1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides a simple and efficient mechanism for performing general
11// tree-based pattern matches on the LLVM IR.  The power of these routines is
12// that it allows you to write concise patterns that are expressive and easy to
13// understand.  The other major advantage of this is that it allows you to
14// trivially capture/bind elements in the pattern to variables.  For example,
15// you can do something like this:
16//
17//  Value *Exp = ...
18//  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
19//  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20//                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
21//    ... Pattern is matched and variables are bound ...
22//  }
23//
24// This is primarily useful to things like the instruction combiner, but can
25// also be useful for static analysis tools or code generators.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_IR_PATTERNMATCH_H
30#define LLVM_IR_PATTERNMATCH_H
31
32#include "llvm/IR/CallSite.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/Operator.h"
37
38namespace llvm {
39namespace PatternMatch {
40
41template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
42  return const_cast<Pattern &>(P).match(V);
43}
44
45template <typename SubPattern_t> struct OneUse_match {
46  SubPattern_t SubPattern;
47
48  OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
49
50  template <typename OpTy> bool match(OpTy *V) {
51    return V->hasOneUse() && SubPattern.match(V);
52  }
53};
54
55template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
56  return SubPattern;
57}
58
59template <typename Class> struct class_match {
60  template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
61};
62
63/// \brief Match an arbitrary value and ignore it.
64inline class_match<Value> m_Value() { return class_match<Value>(); }
65
66/// \brief Match an arbitrary binary operation and ignore it.
67inline class_match<BinaryOperator> m_BinOp() {
68  return class_match<BinaryOperator>();
69}
70
71/// \brief Matches any compare instruction and ignore it.
72inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
73
74/// \brief Match an arbitrary ConstantInt and ignore it.
75inline class_match<ConstantInt> m_ConstantInt() {
76  return class_match<ConstantInt>();
77}
78
79/// \brief Match an arbitrary undef constant.
80inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
81
82/// \brief Match an arbitrary Constant and ignore it.
83inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
84
85/// Matching combinators
86template <typename LTy, typename RTy> struct match_combine_or {
87  LTy L;
88  RTy R;
89
90  match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
91
92  template <typename ITy> bool match(ITy *V) {
93    if (L.match(V))
94      return true;
95    if (R.match(V))
96      return true;
97    return false;
98  }
99};
100
101template <typename LTy, typename RTy> struct match_combine_and {
102  LTy L;
103  RTy R;
104
105  match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
106
107  template <typename ITy> bool match(ITy *V) {
108    if (L.match(V))
109      if (R.match(V))
110        return true;
111    return false;
112  }
113};
114
115/// Combine two pattern matchers matching L || R
116template <typename LTy, typename RTy>
117inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
118  return match_combine_or<LTy, RTy>(L, R);
119}
120
121/// Combine two pattern matchers matching L && R
122template <typename LTy, typename RTy>
123inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
124  return match_combine_and<LTy, RTy>(L, R);
125}
126
127struct match_zero {
128  template <typename ITy> bool match(ITy *V) {
129    if (const auto *C = dyn_cast<Constant>(V))
130      return C->isNullValue();
131    return false;
132  }
133};
134
135/// \brief Match an arbitrary zero/null constant.  This includes
136/// zero_initializer for vectors and ConstantPointerNull for pointers.
137inline match_zero m_Zero() { return match_zero(); }
138
139struct match_neg_zero {
140  template <typename ITy> bool match(ITy *V) {
141    if (const auto *C = dyn_cast<Constant>(V))
142      return C->isNegativeZeroValue();
143    return false;
144  }
145};
146
147/// \brief Match an arbitrary zero/null constant.  This includes
148/// zero_initializer for vectors and ConstantPointerNull for pointers. For
149/// floating point constants, this will match negative zero but not positive
150/// zero
151inline match_neg_zero m_NegZero() { return match_neg_zero(); }
152
153/// \brief - Match an arbitrary zero/null constant.  This includes
154/// zero_initializer for vectors and ConstantPointerNull for pointers. For
155/// floating point constants, this will match negative zero and positive zero
156inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
157  return m_CombineOr(m_Zero(), m_NegZero());
158}
159
160struct apint_match {
161  const APInt *&Res;
162  apint_match(const APInt *&R) : Res(R) {}
163  template <typename ITy> bool match(ITy *V) {
164    if (auto *CI = dyn_cast<ConstantInt>(V)) {
165      Res = &CI->getValue();
166      return true;
167    }
168    if (V->getType()->isVectorTy())
169      if (const auto *C = dyn_cast<Constant>(V))
170        if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
171          Res = &CI->getValue();
172          return true;
173        }
174    return false;
175  }
176};
177
178/// \brief Match a ConstantInt or splatted ConstantVector, binding the
179/// specified pointer to the contained APInt.
