1//===- DivergenceAnalysis.cpp ------ Divergence Analysis ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines divergence analysis which determines whether a branch in a
11// GPU program is divergent. It can help branch optimizations such as jump
12// threading and loop unswitching to make better decisions.
13//
14// GPU programs typically use the SIMD execution model, where multiple threads
15// in the same execution group have to execute in lock-step. Therefore, if the
16// code contains divergent branches (i.e., threads in a group do not agree on
17// which path of the branch to take), the group of threads has to execute all
18// the paths from that branch with different subsets of threads enabled until
19// they converge at the immediately post-dominating BB of the paths.
20//
21// Due to this execution model, some optimizations such as jump
22// threading and loop unswitching can be unfortunately harmful when performed on
23// divergent branches. Therefore, an analysis that computes which branches in a
24// GPU program are divergent can help the compiler to selectively run these
25// optimizations.
26//
27// This file defines divergence analysis which computes a conservative but
28// non-trivial approximation of all divergent branches in a GPU program. It
29// partially implements the approach described in
30//
31//   Divergence Analysis
32//   Sampaio, Souza, Collange, Pereira
33//   TOPLAS '13
34//
35// The divergence analysis identifies the sources of divergence (e.g., special
36// variables that hold the thread ID), and recursively marks variables that are
37// data or sync dependent on a source of divergence as divergent.
38//
39// While data dependency is a well-known concept, the notion of sync dependency
40// is worth more explanation. Sync dependence characterizes the control flow
41// aspect of the propagation of branch divergence. For example,
42//
43//   %cond = icmp slt i32 %tid, 10
44//   br i1 %cond, label %then, label %else
45// then:
46//   br label %merge
47// else:
48//   br label %merge
49// merge:
50//   %a = phi i32 [ 0, %then ], [ 1, %else ]
51//
52// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53// because %tid is not on its use-def chains, %a is sync dependent on %tid
54// because the branch "br i1 %cond" depends on %tid and affects which value %a
55// is assigned to.
56//
57// The current implementation has the following limitations:
58// 1. intra-procedural. It conservatively considers the arguments of a
59//    non-kernel-entry function and the return value of a function call as
60//    divergent.
61// 2. memory as black box. It conservatively considers values loaded from
62//    generic or local address as divergent. This can be improved by leveraging
63//    pointer analysis.
64//===----------------------------------------------------------------------===//
65
66#include <vector>
67#include "llvm/IR/Dominators.h"
68#include "llvm/ADT/DenseSet.h"
69#include "llvm/Analysis/Passes.h"
70#include "llvm/Analysis/PostDominators.h"
71#include "llvm/Analysis/TargetTransformInfo.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/InstIterator.h"
74#include "llvm/IR/Instructions.h"
75#include "llvm/IR/IntrinsicInst.h"
76#include "llvm/IR/Value.h"
77#include "llvm/Pass.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/Transforms/Scalar.h"
82using namespace llvm;
83
84#define DEBUG_TYPE "divergence"
85
86namespace {
87class DivergenceAnalysis : public FunctionPass {
88public:
89  static char ID;
90
91  DivergenceAnalysis() : FunctionPass(ID) {
92    initializeDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
93  }
94
95  void getAnalysisUsage(AnalysisUsage &AU) const override {
96    AU.addRequired<DominatorTreeWrapperPass>();
97    AU.addRequired<PostDominatorTree>();
98    AU.setPreservesAll();
99  }
100
101  bool runOnFunction(Function &F) override;
102
103  // Print all divergent branches in the function.
104  void print(raw_ostream &OS, const Module *) const override;
105
106  // Returns true if V is divergent.
107  bool isDivergent(const Value *V) const { return DivergentValues.count(V); }
108  // Returns true if V is uniform/non-divergent.
109  bool isUniform(const Value *V) const { return !isDivergent(V); }
110
111private:
112  // Stores all divergent values.
