1//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic AliasAnalysis interface which is used as the
11// common interface used by all clients and implementations of alias analysis.
12//
13// This file also implements the default version of the AliasAnalysis interface
14// that is to be used when no other implementation is specified.  This does some
15// simple tests that detect obvious cases: two different global pointers cannot
16// alias, a global cannot alias a malloc, two different mallocs cannot alias,
17// etc.
18//
19// This alias analysis implementation really isn't very good for anything, but
20// it is very fast, and makes a nice clean default implementation.  Because it
21// handles lots of little corner cases, other, more complex, alias analysis
22// implementations may choose to rely on this pass to resolve these simple and
23// easy cases.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/CFG.h"
29#include "llvm/Analysis/CaptureTracking.h"
30#include "llvm/Analysis/TargetLibraryInfo.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/LLVMContext.h"
39#include "llvm/IR/Type.h"
40#include "llvm/Pass.h"
41using namespace llvm;
42
43// Register the AliasAnalysis interface, providing a nice name to refer to.
44INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
45char AliasAnalysis::ID = 0;
46
47//===----------------------------------------------------------------------===//
48// Default chaining methods
49//===----------------------------------------------------------------------===//
50
51AliasAnalysis::AliasResult
52AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
53  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
54  return AA->alias(LocA, LocB);
55}
56
57bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
58                                           bool OrLocal) {
59  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
60  return AA->pointsToConstantMemory(Loc, OrLocal);
61}
62
63AliasAnalysis::Location
64AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
65                              AliasAnalysis::ModRefResult &Mask) {
66  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
67  return AA->getArgLocation(CS, ArgIdx, Mask);
68}
69
70void AliasAnalysis::deleteValue(Value *V) {
71  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
72  AA->deleteValue(V);
73}
74
75void AliasAnalysis::copyValue(Value *From, Value *To) {
76  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
77  AA->copyValue(From, To);
78}
79
80void AliasAnalysis::addEscapingUse(Use &U) {
81  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
82  AA->addEscapingUse(U);
83}
84
85AliasAnalysis::ModRefResult
86AliasAnalysis::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
87  // We may have two calls
88  if (auto CS = ImmutableCallSite(I)) {
89    // Check if the two calls modify the same memory
90    return getModRefInfo(Call, CS);
91  } else {
92    // Otherwise, check if the call modifies or references the
93    // location this memory access defines.  The best we can say
94    // is that if the call references what this instruction
95    // defines, it must be clobbered by this location.
96    const AliasAnalysis::Location DefLoc = AA->getLocation(I);
97    if (getModRefInfo(Call, DefLoc) != AliasAnalysis::NoModRef)
98      return AliasAnalysis::ModRef;
99  }
100  return AliasAnalysis::NoModRef;
101}
102
103AliasAnalysis::ModRefResult
104AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
105                             const Location &Loc) {
106  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
107
108  ModRefBehavior MRB = getModRefBehavior(CS);
109  if (MRB == DoesNotAccessMemory)
110    return NoModRef;
111
112  ModRefResult Mask = ModRef;
113  if (onlyReadsMemory(MRB))
114    Mask = Ref;
115
116  if (onlyAccessesArgPointees(MRB)) {
117    bool doesAlias = false;
118    ModRefResult AllArgsMask = NoModRef;
119    if (doesAccessArgPointees(MRB)) {
120      for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
121           AI != AE; ++AI) {
122        const Value *Arg = *AI;
123        if (!Arg->getType()->isPointerTy())
124          continue;
125        ModRefResult ArgMask;
126        Location CSLoc =
127          getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
128                         ArgMask);
129        if (!isNoAlias(CSLoc, Loc)) {
130          doesAlias = true;
131          AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
132        }
133      }
134    }
135    if (!doesAlias)
136      return NoModRef;
137    Mask = ModRefResult(Mask & AllArgsMask);
138  }
139
140  // If Loc is a constant memory location, the call definitely could not
141  // modify the memory location.
142  if ((Mask & Mod) && pointsToConstantMemory(Loc))
143    Mask = ModRefResult(Mask & ~Mod);
144
145  // If this is the end of the chain, don't forward.
146  if (!AA) return Mask;
147
148  // Otherwise, fall back to the next AA in the chain. But we can merge
149  // in any mask we've managed to compute.
150  return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
151}
152
153AliasAnalysis::ModRefResult
154AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
155  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
156
157  // If CS1 or CS2 are readnone, they don't interact.
