947        printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
948    }
949    if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
950        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
951        printf("fDecimalSeparatorAlwaysShown %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
952    }
953    if (fUseExponentialNotation != other->fUseExponentialNotation) {
954        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
955        debug("fUseExponentialNotation !=");
956    }
957    if (fUseExponentialNotation &&
958        fMinExponentDigits != other->fMinExponentDigits) {
959        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
960        debug("fMinExponentDigits !=");
961    }
962    if (fUseExponentialNotation &&
963        fExponentSignAlwaysShown != other->fExponentSignAlwaysShown) {
964        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
965        debug("fExponentSignAlwaysShown !=");
966    }
967    if (fBoolFlags.getAll() != other->fBoolFlags.getAll()) {
968        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
969        debug("fBoolFlags !=");
970    }
971    if (*fSymbols != *(other->fSymbols)) {
972        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
973        debug("Symbols !=");
974    }
975    // TODO Add debug stuff for significant digits here
976    if (fUseSignificantDigits != other->fUseSignificantDigits) {
977        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
978        debug("fUseSignificantDigits !=");
979    }
980    if (fUseSignificantDigits &&
981        fMinSignificantDigits != other->fMinSignificantDigits) {
982        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
983        debug("fMinSignificantDigits !=");
984    }
985    if (fUseSignificantDigits &&
986        fMaxSignificantDigits != other->fMaxSignificantDigits) {
987        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
988        debug("fMaxSignificantDigits !=");
989    }
990    if (fFormatWidth != other->fFormatWidth) {
991        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
992        debug("fFormatWidth !=");
993    }
994    if (fPad != other->fPad) {
995        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
996        debug("fPad !=");
997    }
998    if (fPadPosition != other->fPadPosition) {
999        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
1000        debug("fPadPosition !=");
1001    }
1002    if (fStyle == UNUM_CURRENCY_PLURAL &&
1003        fStyle != other->fStyle)
1004        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
1005        debug("fStyle !=");
1006    }
1007    if (fStyle == UNUM_CURRENCY_PLURAL &&
1008        fFormatPattern != other->fFormatPattern) {
1009        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
1010        debug("fFormatPattern !=");
1011    }
1012
1013    if (!first) { printf(" ]"); }
1014    if (fCurrencySignCount != other->fCurrencySignCount) {
1015        debug("fCurrencySignCount !=");
1016    }
1017    if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
1018        debug("fCurrencyPluralInfo == ");
1019        if (fCurrencyPluralInfo == NULL) {
1020            debug("fCurrencyPluralInfo == NULL");
1021        }
1022    }
1023    if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
1024         *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
1025        debug("fCurrencyPluralInfo !=");
1026    }
1027    if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
1028        fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
1029        debug("fCurrencyPluralInfo one NULL, the other not");
1030    }
1031    if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
1032        debug("fCurrencyPluralInfo == ");
1033    }
1034    }
1035#endif
1036
1037    return (
1038        NumberFormat::operator==(that) &&
1039
1040        ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
1041        (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
1042        (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
1043          fPositivePrefix == other->fPositivePrefix)
1044         || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
1045             *fPosPrefixPattern  == *other->fPosPrefixPattern)) &&
1046        ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
1047          fPositiveSuffix == other->fPositiveSuffix)
1048         || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
1049             *fPosSuffixPattern  == *other->fPosSuffixPattern)) &&
1050        ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
1051          fNegativePrefix == other->fNegativePrefix)
1052         || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
1053             *fNegPrefixPattern  == *other->fNegPrefixPattern)) &&
1054        ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
1055          fNegativeSuffix == other->fNegativeSuffix)
1056         || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
1057             *fNegSuffixPattern  == *other->fNegSuffixPattern)))) &&
1058
1059        ((fRoundingIncrement == other->fRoundingIncrement) // both null
1060         || (fRoundingIncrement != NULL &&
1061             other->fRoundingIncrement != NULL &&
1062             *fRoundingIncrement == *other->fRoundingIncrement)) &&
1063
1064        fRoundingMode == other->fRoundingMode &&
1065        getMultiplier() == other->getMultiplier() &&
1066        fGroupingSize == other->fGroupingSize &&
1067        fGroupingSize2 == other->fGroupingSize2 &&
1068        fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
1069        fUseExponentialNotation == other->fUseExponentialNotation &&
1070
1071        (!fUseExponentialNotation ||
1072            (fMinExponentDigits == other->fMinExponentDigits && fExponentSignAlwaysShown == other->fExponentSignAlwaysShown)) &&
1073
1074        fBoolFlags.getAll() == other->fBoolFlags.getAll() &&
1075        *fSymbols == *(other->fSymbols) &&
1076        fUseSignificantDigits == other->fUseSignificantDigits &&
1077
1078        (!fUseSignificantDigits ||
1079            (fMinSignificantDigits == other->fMinSignificantDigits && fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
1080
1081        fFormatWidth == other->fFormatWidth &&
1082        fPad == other->fPad &&
1083        fPadPosition == other->fPadPosition &&
1084
1085        (fStyle != UNUM_CURRENCY_PLURAL ||
1086            (fStyle == other->fStyle && fFormatPattern == other->fFormatPattern)) &&
1087
1088        fCurrencySignCount == other->fCurrencySignCount &&
1089
1090        ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
1091          fCurrencyPluralInfo == NULL) ||
1092         (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
1093         *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))) &&
1094
1095        fCurrencyUsage == other->fCurrencyUsage
1096
1097        // depending on other settings we may also need to compare
1098        // fCurrencyChoice (mostly deprecated?),
1099        // fAffixesForCurrency & fPluralAffixesForCurrency (only relevant in some cases)
1100        );
1101}
1102
1103//------------------------------------------------------------------------------
1104
1105Format*
1106DecimalFormat::clone() const
1107{
1108    return new DecimalFormat(*this);
1109}
1110
1111
1112FixedDecimal
1113DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
1114    FixedDecimal result;
1115
1116    if (U_FAILURE(status)) {
1117        return result;
1118    }
1119
1120    if (uprv_isNaN(number) || uprv_isPositiveInfinity(fabs(number))) {
1121        // For NaN and Infinity the state of the formatter is ignored.
1122        result.init(number);
1123        return result;
1124    }
1125
1126    if (fMultiplier == NULL && fScale == 0 && fRoundingIncrement == 0 && areSignificantDigitsUsed() == FALSE &&
1127            result.quickInit(number) && result.visibleDecimalDigitCount <= getMaximumFractionDigits()) {
1128        // Fast Path. Construction of an exact FixedDecimal directly from the double, without passing
1129        //   through a DigitList, was successful, and the formatter is doing nothing tricky with rounding.
1130        // printf("getFixedDecimal(%g): taking fast path.\n", number);
1131        result.adjustForMinFractionDigits(getMinimumFractionDigits());
1132    } else {
1133        // Slow path. Create a DigitList, and have this formatter round it according to the
1134        //     requirements of the format, and fill the fixedDecimal from that.
1135        DigitList digits;
1136        digits.set(number);
1137        result = getFixedDecimal(digits, status);
1138    }
1139    return result;
1140}
1141
1142FixedDecimal
1143DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
1144    if (U_FAILURE(status)) {
1145        return FixedDecimal();
1146    }
1147    if (!number.isNumeric()) {
1148        status = U_ILLEGAL_ARGUMENT_ERROR;
1149        return FixedDecimal();
1150    }
1151
1152    DigitList *dl = number.getDigitList();
1153    if (dl != NULL) {
1154        DigitList clonedDL(*dl);
1155        return getFixedDecimal(clonedDL, status);
1156    }
1157
1158    Formattable::Type type = number.getType();
1159    if (type == Formattable::kDouble || type == Formattable::kLong) {
1160        return getFixedDecimal(number.getDouble(status), status);
1161    }
1162
1163    if (type == Formattable::kInt64 && number.getInt64() <= MAX_INT64_IN_DOUBLE &&
1164                                       number.getInt64() >= -MAX_INT64_IN_DOUBLE) {
1165        return getFixedDecimal(number.getDouble(status), status);
1166    }
1167
1168    // The only case left is type==int64_t, with a value with more digits than a double can represent.
1169    // Any formattable originating as a big decimal will have had a pre-existing digit list.
1170    // Any originating as a double or int32 will have been handled as a double.
1171
1172    U_ASSERT(type == Formattable::kInt64);
1173    DigitList digits;
1174    digits.set(number.getInt64());
1175    return getFixedDecimal(digits, status);
1176}
1177
1178
1179// Create a fixed decimal from a DigitList.
1180//    The digit list may be modified.
1181//    Internal function only.
1182FixedDecimal
1183DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
1184    // Round the number according to the requirements of this Format.
1185    FixedDecimal result;
1186    _round(number, number, result.isNegative, status);
1187
1188    // The int64_t fields in FixedDecimal can easily overflow.
1189    // In deciding what to discard in this event, consider that fixedDecimal
1190    //   is being used only with PluralRules, and those rules mostly look at least significant
1191    //   few digits of the integer part, and whether the fraction part is zero or not.
1192    //
1193    // So, in case of overflow when filling in the fields of the FixedDecimal object,
1194    //    for the integer part, discard the most significant digits.
1195    //    for the fraction part, discard the least significant digits,
1196    //                           don't truncate the fraction value to zero.
1197    // For simplicity, the int64_t fields are limited to 18 decimal digits, even
1198    // though they could hold most (but not all) 19 digit values.
1199
1200    // Integer Digits.
1201    int32_t di = number.getDecimalAt()-18;  // Take at most 18 digits.
1202    if (di < 0) {
1203        di = 0;
1204    }
1205    result.intValue = 0;
1206    for (; di<number.getDecimalAt(); di++) {
1207        result.intValue = result.intValue * 10 + (number.getDigit(di) & 0x0f);
1208    }
1209    if (result.intValue == 0 && number.getDecimalAt()-18 > 0) {
1210        // The number is something like 100000000000000000000000.
1211        // More than 18 digits integer digits, but the least significant 18 are all zero.
1212        // We don't want to return zero as the int part, but want to keep zeros
1213        //   for several of the least significant digits.
1214        result.intValue = 100000000000000000LL;
1215    }
1216
1217    // Fraction digits.
1218    result.decimalDigits = result.decimalDigitsWithoutTrailingZeros = result.visibleDecimalDigitCount = 0;
1219    for (di = number.getDecimalAt(); di < number.getCount(); di++) {
1220        result.visibleDecimalDigitCount++;
1221        if (result.decimalDigits <  100000000000000000LL) {
1222                   //              9223372036854775807    Largest 64 bit signed integer
1223            int32_t digitVal = number.getDigit(di) & 0x0f;  // getDigit() returns a char, '0'-'9'.
1224            result.decimalDigits = result.decimalDigits * 10 + digitVal;
1225            if (digitVal > 0) {
1226                result.decimalDigitsWithoutTrailingZeros = result.decimalDigits;
1227            }
1228        }
1229    }
1230
1231    result.hasIntegerValue = (result.decimalDigits == 0);
1232
1233    // Trailing fraction zeros. The format specification may require more trailing
1234    //    zeros than the numeric value. Add any such on now.
1235
1236    int32_t minFractionDigits;
1237    if (areSignificantDigitsUsed()) {
1238        minFractionDigits = getMinimumSignificantDigits() - number.getDecimalAt();
1239        if (minFractionDigits < 0) {
1240            minFractionDigits = 0;
1241        }
1242    } else {
1243        minFractionDigits = getMinimumFractionDigits();
1244    }
1245    result.adjustForMinFractionDigits(minFractionDigits);
1246
1247    return result;
1248}
1249
1250
1251//------------------------------------------------------------------------------
1252
1253UnicodeString&
1254DecimalFormat::format(int32_t number,
1255                      UnicodeString& appendTo,
1256                      FieldPosition& fieldPosition) const
1257{
1258    return format((int64_t)number, appendTo, fieldPosition);
1259}
1260
1261UnicodeString&
1262DecimalFormat::format(int32_t number,
1263                      UnicodeString& appendTo,
1264                      FieldPosition& fieldPosition,
1265                      UErrorCode& status) const
1266{
1267    return format((int64_t)number, appendTo, fieldPosition, status);
1268}
1269
1270UnicodeString&
1271DecimalFormat::format(int32_t number,
1272                      UnicodeString& appendTo,
1273                      FieldPositionIterator* posIter,
1274                      UErrorCode& status) const
1275{
1276    return format((int64_t)number, appendTo, posIter, status);
1277}
1278
1279
1280#if UCONFIG_FORMAT_FASTPATHS_49
1281void DecimalFormat::handleChanged() {
1282  DecimalFormatInternal &data = internalData(fReserved);
1283
1284  if(data.fFastFormatStatus == kFastpathUNKNOWN || data.fFastParseStatus == kFastpathUNKNOWN) {
1285    return; // still constructing. Wait.
1286  }
1287
1288  data.fFastParseStatus = data.fFastFormatStatus = kFastpathNO;
1289
1290#if UCONFIG_HAVE_PARSEALLINPUT
1291  if(fParseAllInput == UNUM_NO) {
1292    debug("No Parse fastpath: fParseAllInput==UNUM_NO");
1293  } else
1294#endif
1295  if (fFormatWidth!=0) {
1296      debug("No Parse fastpath: fFormatWidth");
1297  } else if(fPositivePrefix.length()>0) {
1298    debug("No Parse fastpath: positive prefix");
1299  } else if(fPositiveSuffix.length()>0) {
1300    debug("No Parse fastpath: positive suffix");
1301  } else if(fNegativePrefix.length()>1
1302            || ((fNegativePrefix.length()==1) && (fNegativePrefix.charAt(0)!=0x002D))) {
1303    debug("No Parse fastpath: negative prefix that isn't '-'");
1304  } else if(fNegativeSuffix.length()>0) {
1305    debug("No Parse fastpath: negative suffix");
1306  } else {
1307    data.fFastParseStatus = kFastpathYES;
1308    debug("parse fastpath: YES");
1309  }
1310
1311  if(fUseExponentialNotation) {
1312    debug("No format fastpath: fUseExponentialNotation");
1313  } else if(fFormatWidth!=0) {
1314    debug("No format fastpath: fFormatWidth!=0");
1315  } else if(fMinSignificantDigits!=1) {
1316    debug("No format fastpath: fMinSignificantDigits!=1");
1317  } else if(fMultiplier!=NULL) {
1318    debug("No format fastpath: fMultiplier!=NULL");
1319  } else if(fScale!=0) {
1320    debug("No format fastpath: fScale!=0");
1321  } else if(0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)) {
1322    debug("No format fastpath: 0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)");
1323  } else if(fDecimalSeparatorAlwaysShown) {
1324    debug("No format fastpath: fDecimalSeparatorAlwaysShown");
1325  } else if(getMinimumFractionDigits()>0) {
1326    debug("No format fastpath: fMinFractionDigits>0");
1327  } else if(fCurrencySignCount != fgCurrencySignCountZero) {
1328    debug("No format fastpath: fCurrencySignCount != fgCurrencySignCountZero");
1329  } else if(fRoundingIncrement!=0) {
1330    debug("No format fastpath: fRoundingIncrement!=0");
1331  } else if (fGroupingSize!=0 && isGroupingUsed()) {
1332    debug("Maybe format fastpath: fGroupingSize!=0 and grouping is used");
1333#ifdef FMT_DEBUG
1334    printf("groupingsize=%d\n", fGroupingSize);
1335#endif
1336
1337    if (getMinimumIntegerDigits() <= fGroupingSize) {
1338      data.fFastFormatStatus = kFastpathMAYBE;
1339    }
1340  } else if(fGroupingSize2!=0 && isGroupingUsed()) {
1341    debug("No format fastpath: fGroupingSize2!=0");
1342  } else {
1343    data.fFastFormatStatus = kFastpathYES;
1344    debug("format:kFastpathYES!");
1345  }
1346
1347
1348}
1349#endif
1350//------------------------------------------------------------------------------
1351
1352UnicodeString&
1353DecimalFormat::format(int64_t number,
1354                      UnicodeString& appendTo,
1355                      FieldPosition& fieldPosition) const
1356{
1357    UErrorCode status = U_ZERO_ERROR; /* ignored */
1358    FieldPositionOnlyHandler handler(fieldPosition);
1359    return _format(number, appendTo, handler, status);
1360}
1361
1362UnicodeString&
1363DecimalFormat::format(int64_t number,
1364                      UnicodeString& appendTo,
1365                      FieldPosition& fieldPosition,
1366                      UErrorCode& status) const
1367{
1368    FieldPositionOnlyHandler handler(fieldPosition);
1369    return _format(number, appendTo, handler, status);
1370}
1371
1372UnicodeString&
1373DecimalFormat::format(int64_t number,
1374                      UnicodeString& appendTo,
1375                      FieldPositionIterator* posIter,
1376                      UErrorCode& status) const
1377{
1378    FieldPositionIteratorHandler handler(posIter, status);
1379    return _format(number, appendTo, handler, status);
1380}
1381
1382UnicodeString&
1383DecimalFormat::_format(int64_t number,
1384                       UnicodeString& appendTo,
1385                       FieldPositionHandler& handler,
1386                       UErrorCode &status) const
1387{
1388    // Bottleneck function for formatting int64_t
1389    if (U_FAILURE(status)) {
1390        return appendTo;
1391    }
1392
1393#if UCONFIG_FORMAT_FASTPATHS_49
1394  // const UnicodeString *posPrefix = fPosPrefixPattern;
1395  // const UnicodeString *posSuffix = fPosSuffixPattern;
1396  // const UnicodeString *negSuffix = fNegSuffixPattern;
1397
1398  const DecimalFormatInternal &data = internalData(fReserved);
1399
1400#ifdef FMT_DEBUG
1401  data.dump();
1402  printf("fastpath? [%d]\n", number);
1403#endif
1404
1405  if( data.fFastFormatStatus==kFastpathYES ||
1406      data.fFastFormatStatus==kFastpathMAYBE) {
1407    int32_t noGroupingThreshold = 0;
1408
1409#define kZero 0x0030
1410    const int32_t MAX_IDX = MAX_DIGITS+2;
1411    UChar outputStr[MAX_IDX];
1412    int32_t destIdx = MAX_IDX;
1413    outputStr[--destIdx] = 0;  // term
1414
1415    if (data.fFastFormatStatus==kFastpathMAYBE) {
1416      noGroupingThreshold = destIdx - fGroupingSize;
1417    }
1418    int64_t  n = number;
1419    if (number < 1) {
1420      // Negative numbers are slightly larger than positive
1421      // output the first digit (or the leading zero)
1422      outputStr[--destIdx] = (-(n % 10) + kZero);
1423      n /= -10;
1424    }
1425    // get any remaining digits
1426    while (n > 0) {
1427      if (destIdx == noGroupingThreshold) {
1428        goto slowPath;
1429      }
1430      outputStr[--destIdx] = (n % 10) + kZero;
1431      n /= 10;
1432    }
1433
1434        // Slide the number to the start of the output str
1435    U_ASSERT(destIdx >= 0);
1436    int32_t length = MAX_IDX - destIdx -1;
1437    /*int32_t prefixLen = */ appendAffix(appendTo, static_cast<double>(number), handler, number<0, TRUE);
1438
1439    // This will be at least 0 even if it was set to a negative number.
1440    int32_t maxIntDig = getMaximumIntegerDigits();
1441    int32_t destlength = length<=maxIntDig?length:maxIntDig; // dest length pinned to max int digits
1442
1443    if(length>maxIntDig && fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
1444      status = U_ILLEGAL_ARGUMENT_ERROR;
1445    }
1446
1447    int32_t minDigits = getMinimumIntegerDigits();
1448
1449    // We always want at least one digit, even if it is just a 0.