113  DenseSet<const Value *> DivergentValues;
114};
115} // End of anonymous namespace
116
117// Register this pass.
118char DivergenceAnalysis::ID = 0;
119INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
120                      false, true)
121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
122INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
123INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
124                    false, true)
125
126namespace {
127
128class DivergencePropagator {
129public:
130  DivergencePropagator(Function &F, TargetTransformInfo &TTI,
131                       DominatorTree &DT, PostDominatorTree &PDT,
132                       DenseSet<const Value *> &DV)
133      : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
134  void populateWithSourcesOfDivergence();
135  void propagate();
136
137private:
138  // A helper function that explores data dependents of V.
139  void exploreDataDependency(Value *V);
140  // A helper function that explores sync dependents of TI.
141  void exploreSyncDependency(TerminatorInst *TI);
142  // Computes the influence region from Start to End. This region includes all
143  // basic blocks on any path from Start to End.
144  void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
145                              DenseSet<BasicBlock *> &InfluenceRegion);
146  // Finds all users of I that are outside the influence region, and add these
147  // users to Worklist.
148  void findUsersOutsideInfluenceRegion(
149      Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
150
151  Function &F;
152  TargetTransformInfo &TTI;
153  DominatorTree &DT;
154  PostDominatorTree &PDT;
155  std::vector<Value *> Worklist; // Stack for DFS.
156  DenseSet<const Value *> &DV; // Stores all divergent values.
157};
158
159void DivergencePropagator::populateWithSourcesOfDivergence() {
160  Worklist.clear();
161  DV.clear();
162  for (auto &I : inst_range(F)) {
163    if (TTI.isSourceOfDivergence(&I)) {
164      Worklist.push_back(&I);
165      DV.insert(&I);
166    }
167  }
168  for (auto &Arg : F.args()) {
169    if (TTI.isSourceOfDivergence(&Arg)) {
170      Worklist.push_back(&Arg);
171      DV.insert(&Arg);
172    }
173  }
174}
175
176void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
177  // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
178  // immediate post dominator are divergent. This rule handles if-then-else
179  // patterns. For example,
180  //
181  // if (tid < 5)
182  //   a1 = 1;
183  // else
184  //   a2 = 2;
185  // a = phi(a1, a2); // sync dependent on (tid < 5)
186  BasicBlock *ThisBB = TI->getParent();
187  BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock();
188  if (IPostDom == nullptr)
189    return;
190
191  for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
192    // A PHINode is uniform if it returns the same value no matter which path is
193    // taken.
194    if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(I).second)
195      Worklist.push_back(I);
196  }
197
198  // Propagation rule 2: if a value defined in a loop is used outside, the user
199  // is sync dependent on the condition of the loop exits that dominate the
200  // user. For example,
201  //
202  // int i = 0;
203  // do {
204  //   i++;
205  //   if (foo(i)) ... // uniform
206  // } while (i < tid);
207  // if (bar(i)) ...   // divergent
208  //
209  // A program may contain unstructured loops. Therefore, we cannot leverage
210  // LoopInfo, which only recognizes natural loops.
211  //
212  // The algorithm used here handles both natural and unstructured loops.  Given
213  // a branch TI, we first compute its influence region, the union of all simple
214  // paths from TI to its immediate post dominator (IPostDom). Then, we search
215  // for all the values defined in the influence region but used outside. All
216  // these users are sync dependent on TI.
217  DenseSet<BasicBlock *> InfluenceRegion;
218  computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
219  // An insight that can speed up the search process is that all the in-region
220  // values that are used outside must dominate TI. Therefore, instead of
221  // searching every basic blocks in the influence region, we search all the
222  // dominators of TI until it is outside the influence region.