180inline apint_match m_APInt(const APInt *&Res) { return Res; }
181
182template <int64_t Val> struct constantint_match {
183  template <typename ITy> bool match(ITy *V) {
184    if (const auto *CI = dyn_cast<ConstantInt>(V)) {
185      const APInt &CIV = CI->getValue();
186      if (Val >= 0)
187        return CIV == static_cast<uint64_t>(Val);
188      // If Val is negative, and CI is shorter than it, truncate to the right
189      // number of bits.  If it is larger, then we have to sign extend.  Just
190      // compare their negated values.
191      return -CIV == -Val;
192    }
193    return false;
194  }
195};
196
197/// \brief Match a ConstantInt with a specific value.
198template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
199  return constantint_match<Val>();
200}
201
202/// \brief This helper class is used to match scalar and vector constants that
203/// satisfy a specified predicate.
204template <typename Predicate> struct cst_pred_ty : public Predicate {
205  template <typename ITy> bool match(ITy *V) {
206    if (const auto *CI = dyn_cast<ConstantInt>(V))
207      return this->isValue(CI->getValue());
208    if (V->getType()->isVectorTy())
209      if (const auto *C = dyn_cast<Constant>(V))
210        if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
211          return this->isValue(CI->getValue());
212    return false;
213  }
214};
215
216/// \brief This helper class is used to match scalar and vector constants that
217/// satisfy a specified predicate, and bind them to an APInt.
218template <typename Predicate> struct api_pred_ty : public Predicate {
219  const APInt *&Res;
220  api_pred_ty(const APInt *&R) : Res(R) {}
221  template <typename ITy> bool match(ITy *V) {
222    if (const auto *CI = dyn_cast<ConstantInt>(V))
223      if (this->isValue(CI->getValue())) {
224        Res = &CI->getValue();
225        return true;
226      }
227    if (V->getType()->isVectorTy())
228      if (const auto *C = dyn_cast<Constant>(V))
229        if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
230          if (this->isValue(CI->getValue())) {
231            Res = &CI->getValue();
232            return true;
233          }
234
235    return false;
236  }
237};
238
239struct is_one {
240  bool isValue(const APInt &C) { return C == 1; }
241};
242
243/// \brief Match an integer 1 or a vector with all elements equal to 1.
244inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
245inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
246
247struct is_all_ones {
248  bool isValue(const APInt &C) { return C.isAllOnesValue(); }
249};
250
251/// \brief Match an integer or vector with all bits set to true.
252inline cst_pred_ty<is_all_ones> m_AllOnes() {
253  return cst_pred_ty<is_all_ones>();
254}
255inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
256
257struct is_sign_bit {
258  bool isValue(const APInt &C) { return C.isSignBit(); }
259};
260
261/// \brief Match an integer or vector with only the sign bit(s) set.
262inline cst_pred_ty<is_sign_bit> m_SignBit() {
263  return cst_pred_ty<is_sign_bit>();
264}
265inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
266
267struct is_power2 {
268  bool isValue(const APInt &C) { return C.isPowerOf2(); }
269};
270
271/// \brief Match an integer or vector power of 2.
272inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
273inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
274
275struct is_maxsignedvalue {
276  bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
277};
278
279inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { return cst_pred_ty<is_maxsignedvalue>(); }
280inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { return V; }
281
282template <typename Class> struct bind_ty {
283  Class *&VR;
284  bind_ty(Class *&V) : VR(V) {}
285
286  template <typename ITy> bool match(ITy *V) {
287    if (auto *CV = dyn_cast<Class>(V)) {
288      VR = CV;
289      return true;
290    }
291    return false;
292  }
293};
294
295/// \brief Match a value, capturing it if we match.
296inline bind_ty<Value> m_Value(Value *&V) { return V; }
297
298/// \brief Match an instruction, capturing it if we match.
299inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
300
301/// \brief Match a binary operator, capturing it if we match.
302inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
303
304/// \brief Match a ConstantInt, capturing the value if we match.
305inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
306
307/// \brief Match a Constant, capturing the value if we match.
308inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
309
310/// \brief Match a ConstantFP, capturing the value if we match.
311inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
312
313/// \brief Match a specified Value*.