1450    int32_t prependZero = (minDigits < 1 ? 1 : minDigits) - destlength;
1451
1452#ifdef FMT_DEBUG
1453    printf("prependZero=%d, length=%d, minintdig=%d maxintdig=%d destlength=%d skip=%d\n", prependZero, length, getMinimumIntegerDigits(), maxIntDig, destlength, length-destlength);
1454#endif
1455    int32_t intBegin = appendTo.length();
1456
1457    while((prependZero--)>0) {
1458      appendTo.append((UChar)0x0030); // '0'
1459    }
1460
1461    appendTo.append(outputStr+destIdx+
1462                    (length-destlength), // skip any leading digits
1463                    destlength);
1464    handler.addAttribute(kIntegerField, intBegin, appendTo.length());
1465
1466    /*int32_t suffixLen =*/ appendAffix(appendTo, static_cast<double>(number), handler, number<0, FALSE);
1467
1468    //outputStr[length]=0;
1469
1470#ifdef FMT_DEBUG
1471        printf("Writing [%s] length [%d] max %d for [%d]\n", outputStr+destIdx, length, MAX_IDX, number);
1472#endif
1473
1474#undef kZero
1475
1476    return appendTo;
1477  } // end fastpath
1478#endif
1479  slowPath:
1480
1481  // Else the slow way - via DigitList
1482    DigitList digits;
1483    digits.set(number);
1484    return _format(digits, appendTo, handler, status);
1485}
1486
1487//------------------------------------------------------------------------------
1488
1489UnicodeString&
1490DecimalFormat::format(  double number,
1491                        UnicodeString& appendTo,
1492                        FieldPosition& fieldPosition) const
1493{
1494    UErrorCode status = U_ZERO_ERROR; /* ignored */
1495    FieldPositionOnlyHandler handler(fieldPosition);
1496    return _format(number, appendTo, handler, status);
1497}
1498
1499UnicodeString&
1500DecimalFormat::format(  double number,
1501                        UnicodeString& appendTo,
1502                        FieldPosition& fieldPosition,
1503                        UErrorCode& status) const
1504{
1505    FieldPositionOnlyHandler handler(fieldPosition);
1506    return _format(number, appendTo, handler, status);
1507}
1508
1509UnicodeString&
1510DecimalFormat::format(  double number,
1511                        UnicodeString& appendTo,
1512                        FieldPositionIterator* posIter,
1513                        UErrorCode& status) const
1514{
1515  FieldPositionIteratorHandler handler(posIter, status);
1516  return _format(number, appendTo, handler, status);
1517}
1518
1519UnicodeString&
1520DecimalFormat::_format( double number,
1521                        UnicodeString& appendTo,
1522                        FieldPositionHandler& handler,
1523                        UErrorCode &status) const
1524{
1525    if (U_FAILURE(status)) {
1526        return appendTo;
1527    }
1528    // Special case for NaN, sets the begin and end index to be the
1529    // the string length of localized name of NaN.
1530    // TODO:  let NaNs go through DigitList.
1531    if (uprv_isNaN(number))
1532    {
1533        int begin = appendTo.length();
1534        appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1535
1536        handler.addAttribute(kIntegerField, begin, appendTo.length());
1537
1538        addPadding(appendTo, handler, 0, 0);
1539        return appendTo;
1540    }
1541
1542    DigitList digits;
1543    digits.set(number);
1544    _format(digits, appendTo, handler, status);
1545    // No way to return status from here.
1546    return appendTo;
1547}
1548
1549//------------------------------------------------------------------------------
1550
1551
1552UnicodeString&
1553DecimalFormat::format(const StringPiece &number,
1554                      UnicodeString &toAppendTo,
1555                      FieldPositionIterator *posIter,
1556                      UErrorCode &status) const
1557{
1558#if UCONFIG_FORMAT_FASTPATHS_49
1559  // don't bother if the int64 path is not optimized
1560  int32_t len    = number.length();
1561
1562  if(len>0&&len<10) { /* 10 or more digits may not be an int64 */
1563    const char *data = number.data();
1564    int64_t num = 0;
1565    UBool neg = FALSE;
1566    UBool ok = TRUE;
1567
1568    int32_t start  = 0;
1569
1570    if(data[start]=='+') {
1571      start++;
1572    } else if(data[start]=='-') {
1573      neg=TRUE;
1574      start++;
1575    }
1576
1577    int32_t place = 1; /* 1, 10, ... */
1578    for(int32_t i=len-1;i>=start;i--) {
1579      if(data[i]>='0'&&data[i]<='9') {
1580        num+=place*(int64_t)(data[i]-'0');
1581      } else {
1582        ok=FALSE;
1583        break;
1584      }
1585      place *= 10;
1586    }
1587
1588    if(ok) {
1589      if(neg) {
1590        num = -num;// add minus bit
1591      }
1592      // format as int64_t
1593      return format(num, toAppendTo, posIter, status);
1594    }
1595    // else fall through
1596  }
1597#endif
1598
1599    DigitList   dnum;
1600    dnum.set(number, status);
1601    if (U_FAILURE(status)) {
1602        return toAppendTo;
1603    }
1604    FieldPositionIteratorHandler handler(posIter, status);
1605    _format(dnum, toAppendTo, handler, status);
1606    return toAppendTo;
1607}
1608
1609
1610UnicodeString&
1611DecimalFormat::format(const DigitList &number,
1612                      UnicodeString &appendTo,
1613                      FieldPositionIterator *posIter,
1614                      UErrorCode &status) const {
1615    FieldPositionIteratorHandler handler(posIter, status);
1616    _format(number, appendTo, handler, status);
1617    return appendTo;
1618}
1619
1620
1621
1622UnicodeString&
1623DecimalFormat::format(const DigitList &number,
1624                     UnicodeString& appendTo,
1625                     FieldPosition& pos,
1626                     UErrorCode &status) const {
1627    FieldPositionOnlyHandler handler(pos);
1628    _format(number, appendTo, handler, status);
1629    return appendTo;
1630}
1631
1632DigitList&
1633DecimalFormat::_round(const DigitList &number, DigitList &adjustedNum, UBool& isNegative, UErrorCode &status) const {
1634    if (U_FAILURE(status)) {
1635        return adjustedNum;
1636    }
1637
1638    // note: number and adjustedNum may refer to the same DigitList, in cases where a copy
1639    //       is not needed by the caller.
1640
1641    adjustedNum = number;
1642    isNegative = false;
1643    if (number.isNaN()) {
1644        return adjustedNum;
1645    }
1646
1647    // Do this BEFORE checking to see if value is infinite or negative! Sets the
1648    // begin and end index to be length of the string composed of
1649    // localized name of Infinite and the positive/negative localized
1650    // signs.
1651
1652    adjustedNum.setRoundingMode(fRoundingMode);
1653    if (fMultiplier != NULL) {
1654        adjustedNum.mult(*fMultiplier, status);
1655        if (U_FAILURE(status)) {
1656            return adjustedNum;
1657        }
1658    }
1659
1660    if (fScale != 0) {
1661        DigitList ten;
1662        ten.set((int32_t)10);
1663        if (fScale > 0) {
1664            for (int32_t i = fScale ; i > 0 ; i--) {
1665                adjustedNum.mult(ten, status);
1666                if (U_FAILURE(status)) {
1667                    return adjustedNum;
1668                }
1669            }
1670        } else {
1671            for (int32_t i = fScale ; i < 0 ; i++) {
1672                adjustedNum.div(ten, status);
1673                if (U_FAILURE(status)) {
1674                    return adjustedNum;
1675                }
1676            }
1677        }
1678    }
1679
1680    /*
1681     * Note: sign is important for zero as well as non-zero numbers.
1682     * Proper detection of -0.0 is needed to deal with the
1683     * issues raised by bugs 4106658, 4106667, and 4147706.  Liu 7/6/98.
1684     */
1685    isNegative = !adjustedNum.isPositive();
1686
1687    // Apply rounding after multiplier
1688
1689    adjustedNum.fContext.status &= ~DEC_Inexact;
1690    if (fRoundingIncrement != NULL) {
1691        adjustedNum.div(*fRoundingIncrement, status);
1692        adjustedNum.toIntegralValue();
1693        adjustedNum.mult(*fRoundingIncrement, status);
1694        adjustedNum.trim();
1695        if (U_FAILURE(status)) {
1696            return adjustedNum;
1697        }
1698    }
1699    if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
1700        status = U_FORMAT_INEXACT_ERROR;
1701        return adjustedNum;
1702    }
1703
1704    if (adjustedNum.isInfinite()) {
1705        return adjustedNum;
1706    }
1707
1708    if (fUseExponentialNotation || areSignificantDigitsUsed()) {
1709        int32_t sigDigits = precision();
1710        if (sigDigits > 0) {
1711            adjustedNum.round(sigDigits);
1712            // Travis Keep (21/2/2014): Calling round on a digitList does not necessarily
1713            // preserve the sign of that digit list. Preserving the sign is especially
1714            // important when formatting -0.0 for instance. Not preserving the sign seems
1715            // like a bug because I cannot think of any case where the sign would actually
1716            // have to change when rounding. For now, we preserve the sign by setting the
1717            // positive attribute directly.
1718            adjustedNum.setPositive(!isNegative);
1719        }
1720    } else {
1721        // Fixed point format.  Round to a set number of fraction digits.
1722        int32_t numFractionDigits = precision();
1723        adjustedNum.roundFixedPoint(numFractionDigits);
1724    }
1725    if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
1726        status = U_FORMAT_INEXACT_ERROR;
1727        return adjustedNum;
1728    }
1729    return adjustedNum;
1730}
1731
1732UnicodeString&
1733DecimalFormat::_format(const DigitList &number,
1734                        UnicodeString& appendTo,
1735                        FieldPositionHandler& handler,
1736                        UErrorCode &status) const
1737{
1738    if (U_FAILURE(status)) {
1739        return appendTo;
1740    }
1741
1742    // Special case for NaN, sets the begin and end index to be the
1743    // the string length of localized name of NaN.
1744    if (number.isNaN())
1745    {
1746        int begin = appendTo.length();
1747        appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1748
1749        handler.addAttribute(kIntegerField, begin, appendTo.length());
1750
1751        addPadding(appendTo, handler, 0, 0);
1752        return appendTo;
1753    }
1754
1755    DigitList adjustedNum;
1756    UBool isNegative;
1757    _round(number, adjustedNum, isNegative, status);
1758    if (U_FAILURE(status)) {
1759        return appendTo;
1760    }
1761
1762    // Special case for INFINITE,
1763    if (adjustedNum.isInfinite()) {
1764        int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
1765
1766        int begin = appendTo.length();
1767        appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
1768
1769        handler.addAttribute(kIntegerField, begin, appendTo.length());
1770
1771        int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
1772
1773        addPadding(appendTo, handler, prefixLen, suffixLen);
1774        return appendTo;
1775    }
1776    return subformat(appendTo, handler, adjustedNum, FALSE, status);
1777}
1778
1779/**
1780 * Return true if a grouping separator belongs at the given
1781 * position, based on whether grouping is in use and the values of
1782 * the primary and secondary grouping interval.
1783 * @param pos the number of integer digits to the right of
1784 * the current position.  Zero indicates the position after the
1785 * rightmost integer digit.
1786 * @return true if a grouping character belongs at the current
1787 * position.
1788 */
1789UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
1790    UBool result = FALSE;
1791    if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
1792        if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
1793            result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
1794        } else {
1795            result = pos % fGroupingSize == 0;
1796        }
1797    }
1798    return result;
1799}
1800
1801//------------------------------------------------------------------------------
1802
1803/**
1804 * Complete the formatting of a finite number.  On entry, the DigitList must
1805 * be filled in with the correct digits.
1806 */
1807UnicodeString&
1808DecimalFormat::subformat(UnicodeString& appendTo,
1809                         FieldPositionHandler& handler,
1810                         DigitList&     digits,
1811                         UBool          isInteger,
1812                         UErrorCode& status) const
1813{
1814    // char zero = '0';
1815    // DigitList returns digits as '0' thru '9', so we will need to
1816    // always need to subtract the character 0 to get the numeric value to use for indexing.
1817
1818    UChar32 localizedDigits[10];
1819    localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
1820    localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
1821    localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
1822    localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
1823    localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
1824    localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
1825    localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
1826    localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
1827    localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
1828    localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
1829
1830    const UnicodeString *grouping ;
1831    if(fCurrencySignCount == fgCurrencySignCountZero) {
1832        grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
1833    }else{
1834        grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
1835    }
1836    const UnicodeString *decimal;
1837    if(fCurrencySignCount == fgCurrencySignCountZero) {
1838        decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
1839    } else {
1840        decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
1841    }
1842    UBool useSigDig = areSignificantDigitsUsed();
1843    int32_t maxIntDig = getMaximumIntegerDigits();
1844    int32_t minIntDig = getMinimumIntegerDigits();
1845
1846    // Appends the prefix.
1847    double doubleValue = digits.getDouble();
1848    int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
1849
1850    if (fUseExponentialNotation)
1851    {
1852        int currentLength = appendTo.length();
1853        int intBegin = currentLength;
1854        int intEnd = -1;
1855        int fracBegin = -1;
1856
1857        int32_t minFracDig = 0;
1858        if (useSigDig) {
1859            maxIntDig = minIntDig = 1;
1860            minFracDig = getMinimumSignificantDigits() - 1;
1861        } else {
1862            minFracDig = getMinimumFractionDigits();
1863            if (maxIntDig > kMaxScientificIntegerDigits) {
1864                maxIntDig = 1;
1865                if (maxIntDig < minIntDig) {
1866                    maxIntDig = minIntDig;
1867                }
1868            }
1869            if (maxIntDig > minIntDig) {
1870                minIntDig = 1;
1871            }
1872        }
1873
1874        // Minimum integer digits are handled in exponential format by
1875        // adjusting the exponent.  For example, 0.01234 with 3 minimum
1876        // integer digits is "123.4E-4".
1877
1878        // Maximum integer digits are interpreted as indicating the
1879        // repeating range.  This is useful for engineering notation, in
1880        // which the exponent is restricted to a multiple of 3.  For
1881        // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
1882        // If maximum integer digits are defined and are larger than
1883        // minimum integer digits, then minimum integer digits are
1884        // ignored.
1885        digits.reduce();   // Removes trailing zero digits.
1886        int32_t exponent = digits.getDecimalAt();
1887        if (maxIntDig > 1 && maxIntDig != minIntDig) {
1888            // A exponent increment is defined; adjust to it.
1889            exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
1890                                      : (exponent / maxIntDig) - 1;
1891            exponent *= maxIntDig;
1892        } else {
1893            // No exponent increment is defined; use minimum integer digits.
1894            // If none is specified, as in "#E0", generate 1 integer digit.
1895            exponent -= (minIntDig > 0 || minFracDig > 0)
1896                        ? minIntDig : 1;
1897        }
1898
1899        // We now output a minimum number of digits, and more if there
1900        // are more digits, up to the maximum number of digits.  We
1901        // place the decimal point after the "integer" digits, which
1902        // are the first (decimalAt - exponent) digits.
1903        int32_t minimumDigits =  minIntDig + minFracDig;
1904        // The number of integer digits is handled specially if the number
1905        // is zero, since then there may be no digits.
1906        int32_t integerDigits = digits.isZero() ? minIntDig :
1907            digits.getDecimalAt() - exponent;
1908        int32_t totalDigits = digits.getCount();
1909        if (minimumDigits > totalDigits)
1910            totalDigits = minimumDigits;
1911        if (integerDigits > totalDigits)
1912            totalDigits = integerDigits;
1913
1914        // totalDigits records total number of digits needs to be processed
1915        int32_t i;
1916        for (i=0; i<totalDigits; ++i)
1917        {
1918            if (i == integerDigits)
1919            {
1920                intEnd = appendTo.length();
1921                handler.addAttribute(kIntegerField, intBegin, intEnd);
1922
1923                appendTo += *decimal;
1924
1925                fracBegin = appendTo.length();
1926                handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
1927            }
1928            // Restores the digit character or pads the buffer with zeros.
1929            UChar32 c = (UChar32)((i < digits.getCount()) ?
1930                          localizedDigits[digits.getDigitValue(i)] :
1931                          localizedDigits[0]);
1932            appendTo += c;
1933        }
1934
1935        currentLength = appendTo.length();
1936
1937        if (intEnd < 0) {
1938            handler.addAttribute(kIntegerField, intBegin, currentLength);
1939        }
1940        if (fracBegin > 0) {
1941            handler.addAttribute(kFractionField, fracBegin, currentLength);
1942        }
1943
1944        // The exponent is output using the pattern-specified minimum
1945        // exponent digits.  There is no maximum limit to the exponent
1946        // digits, since truncating the exponent would appendTo in an
1947        // unacceptable inaccuracy.
1948        appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
1949
1950        handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
1951        currentLength = appendTo.length();
1952
1953        // For zero values, we force the exponent to zero.  We
1954        // must do this here, and not earlier, because the value
1955        // is used to determine integer digit count above.
1956        if (digits.isZero())
1957            exponent = 0;
1958
1959        if (exponent < 0) {
1960            appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
1961            handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1962        } else if (fExponentSignAlwaysShown) {
1963            appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
1964            handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1965        }
1966
1967        currentLength = appendTo.length();
1968
1969        DigitList expDigits;
1970        expDigits.set(exponent);
1971        {
1972            int expDig = fMinExponentDigits;
1973            if (fUseExponentialNotation && expDig < 1) {
1974                expDig = 1;
1975            }
1976            for (i=expDigits.getDecimalAt(); i<expDig; ++i)
1977                appendTo += (localizedDigits[0]);
1978        }
1979        for (i=0; i<expDigits.getDecimalAt(); ++i)
1980        {
1981            UChar32 c = (UChar32)((i < expDigits.getCount()) ?
1982                          localizedDigits[expDigits.getDigitValue(i)] :
1983                          localizedDigits[0]);
1984            appendTo += c;
1985        }
1986
1987        handler.addAttribute(kExponentField, currentLength, appendTo.length());
1988    }
1989    else  // Not using exponential notation
1990    {
1991        int currentLength = appendTo.length();
1992        int intBegin = currentLength;
1993
1994        int32_t sigCount = 0;
1995        int32_t minSigDig = getMinimumSignificantDigits();
1996        int32_t maxSigDig = getMaximumSignificantDigits();
1997        if (!useSigDig) {
1998            minSigDig = 0;
1999            maxSigDig = INT32_MAX;
2000        }
2001
2002        // Output the integer portion.  Here 'count' is the total
2003        // number of integer digits we will display, including both
2004        // leading zeros required to satisfy getMinimumIntegerDigits,
2005        // and actual digits present in the number.
2006        int32_t count = useSigDig ?
2007            _max(1, digits.getDecimalAt()) : minIntDig;
2008        if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
2009            count = digits.getDecimalAt();
2010        }
2011
2012        // Handle the case where getMaximumIntegerDigits() is smaller
2013        // than the real number of integer digits.  If this is so, we
2014        // output the least significant max integer digits.  For example,
2015        // the value 1997 printed with 2 max integer digits is just "97".
2016
2017        int32_t digitIndex = 0; // Index into digitList.fDigits[]
2018        if (count > maxIntDig && maxIntDig >= 0) {
2019            count = maxIntDig;
2020            digitIndex = digits.getDecimalAt() - count;
2021            if(fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
2022                status = U_ILLEGAL_ARGUMENT_ERROR;
2023            }
2024        }
2025
2026        int32_t sizeBeforeIntegerPart = appendTo.length();
2027
2028        int32_t i;
2029        for (i=count-1; i>=0; --i)
2030        {
2031            if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
2032                sigCount < maxSigDig) {
2033                // Output a real digit
2034                appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
2035                ++sigCount;
2036            }
2037            else
2038            {
2039                // Output a zero (leading or trailing)
2040                appendTo += localizedDigits[0];
2041                if (sigCount > 0) {
2042                    ++sigCount;
2043                }
2044            }
2045
2046            // Output grouping separator if necessary.
2047            if (isGroupingPosition(i)) {
2048                currentLength = appendTo.length();
2049                appendTo.append(*grouping);
2050                handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
2051            }
2052        }
2053
2054        // This handles the special case of formatting 0. For zero only, we count the
2055        // zero to the left of the decimal point as one signficant digit. Ordinarily we
2056        // do not count any leading 0's as significant. If the number we are formatting
2057        // is not zero, then either sigCount or digits.getCount() will be non-zero.