158  ModRefBehavior CS1B = getModRefBehavior(CS1);
159  if (CS1B == DoesNotAccessMemory) return NoModRef;
160
161  ModRefBehavior CS2B = getModRefBehavior(CS2);
162  if (CS2B == DoesNotAccessMemory) return NoModRef;
163
164  // If they both only read from memory, there is no dependence.
165  if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
166    return NoModRef;
167
168  AliasAnalysis::ModRefResult Mask = ModRef;
169
170  // If CS1 only reads memory, the only dependence on CS2 can be
171  // from CS1 reading memory written by CS2.
172  if (onlyReadsMemory(CS1B))
173    Mask = ModRefResult(Mask & Ref);
174
175  // If CS2 only access memory through arguments, accumulate the mod/ref
176  // information from CS1's references to the memory referenced by
177  // CS2's arguments.
178  if (onlyAccessesArgPointees(CS2B)) {
179    AliasAnalysis::ModRefResult R = NoModRef;
180    if (doesAccessArgPointees(CS2B)) {
181      for (ImmutableCallSite::arg_iterator
182           I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
183        const Value *Arg = *I;
184        if (!Arg->getType()->isPointerTy())
185          continue;
186        ModRefResult ArgMask;
187        Location CS2Loc =
188          getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
189                         ArgMask);
190        // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
191        // CS1 on that location is the inverse.
192        if (ArgMask == Mod)
193          ArgMask = ModRef;
194        else if (ArgMask == Ref)
195          ArgMask = Mod;
196
197        R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
198        if (R == Mask)
199          break;
200      }
201    }
202    return R;
203  }
204
205  // If CS1 only accesses memory through arguments, check if CS2 references
206  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
207  if (onlyAccessesArgPointees(CS1B)) {
208    AliasAnalysis::ModRefResult R = NoModRef;
209    if (doesAccessArgPointees(CS1B)) {
210      for (ImmutableCallSite::arg_iterator
211           I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
212        const Value *Arg = *I;
213        if (!Arg->getType()->isPointerTy())
214          continue;
215        ModRefResult ArgMask;
216        Location CS1Loc = getArgLocation(
217            CS1, (unsigned)std::distance(CS1.arg_begin(), I), ArgMask);
218        // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
219        // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
220        // might Ref, then we care only about a Mod by CS2.
221        ModRefResult ArgR = getModRefInfo(CS2, CS1Loc);
222        if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
223            ((ArgMask & Ref) != NoModRef && (ArgR & Mod)    != NoModRef))
224          R = ModRefResult((R | ArgMask) & Mask);
225
226        if (R == Mask)
227          break;
228      }
229    }
230    return R;
231  }
232
233  // If this is the end of the chain, don't forward.
234  if (!AA) return Mask;
235
236  // Otherwise, fall back to the next AA in the chain. But we can merge
237  // in any mask we've managed to compute.
238  return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
239}
240
241AliasAnalysis::ModRefBehavior
242AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
243  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
244
245  ModRefBehavior Min = UnknownModRefBehavior;
246
247  // Call back into the alias analysis with the other form of getModRefBehavior
248  // to see if it can give a better response.
249  if (const Function *F = CS.getCalledFunction())
250    Min = getModRefBehavior(F);
251
252  // If this is the end of the chain, don't forward.
253  if (!AA) return Min;
254
255  // Otherwise, fall back to the next AA in the chain. But we can merge
256  // in any result we've managed to compute.
257  return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
258}
259
260AliasAnalysis::ModRefBehavior
261AliasAnalysis::getModRefBehavior(const Function *F) {
262  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
263  return AA->getModRefBehavior(F);
264}
265
266//===----------------------------------------------------------------------===//
267// AliasAnalysis non-virtual helper method implementation
268//===----------------------------------------------------------------------===//
269
270AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
271  AAMDNodes AATags;
272  LI->getAAMetadata(AATags);
273
274  return Location(LI->getPointerOperand(),
275                  getTypeStoreSize(LI->getType()), AATags);
276}
277
278AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
279  AAMDNodes AATags;
280  SI->getAAMetadata(AATags);
281
282  return Location(SI->getPointerOperand(),
283                  getTypeStoreSize(SI->getValueOperand()->getType()), AATags);
284}
285
286AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
287  AAMDNodes AATags;
288  VI->getAAMetadata(AATags);
289
290  return Location(VI->getPointerOperand(), UnknownSize, AATags);
291}
292
293AliasAnalysis::Location
294AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
295  AAMDNodes AATags;
296  CXI->getAAMetadata(AATags);
297
298  return Location(CXI->getPointerOperand(),
299                  getTypeStoreSize(CXI->getCompareOperand()->getType()),
300                  AATags);
301}
302
303AliasAnalysis::Location
304AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
305  AAMDNodes AATags;
306  RMWI->getAAMetadata(AATags);
307
308  return Location(RMWI->getPointerOperand(),
309                  getTypeStoreSize(RMWI->getValOperand()->getType()), AATags);
310}
311
312AliasAnalysis::Location
313AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
314  uint64_t Size = UnknownSize;
315  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
316    Size = C->getValue().getZExtValue();
317
318  // memcpy/memmove can have AA tags. For memcpy, they apply
319  // to both the source and the destination.