314struct specificval_ty {
315  const Value *Val;
316  specificval_ty(const Value *V) : Val(V) {}
317
318  template <typename ITy> bool match(ITy *V) { return V == Val; }
319};
320
321/// \brief Match if we have a specific specified value.
322inline specificval_ty m_Specific(const Value *V) { return V; }
323
324/// \brief Match a specified floating point value or vector of all elements of
325/// that value.
326struct specific_fpval {
327  double Val;
328  specific_fpval(double V) : Val(V) {}
329
330  template <typename ITy> bool match(ITy *V) {
331    if (const auto *CFP = dyn_cast<ConstantFP>(V))
332      return CFP->isExactlyValue(Val);
333    if (V->getType()->isVectorTy())
334      if (const auto *C = dyn_cast<Constant>(V))
335        if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
336          return CFP->isExactlyValue(Val);
337    return false;
338  }
339};
340
341/// \brief Match a specific floating point value or vector with all elements
342/// equal to the value.
343inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
344
345/// \brief Match a float 1.0 or vector with all elements equal to 1.0.
346inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
347
348struct bind_const_intval_ty {
349  uint64_t &VR;
350  bind_const_intval_ty(uint64_t &V) : VR(V) {}
351
352  template <typename ITy> bool match(ITy *V) {
353    if (const auto *CV = dyn_cast<ConstantInt>(V))
354      if (CV->getBitWidth() <= 64) {
355        VR = CV->getZExtValue();
356        return true;
357      }
358    return false;
359  }
360};
361
362/// \brief Match a specified integer value or vector of all elements of that
363// value.
364struct specific_intval {
365  uint64_t Val;
366  specific_intval(uint64_t V) : Val(V) {}
367
368  template <typename ITy> bool match(ITy *V) {
369    const auto *CI = dyn_cast<ConstantInt>(V);
370    if (!CI && V->getType()->isVectorTy())
371      if (const auto *C = dyn_cast<Constant>(V))
372        CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
373
374    if (CI && CI->getBitWidth() <= 64)
375      return CI->getZExtValue() == Val;
376
377    return false;
378  }
379};
380
381/// \brief Match a specific integer value or vector with all elements equal to
382/// the value.
383inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
384
385/// \brief Match a ConstantInt and bind to its value.  This does not match
386/// ConstantInts wider than 64-bits.
387inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
388
389//===----------------------------------------------------------------------===//
390// Matcher for any binary operator.
391//
392template <typename LHS_t, typename RHS_t> struct AnyBinaryOp_match {
393  LHS_t L;
394  RHS_t R;
395
396  AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
397
398  template <typename OpTy> bool match(OpTy *V) {
399    if (auto *I = dyn_cast<BinaryOperator>(V))
400      return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
401    return false;
402  }
403};
404
405template <typename LHS, typename RHS>
406inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
407  return AnyBinaryOp_match<LHS, RHS>(L, R);
408}
409
410//===----------------------------------------------------------------------===//
411// Matchers for specific binary operators.
412//
413
414template <typename LHS_t, typename RHS_t, unsigned Opcode>
415struct BinaryOp_match {
416  LHS_t L;
417  RHS_t R;
418
419  BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
420
421  template <typename OpTy> bool match(OpTy *V) {
422    if (V->getValueID() == Value::InstructionVal + Opcode) {
423      auto *I = cast<BinaryOperator>(V);
424      return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
425    }
426    if (auto *CE = dyn_cast<ConstantExpr>(V))
427      return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
428             R.match(CE->getOperand(1));
429    return false;
430  }
431};
432
433template <typename LHS, typename RHS>
434inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
435                                                        const RHS &R) {
436  return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
437}
438
439template <typename LHS, typename RHS>
440inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
441                                                          const RHS &R) {
442  return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
443}
444
445template <typename LHS, typename RHS>
446inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
447                                                        const RHS &R) {
448  return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
449}
450
451template <typename LHS, typename RHS>
452inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
453                                                          const RHS &R) {
454  return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
455}
456
457template <typename LHS, typename RHS>
458inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
459                                                        const RHS &R) {
460  return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
461}
462
463template <typename LHS, typename RHS>
464inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
465                                                          const RHS &R) {
466  return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
467}
468
469template <typename LHS, typename RHS>
470inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
471                                                          const RHS &R) {
472  return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
473}
474
475template <typename LHS, typename RHS>
476inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
477                                                          const RHS &R) {
478  return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
479}
480
481template <typename LHS, typename RHS>
482inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
483                                                          const RHS &R) {
484  return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
485}
486
487template <typename LHS, typename RHS>
488inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
489                                                          const RHS &R) {
490  return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
491}
492
493template <typename LHS, typename RHS>
494inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
495                                                          const RHS &R) {