2058        if (sigCount == 0 && digits.getCount() == 0) {
2059          sigCount = 1;
2060        }
2061
2062        // TODO(dlf): this looks like it was a bug, we marked the int field as ending
2063        // before the zero was generated.
2064        // Record field information for caller.
2065        // if (fieldPosition.getField() == NumberFormat::kIntegerField)
2066        //     fieldPosition.setEndIndex(appendTo.length());
2067
2068        // Determine whether or not there are any printable fractional
2069        // digits.  If we've used up the digits we know there aren't.
2070        UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
2071            (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
2072
2073        // If there is no fraction present, and we haven't printed any
2074        // integer digits, then print a zero.  Otherwise we won't print
2075        // _any_ digits, and we won't be able to parse this string.
2076        if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
2077            appendTo += localizedDigits[0];
2078
2079        currentLength = appendTo.length();
2080        handler.addAttribute(kIntegerField, intBegin, currentLength);
2081
2082        // Output the decimal separator if we always do so.
2083        if (fDecimalSeparatorAlwaysShown || fractionPresent) {
2084            appendTo += *decimal;
2085            handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
2086            currentLength = appendTo.length();
2087        }
2088
2089        int fracBegin = currentLength;
2090
2091        count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
2092        if (useSigDig && (sigCount == maxSigDig ||
2093                          (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
2094            count = 0;
2095        }
2096
2097        for (i=0; i < count; ++i) {
2098            // Here is where we escape from the loop.  We escape
2099            // if we've output the maximum fraction digits
2100            // (specified in the for expression above).  We also
2101            // stop when we've output the minimum digits and
2102            // either: we have an integer, so there is no
2103            // fractional stuff to display, or we're out of
2104            // significant digits.
2105            if (!useSigDig && i >= getMinimumFractionDigits() &&
2106                (isInteger || digitIndex >= digits.getCount())) {
2107                break;
2108            }
2109
2110            // Output leading fractional zeros.  These are zeros
2111            // that come after the decimal but before any
2112            // significant digits.  These are only output if
2113            // abs(number being formatted) < 1.0.
2114            if (-1-i > (digits.getDecimalAt()-1)) {
2115                appendTo += localizedDigits[0];
2116                continue;
2117            }
2118
2119            // Output a digit, if we have any precision left, or a
2120            // zero if we don't.  We don't want to output noise digits.
2121            if (!isInteger && digitIndex < digits.getCount()) {
2122                appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
2123            } else {
2124                appendTo += localizedDigits[0];
2125            }
2126
2127            // If we reach the maximum number of significant
2128            // digits, or if we output all the real digits and
2129            // reach the minimum, then we are done.
2130            ++sigCount;
2131            if (useSigDig &&
2132                (sigCount == maxSigDig ||
2133                 (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
2134                break;
2135            }
2136        }
2137
2138        handler.addAttribute(kFractionField, fracBegin, appendTo.length());
2139    }
2140
2141    int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
2142
2143    addPadding(appendTo, handler, prefixLen, suffixLen);
2144    return appendTo;
2145}
2146
2147/**
2148 * Inserts the character fPad as needed to expand result to fFormatWidth.
2149 * @param result the string to be padded
2150 */
2151void DecimalFormat::addPadding(UnicodeString& appendTo,
2152                               FieldPositionHandler& handler,
2153                               int32_t prefixLen,
2154                               int32_t suffixLen) const
2155{
2156    if (fFormatWidth > 0) {
2157        int32_t len = fFormatWidth - appendTo.length();
2158        if (len > 0) {
2159            UnicodeString padding;
2160            for (int32_t i=0; i<len; ++i) {
2161                padding += fPad;
2162            }
2163            switch (fPadPosition) {
2164            case kPadAfterPrefix:
2165                appendTo.insert(prefixLen, padding);
2166                break;
2167            case kPadBeforePrefix:
2168                appendTo.insert(0, padding);
2169                break;
2170            case kPadBeforeSuffix:
2171                appendTo.insert(appendTo.length() - suffixLen, padding);
2172                break;
2173            case kPadAfterSuffix:
2174                appendTo += padding;
2175                break;
2176            }
2177            if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
2178                handler.shiftLast(len);
2179            }
2180        }
2181    }
2182}
2183
2184//------------------------------------------------------------------------------
2185
2186void
2187DecimalFormat::parse(const UnicodeString& text,
2188                     Formattable& result,
2189                     ParsePosition& parsePosition) const {
2190    parse(text, result, parsePosition, NULL);
2191}
2192
2193CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
2194                                             ParsePosition& pos) const {
2195    Formattable parseResult;
2196    int32_t start = pos.getIndex();
2197    UChar curbuf[4] = {};
2198    parse(text, parseResult, pos, curbuf);
2199    if (pos.getIndex() != start) {
2200        UErrorCode ec = U_ZERO_ERROR;
2201        LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec), ec);
2202        if (U_FAILURE(ec)) {
2203            pos.setIndex(start); // indicate failure
2204        } else {
2205            return currAmt.orphan();
2206        }
2207    }
2208    return NULL;
2209}
2210
2211/**
2212 * Parses the given text as a number, optionally providing a currency amount.
2213 * @param text the string to parse
2214 * @param result output parameter for the numeric result.
2215 * @param parsePosition input-output position; on input, the
2216 * position within text to match; must have 0 <= pos.getIndex() <
2217 * text.length(); on output, the position after the last matched
2218 * character. If the parse fails, the position in unchanged upon
2219 * output.
2220 * @param currency if non-NULL, it should point to a 4-UChar buffer.
2221 * In this case the text is parsed as a currency format, and the
2222 * ISO 4217 code for the parsed currency is put into the buffer.
2223 * Otherwise the text is parsed as a non-currency format.
2224 */
2225void DecimalFormat::parse(const UnicodeString& text,
2226                          Formattable& result,
2227                          ParsePosition& parsePosition,
2228                          UChar* currency) const {
2229    int32_t startIdx, backup;
2230    int32_t i = startIdx = backup = parsePosition.getIndex();
2231
2232    // clear any old contents in the result.  In particular, clears any DigitList
2233    //   that it may be holding.
2234    result.setLong(0);
2235    if (currency != NULL) {
2236        for (int32_t ci=0; ci<4; ci++) {
2237            currency[ci] = 0;
2238        }
2239    }
2240
2241    // Handle NaN as a special case:
2242
2243    // Skip padding characters, if around prefix
2244    if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
2245                             fPadPosition == kPadAfterPrefix)) {
2246        i = skipPadding(text, i);
2247    }
2248
2249    if (isLenient()) {
2250        // skip any leading whitespace
2251        i = backup = skipUWhiteSpace(text, i);
2252    }
2253
2254    // If the text is composed of the representation of NaN, returns NaN.length
2255    const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
2256    int32_t nanLen = (text.compare(i, nan->length(), *nan)
2257                      ? 0 : nan->length());
2258    if (nanLen) {
2259        i += nanLen;
2260        if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
2261                                 fPadPosition == kPadAfterSuffix)) {
2262            i = skipPadding(text, i);
2263        }
2264        parsePosition.setIndex(i);
2265        result.setDouble(uprv_getNaN());
2266        return;
2267    }
2268
2269    // NaN parse failed; start over
2270    i = backup;
2271    parsePosition.setIndex(i);
2272
2273    // status is used to record whether a number is infinite.
2274    UBool status[fgStatusLength];
2275
2276    DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
2277    if (digits == NULL) {
2278        return;    // no way to report error from here.
2279    }
2280
2281    if (fCurrencySignCount != fgCurrencySignCountZero) {
2282        if (!parseForCurrency(text, parsePosition, *digits,
2283                              status, currency)) {
2284          return;
2285        }
2286    } else {
2287        if (!subparse(text,
2288                      fNegPrefixPattern, fNegSuffixPattern,
2289                      fPosPrefixPattern, fPosSuffixPattern,
2290                      FALSE, UCURR_SYMBOL_NAME,
2291                      parsePosition, *digits, status, currency)) {
2292            debug("!subparse(...) - rewind");
2293            parsePosition.setIndex(startIdx);
2294            return;
2295        }
2296    }
2297
2298    // Handle infinity
2299    if (status[fgStatusInfinite]) {
2300        double inf = uprv_getInfinity();
2301        result.setDouble(digits->isPositive() ? inf : -inf);
2302        // TODO:  set the dl to infinity, and let it fall into the code below.
2303    }
2304
2305    else {
2306
2307        if (fMultiplier != NULL) {
2308            UErrorCode ec = U_ZERO_ERROR;
2309            digits->div(*fMultiplier, ec);
2310        }
2311
2312        if (fScale != 0) {
2313            DigitList ten;
2314            ten.set((int32_t)10);
2315            if (fScale > 0) {
2316                for (int32_t i = fScale; i > 0; i--) {
2317                    UErrorCode ec = U_ZERO_ERROR;
2318                    digits->div(ten,ec);
2319                }
2320            } else {
2321                for (int32_t i = fScale; i < 0; i++) {
2322                    UErrorCode ec = U_ZERO_ERROR;
2323                    digits->mult(ten,ec);
2324                }
2325            }
2326        }
2327
2328        // Negative zero special case:
2329        //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
2330        //    if not parsing integerOnly, leave as -0, which a double can represent.
2331        if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
2332            digits->setPositive(TRUE);
2333        }
2334        result.adoptDigitList(digits);
2335    }
2336}
2337
2338
2339
2340UBool
2341DecimalFormat::parseForCurrency(const UnicodeString& text,
2342                                ParsePosition& parsePosition,
2343                                DigitList& digits,
2344                                UBool* status,
2345                                UChar* currency) const {
2346    int origPos = parsePosition.getIndex();
2347    int maxPosIndex = origPos;
2348    int maxErrorPos = -1;
2349    // First, parse against current pattern.
2350    // Since current pattern could be set by applyPattern(),
2351    // it could be an arbitrary pattern, and it may not be the one
2352    // defined in current locale.
2353    UBool tmpStatus[fgStatusLength];
2354    ParsePosition tmpPos(origPos);
2355    DigitList tmpDigitList;
2356    UBool found;
2357    if (fStyle == UNUM_CURRENCY_PLURAL) {
2358        found = subparse(text,
2359                         fNegPrefixPattern, fNegSuffixPattern,
2360                         fPosPrefixPattern, fPosSuffixPattern,
2361                         TRUE, UCURR_LONG_NAME,
2362                         tmpPos, tmpDigitList, tmpStatus, currency);
2363    } else {
2364        found = subparse(text,
2365                         fNegPrefixPattern, fNegSuffixPattern,
2366                         fPosPrefixPattern, fPosSuffixPattern,
2367                         TRUE, UCURR_SYMBOL_NAME,
2368                         tmpPos, tmpDigitList, tmpStatus, currency);
2369    }
2370    if (found) {
2371        if (tmpPos.getIndex() > maxPosIndex) {
2372            maxPosIndex = tmpPos.getIndex();
2373            for (int32_t i = 0; i < fgStatusLength; ++i) {
2374                status[i] = tmpStatus[i];
2375            }
2376            digits = tmpDigitList;
2377        }
2378    } else {
2379        maxErrorPos = tmpPos.getErrorIndex();
2380    }
2381    // Then, parse against affix patterns.
2382    // Those are currency patterns and currency plural patterns.
2383    int32_t pos = UHASH_FIRST;
2384    const UHashElement* element = NULL;
2385    while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
2386        const UHashTok valueTok = element->value;
2387        const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
2388        UBool tmpStatus[fgStatusLength];
2389        ParsePosition tmpPos(origPos);
2390        DigitList tmpDigitList;
2391
2392#ifdef FMT_DEBUG
2393        debug("trying affix for currency..");
2394        affixPtn->dump();
2395#endif
2396
2397        UBool result = subparse(text,
2398                                &affixPtn->negPrefixPatternForCurrency,
2399                                &affixPtn->negSuffixPatternForCurrency,
2400                                &affixPtn->posPrefixPatternForCurrency,
2401                                &affixPtn->posSuffixPatternForCurrency,
2402                                TRUE, affixPtn->patternType,
2403                                tmpPos, tmpDigitList, tmpStatus, currency);
2404        if (result) {
2405            found = true;
2406            if (tmpPos.getIndex() > maxPosIndex) {
2407                maxPosIndex = tmpPos.getIndex();
2408                for (int32_t i = 0; i < fgStatusLength; ++i) {
2409                    status[i] = tmpStatus[i];
2410                }
2411                digits = tmpDigitList;
2412            }
2413        } else {
2414            maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
2415                          tmpPos.getErrorIndex() : maxErrorPos;
2416        }
2417    }
2418    // Finally, parse against simple affix to find the match.
2419    // For example, in TestMonster suite,
2420    // if the to-be-parsed text is "-\u00A40,00".
2421    // complexAffixCompare will not find match,
2422    // since there is no ISO code matches "\u00A4",
2423    // and the parse stops at "\u00A4".
2424    // We will just use simple affix comparison (look for exact match)
2425    // to pass it.
2426    //
2427    // TODO: We should parse against simple affix first when
2428    // output currency is not requested. After the complex currency
2429    // parsing implementation was introduced, the default currency
2430    // instance parsing slowed down because of the new code flow.
2431    // I filed #10312 - Yoshito
2432    UBool tmpStatus_2[fgStatusLength];
2433    ParsePosition tmpPos_2(origPos);
2434    DigitList tmpDigitList_2;
2435
2436    // Disable complex currency parsing and try it again.
2437    UBool result = subparse(text,
2438                            &fNegativePrefix, &fNegativeSuffix,
2439                            &fPositivePrefix, &fPositiveSuffix,
2440                            FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
2441                            tmpPos_2, tmpDigitList_2, tmpStatus_2,
2442                            currency);
2443    if (result) {
2444        if (tmpPos_2.getIndex() > maxPosIndex) {
2445            maxPosIndex = tmpPos_2.getIndex();
2446            for (int32_t i = 0; i < fgStatusLength; ++i) {
2447                status[i] = tmpStatus_2[i];
2448            }
2449            digits = tmpDigitList_2;
2450        }
2451        found = true;
2452    } else {
2453            maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
2454                          tmpPos_2.getErrorIndex() : maxErrorPos;
2455    }
2456
2457    if (!found) {
2458        //parsePosition.setIndex(origPos);
2459        parsePosition.setErrorIndex(maxErrorPos);
2460    } else {
2461        parsePosition.setIndex(maxPosIndex);
2462        parsePosition.setErrorIndex(-1);
2463    }
2464    return found;
2465}
2466
2467
2468/**
2469 * Parse the given text into a number.  The text is parsed beginning at
2470 * parsePosition, until an unparseable character is seen.
2471 * @param text the string to parse.
2472 * @param negPrefix negative prefix.
2473 * @param negSuffix negative suffix.
2474 * @param posPrefix positive prefix.
2475 * @param posSuffix positive suffix.
2476 * @param complexCurrencyParsing whether it is complex currency parsing or not.
2477 * @param type the currency type to parse against, LONG_NAME only or not.
2478 * @param parsePosition The position at which to being parsing.  Upon
2479 * return, the first unparsed character.
2480 * @param digits the DigitList to set to the parsed value.
2481 * @param status output param containing boolean status flags indicating
2482 * whether the value was infinite and whether it was positive.
2483 * @param currency return value for parsed currency, for generic
2484 * currency parsing mode, or NULL for normal parsing. In generic
2485 * currency parsing mode, any currency is parsed, not just the
2486 * currency that this formatter is set to.
2487 */
2488UBool DecimalFormat::subparse(const UnicodeString& text,
2489                              const UnicodeString* negPrefix,
2490                              const UnicodeString* negSuffix,
2491                              const UnicodeString* posPrefix,
2492                              const UnicodeString* posSuffix,
2493                              UBool complexCurrencyParsing,
2494                              int8_t type,
2495                              ParsePosition& parsePosition,
2496                              DigitList& digits, UBool* status,
2497                              UChar* currency) const
2498{
2499    //  The parsing process builds up the number as char string, in the neutral format that
2500    //  will be acceptable to the decNumber library, then at the end passes that string
2501    //  off for conversion to a decNumber.
2502    UErrorCode err = U_ZERO_ERROR;
2503    CharString parsedNum;
2504    digits.setToZero();
2505
2506    int32_t position = parsePosition.getIndex();
2507    int32_t oldStart = position;
2508    int32_t textLength = text.length(); // One less pointer to follow
2509    UBool strictParse = !isLenient();
2510    UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
2511    const UnicodeString *groupingString = &getConstSymbol(fCurrencySignCount == fgCurrencySignCountZero ?
2512        DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
2513    UChar32 groupingChar = groupingString->char32At(0);
2514    int32_t groupingStringLength = groupingString->length();
2515    int32_t groupingCharLength   = U16_LENGTH(groupingChar);
2516    UBool   groupingUsed = isGroupingUsed();
2517#ifdef FMT_DEBUG
2518    UChar dbgbuf[300];
2519    UnicodeString s(dbgbuf,0,300);;
2520    s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
2521#define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "="));  if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
2522    DBGAPPD(negPrefix);
2523    DBGAPPD(negSuffix);
2524    DBGAPPD(posPrefix);
2525    DBGAPPD(posSuffix);
2526    debugout(s);
2527    printf("currencyParsing=%d, fFormatWidth=%d, isParseIntegerOnly=%c text.length=%d negPrefLen=%d\n", currencyParsing, fFormatWidth, (isParseIntegerOnly())?'Y':'N', text.length(),  negPrefix!=NULL?negPrefix->length():-1);
2528#endif
2529
2530    UBool fastParseOk = false; /* TRUE iff fast parse is OK */
2531    // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
2532    const DecimalFormatInternal &data = internalData(fReserved);
2533    if((data.fFastParseStatus==kFastpathYES) &&
2534       fCurrencySignCount == fgCurrencySignCountZero &&
2535       //       (negPrefix!=NULL&&negPrefix->isEmpty()) ||
2536       text.length()>0 &&
2537       text.length()<32 &&
2538       (posPrefix==NULL||posPrefix->isEmpty()) &&
2539       (posSuffix==NULL||posSuffix->isEmpty()) &&
2540       //            (negPrefix==NULL||negPrefix->isEmpty()) &&
2541       //            (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
2542       TRUE) {  // optimized path
2543      int j=position;
2544      int l=text.length();
2545      int digitCount=0;
2546      UChar32 ch = text.char32At(j);
2547      const UnicodeString *decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
2548      UChar32 decimalChar = 0;
2549      UBool intOnly = FALSE;
2550      UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
2551
2552      int32_t decimalCount = decimalString->countChar32(0,3);
2553      if(isParseIntegerOnly()) {
2554        decimalChar = 0; // not allowed
2555        intOnly = TRUE; // Don't look for decimals.
2556      } else if(decimalCount==1) {
2557        decimalChar = decimalString->char32At(0); // Look for this decimal
2558      } else if(decimalCount==0) {
2559        decimalChar=0; // NO decimal set
2560      } else {
2561        j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
2562      }
2563
2564#ifdef FMT_DEBUG
2565      printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
2566        decimalChar, groupingChar, ch,
2567        (intOnly)?'y':'n',
2568        (strictParse)?'y':'n');
2569#endif
2570      if(ch==0x002D) { // '-'
2571        j=l+1;//=break - negative number.
2572
2573        /*
2574          parsedNum.append('-',err);
2575          j+=U16_LENGTH(ch);
2576          if(j<l) ch = text.char32At(j);
2577        */
2578      } else {
2579        parsedNum.append('+',err);
2580      }
2581      while(j<l) {
2582        int32_t digit = ch - zero;
2583        if(digit >=0 && digit <= 9) {
2584          parsedNum.append((char)(digit + '0'), err);
2585          if((digitCount>0) || digit!=0 || j==(l-1)) {
2586            digitCount++;
2587          }
2588        } else if(ch == 0) { // break out
2589          digitCount=-1;
2590          break;
2591        } else if(ch == decimalChar) {
2592          parsedNum.append((char)('.'), err);
2593          decimalChar=0; // no more decimals.
