1/****************************************************************************** 2 * 3 * Copyright (C) 2015 The Android Open Source Project 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at: 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 * 17 ***************************************************************************** 18 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore 19*/ 20/** 21 ******************************************************************************* 22 * @file 23 * ih264_iquant_itrans_recon_sse42.c 24 * 25 * @brief 26 * Contains function definitions for inverse quantization, inverse 27 * transform and reconstruction 28 * 29 * @author 30 * Mohit [100664] 31 * 32 * @par List of Functions: 33 * - ih264_iquant_itrans_recon_4x4_sse42() 34 * - ih264_iquant_itrans_recon_chroma_4x4_sse42() 35 * 36 * @remarks 37 * None 38 * 39 ******************************************************************************* 40 */ 41/* User include files */ 42#include "ih264_typedefs.h" 43#include "ih264_defs.h" 44#include "ih264_trans_macros.h" 45#include "ih264_macros.h" 46#include "ih264_platform_macros.h" 47#include "ih264_trans_data.h" 48#include "ih264_size_defs.h" 49#include "ih264_structs.h" 50#include "ih264_trans_quant_itrans_iquant.h" 51#include <immintrin.h> 52 53/* 54 ******************************************************************************** 55 * 56 * @brief This function reconstructs a 4x4 sub block from quantized resiude and 57 * prediction buffer 58 * 59 * @par Description: 60 * The quantized residue is first inverse quantized, then inverse transformed. 61 * This inverse transformed content is added to the prediction buffer to recon- 62 * struct the end output 63 * 64 * @param[in] pi2_src 65 * quantized 4x4 block 66 * 67 * @param[in] pu1_pred 68 * prediction 4x4 block 69 * 70 * @param[out] pu1_out 71 * reconstructed 4x4 block 72 * 73 * @param[in] src_strd 74 * quantization buffer stride 75 * 76 * @param[in] pred_strd, 77 * Prediction buffer stride 78 * 79 * @param[in] out_strd 80 * recon buffer Stride 81 * 82 * @param[in] pu2_scaling_list 83 * pointer to scaling list 84 * 85 * @param[in] pu2_norm_adjust 86 * pointer to inverse scale matrix 87 * 88 * @param[in] u4_qp_div_6 89 * Floor (qp/6) 90 * 91 * @param[in] pi4_tmp 92 * temporary buffer of size 1*16 93 * 94 * @returns none 95 * 96 * @remarks none 97 * 98 ******************************************************************************* 99 */ 100void ih264_iquant_itrans_recon_4x4_sse42(WORD16 *pi2_src, 101 UWORD8 *pu1_pred, 102 UWORD8 *pu1_out, 103 WORD32 pred_strd, 104 WORD32 out_strd, 105 const UWORD16 *pu2_iscal_mat, 106 const UWORD16 *pu2_weigh_mat, 107 UWORD32 u4_qp_div_6, 108 WORD16 *pi2_tmp, 109 WORD32 iq_start_idx, 110 WORD16 *pi2_dc_ld_addr) 111 { 112 UWORD32 *pu4_out = (UWORD32 *) pu1_out; 113 __m128i src_r0_r1, src_r2_r3; 114 __m128i src_r0, src_r1, src_r2, src_r3; 115 __m128i scalemat_r0_r1, scalemat_r2_r3; 116 __m128i pred_r0, pred_r1, pred_r2, pred_r3; 117 __m128i sign_reg, dequant_r0_r1, dequant_r2_r3; 118 __m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero 119 __m128i temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; 120 __m128i resq_r0, resq_r1, resq_r2, resq_r3; 121 __m128i add_rshift = _mm_set1_epi32((1 << (3 - u4_qp_div_6))); 122 __m128i value_32 = _mm_set1_epi32(32); 123 UNUSED (pi2_tmp); 124 125 /*************************************************************/ 126 /* Dequantization of coefficients. Will be replaced by SIMD */ 127 /* operations on platform */ 128 /*************************************************************/ 129 src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row 130 src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row 131 scalemat_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat)); //b00 b01 b02 b03 b10 b11 b12 b13 -- the scaling matrix 0th,1st row 132 scalemat_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat + 8)); //b20 b21 b22 b23 b30 b31 b32 b33 -- the scaling matrix 2nd,3rd row 133 dequant_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat)); //q00 q01 q02 q03 q10 q11 q12 q13 -- all 16 bits 134 dequant_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat + 8)); //q20 q21 q22 q23 q30 q31 q32 q33 -- all 16 bits 135 136 temp0 = _mm_mullo_epi16(scalemat_r0_r1, dequant_r0_r1); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result 137 temp1 = _mm_mullo_epi16(scalemat_r2_r3, dequant_r2_r3); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result 138 139 temp4 = _mm_unpacklo_epi16(temp0, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long 140 temp5 = _mm_unpackhi_epi16(temp0, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long 141 temp6 = _mm_unpacklo_epi16(temp1, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long 142 temp7 = _mm_unpackhi_epi16(temp1, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long 143 144 src_r0 = _mm_unpacklo_epi16(src_r0_r1, zero_8x16b); // a00 0 a01 0 a02 0 a03 0 -- 16 bit long 145 src_r1 = _mm_unpackhi_epi16(src_r0_r1, zero_8x16b); // a10 0 a11 0 a12 0 a13 0 -- 16 bit long 146 src_r2 = _mm_unpacklo_epi16(src_r2_r3, zero_8x16b); // a20 0 a21 0 a22 0 a23 0 -- 16 bit long 147 src_r3 = _mm_unpackhi_epi16(src_r2_r3, zero_8x16b); // a30 0 a31 0 a32 0 a33 0 -- 16 bit long 148 149 temp4 = _mm_madd_epi16(src_r0, temp4); //a00*b00*q00 a10*b10*q10 a20*b20*q20 a30*b30 q30 -- 32 bits long 150 temp5 = _mm_madd_epi16(src_r1, temp5); 151 temp6 = _mm_madd_epi16(src_r2, temp6); 152 temp7 = _mm_madd_epi16(src_r3, temp7); 153 154 if (u4_qp_div_6 >= 4) { 155 resq_r0 = _mm_slli_epi32(temp4, u4_qp_div_6 - 4); 156 resq_r1 = _mm_slli_epi32(temp5, u4_qp_div_6 - 4); 157 resq_r2 = _mm_slli_epi32(temp6, u4_qp_div_6 - 4); 158 resq_r3 = _mm_slli_epi32(temp7, u4_qp_div_6 - 4); 159 } else { 160 temp4 = _mm_add_epi32(temp4, add_rshift); 161 temp5 = _mm_add_epi32(temp5, add_rshift); 162 temp6 = _mm_add_epi32(temp6, add_rshift); 163 temp7 = _mm_add_epi32(temp7, add_rshift); 164 resq_r0 = _mm_srai_epi32(temp4, 4 - u4_qp_div_6); 165 resq_r1 = _mm_srai_epi32(temp5, 4 - u4_qp_div_6); 166 resq_r2 = _mm_srai_epi32(temp6, 4 - u4_qp_div_6); 167 resq_r3 = _mm_srai_epi32(temp7, 4 - u4_qp_div_6); 168 } 169 170 if (iq_start_idx == 1) 171 resq_r0 = _mm_insert_epi32(resq_r0,(WORD32)pi2_dc_ld_addr[0],0); 172 /* Perform Inverse transform */ 173 /*-------------------------------------------------------------*/ 174 /* IDCT [ Horizontal transformation ] */ 175 /*-------------------------------------------------------------*/ 176 // Matrix transpose 177 /* 178 * a0 a1 a2 a3 179 * b0 b1 b2 b3 180 * c0 c1 c2 c3 181 * d0 d1 d2 d3 182 */ 183 temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 b0 a1 b1 184 temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //c0 d0 c1 d1 185 temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //a2 b2 a3 b3 186 temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 d2 c3 d3 187 resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 b0 c0 d0 188 resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //a1 b1 c1 d1 189 resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //a2 b2 c2 d2 190 resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //a3 b3 c3 d3 191 //Transform starts -- horizontal transform 192 /*------------------------------------------------------------------*/ 193 /* z0 = w0 + w2 */ 194 temp0 = _mm_add_epi32(resq_r0, resq_r2); 195 /* z1 = w0 - w2 */ 196 temp1 = _mm_sub_epi32(resq_r0, resq_r2); 197 /* z2 = (w1 >> 1) - w3 */ 198 temp2 = _mm_srai_epi32(resq_r1, 1); //(w1>>1) 199 temp2 = _mm_sub_epi32(temp2, resq_r3); //(w1>>1) - w3 200 /* z3 = w1 + (w3 >> 1) */ 201 temp3 = _mm_srai_epi32(resq_r3, 1); //(w3>>1) + w1 202 temp3 = _mm_add_epi32(temp3, resq_r1); 203 /*----------------------------------------------------------*/ 204 /* x0 = z0 + z3 */ 205 resq_r0 = _mm_add_epi32(temp0, temp3); 206 /* x1 = z1 + z2 */ 207 resq_r1 = _mm_add_epi32(temp1, temp2); 208 /* x2 = z1 - z2 */ 209 resq_r2 = _mm_sub_epi32(temp1, temp2); 210 /* x3 = z0 - z3 */ 211 resq_r3 = _mm_sub_epi32(temp0, temp3); 212 // Matrix transpose 213 /* 214 * a0 b0 c0 d0 215 * a1 b1 c1 d1 216 * a2 b2 c2 d2 217 * a3 b3 c3 d3 218 */ 219 temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 a1 b0 b1 220 temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //a2 a3 b2 b3 221 temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //c0 c1 d0 d1 222 temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 c3 d2 d3 223 resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 a1 a2 a3 224 resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //b0 b1 b2 b3 225 resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //c0 c1 c2 c3 226 resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //d0 d1 d2 d3 227 //Transform ends -- horizontal transform 228 229 //Load pred buffer 230 pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits 231 pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits 232 pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits 233 pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits 234 235 pred_r0 = _mm_cvtepu8_epi32(pred_r0); //p00 p01 p02 p03 -- all 32 bits 236 pred_r1 = _mm_cvtepu8_epi32(pred_r1); //p10 p11 p12 p13 -- all 32 bits 237 pred_r2 = _mm_cvtepu8_epi32(pred_r2); //p20 p21 p22 p23 -- all 32 bits 238 pred_r3 = _mm_cvtepu8_epi32(pred_r3); //p30 p31 p32 p33 -- all 32 bits 239 240 /*--------------------------------------------------------------*/ 241 /* IDCT [ Vertical transformation] and Xij = (xij + 32)>>6 */ 242 /* */ 243 /* Add the prediction and store it back to same buffer */ 244 /*--------------------------------------------------------------*/ 245 /* z0j = y0j + y2j */ 246 temp0 = _mm_add_epi32(resq_r0, resq_r2); 247 /* z1j = y0j - y2j */ 248 temp1 = _mm_sub_epi32(resq_r0, resq_r2); 249 /* z2j = (y1j>>1) - y3j */ 250 temp2 = _mm_srai_epi32(resq_r1, 1); //(y1j>>1) 251 temp2 = _mm_sub_epi32(temp2, resq_r3); 252 /* z3j = y1j + (y3j>>1) */ 253 temp3 = _mm_srai_epi32(resq_r3, 1); //(y3j>>1) 254 temp3 = _mm_add_epi32(temp3, resq_r1); 255 256 /* x0j = z0j + z3j */ 257 temp4 = _mm_add_epi32(temp0, temp3); 258 temp4 = _mm_add_epi32(temp4, value_32); 259 temp4 = _mm_srai_epi32(temp4, 6); 260 temp4 = _mm_add_epi32(temp4, pred_r0); 261 /* x1j = z1j + z2j */ 262 temp5 = _mm_add_epi32(temp1, temp2); 263 temp5 = _mm_add_epi32(temp5, value_32); 264 temp5 = _mm_srai_epi32(temp5, 6); 265 temp5 = _mm_add_epi32(temp5, pred_r1); 266 /* x2j = z1j - z2j */ 267 temp6 = _mm_sub_epi32(temp1, temp2); 268 temp6 = _mm_add_epi32(temp6, value_32); 269 temp6 = _mm_srai_epi32(temp6, 6); 270 temp6 = _mm_add_epi32(temp6, pred_r2); 271 /* x3j = z0j - z3j */ 272 temp7 = _mm_sub_epi32(temp0, temp3); 273 temp7 = _mm_add_epi32(temp7, value_32); 274 temp7 = _mm_srai_epi32(temp7, 6); 275 temp7 = _mm_add_epi32(temp7, pred_r3); 276 277 // 32-bit to 16-bit conversion 278 temp0 = _mm_packs_epi32(temp4, temp5); 279 temp1 = _mm_packs_epi32(temp6, temp7); 280 /*------------------------------------------------------------------*/ 281 //Clipping the results to 8 bits 282 sign_reg = _mm_cmpgt_epi16(temp0, zero_8x16b); // sign check 283 temp0 = _mm_and_si128(temp0, sign_reg); 284 sign_reg = _mm_cmpgt_epi16(temp1, zero_8x16b); 285 temp1 = _mm_and_si128(temp1, sign_reg); 286 287 resq_r0 = _mm_packus_epi16(temp0, temp1); 288 resq_r1 = _mm_srli_si128(resq_r0, 4); 289 resq_r2 = _mm_srli_si128(resq_r1, 4); 290 resq_r3 = _mm_srli_si128(resq_r2, 4); 291 292 *pu4_out = _mm_cvtsi128_si32(resq_r0); 293 pu1_out += out_strd; 294 pu4_out = (UWORD32 *) (pu1_out); 295 *(pu4_out) = _mm_cvtsi128_si32(resq_r1); 296 pu1_out += out_strd; 297 pu4_out = (UWORD32 *) (pu1_out); 298 *(pu4_out) = _mm_cvtsi128_si32(resq_r2); 299 pu1_out += out_strd; 300 pu4_out = (UWORD32 *) (pu1_out); 301 *(pu4_out) = _mm_cvtsi128_si32(resq_r3); 302} 303 304/* 305 ******************************************************************************** 306 * 307 * @brief This function reconstructs a 4x4 sub block from quantized chroma resiude and 308 * prediction buffer 309 * 310 * @par Description: 311 * The quantized residue is first inverse quantized, then inverse transformed. 312 * This inverse transformed content is added to the prediction buffer to recon- 313 * struct the end output 314 * 315 * @param[in] pi2_src 316 * quantized 4x4 block 317 * 318 * @param[in] pu1_pred 319 * prediction 4x4 block 320 * 321 * @param[out] pu1_out 322 * reconstructed 4x4 block 323 * 324 * @param[in] src_strd 325 * quantization buffer stride 326 * 327 * @param[in] pred_strd, 328 * Prediction buffer stride 329 * 330 * @param[in] out_strd 331 * recon buffer Stride 332 * 333 * @param[in] pu2_scaling_list 334 * pointer to scaling list 335 * 336 * @param[in] pu2_norm_adjust 337 * pointer to inverse scale matrix 338 * 339 * @param[in] u4_qp_div_6 340 * Floor (qp/6) 341 * 342 * @param[in] pi4_tmp 343 * temporary buffer of size 1*16 344 * 345 * @returns none 346 * 347 * @remarks none 348 * 349 ******************************************************************************* 350 */ 351void ih264_iquant_itrans_recon_chroma_4x4_sse42(WORD16 *pi2_src, 352 UWORD8 *pu1_pred, 353 UWORD8 *pu1_out, 354 WORD32 pred_strd, 355 WORD32 out_strd, 356 const UWORD16 *pu2_iscal_mat, 357 const UWORD16 *pu2_weigh_mat, 358 UWORD32 u4_qp_div_6, 359 WORD16 *pi2_tmp, 360 WORD16 *pi2_dc_ld_addr) 361 { 362 __m128i src_r0_r1, src_r2_r3; 363 __m128i src_r0, src_r1, src_r2, src_r3; 364 __m128i scalemat_r0_r1, scalemat_r2_r3; 365 __m128i pred_r0, pred_r1, pred_r2, pred_r3; 366 __m128i sign_reg, dequant_r0_r1, dequant_r2_r3; 367 __m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero 368 __m128i temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; 369 __m128i resq_r0, resq_r1, resq_r2, resq_r3; 370 __m128i add_rshift = _mm_set1_epi32((1 << (3 - u4_qp_div_6))); 371 __m128i value_32 = _mm_set1_epi32(32); 372 __m128i chroma_mask = _mm_set1_epi16 (0xFF); 373 __m128i out_r0, out_r1, out_r2, out_r3; 374 UNUSED (pi2_tmp); 375 376 /*************************************************************/ 377 /* Dequantization of coefficients. Will be replaced by SIMD */ 378 /* operations on platform */ 379 /*************************************************************/ 380 src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row 381 src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row 382 scalemat_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat)); //b00 b01 b02 b03 b10 b11 b12 b13 -- the scaling matrix 0th,1st row 383 scalemat_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat + 8)); //b20 b21 b22 b23 b30 b31 b32 b33 -- the scaling matrix 2nd,3rd row 384 dequant_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat)); //q00 q01 q02 q03 q10 q11 q12 q13 -- all 16 bits 385 dequant_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat + 8)); //q20 q21 q22 q23 q30 q31 q32 q33 -- all 16 bits 386 387 temp0 = _mm_mullo_epi16(scalemat_r0_r1, dequant_r0_r1); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result 388 temp1 = _mm_mullo_epi16(scalemat_r2_r3, dequant_r2_r3); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result 389 390 temp4 = _mm_unpacklo_epi16(temp0, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long 391 temp5 = _mm_unpackhi_epi16(temp0, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long 392 temp6 = _mm_unpacklo_epi16(temp1, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long 393 temp7 = _mm_unpackhi_epi16(temp1, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long 394 395 src_r0 = _mm_unpacklo_epi16(src_r0_r1, zero_8x16b); // a00 0 a01 0 a02 0 a03 0 -- 16 bit long 396 src_r1 = _mm_unpackhi_epi16(src_r0_r1, zero_8x16b); // a10 0 a11 0 a12 0 a13 0 -- 16 bit long 397 src_r2 = _mm_unpacklo_epi16(src_r2_r3, zero_8x16b); // a20 0 a21 0 a22 0 a23 0 -- 16 bit long 398 src_r3 = _mm_unpackhi_epi16(src_r2_r3, zero_8x16b); // a30 0 a31 0 a32 0 a33 0 -- 16 bit long 399 400 temp4 = _mm_madd_epi16(src_r0, temp4); //a00*b00*q00 a10*b10*q10 a20*b20*q20 a30*b30 q30 -- 32 bits long 401 temp5 = _mm_madd_epi16(src_r1, temp5); 402 temp6 = _mm_madd_epi16(src_r2, temp6); 403 temp7 = _mm_madd_epi16(src_r3, temp7); 404 405 if (u4_qp_div_6 >= 4) { 406 resq_r0 = _mm_slli_epi32(temp4, u4_qp_div_6 - 4); 407 resq_r1 = _mm_slli_epi32(temp5, u4_qp_div_6 - 4); 408 resq_r2 = _mm_slli_epi32(temp6, u4_qp_div_6 - 4); 409 resq_r3 = _mm_slli_epi32(temp7, u4_qp_div_6 - 4); 410 } else { 411 temp4 = _mm_add_epi32(temp4, add_rshift); 412 temp5 = _mm_add_epi32(temp5, add_rshift); 413 temp6 = _mm_add_epi32(temp6, add_rshift); 414 temp7 = _mm_add_epi32(temp7, add_rshift); 415 resq_r0 = _mm_srai_epi32(temp4, 4 - u4_qp_div_6); 416 resq_r1 = _mm_srai_epi32(temp5, 4 - u4_qp_div_6); 417 resq_r2 = _mm_srai_epi32(temp6, 4 - u4_qp_div_6); 418 resq_r3 = _mm_srai_epi32(temp7, 4 - u4_qp_div_6); 419 } 420 421 resq_r0 = _mm_insert_epi32(resq_r0,(WORD32)pi2_dc_ld_addr[0],0); 422 /* Perform Inverse transform */ 423 /*-------------------------------------------------------------*/ 424 /* IDCT [ Horizontal transformation ] */ 425 /*-------------------------------------------------------------*/ 426 // Matrix transpose 427 /* 428 * a0 a1 a2 a3 429 * b0 b1 b2 b3 430 * c0 c1 c2 c3 431 * d0 d1 d2 d3 432 */ 433 temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 b0 a1 b1 434 temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //c0 d0 c1 d1 435 temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //a2 b2 a3 b3 436 temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 d2 c3 d3 437 resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 b0 c0 d0 438 resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //a1 b1 c1 d1 439 resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //a2 b2 c2 d2 440 resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //a3 b3 c3 d3 441 //Transform starts -- horizontal transform 442 /*------------------------------------------------------------------*/ 443 /* z0 = w0 + w2 */ 444 temp0 = _mm_add_epi32(resq_r0, resq_r2); 445 /* z1 = w0 - w2 */ 446 temp1 = _mm_sub_epi32(resq_r0, resq_r2); 447 /* z2 = (w1 >> 1) - w3 */ 448 temp2 = _mm_srai_epi32(resq_r1, 1); //(w1>>1) 449 temp2 = _mm_sub_epi32(temp2, resq_r3); //(w1>>1) - w3 450 /* z3 = w1 + (w3 >> 1) */ 451 temp3 = _mm_srai_epi32(resq_r3, 1); //(w3>>1) + w1 452 temp3 = _mm_add_epi32(temp3, resq_r1); 453 /*----------------------------------------------------------*/ 454 /* x0 = z0 + z3 */ 455 resq_r0 = _mm_add_epi32(temp0, temp3); 456 /* x1 = z1 + z2 */ 457 resq_r1 = _mm_add_epi32(temp1, temp2); 458 /* x2 = z1 - z2 */ 459 resq_r2 = _mm_sub_epi32(temp1, temp2); 460 /* x3 = z0 - z3 */ 461 resq_r3 = _mm_sub_epi32(temp0, temp3); 462 // Matrix transpose 463 /* 464 * a0 b0 c0 d0 465 * a1 b1 c1 d1 466 * a2 b2 c2 d2 467 * a3 b3 c3 d3 468 */ 469 temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 a1 b0 b1 470 temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //a2 a3 b2 b3 471 temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //c0 c1 d0 d1 472 temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 c3 d2 d3 473 resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 a1 a2 a3 474 resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //b0 b1 b2 b3 475 resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //c0 c1 c2 c3 476 resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //d0 d1 d2 d3 477 //Transform ends -- horizontal transform 478 479 //Load pred buffer 480 pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits 481 pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits 482 pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits 483 pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits 484 485 pred_r0 = _mm_and_si128(pred_r0, chroma_mask); 486 pred_r1 = _mm_and_si128(pred_r1, chroma_mask); 487 pred_r2 = _mm_and_si128(pred_r2, chroma_mask); 488 pred_r3 = _mm_and_si128(pred_r3, chroma_mask); 489 490 pred_r0 = _mm_cvtepu16_epi32(pred_r0); //p00 p01 p02 p03 -- all 32 bits 491 pred_r1 = _mm_cvtepu16_epi32(pred_r1); //p10 p11 p12 p13 -- all 32 bits 492 pred_r2 = _mm_cvtepu16_epi32(pred_r2); //p20 p21 p22 p23 -- all 32 bits 493 pred_r3 = _mm_cvtepu16_epi32(pred_r3); //p30 