496  return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
497}
498
499template <typename LHS, typename RHS>
500inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
501                                                          const RHS &R) {
502  return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
503}
504
505template <typename LHS, typename RHS>
506inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
507                                                        const RHS &R) {
508  return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
509}
510
511template <typename LHS, typename RHS>
512inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
513                                                      const RHS &R) {
514  return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
515}
516
517template <typename LHS, typename RHS>
518inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
519                                                        const RHS &R) {
520  return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
521}
522
523template <typename LHS, typename RHS>
524inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
525                                                        const RHS &R) {
526  return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
527}
528
529template <typename LHS, typename RHS>
530inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
531                                                          const RHS &R) {
532  return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
533}
534
535template <typename LHS, typename RHS>
536inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
537                                                          const RHS &R) {
538  return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
539}
540
541template <typename LHS_t, typename RHS_t, unsigned Opcode,
542          unsigned WrapFlags = 0>
543struct OverflowingBinaryOp_match {
544  LHS_t L;
545  RHS_t R;
546
547  OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
548      : L(LHS), R(RHS) {}
549
550  template <typename OpTy> bool match(OpTy *V) {
551    if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
552      if (Op->getOpcode() != Opcode)
553        return false;
554      if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
555          !Op->hasNoUnsignedWrap())
556        return false;
557      if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
558          !Op->hasNoSignedWrap())
559        return false;
560      return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
561    }
562    return false;
563  }
564};
565
566template <typename LHS, typename RHS>
567inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
568                                 OverflowingBinaryOperator::NoSignedWrap>
569m_NSWAdd(const LHS &L, const RHS &R) {
570  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
571                                   OverflowingBinaryOperator::NoSignedWrap>(
572      L, R);
573}
574template <typename LHS, typename RHS>
575inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
576                                 OverflowingBinaryOperator::NoSignedWrap>
577m_NSWSub(const LHS &L, const RHS &R) {
578  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
579                                   OverflowingBinaryOperator::NoSignedWrap>(
580      L, R);
581}
582template <typename LHS, typename RHS>
583inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
584                                 OverflowingBinaryOperator::NoSignedWrap>
585m_NSWMul(const LHS &L, const RHS &R) {
586  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
587                                   OverflowingBinaryOperator::NoSignedWrap>(
588      L, R);
589}
590template <typename LHS, typename RHS>
591inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
592                                 OverflowingBinaryOperator::NoSignedWrap>
593m_NSWShl(const LHS &L, const RHS &R) {
594  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
595                                   OverflowingBinaryOperator::NoSignedWrap>(
596      L, R);
597}
598
599template <typename LHS, typename RHS>
600inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
601                                 OverflowingBinaryOperator::NoUnsignedWrap>
602m_NUWAdd(const LHS &L, const RHS &R) {
603  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
604                                   OverflowingBinaryOperator::NoUnsignedWrap>(
605      L, R);
606}
607template <typename LHS, typename RHS>
608inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
609                                 OverflowingBinaryOperator::NoUnsignedWrap>
610m_NUWSub(const LHS &L, const RHS &R) {
611  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
612                                   OverflowingBinaryOperator::NoUnsignedWrap>(
613      L, R);
614}
615template <typename LHS, typename RHS>
616inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
617                                 OverflowingBinaryOperator::NoUnsignedWrap>
618m_NUWMul(const LHS &L, const RHS &R) {
619  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
620                                   OverflowingBinaryOperator::NoUnsignedWrap>(
621      L, R);
622}
623template <typename LHS, typename RHS>
624inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
625                                 OverflowingBinaryOperator::NoUnsignedWrap>
626m_NUWShl(const LHS &L, const RHS &R) {
627  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
628                                   OverflowingBinaryOperator::NoUnsignedWrap>(
629      L, R);
630}
631
632//===----------------------------------------------------------------------===//
633// Class that matches two different binary ops.
634//
635template <typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
636struct BinOp2_match {
637  LHS_t L;
638  RHS_t R;
639
640  BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
641
642  template <typename OpTy> bool match(OpTy *V) {
643    if (V->getValueID() == Value::InstructionVal + Opc1 ||
644        V->getValueID() == Value::InstructionVal + Opc2) {
645      auto *I = cast<BinaryOperator>(V);
646      return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
647    }
648    if (auto *CE = dyn_cast<ConstantExpr>(V))
649      return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
650             L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
651    return false;
652  }
653};
654
655/// \brief Matches LShr or AShr.