2594          // fastParseHadDecimal=TRUE;
2595        } else if(ch == lookForGroup) {
2596          // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
2597        } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
2598          // parsing integer only and can fall through
2599        } else {
2600          digitCount=-1; // fail - fall through to slow parse
2601          break;
2602        }
2603        j+=U16_LENGTH(ch);
2604        ch = text.char32At(j); // for next
2605      }
2606      if(
2607         ((j==l)||intOnly) // end OR only parsing integer
2608         && (digitCount>0)) { // and have at least one digit
2609#ifdef FMT_DEBUG
2610        printf("PP -> %d, good = [%s]  digitcount=%d, fGroupingSize=%d fGroupingSize2=%d!\n", j, parsedNum.data(), digitCount, fGroupingSize, fGroupingSize2);
2611#endif
2612        fastParseOk=true; // Fast parse OK!
2613
2614#ifdef SKIP_OPT
2615        debug("SKIP_OPT");
2616        /* for testing, try it the slow way. also */
2617        fastParseOk=false;
2618        parsedNum.clear();
2619#else
2620        parsePosition.setIndex(position=j);
2621        status[fgStatusInfinite]=false;
2622#endif
2623      } else {
2624        // was not OK. reset, retry
2625#ifdef FMT_DEBUG
2626        printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
2627#endif
2628        parsedNum.clear();
2629      }
2630    } else {
2631#ifdef FMT_DEBUG
2632      printf("Could not fastpath parse. ");
2633      printf("fFormatWidth=%d ", fFormatWidth);
2634      printf("text.length()=%d ", text.length());
2635      printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
2636
2637      printf("\n");
2638#endif
2639    }
2640
2641  if(!fastParseOk
2642#if UCONFIG_HAVE_PARSEALLINPUT
2643     && fParseAllInput!=UNUM_YES
2644#endif
2645     )
2646  {
2647    // Match padding before prefix
2648    if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
2649        position = skipPadding(text, position);
2650    }
2651
2652    // Match positive and negative prefixes; prefer longest match.
2653    int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
2654    int32_t negMatch = compareAffix(text, position, TRUE,  TRUE, negPrefix, complexCurrencyParsing, type, currency);
2655    if (posMatch >= 0 && negMatch >= 0) {
2656        if (posMatch > negMatch) {
2657            negMatch = -1;
2658        } else if (negMatch > posMatch) {
2659            posMatch = -1;
2660        }
2661    }
2662    if (posMatch >= 0) {
2663        position += posMatch;
2664        parsedNum.append('+', err);
2665    } else if (negMatch >= 0) {
2666        position += negMatch;
2667        parsedNum.append('-', err);
2668    } else if (strictParse){
2669        parsePosition.setErrorIndex(position);
2670        return FALSE;
2671    } else {
2672        // Temporary set positive. This might be changed after checking suffix
2673        parsedNum.append('+', err);
2674    }
2675
2676    // Match padding before prefix
2677    if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
2678        position = skipPadding(text, position);
2679    }
2680
2681    if (! strictParse) {
2682        position = skipUWhiteSpace(text, position);
2683    }
2684
2685    // process digits or Inf, find decimal position
2686    const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
2687    int32_t infLen = (text.compare(position, inf->length(), *inf)
2688        ? 0 : inf->length());
2689    position += infLen; // infLen is non-zero when it does equal to infinity
2690    status[fgStatusInfinite] = infLen != 0;
2691
2692    if (infLen != 0) {
2693        parsedNum.append("Infinity", err);
2694    } else {
2695        // We now have a string of digits, possibly with grouping symbols,
2696        // and decimal points.  We want to process these into a DigitList.
2697        // We don't want to put a bunch of leading zeros into the DigitList
2698        // though, so we keep track of the location of the decimal point,
2699        // put only significant digits into the DigitList, and adjust the
2700        // exponent as needed.
2701
2702
2703        UBool strictFail = FALSE; // did we exit with a strict parse failure?
2704        int32_t lastGroup = -1; // where did we last see a grouping separator?
2705        int32_t digitStart = position;
2706        int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
2707
2708        const UnicodeString *decimalString;
2709        if (fCurrencySignCount != fgCurrencySignCountZero) {
2710            decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
2711        } else {
2712            decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
2713        }
2714        UChar32 decimalChar = decimalString->char32At(0);
2715        int32_t decimalStringLength = decimalString->length();
2716        int32_t decimalCharLength   = U16_LENGTH(decimalChar);
2717
2718        UBool sawDecimal = FALSE;
2719        UChar32 sawDecimalChar = 0xFFFF;
2720        UBool sawGrouping = FALSE;
2721        UChar32 sawGroupingChar = 0xFFFF;
2722        UBool sawDigit = FALSE;
2723        int32_t backup = -1;
2724        int32_t digit;
2725
2726        // equivalent grouping and decimal support
2727        const UnicodeSet *decimalSet = NULL;
2728        const UnicodeSet *groupingSet = NULL;
2729
2730        if (decimalCharLength == decimalStringLength) {
2731            decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
2732        }
2733
2734        if (groupingCharLength == groupingStringLength) {
2735            if (strictParse) {
2736                groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
2737            } else {
2738                groupingSet = fStaticSets->fDefaultGroupingSeparators;
2739            }
2740        }
2741
2742        // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
2743        // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
2744        // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
2745
2746        // We have to track digitCount ourselves, because digits.fCount will
2747        // pin when the maximum allowable digits is reached.
2748        int32_t digitCount = 0;
2749        int32_t integerDigitCount = 0;
2750
2751        for (; position < textLength; )
2752        {
2753            UChar32 ch = text.char32At(position);
2754
2755            /* We recognize all digit ranges, not only the Latin digit range
2756             * '0'..'9'.  We do so by using the Character.digit() method,
2757             * which converts a valid Unicode digit to the range 0..9.
2758             *
2759             * The character 'ch' may be a digit.  If so, place its value
2760             * from 0 to 9 in 'digit'.  First try using the locale digit,
2761             * which may or MAY NOT be a standard Unicode digit range.  If
2762             * this fails, try using the standard Unicode digit ranges by
2763             * calling Character.digit().  If this also fails, digit will
2764             * have a value outside the range 0..9.
2765             */
2766            digit = ch - zero;
2767            if (digit < 0 || digit > 9)
2768            {
2769                digit = u_charDigitValue(ch);
2770            }
2771
2772            // As a last resort, look through the localized digits if the zero digit
2773            // is not a "standard" Unicode digit.
2774            if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
2775                digit = 0;
2776                if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
2777                    break;
2778                }
2779                for (digit = 1 ; digit < 10 ; digit++ ) {
2780                    if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
2781                        break;
2782                    }
2783                }
2784            }
2785
2786            if (digit >= 0 && digit <= 9)
2787            {
2788                if (strictParse && backup != -1) {
2789                    // comma followed by digit, so group before comma is a
2790                    // secondary group.  If there was a group separator
2791                    // before that, the group must == the secondary group
2792                    // length, else it can be <= the the secondary group
2793                    // length.
2794                    if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
2795                        (lastGroup == -1 && position - digitStart - 1 > gs2)) {
2796                        strictFail = TRUE;
2797                        break;
2798                    }
2799
2800                    lastGroup = backup;
2801                }
2802
2803                // Cancel out backup setting (see grouping handler below)
2804                backup = -1;
2805                sawDigit = TRUE;
2806
2807                // Note: this will append leading zeros
2808                parsedNum.append((char)(digit + '0'), err);
2809
2810                // count any digit that's not a leading zero
2811                if (digit > 0 || digitCount > 0 || sawDecimal) {
2812                    digitCount += 1;
2813
2814                    // count any integer digit that's not a leading zero
2815                    if (! sawDecimal) {
2816                        integerDigitCount += 1;
2817                    }
2818                }
2819
2820                position += U16_LENGTH(ch);
2821            }
2822            else if (groupingStringLength > 0 &&
2823                matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
2824                            decimalChar, decimalSet,
2825                            ch) && groupingUsed)
2826            {
2827                if (sawDecimal) {
2828                    break;
2829                }
2830
2831                if (strictParse) {
2832                    if ((!sawDigit || backup != -1)) {
2833                        // leading group, or two group separators in a row
2834                        strictFail = TRUE;
2835                        break;
2836                    }
2837                }
2838
2839                // Ignore grouping characters, if we are using them, but require
2840                // that they be followed by a digit.  Otherwise we backup and
2841                // reprocess them.
2842                backup = position;
2843                position += groupingStringLength;
2844                sawGrouping=TRUE;
2845                // Once we see a grouping character, we only accept that grouping character from then on.
2846                sawGroupingChar=ch;
2847            }
2848            else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
2849            {
2850                if (strictParse) {
2851                    if (backup != -1 ||
2852                        (lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
2853                        strictFail = TRUE;
2854                        break;
2855                    }
2856                }
2857
2858                // If we're only parsing integers, or if we ALREADY saw the
2859                // decimal, then don't parse this one.
2860                if (isParseIntegerOnly() || sawDecimal) {
2861                    break;
2862                }
2863
2864                parsedNum.append('.', err);
2865                position += decimalStringLength;
2866                sawDecimal = TRUE;
2867                // Once we see a decimal character, we only accept that decimal character from then on.
2868                sawDecimalChar=ch;
2869                // decimalSet is considered to consist of (ch,ch)
2870            }
2871            else {
2872
2873                if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
2874                   isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
2875                    const UnicodeString *tmp;
2876                    tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
2877                    // TODO: CASE
2878                    if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT))    // error code is set below if !sawDigit
2879                    {
2880                        // Parse sign, if present
2881                        int32_t pos = position + tmp->length();
2882                        char exponentSign = '+';
2883
2884                        if (pos < textLength)
2885                        {
2886                            tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
2887                            if (!text.compare(pos, tmp->length(), *tmp))
2888                            {
2889                                pos += tmp->length();
2890                            }
2891                            else {
2892                                tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
2893                                if (!text.compare(pos, tmp->length(), *tmp))
2894                                {
2895                                    exponentSign = '-';
2896                                    pos += tmp->length();
2897                                }
2898                            }
2899                        }
2900
2901                        UBool sawExponentDigit = FALSE;
2902                        while (pos < textLength) {
2903                            ch = text[(int32_t)pos];
2904                            digit = ch - zero;
2905
2906                            if (digit < 0 || digit > 9) {
2907                                digit = u_charDigitValue(ch);
2908                            }
2909                            if (0 <= digit && digit <= 9) {
2910                                if (!sawExponentDigit) {
2911                                    parsedNum.append('E', err);
2912                                    parsedNum.append(exponentSign, err);
2913                                    sawExponentDigit = TRUE;
2914                                }
2915                                ++pos;
2916                                parsedNum.append((char)(digit + '0'), err);
2917                            } else {
2918                                break;
2919                            }
2920                        }
2921
2922                        if (sawExponentDigit) {
2923                            position = pos; // Advance past the exponent
2924                        }
2925
2926                        break; // Whether we fail or succeed, we exit this loop
2927                    } else {
2928                        break;
2929                    }
2930                } else { // not parsing exponent
2931                    break;
2932              }
2933            }
2934        }
2935
2936        // if we didn't see a decimal and it is required, check to see if the pattern had one
2937        if(!sawDecimal && isDecimalPatternMatchRequired())
2938        {
2939            if(fFormatPattern.indexOf(DecimalFormatSymbols::kDecimalSeparatorSymbol) != 0)
2940            {
2941                parsePosition.setIndex(oldStart);
2942                parsePosition.setErrorIndex(position);
2943                debug("decimal point match required fail!");
2944                return FALSE;
2945            }
2946        }
2947
2948        if (backup != -1)
2949        {
2950            position = backup;
2951        }
2952
2953        if (strictParse && !sawDecimal) {
2954            if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
2955                strictFail = TRUE;
2956            }
2957        }
2958
2959        if (strictFail) {
2960            // only set with strictParse and a grouping separator error
2961
2962            parsePosition.setIndex(oldStart);
2963            parsePosition.setErrorIndex(position);
2964            debug("strictFail!");
2965            return FALSE;
2966        }
2967
2968        // If there was no decimal point we have an integer
2969
2970        // If none of the text string was recognized.  For example, parse
2971        // "x" with pattern "#0.00" (return index and error index both 0)
2972        // parse "$" with pattern "$#0.00". (return index 0 and error index
2973        // 1).
2974        if (!sawDigit && digitCount == 0) {
2975#ifdef FMT_DEBUG
2976            debug("none of text rec");
2977            printf("position=%d\n",position);
2978#endif
2979            parsePosition.setIndex(oldStart);
2980            parsePosition.setErrorIndex(oldStart);
2981            return FALSE;
2982        }
2983    }
2984
2985    // Match padding before suffix
2986    if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
2987        position = skipPadding(text, position);
2988    }
2989
2990    int32_t posSuffixMatch = -1, negSuffixMatch = -1;
2991
2992    // Match positive and negative suffixes; prefer longest match.
2993    if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
2994        posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
2995    }
2996    if (negMatch >= 0) {
2997        negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
2998    }
2999    if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
3000        if (posSuffixMatch > negSuffixMatch) {
3001            negSuffixMatch = -1;
3002        } else if (negSuffixMatch > posSuffixMatch) {
3003            posSuffixMatch = -1;
3004        }
3005    }
3006
3007    // Fail if neither or both
3008    if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
3009        parsePosition.setErrorIndex(position);
3010        debug("neither or both");
3011        return FALSE;
3012    }
3013
3014    position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
3015
3016    // Match padding before suffix
3017    if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
3018        position = skipPadding(text, position);
3019    }
3020
3021    parsePosition.setIndex(position);
3022
3023    parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
3024#ifdef FMT_DEBUG
3025printf("PP -> %d, SLOW = [%s]!    pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
3026#endif
3027  } /* end SLOW parse */
3028  if(parsePosition.getIndex() == oldStart)
3029    {
3030#ifdef FMT_DEBUG
3031      printf(" PP didnt move, err\n");
3032#endif
3033        parsePosition.setErrorIndex(position);
3034        return FALSE;
3035    }
3036#if UCONFIG_HAVE_PARSEALLINPUT
3037  else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
3038    {
3039#ifdef FMT_DEBUG
3040      printf(" PP didnt consume all (UNUM_YES), err\n");
3041#endif
3042        parsePosition.setErrorIndex(position);
3043        return FALSE;
3044    }
3045#endif
3046    // uint32_t bits = (fastParseOk?kFastpathOk:0) |
3047    //   (fastParseHadDecimal?0:kNoDecimal);
3048    //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
3049    digits.set(parsedNum.toStringPiece(),
3050               err,
3051               0//bits
3052               );
3053
3054    if (U_FAILURE(err)) {
3055#ifdef FMT_DEBUG
3056      printf(" err setting %s\n", u_errorName(err));
3057#endif
3058        parsePosition.setErrorIndex(position);
3059        return FALSE;
3060    }
3061
3062    // check if we missed a required decimal point
3063    if(fastParseOk && isDecimalPatternMatchRequired())
3064    {
3065        if(fFormatPattern.indexOf(DecimalFormatSymbols::kDecimalSeparatorSymbol) != 0)
3066        {
3067            parsePosition.setIndex(oldStart);
3068            parsePosition.setErrorIndex(position);
3069            debug("decimal point match required fail!");
3070            return FALSE;
3071        }
3072    }
3073
3074
3075    return TRUE;
3076}
3077
3078/**
3079 * Starting at position, advance past a run of pad characters, if any.
3080 * Return the index of the first character after position that is not a pad
3081 * character.  Result is >= position.
3082 */
3083int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
3084    int32_t padLen = U16_LENGTH(fPad);
3085    while (position < text.length() &&
3086           text.char32At(position) == fPad) {
3087        position += padLen;
3088    }
3089    return position;
3090}
3091
3092/**
3093 * Return the length matched by the given affix, or -1 if none.
3094 * Runs of white space in the affix, match runs of white space in
3095 * the input.  Pattern white space and input white space are
3096 * determined differently; see code.
3097 * @param text input text
3098 * @param pos offset into input at which to begin matching
3099 * @param isNegative
3100 * @param isPrefix
3101 * @param affixPat affix pattern used for currency affix comparison.
3102 * @param complexCurrencyParsing whether it is currency parsing or not
3103 * @param type the currency type to parse against, LONG_NAME only or not.
3104 * @param currency return value for parsed currency, for generic
3105 * currency parsing mode, or null for normal parsing. In generic
3106 * currency parsing mode, any currency is parsed, not just the
3107 * currency that this formatter is set to.
3108 * @return length of input that matches, or -1 if match failure
3109 */
3110int32_t DecimalFormat::compareAffix(const UnicodeString& text,
3111                                    int32_t pos,
3112                                    UBool isNegative,
3113                                    UBool isPrefix,
3114                                    const UnicodeString* affixPat,
3115                                    UBool complexCurrencyParsing,
3116                                    int8_t type,
3117                                    UChar* currency) const
3118{
3119    const UnicodeString *patternToCompare;
3120    if (fCurrencyChoice != NULL || currency != NULL ||
3121        (fCurrencySignCount != fgCurrencySignCountZero && complexCurrencyParsing)) {
3122
3123        if (affixPat != NULL) {
3124            return compareComplexAffix(*affixPat, text, pos, type, currency);
3125        }
3126    }
3127
3128    if (isNegative) {
3129        if (isPrefix) {
3130            patternToCompare = &fNegativePrefix;
3131        }
3132        else {
3133            patternToCompare = &fNegativeSuffix;
3134        }
3135    }
3136    else {
3137        if (isPrefix) {
3138            patternToCompare = &fPositivePrefix;
3139        }
3140        else {
3141            patternToCompare = &fPositiveSuffix;
3142        }
3143    }
3144    return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
3145}
3146
3147UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
3148    if (lhs == rhs) {
3149        return TRUE;
3150    }
3151    U_ASSERT(fStaticSets != NULL); // should already be loaded
3152    const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
3153    const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
3154    return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
3155        (plusSigns->contains(lhs) && plusSigns->contains(rhs));
3156}
3157
3158// check for LRM 0x200E, RLM 0x200F, ALM 0x061C
3159#define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
3160
3161#define TRIM_BUFLEN 32
3162UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
3163    UChar trimBuf[TRIM_BUFLEN];
3164    int32_t affixLen = affix.length();
3165    int32_t affixPos, trimLen = 0;
3166
3167    for (affixPos = 0; affixPos < affixLen; affixPos++) {
3168        UChar c = affix.charAt(affixPos);
3169        if (!IS_BIDI_MARK(c)) {
3170            if (trimLen < TRIM_BUFLEN) {
3171                trimBuf[trimLen++] = c;
3172            } else {
3173                trimLen = 0;
3174                break;
3175            }
3176        }
3177    }
3178    return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
3179}
3180
3181/**
3182 * Return the length matched by the given affix, or -1 if none.
3183 * Runs of white space in the affix, match runs of white space in
3184 * the input.  Pattern white space and input white space are
3185 * determined differently; see code.
3186 * @param affix pattern string, taken as a literal
3187 * @param input input text
3188 * @param pos offset into input at which to begin matching
3189 * @return length of input that matches, or -1 if match failure
3190 */
3191int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
3192                                          const UnicodeString& input,
3193                                          int32_t pos,
3194                                          UBool lenient) const {
3195    int32_t start = pos;
3196    UnicodeString trimmedAffix;
3197    // For more efficiency we should keep lazily-created trimmed affixes around in
3198    // instance variables instead of trimming each time they are used (the next step)
3199    trimMarksFromAffix(affix, trimmedAffix);
3200    UChar32 affixChar = trimmedAffix.char32At(0);
3201    int32_t affixLength = trimmedAffix.length();
3202    int32_t inputLength = input.length();
3203    int32_t affixCharLength = U16_LENGTH(affixChar);
3204    UnicodeSet *affixSet;
3205    UErrorCode status = U_ZERO_ERROR;
3206
3207    U_ASSERT(fStaticSets != NULL); // should already be loaded
3208
3209    if (U_FAILURE(status)) {
3210        return -1;
3211    }
3212    if (!lenient) {
3213        affixSet = fStaticSets->fStrictDashEquivalents;
3214
3215        // If the trimmedAffix is exactly one character long and that character
3216        // is in the dash set and the very next input character is also
3217        // in the dash set, return a match.