320  AAMDNodes AATags;
321  MTI->getAAMetadata(AATags);
322
323  return Location(MTI->getRawSource(), Size, AATags);
324}
325
326AliasAnalysis::Location
327AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
328  uint64_t Size = UnknownSize;
329  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
330    Size = C->getValue().getZExtValue();
331
332  // memcpy/memmove can have AA tags. For memcpy, they apply
333  // to both the source and the destination.
334  AAMDNodes AATags;
335  MTI->getAAMetadata(AATags);
336
337  return Location(MTI->getRawDest(), Size, AATags);
338}
339
340
341
342AliasAnalysis::ModRefResult
343AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
344  // Be conservative in the face of volatile/atomic.
345  if (!L->isUnordered())
346    return ModRef;
347
348  // If the load address doesn't alias the given address, it doesn't read
349  // or write the specified memory.
350  if (Loc.Ptr && !alias(getLocation(L), Loc))
351    return NoModRef;
352
353  // Otherwise, a load just reads.
354  return Ref;
355}
356
357AliasAnalysis::ModRefResult
358AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
359  // Be conservative in the face of volatile/atomic.
360  if (!S->isUnordered())
361    return ModRef;
362
363  if (Loc.Ptr) {
364    // If the store address cannot alias the pointer in question, then the
365    // specified memory cannot be modified by the store.
366    if (!alias(getLocation(S), Loc))
367      return NoModRef;
368
369    // If the pointer is a pointer to constant memory, then it could not have
370    // been modified by this store.
371    if (pointsToConstantMemory(Loc))
372      return NoModRef;
373
374  }
375
376  // Otherwise, a store just writes.
377  return Mod;
378}
379
380AliasAnalysis::ModRefResult
381AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
382  // If the va_arg address cannot alias the pointer in question, then the
383  // specified memory cannot be accessed by the va_arg.
384  if (!alias(getLocation(V), Loc))
385    return NoModRef;
386
387  // If the pointer is a pointer to constant memory, then it could not have been
388  // modified by this va_arg.
389  if (pointsToConstantMemory(Loc))
390    return NoModRef;
391
392  // Otherwise, a va_arg reads and writes.
393  return ModRef;
394}
395
396AliasAnalysis::ModRefResult
397AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
398  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
399  if (CX->getSuccessOrdering() > Monotonic)
400    return ModRef;
401
402  // If the cmpxchg address does not alias the location, it does not access it.
403  if (!alias(getLocation(CX), Loc))
404    return NoModRef;
405
406  return ModRef;
407}
408
409AliasAnalysis::ModRefResult
410AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
411  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
412  if (RMW->getOrdering() > Monotonic)
413    return ModRef;
414
415  // If the atomicrmw address does not alias the location, it does not access it.
416  if (!alias(getLocation(RMW), Loc))
417    return NoModRef;
418
419  return ModRef;
420}
421
422// FIXME: this is really just shoring-up a deficiency in alias analysis.
423// BasicAA isn't willing to spend linear time determining whether an alloca
424// was captured before or after this particular call, while we are. However,
425// with a smarter AA in place, this test is just wasting compile time.
426AliasAnalysis::ModRefResult
427AliasAnalysis::callCapturesBefore(const Instruction *I,
428                                  const AliasAnalysis::Location &MemLoc,
429                                  DominatorTree *DT) {
430  if (!DT)
431    return AliasAnalysis::ModRef;
432
433  const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL);
434  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
435      isa<Constant>(Object))
436    return AliasAnalysis::ModRef;
437
438  ImmutableCallSite CS(I);
439  if (!CS.getInstruction() || CS.getInstruction() == Object)
440    return AliasAnalysis::ModRef;
441
442  if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
443                                       /* StoreCaptures */ true, I, DT,
444                                       /* include Object */ true))
445    return AliasAnalysis::ModRef;
446
447  unsigned ArgNo = 0;
448  AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
449  for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
450       CI != CE; ++CI, ++ArgNo) {
451    // Only look at the no-capture or byval pointer arguments.  If this
452    // pointer were passed to arguments that were neither of these, then it
453    // couldn't be no-capture.