656template <typename LHS, typename RHS>
657inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
658m_Shr(const LHS &L, const RHS &R) {
659  return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
660}
661
662/// \brief Matches LShr or Shl.
663template <typename LHS, typename RHS>
664inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
665m_LogicalShift(const LHS &L, const RHS &R) {
666  return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
667}
668
669/// \brief Matches UDiv and SDiv.
670template <typename LHS, typename RHS>
671inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
672m_IDiv(const LHS &L, const RHS &R) {
673  return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
674}
675
676//===----------------------------------------------------------------------===//
677// Class that matches exact binary ops.
678//
679template <typename SubPattern_t> struct Exact_match {
680  SubPattern_t SubPattern;
681
682  Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
683
684  template <typename OpTy> bool match(OpTy *V) {
685    if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
686      return PEO->isExact() && SubPattern.match(V);
687    return false;
688  }
689};
690
691template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
692  return SubPattern;
693}
694
695//===----------------------------------------------------------------------===//
696// Matchers for CmpInst classes
697//
698
699template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
700struct CmpClass_match {
701  PredicateTy &Predicate;
702  LHS_t L;
703  RHS_t R;
704
705  CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
706      : Predicate(Pred), L(LHS), R(RHS) {}
707
708  template <typename OpTy> bool match(OpTy *V) {
709    if (Class *I = dyn_cast<Class>(V))
710      if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
711        Predicate = I->getPredicate();
712        return true;
713      }
714    return false;
715  }
716};
717
718template <typename LHS, typename RHS>
719inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
720m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
721  return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
722}
723
724template <typename LHS, typename RHS>
725inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
726m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
727  return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
728}
729
730template <typename LHS, typename RHS>
731inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
732m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
733  return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
734}
735
736//===----------------------------------------------------------------------===//
737// Matchers for SelectInst classes
738//
739
740template <typename Cond_t, typename LHS_t, typename RHS_t>
741struct SelectClass_match {
742  Cond_t C;
743  LHS_t L;
744  RHS_t R;
745
746  SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
747      : C(Cond), L(LHS), R(RHS) {}
748
749  template <typename OpTy> bool match(OpTy *V) {
750    if (auto *I = dyn_cast<SelectInst>(V))
751      return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
752             R.match(I->getOperand(2));
753    return false;
754  }
755};
756
757template <typename Cond, typename LHS, typename RHS>
758inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
759                                                  const RHS &R) {
760  return SelectClass_match<Cond, LHS, RHS>(C, L, R);
761}
762
763/// \brief This matches a select of two constants, e.g.:
764/// m_SelectCst<-1, 0>(m_Value(V))
765template <int64_t L, int64_t R, typename Cond>
766inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
767m_SelectCst(const Cond &C) {
768  return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
769}
770
771//===----------------------------------------------------------------------===//
772// Matchers for CastInst classes
773//
774
775template <typename Op_t, unsigned Opcode> struct CastClass_match {
776  Op_t Op;
777
778  CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
779
780  template <typename OpTy> bool match(OpTy *V) {
781    if (auto *O = dyn_cast<Operator>(V))
782      return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
783    return false;
784  }
785};
786
787/// \brief Matches BitCast.
788template <typename OpTy>
789inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
790  return CastClass_match<OpTy, Instruction::BitCast>(Op);
791}
792
793/// \brief Matches PtrToInt.
794template <typename OpTy>
795inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
796  return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
797}
798
799/// \brief Matches Trunc.
800template <typename OpTy>
801inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
802  return CastClass_match<OpTy, Instruction::Trunc>(Op);
803}
804
805/// \brief Matches SExt.
806template <typename OpTy>
807inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
808  return CastClass_match<OpTy, Instruction::SExt>(Op);
809}
810
811/// \brief Matches ZExt.
812template <typename OpTy>
813inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
814  return CastClass_match<OpTy, Instruction::ZExt>(Op);
815}
816
817/// \brief Matches UIToFP.
818template <typename OpTy>
819inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
820  return CastClass_match<OpTy, Instruction::UIToFP>(Op);
821}
822
823/// \brief Matches SIToFP.