223  BasicBlock *InfluencedBB = ThisBB;
224  while (InfluenceRegion.count(InfluencedBB)) {
225    for (auto &I : *InfluencedBB)
226      findUsersOutsideInfluenceRegion(I, InfluenceRegion);
227    DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
228    if (IDomNode == nullptr)
229      break;
230    InfluencedBB = IDomNode->getBlock();
231  }
232}
233
234void DivergencePropagator::findUsersOutsideInfluenceRegion(
235    Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
236  for (User *U : I.users()) {
237    Instruction *UserInst = cast<Instruction>(U);
238    if (!InfluenceRegion.count(UserInst->getParent())) {
239      if (DV.insert(UserInst).second)
240        Worklist.push_back(UserInst);
241    }
242  }
243}
244
245void DivergencePropagator::computeInfluenceRegion(
246    BasicBlock *Start, BasicBlock *End,
247    DenseSet<BasicBlock *> &InfluenceRegion) {
248  assert(PDT.properlyDominates(End, Start) &&
249         "End does not properly dominate Start");
250  std::vector<BasicBlock *> InfluenceStack;
251  InfluenceStack.push_back(Start);
252  InfluenceRegion.insert(Start);
253  while (!InfluenceStack.empty()) {
254    BasicBlock *BB = InfluenceStack.back();
255    InfluenceStack.pop_back();
256    for (BasicBlock *Succ : successors(BB)) {
257      if (End != Succ && InfluenceRegion.insert(Succ).second)
258        InfluenceStack.push_back(Succ);
259    }
260  }
261}
262
263void DivergencePropagator::exploreDataDependency(Value *V) {
264  // Follow def-use chains of V.
265  for (User *U : V->users()) {
266    Instruction *UserInst = cast<Instruction>(U);
267    if (DV.insert(UserInst).second)
268      Worklist.push_back(UserInst);
269  }
270}
271
272void DivergencePropagator::propagate() {
273  // Traverse the dependency graph using DFS.
274  while (!Worklist.empty()) {
275    Value *V = Worklist.back();
276    Worklist.pop_back();
277    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
278      // Terminators with less than two successors won't introduce sync
279      // dependency. Ignore them.
280      if (TI->getNumSuccessors() > 1)
281        exploreSyncDependency(TI);
282    }
283    exploreDataDependency(V);
284  }
285}
286
287} /// end namespace anonymous
288
289FunctionPass *llvm::createDivergenceAnalysisPass() {
290  return new DivergenceAnalysis();
291}
292
293bool DivergenceAnalysis::runOnFunction(Function &F) {
294  auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
295  if (TTIWP == nullptr)
296    return false;
297
298  TargetTransformInfo &TTI = TTIWP->getTTI(F);
299  // Fast path: if the target does not have branch divergence, we do not mark
300  // any branch as divergent.
301  if (!TTI.hasBranchDivergence())
302    return false;
303
304  DivergentValues.clear();
305  DivergencePropagator DP(F, TTI,
306                          getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
307                          getAnalysis<PostDominatorTree>(), DivergentValues);
308  DP.populateWithSourcesOfDivergence();
309  DP.propagate();
310  return false;
311}
312
313void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
314  if (DivergentValues.empty())
315    return;
316  const Value *FirstDivergentValue = *DivergentValues.begin();
317  const Function *F;
318  if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
319    F = Arg->getParent();
320  } else if (const Instruction *I =
321                 dyn_cast<Instruction>(FirstDivergentValue)) {
322    F = I->getParent()->getParent();
323  } else {
324    llvm_unreachable("Only arguments and instructions can be divergent");
325  }
326
327  // Dumps all divergent values in F, arguments and then instructions.
328  for (auto &Arg : F->args()) {
329    if (DivergentValues.count(&Arg))
330      OS << "DIVERGENT:  " << Arg << "\n";
331  }
332  // Iterate instructions using inst_range to ensure a deterministic order.
333  for (auto &I : inst_range(F)) {
334    if (DivergentValues.count(&I))
335      OS << "DIVERGENT:" << I << "\n";
336  }
337}
338