3218        if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
3219            UChar32 ic = input.char32At(pos);
3220            if (affixSet->contains(ic)) {
3221                pos += U16_LENGTH(ic);
3222                pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
3223                return pos - start;
3224            }
3225        }
3226
3227        for (int32_t i = 0; i < affixLength; ) {
3228            UChar32 c = trimmedAffix.char32At(i);
3229            int32_t len = U16_LENGTH(c);
3230            if (PatternProps::isWhiteSpace(c)) {
3231                // We may have a pattern like: \u200F \u0020
3232                //        and input text like: \u200F \u0020
3233                // Note that U+200F and U+0020 are Pattern_White_Space but only
3234                // U+0020 is UWhiteSpace.  So we have to first do a direct
3235                // match of the run of Pattern_White_Space in the pattern,
3236                // then match any extra characters.
3237                UBool literalMatch = FALSE;
3238                while (pos < inputLength) {
3239                    UChar32 ic = input.char32At(pos);
3240                    if (ic == c) {
3241                        literalMatch = TRUE;
3242                        i += len;
3243                        pos += len;
3244                        if (i == affixLength) {
3245                            break;
3246                        }
3247                        c = trimmedAffix.char32At(i);
3248                        len = U16_LENGTH(c);
3249                        if (!PatternProps::isWhiteSpace(c)) {
3250                            break;
3251                        }
3252                    } else if (IS_BIDI_MARK(ic)) {
3253                        pos ++; // just skip over this input text
3254                    } else {
3255                        break;
3256                    }
3257                }
3258
3259                // Advance over run in pattern
3260                i = skipPatternWhiteSpace(trimmedAffix, i);
3261
3262                // Advance over run in input text
3263                // Must see at least one white space char in input,
3264                // unless we've already matched some characters literally.
3265                int32_t s = pos;
3266                pos = skipUWhiteSpace(input, pos);
3267                if (pos == s && !literalMatch) {
3268                    return -1;
3269                }
3270
3271                // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
3272                // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
3273                // is also in the trimmedAffix.
3274                i = skipUWhiteSpace(trimmedAffix, i);
3275            } else {
3276                UBool match = FALSE;
3277                while (pos < inputLength) {
3278                    UChar32 ic = input.char32At(pos);
3279                    if (!match && ic == c) {
3280                        i += len;
3281                        pos += len;
3282                        match = TRUE;
3283                    } else if (IS_BIDI_MARK(ic)) {
3284                        pos++; // just skip over this input text
3285                    } else {
3286                        break;
3287                    }
3288                }
3289                if (!match) {
3290                    return -1;
3291                }
3292            }
3293        }
3294    } else {
3295        UBool match = FALSE;
3296
3297        affixSet = fStaticSets->fDashEquivalents;
3298
3299        if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
3300            pos = skipUWhiteSpaceAndMarks(input, pos);
3301            UChar32 ic = input.char32At(pos);
3302
3303            if (affixSet->contains(ic)) {
3304                pos += U16_LENGTH(ic);
3305                pos = skipBidiMarks(input, pos);
3306                return pos - start;
3307            }
3308        }
3309
3310        for (int32_t i = 0; i < affixLength; )
3311        {
3312            //i = skipRuleWhiteSpace(trimmedAffix, i);
3313            i = skipUWhiteSpace(trimmedAffix, i);
3314            pos = skipUWhiteSpaceAndMarks(input, pos);
3315
3316            if (i >= affixLength || pos >= inputLength) {
3317                break;
3318            }
3319
3320            UChar32 c = trimmedAffix.char32At(i);
3321            UChar32 ic = input.char32At(pos);
3322
3323            if (!equalWithSignCompatibility(ic, c)) {
3324                return -1;
3325            }
3326
3327            match = TRUE;
3328            i += U16_LENGTH(c);
3329            pos += U16_LENGTH(ic);
3330            pos = skipBidiMarks(input, pos);
3331        }
3332
3333        if (affixLength > 0 && ! match) {
3334            return -1;
3335        }
3336    }
3337    return pos - start;
3338}
3339
3340/**
3341 * Skip over a run of zero or more Pattern_White_Space characters at
3342 * pos in text.
3343 */
3344int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
3345    const UChar* s = text.getBuffer();
3346    return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
3347}
3348
3349/**
3350 * Skip over a run of zero or more isUWhiteSpace() characters at pos
3351 * in text.
3352 */
3353int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
3354    while (pos < text.length()) {
3355        UChar32 c = text.char32At(pos);
3356        if (!u_isUWhiteSpace(c)) {
3357            break;
3358        }
3359        pos += U16_LENGTH(c);
3360    }
3361    return pos;
3362}
3363
3364/**
3365 * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
3366 * in text.
3367 */
3368int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
3369    while (pos < text.length()) {
3370        UChar32 c = text.char32At(pos);
3371        if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
3372            break;
3373        }
3374        pos += U16_LENGTH(c);
3375    }
3376    return pos;
3377}
3378
3379/**
3380 * Skip over a run of zero or more bidi marks at pos in text.
3381 */
3382int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
3383    while (pos < text.length()) {
3384        UChar c = text.charAt(pos);
3385        if (!IS_BIDI_MARK(c)) {
3386            break;
3387        }
3388        pos++;
3389    }
3390    return pos;
3391}
3392
3393/**
3394 * Return the length matched by the given affix, or -1 if none.
3395 * @param affixPat pattern string
3396 * @param input input text
3397 * @param pos offset into input at which to begin matching
3398 * @param type the currency type to parse against, LONG_NAME only or not.
3399 * @param currency return value for parsed currency, for generic
3400 * currency parsing mode, or null for normal parsing. In generic
3401 * currency parsing mode, any currency is parsed, not just the
3402 * currency that this formatter is set to.
3403 * @return length of input that matches, or -1 if match failure
3404 */
3405int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
3406                                           const UnicodeString& text,
3407                                           int32_t pos,
3408                                           int8_t type,
3409                                           UChar* currency) const
3410{
3411    int32_t start = pos;
3412    U_ASSERT(currency != NULL ||
3413             (fCurrencyChoice != NULL && *getCurrency() != 0) ||
3414             fCurrencySignCount != fgCurrencySignCountZero);
3415
3416    for (int32_t i=0;
3417         i<affixPat.length() && pos >= 0; ) {
3418        UChar32 c = affixPat.char32At(i);
3419        i += U16_LENGTH(c);
3420
3421        if (c == kQuote) {
3422            U_ASSERT(i <= affixPat.length());
3423            c = affixPat.char32At(i);
3424            i += U16_LENGTH(c);
3425
3426            const UnicodeString* affix = NULL;
3427
3428            switch (c) {
3429            case kCurrencySign: {
3430                // since the currency names in choice format is saved
3431                // the same way as other currency names,
3432                // do not need to do currency choice parsing here.
3433                // the general currency parsing parse against all names,
3434                // including names in choice format.
3435                UBool intl = i<affixPat.length() &&
3436                    affixPat.char32At(i) == kCurrencySign;
3437                if (intl) {
3438                    ++i;
3439                }
3440                UBool plural = i<affixPat.length() &&
3441                    affixPat.char32At(i) == kCurrencySign;
3442                if (plural) {
3443                    ++i;
3444                    intl = FALSE;
3445                }
3446                // Parse generic currency -- anything for which we
3447                // have a display name, or any 3-letter ISO code.
3448                // Try to parse display name for our locale; first
3449                // determine our locale.
3450                const char* loc = fCurrencyPluralInfo->getLocale().getName();
3451                ParsePosition ppos(pos);
3452                UChar curr[4];
3453                UErrorCode ec = U_ZERO_ERROR;
3454                // Delegate parse of display name => ISO code to Currency
3455                uprv_parseCurrency(loc, text, ppos, type, curr, ec);
3456
3457                // If parse succeeds, populate currency[0]
3458                if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
3459                    if (currency) {
3460                        u_strcpy(currency, curr);
3461                    } else {
3462                        // The formatter is currency-style but the client has not requested
3463                        // the value of the parsed currency. In this case, if that value does
3464                        // not match the formatter's current value, then the parse fails.
3465                        UChar effectiveCurr[4];
3466                        getEffectiveCurrency(effectiveCurr, ec);
3467                        if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
3468                            pos = -1;
3469                            continue;
3470                        }
3471                    }
3472                    pos = ppos.getIndex();
3473                } else if (!isLenient()){
3474                    pos = -1;
3475                }
3476                continue;
3477            }
3478            case kPatternPercent:
3479                affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3480                break;
3481            case kPatternPerMill:
3482                affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3483                break;
3484            case kPatternPlus:
3485                affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3486                break;
3487            case kPatternMinus:
3488                affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3489                break;
3490            default:
3491                // fall through to affix!=0 test, which will fail
3492                break;
3493            }
3494
3495            if (affix != NULL) {
3496                pos = match(text, pos, *affix);
3497                continue;
3498            }
3499        }
3500
3501        pos = match(text, pos, c);
3502        if (PatternProps::isWhiteSpace(c)) {
3503            i = skipPatternWhiteSpace(affixPat, i);
3504        }
3505    }
3506    return pos - start;
3507}
3508
3509/**
3510 * Match a single character at text[pos] and return the index of the
3511 * next character upon success.  Return -1 on failure.  If
3512 * ch is a Pattern_White_Space then match a run of white space in text.
3513 */
3514int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
3515    if (PatternProps::isWhiteSpace(ch)) {
3516        // Advance over run of white space in input text
3517        // Must see at least one white space char in input
3518        int32_t s = pos;
3519        pos = skipPatternWhiteSpace(text, pos);
3520        if (pos == s) {
3521            return -1;
3522        }
3523        return pos;
3524    }
3525    return (pos >= 0 && text.char32At(pos) == ch) ?
3526        (pos + U16_LENGTH(ch)) : -1;
3527}
3528
3529/**
3530 * Match a string at text[pos] and return the index of the next
3531 * character upon success.  Return -1 on failure.  Match a run of
3532 * white space in str with a run of white space in text.
3533 */
3534int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
3535    for (int32_t i=0; i<str.length() && pos >= 0; ) {
3536        UChar32 ch = str.char32At(i);
3537        i += U16_LENGTH(ch);
3538        if (PatternProps::isWhiteSpace(ch)) {
3539            i = skipPatternWhiteSpace(str, i);
3540        }
3541        pos = match(text, pos, ch);
3542    }
3543    return pos;
3544}
3545
3546UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
3547                         UnicodeSet *sset, UChar32 schar)
3548{
3549    if (sset != NULL) {
3550        return sset->contains(schar);
3551    }
3552
3553    return text.compare(position, length, symbol) == 0;
3554}
3555
3556UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
3557                            UBool sawDecimal,  UChar32 sawDecimalChar,
3558                             const UnicodeSet *sset, UChar32 schar) {
3559   if(sawDecimal) {
3560       return schar==sawDecimalChar;
3561   } else if(schar==symbolChar) {
3562       return TRUE;
3563   } else if(sset!=NULL) {
3564        return sset->contains(schar);
3565   } else {
3566       return FALSE;
3567   }
3568}
3569
3570UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
3571                            UBool sawGrouping, UChar32 sawGroupingChar,
3572                             const UnicodeSet *sset,
3573                             UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
3574                             UChar32 schar) {
3575    if(sawGrouping) {
3576        return schar==sawGroupingChar;  // previously found
3577    } else if(schar==groupingChar) {
3578        return TRUE; // char from symbols
3579    } else if(sset!=NULL) {
3580        return sset->contains(schar) &&  // in groupingSet but...
3581           ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
3582    } else {
3583        return FALSE;
3584    }
3585}
3586
3587
3588
3589//------------------------------------------------------------------------------
3590// Gets the pointer to the localized decimal format symbols
3591
3592const DecimalFormatSymbols*
3593DecimalFormat::getDecimalFormatSymbols() const
3594{
3595    return fSymbols;
3596}
3597
3598//------------------------------------------------------------------------------
3599// De-owning the current localized symbols and adopt the new symbols.
3600
3601void
3602DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
3603{
3604    if (symbolsToAdopt == NULL) {
3605        return; // do not allow caller to set fSymbols to NULL
3606    }
3607
3608    UBool sameSymbols = FALSE;
3609    if (fSymbols != NULL) {
3610        sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
3611            symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
3612            getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
3613            symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
3614        delete fSymbols;
3615    }
3616
3617    fSymbols = symbolsToAdopt;
3618    if (!sameSymbols) {
3619        // If the currency symbols are the same, there is no need to recalculate.
3620        setCurrencyForSymbols();
3621    }
3622    expandAffixes(NULL);
3623#if UCONFIG_FORMAT_FASTPATHS_49
3624    handleChanged();
3625#endif
3626}
3627//------------------------------------------------------------------------------
3628// Setting the symbols is equlivalent to adopting a newly created localized
3629// symbols.
3630
3631void
3632DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
3633{
3634    adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
3635#if UCONFIG_FORMAT_FASTPATHS_49
3636    handleChanged();
3637#endif
3638}
3639
3640
3641const CurrencyPluralInfo*
3642DecimalFormat::getCurrencyPluralInfo(void) const
3643{
3644    return fCurrencyPluralInfo;
3645}
3646
3647
3648void
3649DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
3650{
3651    if (toAdopt != NULL) {
3652        delete fCurrencyPluralInfo;
3653        fCurrencyPluralInfo = toAdopt;
3654        // re-set currency affix patterns and currency affixes.
3655        if (fCurrencySignCount != fgCurrencySignCountZero) {
3656            UErrorCode status = U_ZERO_ERROR;
3657            if (fAffixPatternsForCurrency) {
3658                deleteHashForAffixPattern();
3659            }
3660            setupCurrencyAffixPatterns(status);
3661            if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
3662                // only setup the affixes of the plural pattern.
3663                setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
3664            }
3665        }
3666    }
3667#if UCONFIG_FORMAT_FASTPATHS_49
3668    handleChanged();
3669#endif
3670}
3671
3672void
3673DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
3674{
3675    adoptCurrencyPluralInfo(info.clone());
3676#if UCONFIG_FORMAT_FASTPATHS_49
3677    handleChanged();
3678#endif
3679}
3680
3681
3682/**
3683 * Update the currency object to match the symbols.  This method
3684 * is used only when the caller has passed in a symbols object
3685 * that may not be the default object for its locale.
3686 */
3687void
3688DecimalFormat::setCurrencyForSymbols() {
3689    /*Bug 4212072
3690      Update the affix strings accroding to symbols in order to keep
3691      the affix strings up to date.
3692      [Richard/GCL]
3693    */
3694
3695    // With the introduction of the Currency object, the currency
3696    // symbols in the DFS object are ignored.  For backward
3697    // compatibility, we check any explicitly set DFS object.  If it
3698    // is a default symbols object for its locale, we change the
3699    // currency object to one for that locale.  If it is custom,
3700    // we set the currency to null.
3701    UErrorCode ec = U_ZERO_ERROR;
3702    const UChar* c = NULL;
3703    const char* loc = fSymbols->getLocale().getName();
3704    UChar intlCurrencySymbol[4];
3705    ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
3706    UnicodeString currencySymbol;
3707
3708    uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
3709    if (U_SUCCESS(ec)
3710        && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
3711        && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
3712    {
3713        // Trap an error in mapping locale to currency.  If we can't
3714        // map, then don't fail and set the currency to "".
3715        c = intlCurrencySymbol;
3716    }
3717    ec = U_ZERO_ERROR; // reset local error code!
3718    setCurrencyInternally(c, ec);
3719#if UCONFIG_FORMAT_FASTPATHS_49
3720    handleChanged();
3721#endif
3722}
3723
3724
3725//------------------------------------------------------------------------------
3726// Gets the positive prefix of the number pattern.
3727
3728UnicodeString&
3729DecimalFormat::getPositivePrefix(UnicodeString& result) const
3730{
3731    result = fPositivePrefix;
3732    return result;
3733}
3734
3735//------------------------------------------------------------------------------
3736// Sets the positive prefix of the number pattern.
3737
3738void
3739DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
3740{
3741    fPositivePrefix = newValue;
3742    delete fPosPrefixPattern;
3743    fPosPrefixPattern = 0;
3744#if UCONFIG_FORMAT_FASTPATHS_49
3745    handleChanged();
3746#endif
3747}
3748
3749//------------------------------------------------------------------------------
3750// Gets the negative prefix  of the number pattern.
3751
3752UnicodeString&
3753DecimalFormat::getNegativePrefix(UnicodeString& result) const
3754{
3755    result = fNegativePrefix;
3756    return result;
3757}
3758
3759//------------------------------------------------------------------------------
3760// Gets the negative prefix  of the number pattern.
3761
3762void
3763DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
3764{
3765    fNegativePrefix = newValue;
3766    delete fNegPrefixPattern;
3767    fNegPrefixPattern = 0;
3768#if UCONFIG_FORMAT_FASTPATHS_49
3769    handleChanged();
3770#endif
3771}
3772
3773//------------------------------------------------------------------------------
3774// Gets the positive suffix of the number pattern.
3775
3776UnicodeString&
3777DecimalFormat::getPositiveSuffix(UnicodeString& result) const
3778{
3779    result = fPositiveSuffix;
3780    return result;
3781}
3782
3783//------------------------------------------------------------------------------
3784// Sets the positive suffix of the number pattern.
3785
3786void
3787DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
3788{
3789    fPositiveSuffix = newValue;
3790    delete fPosSuffixPattern;
3791    fPosSuffixPattern = 0;
3792#if UCONFIG_FORMAT_FASTPATHS_49
3793    handleChanged();
3794#endif
3795}
3796
3797//------------------------------------------------------------------------------
3798// Gets the negative suffix of the number pattern.
3799
3800UnicodeString&
3801DecimalFormat::getNegativeSuffix(UnicodeString& result) const
3802{
3803    result = fNegativeSuffix;
3804    return result;
3805}
3806
3807//------------------------------------------------------------------------------
3808// Sets the negative suffix of the number pattern.
3809
3810void
3811DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
3812{
3813    fNegativeSuffix = newValue;
3814    delete fNegSuffixPattern;
3815    fNegSuffixPattern = 0;
3816#if UCONFIG_FORMAT_FASTPATHS_49
3817    handleChanged();
3818#endif
3819}
3820
3821//------------------------------------------------------------------------------
3822// Gets the multiplier of the number pattern.
3823//   Multipliers are stored as decimal numbers (DigitLists) because that
3824//      is the most convenient for muliplying or dividing the numbers to be formatted.
3825//   A NULL multiplier implies one, and the scaling operations are skipped.
3826
3827int32_t
3828DecimalFormat::getMultiplier() const
3829{
3830    if (fMultiplier == NULL) {
3831        return 1;
3832    } else {
3833        return fMultiplier->getLong();
3834    }
3835}
3836
3837//------------------------------------------------------------------------------
3838// Sets the multiplier of the number pattern.
3839void
3840DecimalFormat::setMultiplier(int32_t newValue)
3841{
3842//  if (newValue == 0) {
3843//      throw new IllegalArgumentException("Bad multiplier: " + newValue);
3844//  }
3845    if (newValue == 0) {
3846        newValue = 1;     // one being the benign default value for a multiplier.
3847    }
3848    if (newValue == 1) {
3849        delete fMultiplier;
3850        fMultiplier = NULL;
3851    } else {
3852        if (fMultiplier == NULL) {
3853            fMultiplier = new DigitList;
3854        }
3855        if (fMultiplier != NULL) {
3856            fMultiplier->set(newValue);
3857        }
3858    }
3859#if UCONFIG_FORMAT_FASTPATHS_49
3860    handleChanged();
3861#endif
3862}
3863
3864/**
3865 * Get the rounding increment.