824template <typename OpTy>
825inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
826  return CastClass_match<OpTy, Instruction::SIToFP>(Op);
827}
828
829//===----------------------------------------------------------------------===//
830// Matchers for unary operators
831//
832
833template <typename LHS_t> struct not_match {
834  LHS_t L;
835
836  not_match(const LHS_t &LHS) : L(LHS) {}
837
838  template <typename OpTy> bool match(OpTy *V) {
839    if (auto *O = dyn_cast<Operator>(V))
840      if (O->getOpcode() == Instruction::Xor)
841        return matchIfNot(O->getOperand(0), O->getOperand(1));
842    return false;
843  }
844
845private:
846  bool matchIfNot(Value *LHS, Value *RHS) {
847    return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
848            // FIXME: Remove CV.
849            isa<ConstantVector>(RHS)) &&
850           cast<Constant>(RHS)->isAllOnesValue() && L.match(LHS);
851  }
852};
853
854template <typename LHS> inline not_match<LHS> m_Not(const LHS &L) { return L; }
855
856template <typename LHS_t> struct neg_match {
857  LHS_t L;
858
859  neg_match(const LHS_t &LHS) : L(LHS) {}
860
861  template <typename OpTy> bool match(OpTy *V) {
862    if (auto *O = dyn_cast<Operator>(V))
863      if (O->getOpcode() == Instruction::Sub)
864        return matchIfNeg(O->getOperand(0), O->getOperand(1));
865    return false;
866  }
867
868private:
869  bool matchIfNeg(Value *LHS, Value *RHS) {
870    return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
871            isa<ConstantAggregateZero>(LHS)) &&
872           L.match(RHS);
873  }
874};
875
876/// \brief Match an integer negate.
877template <typename LHS> inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
878
879template <typename LHS_t> struct fneg_match {
880  LHS_t L;
881
882  fneg_match(const LHS_t &LHS) : L(LHS) {}
883
884  template <typename OpTy> bool match(OpTy *V) {
885    if (auto *O = dyn_cast<Operator>(V))
886      if (O->getOpcode() == Instruction::FSub)
887        return matchIfFNeg(O->getOperand(0), O->getOperand(1));
888    return false;
889  }
890
891private:
892  bool matchIfFNeg(Value *LHS, Value *RHS) {
893    if (const auto *C = dyn_cast<ConstantFP>(LHS))
894      return C->isNegativeZeroValue() && L.match(RHS);
895    return false;
896  }
897};
898
899/// \brief Match a floating point negate.
900template <typename LHS> inline fneg_match<LHS> m_FNeg(const LHS &L) {
901  return L;
902}
903
904//===----------------------------------------------------------------------===//
905// Matchers for control flow.
906//
907
908struct br_match {
909  BasicBlock *&Succ;
910  br_match(BasicBlock *&Succ) : Succ(Succ) {}
911
912  template <typename OpTy> bool match(OpTy *V) {
913    if (auto *BI = dyn_cast<BranchInst>(V))
914      if (BI->isUnconditional()) {
915        Succ = BI->getSuccessor(0);
916        return true;
917      }
918    return false;
919  }
920};
921
922inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
923
924template <typename Cond_t> struct brc_match {
925  Cond_t Cond;
926  BasicBlock *&T, *&F;
927  brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
928      : Cond(C), T(t), F(f) {}
929
930  template <typename OpTy> bool match(OpTy *V) {
931    if (auto *BI = dyn_cast<BranchInst>(V))
932      if (BI->isConditional() && Cond.match(BI->getCondition())) {
933        T = BI->getSuccessor(0);
934        F = BI->getSuccessor(1);
935        return true;
936      }
937    return false;
938  }
939};
940
941template <typename Cond_t>
942inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
943  return brc_match<Cond_t>(C, T, F);
944}
945
946//===----------------------------------------------------------------------===//
947// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
948//
949
950template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
951struct MaxMin_match {
952  LHS_t L;
953  RHS_t R;
954
955  MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
956
957  template <typename OpTy> bool match(OpTy *V) {
958    // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
959    auto *SI = dyn_cast<SelectInst>(V);
960    if (!SI)
961      return false;
962    auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
963    if (!Cmp)
964      return false;
965    // At this point we have a select conditioned on a comparison.  Check that
966    // it is the values returned by the select that are being compared.
967    Value *TrueVal = SI->getTrueValue();
968    Value *FalseVal = SI->getFalseValue();
969    Value *LHS = Cmp->getOperand(0);
970    Value *RHS = Cmp->getOperand(1);
971    if ((TrueVal != LHS || FalseVal != RHS) &&
972        (TrueVal != RHS || FalseVal != LHS))
973      return false;
974    typename CmpInst_t::Predicate Pred =
975        LHS == TrueVal ? Cmp->getPredicate() : Cmp->getSwappedPredicate();
976    // Does "(x pred y) ? x : y" represent the desired max/min operation?
