1//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the TypeBasedAliasAnalysis pass, which implements
11// metadata-based TBAA.
12//
13// In LLVM IR, memory does not have types, so LLVM's own type system is not
14// suitable for doing TBAA. Instead, metadata is added to the IR to describe
15// a type system of a higher level language. This can be used to implement
16// typical C/C++ TBAA, but it can also be used to implement custom alias
17// analysis behavior for other languages.
18//
19// We now support two types of metadata format: scalar TBAA and struct-path
20// aware TBAA. After all testing cases are upgraded to use struct-path aware
21// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22// can be dropped.
23//
24// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25// three fields, e.g.:
26//   !0 = metadata !{ metadata !"an example type tree" }
27//   !1 = metadata !{ metadata !"int", metadata !0 }
28//   !2 = metadata !{ metadata !"float", metadata !0 }
29//   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30//
31// The first field is an identity field. It can be any value, usually
32// an MDString, which uniquely identifies the type. The most important
33// name in the tree is the name of the root node. Two trees with
34// different root node names are entirely disjoint, even if they
35// have leaves with common names.
36//
37// The second field identifies the type's parent node in the tree, or
38// is null or omitted for a root node. A type is considered to alias
39// all of its descendants and all of its ancestors in the tree. Also,
40// a type is considered to alias all types in other trees, so that
41// bitcode produced from multiple front-ends is handled conservatively.
42//
43// If the third field is present, it's an integer which if equal to 1
44// indicates that the type is "constant" (meaning pointsToConstantMemory
45// should return true; see
46// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47//
48// With struct-path aware TBAA, the MDNodes attached to an instruction using
49// "!tbaa" are called path tag nodes.
50//
51// The path tag node has 4 fields with the last field being optional.
52//
53// The first field is the base type node, it can be a struct type node
54// or a scalar type node. The second field is the access type node, it
55// must be a scalar type node. The third field is the offset into the base type.
56// The last field has the same meaning as the last field of our scalar TBAA:
57// it's an integer which if equal to 1 indicates that the access is "constant".
58//
59// The struct type node has a name and a list of pairs, one pair for each member
60// of the struct. The first element of each pair is a type node (a struct type
61// node or a sclar type node), specifying the type of the member, the second
62// element of each pair is the offset of the member.
63//
64// Given an example
65// typedef struct {
66//   short s;
67// } A;
68// typedef struct {
69//   uint16_t s;
70//   A a;
71// } B;
72//
73// For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
74// instruction. The base type is !4 (struct B), the access type is !2 (scalar
75// type short) and the offset is 4.
76//
77// !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78// !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79// !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
80// !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
81// !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82//                                                           // Struct type node
83// !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
84//
85// The struct type nodes and the scalar type nodes form a type DAG.
86//         Root (!0)
87//         char (!1)  -- edge to Root
88//         short (!2) -- edge to char
89//         A (!3) -- edge with offset 0 to short
90//         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91//
92// To check if two tags (tagX and tagY) can alias, we start from the base type
93// of tagX, follow the edge with the correct offset in the type DAG and adjust
94// the offset until we reach the base type of tagY or until we reach the Root
95// node.
96// If we reach the base type of tagY, compare the adjusted offset with
97// offset of tagY, return Alias if the offsets are the same, return NoAlias
98// otherwise.
99// If we reach the Root node, perform the above starting from base type of tagY
100// to see if we reach base type of tagX.
101//
102// If they have different roots, they're part of different potentially
103// unrelated type systems, so we return Alias to be conservative.
104// If neither node is an ancestor of the other and they have the same root,
105// then we say NoAlias.
106//
107// TODO: The current metadata format doesn't support struct
108// fields. For example:
109//   struct X {
110//     double d;
111//     int i;
112//   };
113//   void foo(struct X *x, struct X *y, double *p) {
114//     *x = *y;
115//     *p = 0.0;
116//   }
117// Struct X has a double member, so the store to *x can alias the store to *p.
118// Currently it's not possible to precisely describe all the things struct X
119// aliases, so struct assignments must use conservative TBAA nodes. There's
120// no scheme for attaching metadata to @llvm.memcpy yet either.
121//
122//===----------------------------------------------------------------------===//
123
124#include "llvm/Analysis/Passes.h"
125#include "llvm/Analysis/AliasAnalysis.h"
126#include "llvm/IR/Constants.h"
127#include "llvm/IR/LLVMContext.h"
128#include "llvm/IR/Metadata.h"
129#include "llvm/IR/Module.h"
130#include "llvm/Pass.h"
131#include "llvm/Support/CommandLine.h"
132#include "llvm/ADT/SetVector.h"
133using namespace llvm;
134
135// A handy option for disabling TBAA functionality. The same effect can also be
136// achieved by stripping the !tbaa tags from IR, but this option is sometimes
137// more convenient.
138static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
139
140namespace {
141  /// TBAANode - This is a simple wrapper around an MDNode which provides a
142  /// higher-level interface by hiding the details of how alias analysis
143  /// information is encoded in its operands.
144  class TBAANode {
145    const MDNode *Node;
146
147  public:
148    TBAANode() : Node(nullptr) {}
149    explicit TBAANode(const MDNode *N) : Node(N) {}
150
151    /// getNode - Get the MDNode for this TBAANode.