3866 * @return A positive rounding increment, or 0.0 if rounding
3867 * is not in effect.
3868 * @see #setRoundingIncrement
3869 * @see #getRoundingMode
3870 * @see #setRoundingMode
3871 */
3872double DecimalFormat::getRoundingIncrement() const {
3873    if (fRoundingIncrement == NULL) {
3874        return 0.0;
3875    } else {
3876        return fRoundingIncrement->getDouble();
3877    }
3878}
3879
3880/**
3881 * Set the rounding increment.  This method also controls whether
3882 * rounding is enabled.
3883 * @param newValue A positive rounding increment, or 0.0 to disable rounding.
3884 * Negative increments are equivalent to 0.0.
3885 * @see #getRoundingIncrement
3886 * @see #getRoundingMode
3887 * @see #setRoundingMode
3888 */
3889void DecimalFormat::setRoundingIncrement(double newValue) {
3890    if (newValue > 0.0) {
3891        if (fRoundingIncrement == NULL) {
3892            fRoundingIncrement = new DigitList();
3893        }
3894        if (fRoundingIncrement != NULL) {
3895            fRoundingIncrement->set(newValue);
3896            return;
3897        }
3898    }
3899    // These statements are executed if newValue is less than 0.0
3900    // or fRoundingIncrement could not be created.
3901    delete fRoundingIncrement;
3902    fRoundingIncrement = NULL;
3903#if UCONFIG_FORMAT_FASTPATHS_49
3904    handleChanged();
3905#endif
3906}
3907
3908/**
3909 * Get the rounding mode.
3910 * @return A rounding mode
3911 * @see #setRoundingIncrement
3912 * @see #getRoundingIncrement
3913 * @see #setRoundingMode
3914 */
3915DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
3916    return fRoundingMode;
3917}
3918
3919/**
3920 * Set the rounding mode.  This has no effect unless the rounding
3921 * increment is greater than zero.
3922 * @param roundingMode A rounding mode
3923 * @see #setRoundingIncrement
3924 * @see #getRoundingIncrement
3925 * @see #getRoundingMode
3926 */
3927void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
3928    fRoundingMode = roundingMode;
3929#if UCONFIG_FORMAT_FASTPATHS_49
3930    handleChanged();
3931#endif
3932}
3933
3934/**
3935 * Get the width to which the output of <code>format()</code> is padded.
3936 * @return the format width, or zero if no padding is in effect
3937 * @see #setFormatWidth
3938 * @see #getPadCharacter
3939 * @see #setPadCharacter
3940 * @see #getPadPosition
3941 * @see #setPadPosition
3942 */
3943int32_t DecimalFormat::getFormatWidth() const {
3944    return fFormatWidth;
3945}
3946
3947/**
3948 * Set the width to which the output of <code>format()</code> is padded.
3949 * This method also controls whether padding is enabled.
3950 * @param width the width to which to pad the result of
3951 * <code>format()</code>, or zero to disable padding.  A negative
3952 * width is equivalent to 0.
3953 * @see #getFormatWidth
3954 * @see #getPadCharacter
3955 * @see #setPadCharacter
3956 * @see #getPadPosition
3957 * @see #setPadPosition
3958 */
3959void DecimalFormat::setFormatWidth(int32_t width) {
3960    fFormatWidth = (width > 0) ? width : 0;
3961#if UCONFIG_FORMAT_FASTPATHS_49
3962    handleChanged();
3963#endif
3964}
3965
3966UnicodeString DecimalFormat::getPadCharacterString() const {
3967    return UnicodeString(fPad);
3968}
3969
3970void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
3971    if (padChar.length() > 0) {
3972        fPad = padChar.char32At(0);
3973    }
3974    else {
3975        fPad = kDefaultPad;
3976    }
3977#if UCONFIG_FORMAT_FASTPATHS_49
3978    handleChanged();
3979#endif
3980}
3981
3982/**
3983 * Get the position at which padding will take place.  This is the location
3984 * at which padding will be inserted if the result of <code>format()</code>
3985 * is shorter than the format width.
3986 * @return the pad position, one of <code>kPadBeforePrefix</code>,
3987 * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
3988 * <code>kPadAfterSuffix</code>.
3989 * @see #setFormatWidth
3990 * @see #getFormatWidth
3991 * @see #setPadCharacter
3992 * @see #getPadCharacter
3993 * @see #setPadPosition
3994 * @see #kPadBeforePrefix
3995 * @see #kPadAfterPrefix
3996 * @see #kPadBeforeSuffix
3997 * @see #kPadAfterSuffix
3998 */
3999DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
4000    return fPadPosition;
4001}
4002
4003/**
4004 * <strong><font face=helvetica color=red>NEW</font></strong>
4005 * Set the position at which padding will take place.  This is the location
4006 * at which padding will be inserted if the result of <code>format()</code>
4007 * is shorter than the format width.  This has no effect unless padding is
4008 * enabled.
4009 * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
4010 * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
4011 * <code>kPadAfterSuffix</code>.
4012 * @see #setFormatWidth
4013 * @see #getFormatWidth
4014 * @see #setPadCharacter
4015 * @see #getPadCharacter
4016 * @see #getPadPosition
4017 * @see #kPadBeforePrefix
4018 * @see #kPadAfterPrefix
4019 * @see #kPadBeforeSuffix
4020 * @see #kPadAfterSuffix
4021 */
4022void DecimalFormat::setPadPosition(EPadPosition padPos) {
4023    fPadPosition = padPos;
4024#if UCONFIG_FORMAT_FASTPATHS_49
4025    handleChanged();
4026#endif
4027}
4028
4029/**
4030 * Return whether or not scientific notation is used.
4031 * @return TRUE if this object formats and parses scientific notation
4032 * @see #setScientificNotation
4033 * @see #getMinimumExponentDigits
4034 * @see #setMinimumExponentDigits
4035 * @see #isExponentSignAlwaysShown
4036 * @see #setExponentSignAlwaysShown
4037 */
4038UBool DecimalFormat::isScientificNotation() const {
4039    return fUseExponentialNotation;
4040}
4041
4042/**
4043 * Set whether or not scientific notation is used.
4044 * @param useScientific TRUE if this object formats and parses scientific
4045 * notation
4046 * @see #isScientificNotation
4047 * @see #getMinimumExponentDigits
4048 * @see #setMinimumExponentDigits
4049 * @see #isExponentSignAlwaysShown
4050 * @see #setExponentSignAlwaysShown
4051 */
4052void DecimalFormat::setScientificNotation(UBool useScientific) {
4053    fUseExponentialNotation = useScientific;
4054#if UCONFIG_FORMAT_FASTPATHS_49
4055    handleChanged();
4056#endif
4057}
4058
4059/**
4060 * Return the minimum exponent digits that will be shown.
4061 * @return the minimum exponent digits that will be shown
4062 * @see #setScientificNotation
4063 * @see #isScientificNotation
4064 * @see #setMinimumExponentDigits
4065 * @see #isExponentSignAlwaysShown
4066 * @see #setExponentSignAlwaysShown
4067 */
4068int8_t DecimalFormat::getMinimumExponentDigits() const {
4069    return fMinExponentDigits;
4070}
4071
4072/**
4073 * Set the minimum exponent digits that will be shown.  This has no
4074 * effect unless scientific notation is in use.
4075 * @param minExpDig a value >= 1 indicating the fewest exponent digits
4076 * that will be shown.  Values less than 1 will be treated as 1.
4077 * @see #setScientificNotation
4078 * @see #isScientificNotation
4079 * @see #getMinimumExponentDigits
4080 * @see #isExponentSignAlwaysShown
4081 * @see #setExponentSignAlwaysShown
4082 */
4083void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
4084    fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
4085#if UCONFIG_FORMAT_FASTPATHS_49
4086    handleChanged();
4087#endif
4088}
4089
4090/**
4091 * Return whether the exponent sign is always shown.
4092 * @return TRUE if the exponent is always prefixed with either the
4093 * localized minus sign or the localized plus sign, false if only negative
4094 * exponents are prefixed with the localized minus sign.
4095 * @see #setScientificNotation
4096 * @see #isScientificNotation
4097 * @see #setMinimumExponentDigits
4098 * @see #getMinimumExponentDigits
4099 * @see #setExponentSignAlwaysShown
4100 */
4101UBool DecimalFormat::isExponentSignAlwaysShown() const {
4102    return fExponentSignAlwaysShown;
4103}
4104
4105/**
4106 * Set whether the exponent sign is always shown.  This has no effect
4107 * unless scientific notation is in use.
4108 * @param expSignAlways TRUE if the exponent is always prefixed with either
4109 * the localized minus sign or the localized plus sign, false if only
4110 * negative exponents are prefixed with the localized minus sign.
4111 * @see #setScientificNotation
4112 * @see #isScientificNotation
4113 * @see #setMinimumExponentDigits
4114 * @see #getMinimumExponentDigits
4115 * @see #isExponentSignAlwaysShown
4116 */
4117void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
4118    fExponentSignAlwaysShown = expSignAlways;
4119#if UCONFIG_FORMAT_FASTPATHS_49
4120    handleChanged();
4121#endif
4122}
4123
4124//------------------------------------------------------------------------------
4125// Gets the grouping size of the number pattern.  For example, thousand or 10
4126// thousand groupings.
4127
4128int32_t
4129DecimalFormat::getGroupingSize() const
4130{
4131    return isGroupingUsed() ? fGroupingSize : 0;
4132}
4133
4134//------------------------------------------------------------------------------
4135// Gets the grouping size of the number pattern.
4136
4137void
4138DecimalFormat::setGroupingSize(int32_t newValue)
4139{
4140    fGroupingSize = newValue;
4141#if UCONFIG_FORMAT_FASTPATHS_49
4142    handleChanged();
4143#endif
4144}
4145
4146//------------------------------------------------------------------------------
4147
4148int32_t
4149DecimalFormat::getSecondaryGroupingSize() const
4150{
4151    return fGroupingSize2;
4152}
4153
4154//------------------------------------------------------------------------------
4155
4156void
4157DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
4158{
4159    fGroupingSize2 = newValue;
4160#if UCONFIG_FORMAT_FASTPATHS_49
4161    handleChanged();
4162#endif
4163}
4164
4165//------------------------------------------------------------------------------
4166// Checks if to show the decimal separator.
4167
4168UBool
4169DecimalFormat::isDecimalSeparatorAlwaysShown() const
4170{
4171    return fDecimalSeparatorAlwaysShown;
4172}
4173
4174//------------------------------------------------------------------------------
4175// Sets to always show the decimal separator.
4176
4177void
4178DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
4179{
4180    fDecimalSeparatorAlwaysShown = newValue;
4181#if UCONFIG_FORMAT_FASTPATHS_49
4182    handleChanged();
4183#endif
4184}
4185
4186//------------------------------------------------------------------------------
4187// Checks if decimal point pattern match is required
4188UBool
4189DecimalFormat::isDecimalPatternMatchRequired(void) const
4190{
4191    return fBoolFlags.contains(UNUM_PARSE_DECIMAL_MARK_REQUIRED);
4192}
4193
4194//------------------------------------------------------------------------------
4195// Checks if decimal point pattern match is required
4196
4197void
4198DecimalFormat::setDecimalPatternMatchRequired(UBool newValue)
4199{
4200    fBoolFlags.set(UNUM_PARSE_DECIMAL_MARK_REQUIRED, newValue);
4201}
4202
4203
4204//------------------------------------------------------------------------------
4205// Emits the pattern of this DecimalFormat instance.
4206
4207UnicodeString&
4208DecimalFormat::toPattern(UnicodeString& result) const
4209{
4210    return toPattern(result, FALSE);
4211}
4212
4213//------------------------------------------------------------------------------
4214// Emits the localized pattern this DecimalFormat instance.
4215
4216UnicodeString&
4217DecimalFormat::toLocalizedPattern(UnicodeString& result) const
4218{
4219    return toPattern(result, TRUE);
4220}
4221
4222//------------------------------------------------------------------------------
4223/**
4224 * Expand the affix pattern strings into the expanded affix strings.  If any
4225 * affix pattern string is null, do not expand it.  This method should be
4226 * called any time the symbols or the affix patterns change in order to keep
4227 * the expanded affix strings up to date.
4228 * This method also will be called before formatting if format currency
4229 * plural names, since the plural name is not a static one, it is
4230 * based on the currency plural count, the affix will be known only
4231 * after the currency plural count is know.
4232 * In which case, the parameter
4233 * 'pluralCount' will be a non-null currency plural count.
4234 * In all other cases, the 'pluralCount' is null, which means it is not needed.
4235 */
4236void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
4237    FieldPositionHandler none;
4238    if (fPosPrefixPattern != 0) {
4239      expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
4240    }
4241    if (fPosSuffixPattern != 0) {
4242      expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
4243    }
4244    if (fNegPrefixPattern != 0) {
4245      expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
4246    }
4247    if (fNegSuffixPattern != 0) {
4248      expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
4249    }
4250#ifdef FMT_DEBUG
4251    UnicodeString s;
4252    s.append(UnicodeString("["))
4253      .append(DEREFSTR(fPosPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fPosSuffixPattern))
4254      .append((UnicodeString)";") .append(DEREFSTR(fNegPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fNegSuffixPattern))
4255        .append((UnicodeString)"]->[")
4256        .append(fPositivePrefix).append((UnicodeString)"|").append(fPositiveSuffix)
4257        .append((UnicodeString)";") .append(fNegativePrefix).append((UnicodeString)"|").append(fNegativeSuffix)
4258        .append((UnicodeString)"]\n");
4259    debugout(s);
4260#endif
4261}
4262
4263/**
4264 * Expand an affix pattern into an affix string.  All characters in the
4265 * pattern are literal unless prefixed by kQuote.  The following characters
4266 * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
4267 * PATTERN_MINUS, and kCurrencySign.  If kCurrencySign is doubled (kQuote +
4268 * kCurrencySign + kCurrencySign), it is interpreted as an international
4269 * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
4270 * currency plural long names, such as "US Dollars".
4271 * Any other character after a kQuote represents itself.
4272 * kQuote must be followed by another character; kQuote may not occur by
4273 * itself at the end of the pattern.
4274 *
4275 * This method is used in two distinct ways.  First, it is used to expand
4276 * the stored affix patterns into actual affixes.  For this usage, doFormat
4277 * must be false.  Second, it is used to expand the stored affix patterns
4278 * given a specific number (doFormat == true), for those rare cases in
4279 * which a currency format references a ChoiceFormat (e.g., en_IN display
4280 * name for INR).  The number itself is taken from digitList.
4281 *
4282 * When used in the first way, this method has a side effect: It sets
4283 * currencyChoice to a ChoiceFormat object, if the currency's display name
4284 * in this locale is a ChoiceFormat pattern (very rare).  It only does this
4285 * if currencyChoice is null to start with.
4286 *
4287 * @param pattern the non-null, fPossibly empty pattern
4288 * @param affix string to receive the expanded equivalent of pattern.
4289 * Previous contents are deleted.
4290 * @param doFormat if false, then the pattern will be expanded, and if a
4291 * currency symbol is encountered that expands to a ChoiceFormat, the
4292 * currencyChoice member variable will be initialized if it is null.  If
4293 * doFormat is true, then it is assumed that the currencyChoice has been
4294 * created, and it will be used to format the value in digitList.
4295 * @param pluralCount the plural count. It is only used for currency
4296 *                    plural format. In which case, it is the plural
4297 *                    count of the currency amount. For example,
4298 *                    in en_US, it is the singular "one", or the plural
4299 *                    "other". For all other cases, it is null, and
4300 *                    is not being used.
4301 */
4302void DecimalFormat::expandAffix(const UnicodeString& pattern,
4303                                UnicodeString& affix,
4304                                double number,
4305                                FieldPositionHandler& handler,
4306                                UBool doFormat,
4307                                const UnicodeString* pluralCount) const {
4308    affix.remove();
4309    for (int i=0; i<pattern.length(); ) {
4310        UChar32 c = pattern.char32At(i);
4311        i += U16_LENGTH(c);
4312        if (c == kQuote) {
4313            c = pattern.char32At(i);
4314            i += U16_LENGTH(c);
4315            int beginIdx = affix.length();
4316            switch (c) {
4317            case kCurrencySign: {
4318                // As of ICU 2.2 we use the currency object, and
4319                // ignore the currency symbols in the DFS, unless
4320                // we have a null currency object.  This occurs if
4321                // resurrecting a pre-2.2 object or if the user
4322                // sets a custom DFS.
4323                UBool intl = i<pattern.length() &&
4324                    pattern.char32At(i) == kCurrencySign;
4325                UBool plural = FALSE;
4326                if (intl) {
4327                    ++i;
4328                    plural = i<pattern.length() &&
4329                        pattern.char32At(i) == kCurrencySign;
4330                    if (plural) {
4331                        intl = FALSE;
4332                        ++i;
4333                    }
4334                }
4335                const UChar* currencyUChars = getCurrency();
4336                if (currencyUChars[0] != 0) {
4337                    UErrorCode ec = U_ZERO_ERROR;
4338                    if (plural && pluralCount != NULL) {
4339                        // plural name is only needed when pluralCount != null,
4340                        // which means when formatting currency plural names.
4341                        // For other cases, pluralCount == null,
4342                        // and plural names are not needed.
4343                        int32_t len;
4344                        CharString pluralCountChar;
4345                        pluralCountChar.appendInvariantChars(*pluralCount, ec);
4346                        UBool isChoiceFormat;
4347                        const UChar* s = ucurr_getPluralName(currencyUChars,
4348                            fSymbols != NULL ? fSymbols->getLocale().getName() :
4349                            Locale::getDefault().getName(), &isChoiceFormat,
4350                            pluralCountChar.data(), &len, &ec);
4351                        affix += UnicodeString(s, len);
4352                        handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4353                    } else if(intl) {
4354                        affix.append(currencyUChars, -1);
4355                        handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4356                    } else {
4357                        int32_t len;
4358                        UBool isChoiceFormat;
4359                        // If fSymbols is NULL, use default locale
4360                        const UChar* s = ucurr_getName(currencyUChars,
4361                            fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
4362                            UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
4363                        if (isChoiceFormat) {
4364                            // Two modes here: If doFormat is false, we set up
4365                            // currencyChoice.  If doFormat is true, we use the
4366                            // previously created currencyChoice to format the
4367                            // value in digitList.
4368                            if (!doFormat) {
4369                                // If the currency is handled by a ChoiceFormat,
4370                                // then we're not going to use the expanded
4371                                // patterns.  Instantiate the ChoiceFormat and
4372                                // return.
4373                                if (fCurrencyChoice == NULL) {
4374                                    // TODO Replace double-check with proper thread-safe code
4375                                    ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
4376                                    if (U_SUCCESS(ec)) {
4377                                        umtx_lock(NULL);
4378                                        if (fCurrencyChoice == NULL) {
4379                                            // Cast away const
4380                                            ((DecimalFormat*)this)->fCurrencyChoice = fmt;
4381                                            fmt = NULL;
4382                                        }
4383                                        umtx_unlock(NULL);
4384                                        delete fmt;
4385                                    }
4386                                }
4387                                // We could almost return null or "" here, since the
4388                                // expanded affixes are almost not used at all
4389                                // in this situation.  However, one method --
4390                                // toPattern() -- still does use the expanded
4391                                // affixes, in order to set up a padding
4392                                // pattern.  We use the CURRENCY_SIGN as a
4393                                // placeholder.
4394                                affix.append(kCurrencySign);
4395                            } else {
4396                                if (fCurrencyChoice != NULL) {
4397                                    FieldPosition pos(0); // ignored
4398                                    if (number < 0) {
4399                                        number = -number;
4400                                    }
4401                                    fCurrencyChoice->format(number, affix, pos);
4402                                } else {
4403                                    // We only arrive here if the currency choice
4404                                    // format in the locale data is INVALID.