454    if (!(*CI)->getType()->isPointerTy() ||
455        (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
456      continue;
457
458    // If this is a no-capture pointer argument, see if we can tell that it
459    // is impossible to alias the pointer we're checking.  If not, we have to
460    // assume that the call could touch the pointer, even though it doesn't
461    // escape.
462    if (isNoAlias(AliasAnalysis::Location(*CI),
463                  AliasAnalysis::Location(Object)))
464      continue;
465    if (CS.doesNotAccessMemory(ArgNo))
466      continue;
467    if (CS.onlyReadsMemory(ArgNo)) {
468      R = AliasAnalysis::Ref;
469      continue;
470    }
471    return AliasAnalysis::ModRef;
472  }
473  return R;
474}
475
476// AliasAnalysis destructor: DO NOT move this to the header file for
477// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
478// the AliasAnalysis.o file in the current .a file, causing alias analysis
479// support to not be included in the tool correctly!
480//
481AliasAnalysis::~AliasAnalysis() {}
482
483/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
484/// AliasAnalysis interface before any other methods are called.
485///
486void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) {
487  DL = NewDL;
488  auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
489  TLI = TLIP ? &TLIP->getTLI() : nullptr;
490  AA = &P->getAnalysis<AliasAnalysis>();
491}
492
493// getAnalysisUsage - All alias analysis implementations should invoke this
494// directly (using AliasAnalysis::getAnalysisUsage(AU)).
495void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
496  AU.addRequired<AliasAnalysis>();         // All AA's chain
497}
498
499/// getTypeStoreSize - Return the DataLayout store size for the given type,
500/// if known, or a conservative value otherwise.
501///
502uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
503  return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
504}
505
506/// canBasicBlockModify - Return true if it is possible for execution of the
507/// specified basic block to modify the location Loc.
508///
509bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
510                                        const Location &Loc) {
511  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
512}
513
514/// canInstructionRangeModRef - Return true if it is possible for the
515/// execution of the specified instructions to mod\ref (according to the
516/// mode) the location Loc. The instructions to consider are all
517/// of the instructions in the range of [I1,I2] INCLUSIVE.
518/// I1 and I2 must be in the same basic block.
519bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
520                                              const Instruction &I2,
521                                              const Location &Loc,
522                                              const ModRefResult Mode) {
523  assert(I1.getParent() == I2.getParent() &&
524         "Instructions not in same basic block!");
525  BasicBlock::const_iterator I = &I1;
526  BasicBlock::const_iterator E = &I2;
527  ++E;  // Convert from inclusive to exclusive range.
528
529  for (; I != E; ++I) // Check every instruction in range
530    if (getModRefInfo(I, Loc) & Mode)
531      return true;
532  return false;
533}
534
535/// isNoAliasCall - Return true if this pointer is returned by a noalias
536/// function.
537bool llvm::isNoAliasCall(const Value *V) {
538  if (isa<CallInst>(V) || isa<InvokeInst>(V))
539    return ImmutableCallSite(cast<Instruction>(V))
540      .paramHasAttr(0, Attribute::NoAlias);
541  return false;
542}
543
544/// isNoAliasArgument - Return true if this is an argument with the noalias
545/// attribute.
546bool llvm::isNoAliasArgument(const Value *V)
547{
548  if (const Argument *A = dyn_cast<Argument>(V))
549    return A->hasNoAliasAttr();
550  return false;
551}
552
553/// isIdentifiedObject - Return true if this pointer refers to a distinct and
554/// identifiable object.  This returns true for:
555///    Global Variables and Functions (but not Global Aliases)
556///    Allocas and Mallocs
557///    ByVal and NoAlias Arguments
558///    NoAlias returns
559///
560bool llvm::isIdentifiedObject(const Value *V) {
561  if (isa<AllocaInst>(V))
562    return true;
563  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
564    return true;
565  if (isNoAliasCall(V))
566    return true;
567  if (const Argument *A = dyn_cast<Argument>(V))
568    return A->hasNoAliasAttr() || A->hasByValAttr();
569  return false;
570}
571
572/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
573/// at the function-level. Different IdentifiedFunctionLocals can't alias.
574/// Further, an IdentifiedFunctionLocal can not alias with any function
575/// arguments other than itself, which is not necessarily true for
576/// IdentifiedObjects.
577bool llvm::isIdentifiedFunctionLocal(const Value *V)
578{
579  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
580}
581