p31 p32 p33 -- all 32 bits 494 495 /*--------------------------------------------------------------*/ 496 /* IDCT [ Vertical transformation] and Xij = (xij + 32)>>6 */ 497 /* */ 498 /* Add the prediction and store it back to same buffer */ 499 /*--------------------------------------------------------------*/ 500 /* z0j = y0j + y2j */ 501 temp0 = _mm_add_epi32(resq_r0, resq_r2); 502 /* z1j = y0j - y2j */ 503 temp1 = _mm_sub_epi32(resq_r0, resq_r2); 504 /* z2j = (y1j>>1) - y3j */ 505 temp2 = _mm_srai_epi32(resq_r1, 1); //(y1j>>1) 506 temp2 = _mm_sub_epi32(temp2, resq_r3); 507 /* z3j = y1j + (y3j>>1) */ 508 temp3 = _mm_srai_epi32(resq_r3, 1); //(y3j>>1) 509 temp3 = _mm_add_epi32(temp3, resq_r1); 510 511 /* x0j = z0j + z3j */ 512 temp4 = _mm_add_epi32(temp0, temp3); 513 temp4 = _mm_add_epi32(temp4, value_32); 514 temp4 = _mm_srai_epi32(temp4, 6); 515 temp4 = _mm_add_epi32(temp4, pred_r0); 516 /* x1j = z1j + z2j */ 517 temp5 = _mm_add_epi32(temp1, temp2); 518 temp5 = _mm_add_epi32(temp5, value_32); 519 temp5 = _mm_srai_epi32(temp5, 6); 520 temp5 = _mm_add_epi32(temp5, pred_r1); 521 /* x2j = z1j - z2j */ 522 temp6 = _mm_sub_epi32(temp1, temp2); 523 temp6 = _mm_add_epi32(temp6, value_32); 524 temp6 = _mm_srai_epi32(temp6, 6); 525 temp6 = _mm_add_epi32(temp6, pred_r2); 526 /* x3j = z0j - z3j */ 527 temp7 = _mm_sub_epi32(temp0, temp3); 528 temp7 = _mm_add_epi32(temp7, value_32); 529 temp7 = _mm_srai_epi32(temp7, 6); 530 temp7 = _mm_add_epi32(temp7, pred_r3); 531 532 // 32-bit to 16-bit conversion 533 temp0 = _mm_packs_epi32(temp4, temp5); 534 temp1 = _mm_packs_epi32(temp6, temp7); 535 /*------------------------------------------------------------------*/ 536 //Clipping the results to 8 bits 537 sign_reg = _mm_cmpgt_epi16(temp0, zero_8x16b); // sign check 538 temp0 = _mm_and_si128(temp0, sign_reg); 539 sign_reg = _mm_cmpgt_epi16(temp1, zero_8x16b); 540 temp1 = _mm_and_si128(temp1, sign_reg); 541 542 resq_r0 = _mm_packus_epi16(temp0, temp1); 543 resq_r1 = _mm_srli_si128(resq_r0, 4); 544 resq_r2 = _mm_srli_si128(resq_r1, 4); 545 resq_r3 = _mm_srli_si128(resq_r2, 4); 546 547 resq_r0 = _mm_cvtepu8_epi16(resq_r0); //p00 p01 p02 p03 -- all 16 bits 548 resq_r1 = _mm_cvtepu8_epi16(resq_r1); //p10 p11 p12 p13 -- all 16 bits 549 resq_r2 = _mm_cvtepu8_epi16(resq_r2); //p20 p21 p22 p23 -- all 16 bits 550 resq_r3 = _mm_cvtepu8_epi16(resq_r3); //p30 p31 p32 p33 -- all 16 bits 551 552 chroma_mask = _mm_set1_epi16 (0xFF00); 553 out_r0 = _mm_loadl_epi64((__m128i *) (&pu1_out[0])); 554 out_r1 = _mm_loadl_epi64((__m128i *) (&pu1_out[out_strd])); 555 out_r2 = _mm_loadl_epi64((__m128i *) (&pu1_out[2 * out_strd])); 556 out_r3 = _mm_loadl_epi64((__m128i *) (&pu1_out[3 * out_strd])); 557 558 out_r0 = _mm_and_si128(out_r0, chroma_mask); 559 out_r1 = _mm_and_si128(out_r1, chroma_mask); 560 out_r2 = _mm_and_si128(out_r2, chroma_mask); 561 out_r3 = _mm_and_si128(out_r3, chroma_mask); 562 563 out_r0 = _mm_add_epi8(out_r0, resq_r0); 564 out_r1 = _mm_add_epi8(out_r1, resq_r1); 565 out_r2 = _mm_add_epi8(out_r2, resq_r2); 566 out_r3 = _mm_add_epi8(out_r3, resq_r3); 567 568 _mm_storel_epi64((__m128i *)(&pu1_out[0]), out_r0); 569 _mm_storel_epi64((__m128i *)(&pu1_out[out_strd]), out_r1); 570 _mm_storel_epi64((__m128i *)(&pu1_out[2 * out_strd]), out_r2); 571 _mm_storel_epi64((__m128i *)(&pu1_out[3 * out_strd]), out_r3); 572} 573