4405                                    affix.append(currencyUChars, -1);
4406                                    handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4407                                }
4408                            }
4409                            continue;
4410                        }
4411                        affix += UnicodeString(s, len);
4412                        handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4413                    }
4414                } else {
4415                    if(intl) {
4416                        affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
4417                    } else {
4418                        affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
4419                    }
4420                    handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4421                }
4422                break;
4423            }
4424            case kPatternPercent:
4425                affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
4426                handler.addAttribute(kPercentField, beginIdx, affix.length());
4427                break;
4428            case kPatternPerMill:
4429                affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
4430                handler.addAttribute(kPermillField, beginIdx, affix.length());
4431                break;
4432            case kPatternPlus:
4433                affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
4434                handler.addAttribute(kSignField, beginIdx, affix.length());
4435                break;
4436            case kPatternMinus:
4437                affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
4438                handler.addAttribute(kSignField, beginIdx, affix.length());
4439                break;
4440            default:
4441                affix.append(c);
4442                break;
4443            }
4444        }
4445        else {
4446            affix.append(c);
4447        }
4448    }
4449}
4450
4451/**
4452 * Append an affix to the given StringBuffer.
4453 * @param buf buffer to append to
4454 * @param isNegative
4455 * @param isPrefix
4456 */
4457int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
4458                                   FieldPositionHandler& handler,
4459                                   UBool isNegative, UBool isPrefix) const {
4460    // plural format precedes choice format
4461    if (fCurrencyChoice != 0 &&
4462        fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
4463        const UnicodeString* affixPat;
4464        if (isPrefix) {
4465            affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
4466        } else {
4467            affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
4468        }
4469        if (affixPat) {
4470            UnicodeString affixBuf;
4471            expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
4472            buf.append(affixBuf);
4473            return affixBuf.length();
4474        }
4475        // else someone called a function that reset the pattern.
4476    }
4477
4478    const UnicodeString* affix;
4479    if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
4480        // TODO: get an accurate count of visible fraction digits.
4481        UnicodeString pluralCount;
4482        int32_t minFractionDigits = this->getMinimumFractionDigits();
4483        if (minFractionDigits > 0) {
4484            FixedDecimal ni(number, this->getMinimumFractionDigits());
4485            pluralCount = fCurrencyPluralInfo->getPluralRules()->select(ni);
4486        } else {
4487            pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
4488        }
4489        AffixesForCurrency* oneSet;
4490        if (fStyle == UNUM_CURRENCY_PLURAL) {
4491            oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
4492        } else {
4493            oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
4494        }
4495        if (isPrefix) {
4496            affix = isNegative ? &oneSet->negPrefixForCurrency :
4497                                 &oneSet->posPrefixForCurrency;
4498        } else {
4499            affix = isNegative ? &oneSet->negSuffixForCurrency :
4500                                 &oneSet->posSuffixForCurrency;
4501        }
4502    } else {
4503        if (isPrefix) {
4504            affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
4505        } else {
4506            affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
4507        }
4508    }
4509
4510    int32_t begin = (int) buf.length();
4511
4512    buf.append(*affix);
4513
4514    if (handler.isRecording()) {
4515      int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
4516      if (offset > -1) {
4517        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
4518        handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
4519      }
4520
4521      offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
4522      if (offset > -1) {
4523        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
4524        handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
4525      }
4526
4527      offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
4528      if (offset > -1) {
4529        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
4530        handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
4531      }
4532
4533      offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
4534      if (offset > -1) {
4535        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
4536        handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
4537      }
4538
4539      offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
4540      if (offset > -1) {
4541        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
4542        handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
4543      }
4544    }
4545    return affix->length();
4546}
4547
4548/**
4549 * Appends an affix pattern to the given StringBuffer, quoting special
4550 * characters as needed.  Uses the internal affix pattern, if that exists,
4551 * or the literal affix, if the internal affix pattern is null.  The
4552 * appended string will generate the same affix pattern (or literal affix)
4553 * when passed to toPattern().
4554 *
4555 * @param appendTo the affix string is appended to this
4556 * @param affixPattern a pattern such as fPosPrefixPattern; may be null
4557 * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
4558 * Ignored unless affixPattern is null.  If affixPattern is null, then
4559 * expAffix is appended as a literal affix.
4560 * @param localized true if the appended pattern should contain localized
4561 * pattern characters; otherwise, non-localized pattern chars are appended
4562 */
4563void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
4564                                       const UnicodeString* affixPattern,
4565                                       const UnicodeString& expAffix,
4566                                       UBool localized) const {
4567    if (affixPattern == 0) {
4568        appendAffixPattern(appendTo, expAffix, localized);
4569    } else {
4570        int i;
4571        for (int pos=0; pos<affixPattern->length(); pos=i) {
4572            i = affixPattern->indexOf(kQuote, pos);
4573            if (i < 0) {
4574                UnicodeString s;
4575                affixPattern->extractBetween(pos, affixPattern->length(), s);
4576                appendAffixPattern(appendTo, s, localized);
4577                break;
4578            }
4579            if (i > pos) {
4580                UnicodeString s;
4581                affixPattern->extractBetween(pos, i, s);
4582                appendAffixPattern(appendTo, s, localized);
4583            }
4584            UChar32 c = affixPattern->char32At(++i);
4585            ++i;
4586            if (c == kQuote) {
4587                appendTo.append(c).append(c);
4588                // Fall through and append another kQuote below
4589            } else if (c == kCurrencySign &&
4590                       i<affixPattern->length() &&
4591                       affixPattern->char32At(i) == kCurrencySign) {
4592                ++i;
4593                appendTo.append(c).append(c);
4594            } else if (localized) {
4595                switch (c) {
4596                case kPatternPercent:
4597                    appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
4598                    break;
4599                case kPatternPerMill:
4600                    appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
4601                    break;
4602                case kPatternPlus:
4603                    appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
4604                    break;
4605                case kPatternMinus:
4606                    appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
4607                    break;
4608                default:
4609                    appendTo.append(c);
4610                }
4611            } else {
4612                appendTo.append(c);
4613            }
4614        }
4615    }
4616}
4617
4618/**
4619 * Append an affix to the given StringBuffer, using quotes if
4620 * there are special characters.  Single quotes themselves must be
4621 * escaped in either case.
4622 */
4623void
4624DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
4625                                  const UnicodeString& affix,
4626                                  UBool localized) const {
4627    UBool needQuote;
4628    if(localized) {
4629        needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
4630            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
4631            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
4632            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
4633            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
4634            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
4635            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
4636            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
4637            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
4638            || affix.indexOf(kCurrencySign) >= 0;
4639    }
4640    else {
4641        needQuote = affix.indexOf(kPatternZeroDigit) >= 0
4642            || affix.indexOf(kPatternGroupingSeparator) >= 0
4643            || affix.indexOf(kPatternDecimalSeparator) >= 0
4644            || affix.indexOf(kPatternPercent) >= 0
4645            || affix.indexOf(kPatternPerMill) >= 0
4646            || affix.indexOf(kPatternDigit) >= 0
4647            || affix.indexOf(kPatternSeparator) >= 0
4648            || affix.indexOf(kPatternExponent) >= 0
4649            || affix.indexOf(kPatternPlus) >= 0
4650            || affix.indexOf(kPatternMinus) >= 0
4651            || affix.indexOf(kCurrencySign) >= 0;
4652    }
4653    if (needQuote)
4654        appendTo += (UChar)0x0027 /*'\''*/;
4655    if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
4656        appendTo += affix;
4657    else {
4658        for (int32_t j = 0; j < affix.length(); ) {
4659            UChar32 c = affix.char32At(j);
4660            j += U16_LENGTH(c);
4661            appendTo += c;
4662            if (c == 0x0027 /*'\''*/)
4663                appendTo += c;
4664        }
4665    }
4666    if (needQuote)
4667        appendTo += (UChar)0x0027 /*'\''*/;
4668}
4669
4670//------------------------------------------------------------------------------
4671
4672UnicodeString&
4673DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
4674{
4675    if (fStyle == UNUM_CURRENCY_PLURAL) {
4676        // the prefix or suffix pattern might not be defined yet,
4677        // so they can not be synthesized,
4678        // instead, get them directly.
4679        // but it might not be the actual pattern used in formatting.
4680        // the actual pattern used in formatting depends on the
4681        // formatted number's plural count.
4682        result = fFormatPattern;
4683        return result;
4684    }
4685    result.remove();
4686    UChar32 zero, sigDigit = kPatternSignificantDigit;
4687    UnicodeString digit, group;
4688    int32_t i;
4689    int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
4690    UnicodeString roundingDigits;
4691    int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
4692    UnicodeString padSpec;
4693    UBool useSigDig = areSignificantDigitsUsed();
4694
4695    if (localized) {
4696        digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
4697        group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
4698        zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
4699        if (useSigDig) {
4700            sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
4701        }
4702    }
4703    else {
4704        digit.append((UChar)kPatternDigit);
4705        group.append((UChar)kPatternGroupingSeparator);
4706        zero = (UChar32)kPatternZeroDigit;
4707    }
4708    if (fFormatWidth > 0) {
4709        if (localized) {
4710            padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
4711        }
4712        else {
4713            padSpec.append((UChar)kPatternPadEscape);
4714        }
4715        padSpec.append(fPad);
4716    }
4717    if (fRoundingIncrement != NULL) {
4718        for(i=0; i<fRoundingIncrement->getCount(); ++i) {
4719          roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
4720        }
4721        roundingDecimalPos = fRoundingIncrement->getDecimalAt();
4722    }
4723    for (int32_t part=0; part<2; ++part) {
4724        if (padPos == kPadBeforePrefix) {
4725            result.append(padSpec);
4726        }
4727        appendAffixPattern(result,
4728                    (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
4729                    (part==0 ? fPositivePrefix : fNegativePrefix),
4730                    localized);
4731        if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
4732            result.append(padSpec);
4733        }
4734        int32_t sub0Start = result.length();
4735        int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
4736        if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
4737            g += fGroupingSize2;
4738        }
4739        int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
4740        if (useSigDig) {
4741            minDig = getMinimumSignificantDigits();
4742            maxDig = maxSigDig = getMaximumSignificantDigits();
4743        } else {
4744            minDig = getMinimumIntegerDigits();
4745            maxDig = getMaximumIntegerDigits();
4746        }
4747        if (fUseExponentialNotation) {
4748            if (maxDig > kMaxScientificIntegerDigits) {
4749                maxDig = 1;
4750            }
4751        } else if (useSigDig) {
4752            maxDig = _max(maxDig, g+1);
4753        } else {
4754            maxDig = _max(_max(g, getMinimumIntegerDigits()),
4755                          roundingDecimalPos) + 1;
4756        }
4757        for (i = maxDig; i > 0; --i) {
4758            if (!fUseExponentialNotation && i<maxDig &&
4759                isGroupingPosition(i)) {
4760                result.append(group);
4761            }
4762            if (useSigDig) {
4763                //  #@,@###   (maxSigDig == 5, minSigDig == 2)
4764                //  65 4321   (1-based pos, count from the right)
4765                // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
4766                // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
4767                if (maxSigDig >= i && i > (maxSigDig - minDig)) {
4768                    result.append(sigDigit);
4769                } else {
4770                    result.append(digit);
4771                }
4772            } else {
4773                if (! roundingDigits.isEmpty()) {
4774                    int32_t pos = roundingDecimalPos - i;
4775                    if (pos >= 0 && pos < roundingDigits.length()) {
4776                        result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
4777                        continue;
4778                    }
4779                }
4780                if (i<=minDig) {
4781                    result.append(zero);
4782                } else {
4783                    result.append(digit);
4784                }
4785            }
4786        }
4787        if (!useSigDig) {
4788            if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
4789                if (localized) {
4790                    result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
4791                }
4792                else {
4793                    result.append((UChar)kPatternDecimalSeparator);
4794                }
4795            }
4796            int32_t pos = roundingDecimalPos;
4797            for (i = 0; i < getMaximumFractionDigits(); ++i) {
4798                if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
4799                    if (pos < 0) {
4800                        result.append(zero);
4801                    }
4802                    else {
4803                        result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
4804                    }
4805                    ++pos;
4806                    continue;
4807                }
4808                if (i<getMinimumFractionDigits()) {
4809                    result.append(zero);
4810                }
4811                else {
4812                    result.append(digit);
4813                }
4814            }
4815        }
4816        if (fUseExponentialNotation) {
4817            if (localized) {
4818                result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
4819            }
4820            else {
4821                result.append((UChar)kPatternExponent);
4822            }
4823            if (fExponentSignAlwaysShown) {
4824                if (localized) {
4825                    result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
4826                }
4827                else {
4828                    result.append((UChar)kPatternPlus);
4829                }
4830            }
4831            for (i=0; i<fMinExponentDigits; ++i) {
4832                result.append(zero);
4833            }
4834        }
4835        if (! padSpec.isEmpty() && !fUseExponentialNotation) {
4836            int32_t add = fFormatWidth - result.length() + sub0Start
4837                - ((part == 0)
4838                   ? fPositivePrefix.length() + fPositiveSuffix.length()
4839                   : fNegativePrefix.length() + fNegativeSuffix.length());
4840            while (add > 0) {
4841                result.insert(sub0Start, digit);
4842                ++maxDig;
4843                --add;
4844                // Only add a grouping separator if we have at least
4845                // 2 additional characters to be added, so we don't
4846                // end up with ",###".
4847                if (add>1 && isGroupingPosition(maxDig)) {
4848                    result.insert(sub0Start, group);
4849                    --add;
4850                }
4851            }
4852        }
4853        if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
4854            result.append(padSpec);
4855        }
4856        if (part == 0) {
4857            appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
4858            if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
4859                result.append(padSpec);
4860            }
4861            UBool isDefault = FALSE;
4862            if ((fNegSuffixPattern == fPosSuffixPattern && // both null
4863                 fNegativeSuffix == fPositiveSuffix)
4864                || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
4865                    *fNegSuffixPattern == *fPosSuffixPattern))
4866            {
4867                if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
4868                {
4869                    int32_t length = fPosPrefixPattern->length();
4870                    isDefault = fNegPrefixPattern->length() == (length+2) &&
4871                        (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
4872                        (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
4873                        fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
4874                }
4875                if (!isDefault &&
4876                    fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
4877                {
4878                    int32_t length = fPositivePrefix.length();
4879                    isDefault = fNegativePrefix.length() == (length+1) &&
4880                        fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
4881                        fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
4882                }
4883            }
4884            if (isDefault) {
4885                break; // Don't output default negative subpattern
4886            } else {
4887                if (localized) {
4888                    result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
4889                }
4890                else {
4891                    result.append((UChar)kPatternSeparator);
4892                }
4893            }
4894        } else {
4895            appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
4896            if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
4897                result.append(padSpec);
4898            }
4899        }
4900    }
4901
4902    return result;
4903}
4904
4905//------------------------------------------------------------------------------
4906
4907void
4908DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
4909{
4910    UParseError parseError;
4911    applyPattern(pattern, FALSE, parseError, status);
4912}
4913
4914//------------------------------------------------------------------------------
4915
4916void
4917DecimalFormat::applyPattern(const UnicodeString& pattern,
4918                            UParseError& parseError,
4919                            UErrorCode& status)
4920{
4921    applyPattern(pattern, FALSE, parseError, status);
4922}
4923//------------------------------------------------------------------------------
4924
4925void
4926DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
4927{
4928    UParseError parseError;
4929    applyPattern(pattern, TRUE,parseError,status);
4930}
4931
4932//------------------------------------------------------------------------------
4933
4934void
4935DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
4936                                     UParseError& parseError,
4937                                     UErrorCode& status)
4938{
4939    applyPattern(pattern, TRUE,parseError,status);
4940}
4941
4942//------------------------------------------------------------------------------
4943
4944void
4945DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
4946                                              UBool localized,
4947                                              UParseError& parseError,
4948                                              UErrorCode& status)
4949{
4950    if (U_FAILURE(status))
4951    {
4952        return;
4953    }
4954    DecimalFormatPatternParser patternParser;
4955    if (localized) {
4956      patternParser.useSymbols(*fSymbols);
4957    }
4958    fFormatPattern = pattern;
4959    DecimalFormatPattern out;
4960    patternParser.applyPatternWithoutExpandAffix(
4961        pattern,
4962        out,
4963        parseError,
4964        status);
4965    if (U_FAILURE(status)) {
4966      return;
4967    }
4968
4969    setMinimumIntegerDigits(out.fMinimumIntegerDigits);
4970    setMaximumIntegerDigits(out.fMaximumIntegerDigits);
4971    setMinimumFractionDigits(out.fMinimumFractionDigits);
4972    setMaximumFractionDigits(out.fMaximumFractionDigits);
4973    setSignificantDigitsUsed(out.fUseSignificantDigits);
4974    if (out.fUseSignificantDigits) {
4975        setMinimumSignificantDigits(out.fMinimumSignificantDigits);
4976        setMaximumSignificantDigits(out.fMaximumSignificantDigits);
4977    }
4978    fUseExponentialNotation = out.fUseExponentialNotation;
4979    if (out.fUseExponentialNotation) {
4980        fMinExponentDigits = out.fMinExponentDigits;
4981    }
4982    fExponentSignAlwaysShown = out.fExponentSignAlwaysShown;
4983    fCurrencySignCount = out.fCurrencySignCount;
4984    setGroupingUsed(out.fGroupingUsed);
4985    if (out.fGroupingUsed) {
4986        fGroupingSize = out.fGroupingSize;
4987        fGroupingSize2 = out.fGroupingSize2;
4988    }
4989    setMultiplier(out.fMultiplier);
4990    fDecimalSeparatorAlwaysShown = out.fDecimalSeparatorAlwaysShown;
4991    fFormatWidth = out.fFormatWidth;
4992    if (out.fRoundingIncrementUsed) {
4993        if (fRoundingIncrement != NULL) {
4994            *fRoundingIncrement = out.fRoundingIncrement;
4995        } else {
4996            fRoundingIncrement = new DigitList(out.fRoundingIncrement);
4997            /* test for NULL */
4998            if (fRoundingIncrement == NULL) {
4999                 status = U_MEMORY_ALLOCATION_ERROR;
5000                 return;
5001            }
5002        }
5003    } else {
5004        setRoundingIncrement(0.0);
5005    }
5006    fPad = out.fPad;
5007    switch (out.fPadPosition) {
5008        case DecimalFormatPattern::kPadBeforePrefix:
5009            fPadPosition = kPadBeforePrefix;
5010            break;
5011        case DecimalFormatPattern::kPadAfterPrefix:
5012            fPadPosition = kPadAfterPrefix;
5013            break;
5014        case DecimalFormatPattern::kPadBeforeSuffix:
5015            fPadPosition = kPadBeforeSuffix;
5016            break;
5017        case DecimalFormatPattern::kPadAfterSuffix:
5018            fPadPosition = kPadAfterSuffix;
5019            break;
5020    }
5021    copyString(out.fNegPrefixPattern, out.fNegPatternsBogus, fNegPrefixPattern, status);
5022    copyString(out.fNegSuffixPattern, out.fNegPatternsBogus, fNegSuffixPattern, status);
5023    copyString(out.fPosPrefixPattern, out.fPosPatternsBogus, fPosPrefixPattern, status);
5024    copyString(out.fPosSuffixPattern, out.fPosPatternsBogus, fPosSuffixPattern, status);
5025}
5026
5027
5028void
5029DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
5030    expandAffixes(pluralCount);
5031    if (fFormatWidth > 0) {
5032        // Finish computing format width (see above)
5033            // TODO: how to handle fFormatWidth,
5034            // need to save in f(Plural)AffixesForCurrecy?
5035            fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
5036    }
5037}
5038
5039
5040void
5041DecimalFormat::applyPattern(const UnicodeString& pattern,
5042                            UBool localized,
5043                            UParseError& parseError,
5044                            UErrorCode& status)
5045{
5046    // do the following re-set first. since they change private data by
5047    // apply pattern again.