977    if (!Pred_t::match(Pred))
978      return false;
979    // It does!  Bind the operands.
980    return L.match(LHS) && R.match(RHS);
981  }
982};
983
984/// \brief Helper class for identifying signed max predicates.
985struct smax_pred_ty {
986  static bool match(ICmpInst::Predicate Pred) {
987    return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
988  }
989};
990
991/// \brief Helper class for identifying signed min predicates.
992struct smin_pred_ty {
993  static bool match(ICmpInst::Predicate Pred) {
994    return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
995  }
996};
997
998/// \brief Helper class for identifying unsigned max predicates.
999struct umax_pred_ty {
1000  static bool match(ICmpInst::Predicate Pred) {
1001    return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1002  }
1003};
1004
1005/// \brief Helper class for identifying unsigned min predicates.
1006struct umin_pred_ty {
1007  static bool match(ICmpInst::Predicate Pred) {
1008    return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1009  }
1010};
1011
1012/// \brief Helper class for identifying ordered max predicates.
1013struct ofmax_pred_ty {
1014  static bool match(FCmpInst::Predicate Pred) {
1015    return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1016  }
1017};
1018
1019/// \brief Helper class for identifying ordered min predicates.
1020struct ofmin_pred_ty {
1021  static bool match(FCmpInst::Predicate Pred) {
1022    return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1023  }
1024};
1025
1026/// \brief Helper class for identifying unordered max predicates.
1027struct ufmax_pred_ty {
1028  static bool match(FCmpInst::Predicate Pred) {
1029    return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1030  }
1031};
1032
1033/// \brief Helper class for identifying unordered min predicates.
1034struct ufmin_pred_ty {
1035  static bool match(FCmpInst::Predicate Pred) {
1036    return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1037  }
1038};
1039
1040template <typename LHS, typename RHS>
1041inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1042                                                             const RHS &R) {
1043  return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1044}
1045
1046template <typename LHS, typename RHS>
1047inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1048                                                             const RHS &R) {
1049  return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1050}
1051
1052template <typename LHS, typename RHS>
1053inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1054                                                             const RHS &R) {
1055  return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1056}
1057
1058template <typename LHS, typename RHS>
1059inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1060                                                             const RHS &R) {
1061  return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1062}
1063
1064/// \brief Match an 'ordered' floating point maximum function.
1065/// Floating point has one special value 'NaN'. Therefore, there is no total
1066/// order. However, if we can ignore the 'NaN' value (for example, because of a
1067/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1068/// semantics. In the presence of 'NaN' we have to preserve the original
1069/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1070///
1071///                         max(L, R)  iff L and R are not NaN
1072///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1073template <typename LHS, typename RHS>
1074inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1075                                                                 const RHS &R) {
1076  return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1077}
1078
1079/// \brief Match an 'ordered' floating point minimum function.
1080/// Floating point has one special value 'NaN'. Therefore, there is no total
1081/// order. However, if we can ignore the 'NaN' value (for example, because of a
1082/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1083/// semantics. In the presence of 'NaN' we have to preserve the original
1084/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1085///
1086///                         max(L, R)  iff L and R are not NaN
1087///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1088template <typename LHS, typename RHS>
1089inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1090                                                                 const RHS &R) {
1091  return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1092}
1093
1094/// \brief Match an 'unordered' floating point maximum function.
1095/// Floating point has one special value 'NaN'. Therefore, there is no total
1096/// order. However, if we can ignore the 'NaN' value (for example, because of a
1097/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1098/// semantics. In the presence of 'NaN' we have to preserve the original
1099/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1100///
1101///                         max(L, R)  iff L and R are not NaN
1102///  m_UnordFMin(L, R) =    L          iff L or R are NaN
1103template <typename LHS, typename RHS>
1104inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1105m_UnordFMax(const LHS &L, const RHS &R) {
1106  return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1107}
1108
1109//===----------------------------------------------------------------------===//
1110// Matchers for overflow check patterns: e.g. (a + b) u< a
1111//
1112
1113template <typename LHS_t, typename RHS_t, typename Sum_t>
1114struct UAddWithOverflow_match {
1115  LHS_t L;
1116  RHS_t R;
1117  Sum_t S;
1118
1119  UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1120      : L(L), R(R), S(S) {}
1121
1122  template <typename OpTy> bool match(OpTy *V) {
1123    Value *ICmpLHS, *ICmpRHS;
1124    ICmpInst::Predicate Pred;
1125    if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1126      return false;
1127
1128    Value *AddLHS, *AddRHS;
1129    auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1130
1131    // (a + b) u< a, (a + b) u< b
1132    if (Pred == ICmpInst::ICMP_ULT)
1133      if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1134        return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1135
1136    // a >u (a + b), b >u (a + b)
1137    if (Pred == ICmpInst::ICMP_UGT)
1138      if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1139        return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1140
1141    return false;
1142  }
1143};
1144
1145/// \brief Match an icmp instruction checking for unsigned overflow on addition.
1146///
1147/// S is matched to the addition whose result is being checked for overflow, and
1148/// L and R are matched to the LHS and RHS of S.
1149template <typename LHS_t, typename RHS_t, typename Sum_t>
1150UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1151m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1152  return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1153}
1154
1155/// \brief Match an 'unordered' floating point minimum function.
1156/// Floating point has one special value 'NaN'. Therefore, there is no total
1157/// order. However, if we can ignore the 'NaN' value (for example, because of a
1158/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1159/// semantics. In the presence of 'NaN' we have to preserve the original
1160/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1161///
1162///                          max(L, R)  iff L and R are not NaN
1163///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1164template <typename LHS, typename RHS>
1165inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1166m_UnordFMin(const LHS &L, const RHS &R) {
1167  return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1168}
1169
1170template <typename Opnd_t> struct Argument_match {
1171  unsigned OpI;
1172  Opnd_t Val;
1173  Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1174
1175  template <typename OpTy> bool match(OpTy *V) {
1176    CallSite CS(V);
1177    return CS.isCall() && Val.match(CS.getArgument(OpI));
1178  }
1179};
1180
1181/// \brief Match an argument.
1182template <unsigned OpI, typename Opnd_t>
1183inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1184  return Argument_match<Opnd_t>(OpI, Op);
1185}
1186
1187/// \brief Intrinsic matchers.
1188struct IntrinsicID_match {
1189  unsigned ID;
1190  IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1191
1192  template <typename OpTy> bool match(OpTy *V) {
1193    if (const auto *CI = dyn_cast<CallInst>(V))
1194      if (const auto *F = CI->getCalledFunction())
1195        return F->getIntrinsicID() == ID;
1196    return false;
1197  }
1198};
1199
1200/// Intrinsic matches are combinations of ID matchers, and argument
1201/// matchers. Higher arity matcher are defined recursively in terms of and-ing
1202/// them with lower arity matchers. Here's some convenient typedefs for up to
1203/// several arguments, and more can be added as needed
1204template <typename T0 = void, typename T1 = void, typename T2 = void,
1205          typename T3 = void, typename T4 = void, typename T5 = void,
1206          typename T6 = void, typename T7 = void, typename T8 = void,
1207          typename T9 = void, typename T10 = void>
1208struct m_Intrinsic_Ty;
1209template <typename T0> struct m_Intrinsic_Ty<T0> {
1210  typedef match_combine_and<IntrinsicID_match, Argument_match<T0>> Ty;
1211};
1212template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1213  typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>
1214      Ty;
1215};
1216template <typename T0, typename T1, typename T2>
1217struct m_Intrinsic_Ty<T0, T1, T2> {
1218  typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1219                            Argument_match<T2>> Ty;
1220};
1221template <typename T0, typename T1, typename T2, typename T3>
1222struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1223  typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1224                            Argument_match<T3>> Ty;
1225};
1226
1227/// \brief Match intrinsic calls like this:
1228/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1229template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1230  return IntrinsicID_match(IntrID);
1231}
1232
1233template <Intrinsic::ID IntrID, typename T0>
1234inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1235  return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1236}
1237
1238template <Intrinsic::ID IntrID, typename T0, typename T1>
1239inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1240                                                       const T1 &Op1) {
1241  return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1242}
1243
1244template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1245inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1246m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1247  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1248}
1249
1250template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1251          typename T3>
1252inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1253m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1254  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1255}
1256
1257// Helper intrinsic matching specializations.
1258template <typename Opnd0>
1259inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1260  return m_Intrinsic<Intrinsic::bswap>(Op0);
1261}
1262
1263template <typename Opnd0, typename Opnd1>
1264inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1265                                                        const Opnd1 &Op1) {
1266  return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1267}
1268
1269template <typename Opnd0, typename Opnd1>
1270inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1271                                                        const Opnd1 &Op1) {
1272  return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1273}
1274
1275} // end namespace PatternMatch
1276} // end namespace llvm
1277
1278#endif
1279