5048    if (pattern.indexOf(kCurrencySign) != -1) {
5049        if (fCurrencyPluralInfo == NULL) {
5050            // initialize currencyPluralInfo if needed
5051            fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
5052        }
5053        if (fAffixPatternsForCurrency == NULL) {
5054            setupCurrencyAffixPatterns(status);
5055        }
5056        if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
5057            // only setup the affixes of the current pattern.
5058            setupCurrencyAffixes(pattern, TRUE, FALSE, status);
5059        }
5060    }
5061    applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
5062    expandAffixAdjustWidth(NULL);
5063#if UCONFIG_FORMAT_FASTPATHS_49
5064    handleChanged();
5065#endif
5066}
5067
5068
5069void
5070DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
5071                                      const UnicodeString& pattern,
5072                                      UBool localized,
5073                                      UParseError& parseError,
5074                                      UErrorCode& status) {
5075    applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
5076    expandAffixAdjustWidth(&pluralCount);
5077#if UCONFIG_FORMAT_FASTPATHS_49
5078    handleChanged();
5079#endif
5080}
5081
5082
5083/**
5084 * Sets the maximum number of digits allowed in the integer portion of a
5085 * number.
5086 * @see NumberFormat#setMaximumIntegerDigits
5087 */
5088void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
5089    NumberFormat::setMaximumIntegerDigits(_min(newValue, gDefaultMaxIntegerDigits));
5090#if UCONFIG_FORMAT_FASTPATHS_49
5091    handleChanged();
5092#endif
5093}
5094
5095/**
5096 * Sets the minimum number of digits allowed in the integer portion of a
5097 * number. This override limits the integer digit count to 309.
5098 * @see NumberFormat#setMinimumIntegerDigits
5099 */
5100void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
5101    NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
5102#if UCONFIG_FORMAT_FASTPATHS_49
5103    handleChanged();
5104#endif
5105}
5106
5107/**
5108 * Sets the maximum number of digits allowed in the fraction portion of a
5109 * number. This override limits the fraction digit count to 340.
5110 * @see NumberFormat#setMaximumFractionDigits
5111 */
5112void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
5113    NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
5114#if UCONFIG_FORMAT_FASTPATHS_49
5115    handleChanged();
5116#endif
5117}
5118
5119/**
5120 * Sets the minimum number of digits allowed in the fraction portion of a
5121 * number. This override limits the fraction digit count to 340.
5122 * @see NumberFormat#setMinimumFractionDigits
5123 */
5124void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
5125    NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
5126#if UCONFIG_FORMAT_FASTPATHS_49
5127    handleChanged();
5128#endif
5129}
5130
5131int32_t DecimalFormat::getMinimumSignificantDigits() const {
5132    return fMinSignificantDigits;
5133}
5134
5135int32_t DecimalFormat::getMaximumSignificantDigits() const {
5136    return fMaxSignificantDigits;
5137}
5138
5139void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
5140    if (min < 1) {
5141        min = 1;
5142    }
5143    // pin max sig dig to >= min
5144    int32_t max = _max(fMaxSignificantDigits, min);
5145    fMinSignificantDigits = min;
5146    fMaxSignificantDigits = max;
5147    fUseSignificantDigits = TRUE;
5148#if UCONFIG_FORMAT_FASTPATHS_49
5149    handleChanged();
5150#endif
5151}
5152
5153void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
5154    if (max < 1) {
5155        max = 1;
5156    }
5157    // pin min sig dig to 1..max
5158    U_ASSERT(fMinSignificantDigits >= 1);
5159    int32_t min = _min(fMinSignificantDigits, max);
5160    fMinSignificantDigits = min;
5161    fMaxSignificantDigits = max;
5162    fUseSignificantDigits = TRUE;
5163#if UCONFIG_FORMAT_FASTPATHS_49
5164    handleChanged();
5165#endif
5166}
5167
5168UBool DecimalFormat::areSignificantDigitsUsed() const {
5169    return fUseSignificantDigits;
5170}
5171
5172void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
5173    fUseSignificantDigits = useSignificantDigits;
5174#if UCONFIG_FORMAT_FASTPATHS_49
5175    handleChanged();
5176#endif
5177}
5178
5179void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
5180                                          UErrorCode& ec) {
5181    // If we are a currency format, then modify our affixes to
5182    // encode the currency symbol for the given currency in our
5183    // locale, and adjust the decimal digits and rounding for the
5184    // given currency.
5185
5186    // Note: The code is ordered so that this object is *not changed*
5187    // until we are sure we are going to succeed.
5188
5189    // NULL or empty currency is *legal* and indicates no currency.
5190    UBool isCurr = (theCurrency && *theCurrency);
5191
5192    double rounding = 0.0;
5193    int32_t frac = 0;
5194    if (fCurrencySignCount != fgCurrencySignCountZero && isCurr) {
5195        rounding = ucurr_getRoundingIncrementForUsage(theCurrency, fCurrencyUsage, &ec);
5196        frac = ucurr_getDefaultFractionDigitsForUsage(theCurrency, fCurrencyUsage, &ec);
5197    }
5198
5199    NumberFormat::setCurrency(theCurrency, ec);
5200    if (U_FAILURE(ec)) return;
5201
5202    if (fCurrencySignCount != fgCurrencySignCountZero) {
5203        // NULL or empty currency is *legal* and indicates no currency.
5204        if (isCurr) {
5205            setRoundingIncrement(rounding);
5206            setMinimumFractionDigits(frac);
5207            setMaximumFractionDigits(frac);
5208        }
5209        expandAffixes(NULL);
5210    }
5211#if UCONFIG_FORMAT_FASTPATHS_49
5212    handleChanged();
5213#endif
5214}
5215
5216void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
5217    // set the currency before compute affixes to get the right currency names
5218    NumberFormat::setCurrency(theCurrency, ec);
5219    if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
5220        UnicodeString savedPtn = fFormatPattern;
5221        setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
5222        UParseError parseErr;
5223        applyPattern(savedPtn, FALSE, parseErr, ec);
5224    }
5225    // set the currency after apply pattern to get the correct rounding/fraction
5226    setCurrencyInternally(theCurrency, ec);
5227#if UCONFIG_FORMAT_FASTPATHS_49
5228    handleChanged();
5229#endif
5230}
5231
5232void DecimalFormat::setCurrencyUsage(UCurrencyUsage newContext, UErrorCode* ec){
5233    fCurrencyUsage = newContext;
5234
5235    const UChar* theCurrency = getCurrency();
5236
5237    // We set rounding/digit based on currency context
5238    if(theCurrency){
5239        double rounding = ucurr_getRoundingIncrementForUsage(theCurrency, fCurrencyUsage, ec);
5240        int32_t frac = ucurr_getDefaultFractionDigitsForUsage(theCurrency, fCurrencyUsage, ec);
5241
5242        if (U_SUCCESS(*ec)) {
5243            setRoundingIncrement(rounding);
5244            setMinimumFractionDigits(frac);
5245            setMaximumFractionDigits(frac);
5246        }
5247    }
5248}
5249
5250UCurrencyUsage DecimalFormat::getCurrencyUsage() const {
5251    return fCurrencyUsage;
5252}
5253
5254// Deprecated variant with no UErrorCode parameter
5255void DecimalFormat::setCurrency(const UChar* theCurrency) {
5256    UErrorCode ec = U_ZERO_ERROR;
5257    setCurrency(theCurrency, ec);
5258#if UCONFIG_FORMAT_FASTPATHS_49
5259    handleChanged();
5260#endif
5261}
5262
5263void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
5264    if (fSymbols == NULL) {
5265        ec = U_MEMORY_ALLOCATION_ERROR;
5266        return;
5267    }
5268    ec = U_ZERO_ERROR;
5269    const UChar* c = getCurrency();
5270    if (*c == 0) {
5271        const UnicodeString &intl =
5272            fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
5273        c = intl.getBuffer(); // ok for intl to go out of scope
5274    }
5275    u_strncpy(result, c, 3);
5276    result[3] = 0;
5277}
5278
5279/**
5280 * Return the number of fraction digits to display, or the total
5281 * number of digits for significant digit formats and exponential
5282 * formats.
5283 */
5284int32_t
5285DecimalFormat::precision() const {
5286    if (areSignificantDigitsUsed()) {
5287        return getMaximumSignificantDigits();
5288    } else if (fUseExponentialNotation) {
5289        return getMinimumIntegerDigits() + getMaximumFractionDigits();
5290    } else {
5291        return getMaximumFractionDigits();
5292    }
5293}
5294
5295
5296// TODO: template algorithm
5297Hashtable*
5298DecimalFormat::initHashForAffix(UErrorCode& status) {
5299    if ( U_FAILURE(status) ) {
5300        return NULL;
5301    }
5302    Hashtable* hTable;
5303    if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
5304        status = U_MEMORY_ALLOCATION_ERROR;
5305        return NULL;
5306    }
5307    if ( U_FAILURE(status) ) {
5308        delete hTable;
5309        return NULL;
5310    }
5311    hTable->setValueComparator(decimfmtAffixValueComparator);
5312    return hTable;
5313}
5314
5315Hashtable*
5316DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
5317    if ( U_FAILURE(status) ) {
5318        return NULL;
5319    }
5320    Hashtable* hTable;
5321    if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
5322        status = U_MEMORY_ALLOCATION_ERROR;
5323        return NULL;
5324    }
5325    if ( U_FAILURE(status) ) {
5326        delete hTable;
5327        return NULL;
5328    }
5329    hTable->setValueComparator(decimfmtAffixPatternValueComparator);
5330    return hTable;
5331}
5332
5333void
5334DecimalFormat::deleteHashForAffix(Hashtable*& table)
5335{
5336    if ( table == NULL ) {
5337        return;
5338    }
5339    int32_t pos = UHASH_FIRST;
5340    const UHashElement* element = NULL;
5341    while ( (element = table->nextElement(pos)) != NULL ) {
5342        const UHashTok valueTok = element->value;
5343        const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
5344        delete value;
5345    }
5346    delete table;
5347    table = NULL;
5348}
5349
5350
5351
5352void
5353DecimalFormat::deleteHashForAffixPattern()
5354{
5355    if ( fAffixPatternsForCurrency == NULL ) {
5356        return;
5357    }
5358    int32_t pos = UHASH_FIRST;
5359    const UHashElement* element = NULL;
5360    while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
5361        const UHashTok valueTok = element->value;
5362        const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
5363        delete value;
5364    }
5365    delete fAffixPatternsForCurrency;
5366    fAffixPatternsForCurrency = NULL;
5367}
5368
5369
5370void
5371DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
5372                                       Hashtable* target,
5373                                       UErrorCode& status) {
5374    if ( U_FAILURE(status) ) {
5375        return;
5376    }
5377    int32_t pos = UHASH_FIRST;
5378    const UHashElement* element = NULL;
5379    if ( source ) {
5380        while ( (element = source->nextElement(pos)) != NULL ) {
5381            const UHashTok keyTok = element->key;
5382            const UnicodeString* key = (UnicodeString*)keyTok.pointer;
5383            const UHashTok valueTok = element->value;
5384            const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
5385            AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
5386                value->negPrefixPatternForCurrency,
5387                value->negSuffixPatternForCurrency,
5388                value->posPrefixPatternForCurrency,
5389                value->posSuffixPatternForCurrency,
5390                value->patternType);
5391            target->put(UnicodeString(*key), copy, status);
5392            if ( U_FAILURE(status) ) {
5393                return;
5394            }
5395        }
5396    }
5397}
5398
5399// this is only overridden to call handleChanged() for fastpath purposes.
5400void
5401DecimalFormat::setGroupingUsed(UBool newValue) {
5402  NumberFormat::setGroupingUsed(newValue);
5403  handleChanged();
5404}
5405
5406// this is only overridden to call handleChanged() for fastpath purposes.
5407void
5408DecimalFormat::setParseIntegerOnly(UBool newValue) {
5409  NumberFormat::setParseIntegerOnly(newValue);
5410  handleChanged();
5411}
5412
5413// this is only overridden to call handleChanged() for fastpath purposes.
5414// setContext doesn't affect the fastPath right now, but this is called for completeness
5415void
5416DecimalFormat::setContext(UDisplayContext value, UErrorCode& status) {
5417  NumberFormat::setContext(value, status);
5418  handleChanged();
5419}
5420
5421
5422DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
5423                                            int32_t newValue,
5424                                            UErrorCode &status) {
5425  if(U_FAILURE(status)) return *this;
5426
5427  switch(attr) {
5428  case UNUM_LENIENT_PARSE:
5429    setLenient(newValue!=0);
5430    break;
5431
5432    case UNUM_PARSE_INT_ONLY:
5433      setParseIntegerOnly(newValue!=0);
5434      break;
5435
5436    case UNUM_GROUPING_USED:
5437      setGroupingUsed(newValue!=0);
5438      break;
5439
5440    case UNUM_DECIMAL_ALWAYS_SHOWN:
5441      setDecimalSeparatorAlwaysShown(newValue!=0);
5442        break;
5443
5444    case UNUM_MAX_INTEGER_DIGITS:
5445      setMaximumIntegerDigits(newValue);
5446        break;
5447
5448    case UNUM_MIN_INTEGER_DIGITS:
5449      setMinimumIntegerDigits(newValue);
5450        break;
5451
5452    case UNUM_INTEGER_DIGITS:
5453      setMinimumIntegerDigits(newValue);
5454      setMaximumIntegerDigits(newValue);
5455        break;
5456
5457    case UNUM_MAX_FRACTION_DIGITS:
5458      setMaximumFractionDigits(newValue);
5459        break;
5460
5461    case UNUM_MIN_FRACTION_DIGITS:
5462      setMinimumFractionDigits(newValue);
5463        break;
5464
5465    case UNUM_FRACTION_DIGITS:
5466      setMinimumFractionDigits(newValue);
5467      setMaximumFractionDigits(newValue);
5468      break;
5469
5470    case UNUM_SIGNIFICANT_DIGITS_USED:
5471      setSignificantDigitsUsed(newValue!=0);
5472        break;
5473
5474    case UNUM_MAX_SIGNIFICANT_DIGITS:
5475      setMaximumSignificantDigits(newValue);
5476        break;
5477
5478    case UNUM_MIN_SIGNIFICANT_DIGITS:
5479      setMinimumSignificantDigits(newValue);
5480        break;
5481
5482    case UNUM_MULTIPLIER:
5483      setMultiplier(newValue);
5484       break;
5485
5486    case UNUM_GROUPING_SIZE:
5487      setGroupingSize(newValue);
5488        break;
5489
5490    case UNUM_ROUNDING_MODE:
5491      setRoundingMode((DecimalFormat::ERoundingMode)newValue);
5492        break;
5493
5494    case UNUM_FORMAT_WIDTH:
5495      setFormatWidth(newValue);
5496        break;
5497
5498    case UNUM_PADDING_POSITION:
5499        /** The position at which padding will take place. */
5500      setPadPosition((DecimalFormat::EPadPosition)newValue);
5501        break;
5502
5503    case UNUM_SECONDARY_GROUPING_SIZE:
5504      setSecondaryGroupingSize(newValue);
5505        break;
5506
5507#if UCONFIG_HAVE_PARSEALLINPUT
5508    case UNUM_PARSE_ALL_INPUT:
5509      setParseAllInput((UNumberFormatAttributeValue)newValue);
5510        break;
5511#endif
5512
5513    /* These are stored in fBoolFlags */
5514    case UNUM_PARSE_NO_EXPONENT:
5515    case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
5516    case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
5517      if(!fBoolFlags.isValidValue(newValue)) {
5518          status = U_ILLEGAL_ARGUMENT_ERROR;
5519      } else {
5520          fBoolFlags.set(attr, newValue);
5521      }
5522      break;
5523
5524    case UNUM_SCALE:
5525        fScale = newValue;
5526        break;
5527
5528    case UNUM_CURRENCY_USAGE:
5529        setCurrencyUsage((UCurrencyUsage)newValue, &status);
5530
5531    default:
5532      status = U_UNSUPPORTED_ERROR;
5533      break;
5534  }
5535  return *this;
5536}
5537
5538int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr,
5539                                     UErrorCode &status ) const {
5540  if(U_FAILURE(status)) return -1;
5541  switch(attr) {
5542    case UNUM_LENIENT_PARSE:
5543        return isLenient();
5544
5545    case UNUM_PARSE_INT_ONLY:
5546        return isParseIntegerOnly();
5547
5548    case UNUM_GROUPING_USED:
5549        return isGroupingUsed();
5550
5551    case UNUM_DECIMAL_ALWAYS_SHOWN:
5552        return isDecimalSeparatorAlwaysShown();
5553
5554    case UNUM_MAX_INTEGER_DIGITS:
5555        return getMaximumIntegerDigits();
5556
5557    case UNUM_MIN_INTEGER_DIGITS:
5558        return getMinimumIntegerDigits();
5559
5560    case UNUM_INTEGER_DIGITS:
5561        // TBD: what should this return?
5562        return getMinimumIntegerDigits();
5563
5564    case UNUM_MAX_FRACTION_DIGITS:
5565        return getMaximumFractionDigits();
5566
5567    case UNUM_MIN_FRACTION_DIGITS:
5568        return getMinimumFractionDigits();
5569
5570    case UNUM_FRACTION_DIGITS:
5571        // TBD: what should this return?
5572        return getMinimumFractionDigits();
5573
5574    case UNUM_SIGNIFICANT_DIGITS_USED:
5575        return areSignificantDigitsUsed();
5576
5577    case UNUM_MAX_SIGNIFICANT_DIGITS:
5578        return getMaximumSignificantDigits();
5579
5580    case UNUM_MIN_SIGNIFICANT_DIGITS:
5581        return getMinimumSignificantDigits();
5582
5583    case UNUM_MULTIPLIER:
5584        return getMultiplier();
5585
5586    case UNUM_GROUPING_SIZE:
5587        return getGroupingSize();
5588
5589    case UNUM_ROUNDING_MODE:
5590        return getRoundingMode();
5591
5592    case UNUM_FORMAT_WIDTH:
5593        return getFormatWidth();
5594
5595    case UNUM_PADDING_POSITION:
5596        return getPadPosition();
5597
5598    case UNUM_SECONDARY_GROUPING_SIZE:
5599        return getSecondaryGroupingSize();
5600
5601    /* These are stored in fBoolFlags */
5602    case UNUM_PARSE_NO_EXPONENT:
5603    case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
5604    case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
5605      return fBoolFlags.get(attr);
5606
5607    case UNUM_SCALE:
5608        return fScale;
5609
5610    case UNUM_CURRENCY_USAGE:
5611        return fCurrencyUsage;
5612
5613    default:
5614        status = U_UNSUPPORTED_ERROR;
5615        break;
5616  }
5617
5618  return -1; /* undefined */
5619}
5620
5621#if UCONFIG_HAVE_PARSEALLINPUT
5622void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
5623  fParseAllInput = value;
5624#if UCONFIG_FORMAT_FASTPATHS_49
5625  handleChanged();
5626#endif
5627}
5628#endif
5629
5630void
5631DecimalFormat::copyHashForAffix(const Hashtable* source,
5632                                Hashtable* target,
5633                                UErrorCode& status) {
5634    if ( U_FAILURE(status) ) {
5635        return;
5636    }
5637    int32_t pos = UHASH_FIRST;
5638    const UHashElement* element = NULL;
5639    if ( source ) {
5640        while ( (element = source->nextElement(pos)) != NULL ) {
5641            const UHashTok keyTok = element->key;
5642            const UnicodeString* key = (UnicodeString*)keyTok.pointer;
5643
5644            const UHashTok valueTok = element->value;
5645            const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
5646            AffixesForCurrency* copy = new AffixesForCurrency(
5647                value->negPrefixForCurrency,
5648                value->negSuffixForCurrency,
5649                value->posPrefixForCurrency,
5650                value->posSuffixForCurrency);
5651            target->put(UnicodeString(*key), copy, status);
5652            if ( U_FAILURE(status) ) {
5653                return;
5654            }
5655        }
5656    }
5657}
5658
5659U_NAMESPACE_END
5660
5661#endif /* #if !UCONFIG_NO_FORMATTING */
5662
5663//eof
5664