152    const MDNode *getNode() const { return Node; }
153
154    /// getParent - Get this TBAANode's Alias tree parent.
155    TBAANode getParent() const {
156      if (Node->getNumOperands() < 2)
157        return TBAANode();
158      MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
159      if (!P)
160        return TBAANode();
161      // Ok, this node has a valid parent. Return it.
162      return TBAANode(P);
163    }
164
165    /// TypeIsImmutable - Test if this TBAANode represents a type for objects
166    /// which are not modified (by any means) in the context where this
167    /// AliasAnalysis is relevant.
168    bool TypeIsImmutable() const {
169      if (Node->getNumOperands() < 3)
170        return false;
171      ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
172      if (!CI)
173        return false;
174      return CI->getValue()[0];
175    }
176  };
177
178  /// This is a simple wrapper around an MDNode which provides a
179  /// higher-level interface by hiding the details of how alias analysis
180  /// information is encoded in its operands.
181  class TBAAStructTagNode {
182    /// This node should be created with createTBAAStructTagNode.
183    const MDNode *Node;
184
185  public:
186    explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
187
188    /// Get the MDNode for this TBAAStructTagNode.
189    const MDNode *getNode() const { return Node; }
190
191    const MDNode *getBaseType() const {
192      return dyn_cast_or_null<MDNode>(Node->getOperand(0));
193    }
194    const MDNode *getAccessType() const {
195      return dyn_cast_or_null<MDNode>(Node->getOperand(1));
196    }
197    uint64_t getOffset() const {
198      return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
199    }
200    /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
201    /// objects which are not modified (by any means) in the context where this
202    /// AliasAnalysis is relevant.
203    bool TypeIsImmutable() const {
204      if (Node->getNumOperands() < 4)
205        return false;
206      ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
207      if (!CI)
208        return false;
209      return CI->getValue()[0];
210    }
211  };
212
213  /// This is a simple wrapper around an MDNode which provides a
214  /// higher-level interface by hiding the details of how alias analysis
215  /// information is encoded in its operands.
216  class TBAAStructTypeNode {
217    /// This node should be created with createTBAAStructTypeNode.
218    const MDNode *Node;
219
220  public:
221    TBAAStructTypeNode() : Node(nullptr) {}
222    explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
223
224    /// Get the MDNode for this TBAAStructTypeNode.
225    const MDNode *getNode() const { return Node; }
226
227    /// Get this TBAAStructTypeNode's field in the type DAG with
228    /// given offset. Update the offset to be relative to the field type.
229    TBAAStructTypeNode getParent(uint64_t &Offset) const {
230      // Parent can be omitted for the root node.
231      if (Node->getNumOperands() < 2)
232        return TBAAStructTypeNode();
233
234      // Fast path for a scalar type node and a struct type node with a single
235      // field.
236      if (Node->getNumOperands() <= 3) {
237        uint64_t Cur = Node->getNumOperands() == 2
238                           ? 0
239                           : mdconst::extract<ConstantInt>(Node->getOperand(2))
240                                 ->getZExtValue();
241        Offset -= Cur;
242        MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
243        if (!P)
244          return TBAAStructTypeNode();
245        return TBAAStructTypeNode(P);
246      }
247
248      // Assume the offsets are in order. We return the previous field if
249      // the current offset is bigger than the given offset.
250      unsigned TheIdx = 0;
251      for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
252        uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
253                           ->getZExtValue();
254        if (Cur > Offset) {
255          assert(Idx >= 3 &&
256                 "TBAAStructTypeNode::getParent should have an offset match!");
257          TheIdx = Idx - 2;
258          break;
259        }
260      }
261      // Move along the last field.
262      if (TheIdx == 0)
263        TheIdx = Node->getNumOperands() - 2;
264      uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
265                         ->getZExtValue();
266      Offset -= Cur;
267      MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
268      if (!P)
269        return TBAAStructTypeNode();
270      return TBAAStructTypeNode(P);
271    }
272  };
273}
274
275namespace {
276  /// TypeBasedAliasAnalysis - This is a simple alias analysis
277  /// implementation that uses TypeBased to answer queries.
278  class TypeBasedAliasAnalysis : public ImmutablePass,
279                                 public AliasAnalysis {
280  public:
281    static char ID; // Class identification, replacement for typeinfo
282    TypeBasedAliasAnalysis() : ImmutablePass(ID) {
283      initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
284    }
285
286    bool doInitialization(Module &M) override;
287
288    /// getAdjustedAnalysisPointer - This method is used when a pass implements
289    /// an analysis interface through multiple inheritance.  If needed, it
290    /// should override this to adjust the this pointer as needed for the
291    /// specified pass info.
292    void *getAdjustedAnalysisPointer(const void *PI) override {
293      if (PI == &AliasAnalysis::ID)
294        return (AliasAnalysis*)this;
295      return this;
296    }
297
298    bool Aliases(const MDNode *A, const MDNode *B) const;
299    bool PathAliases(const MDNode *A, const MDNode *B) const;
300
301  private:
302    void getAnalysisUsage(AnalysisUsage &AU) const override;
303    AliasResult alias(const Location &LocA, const Location &LocB) override;
304    bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
305    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
306    ModRefBehavior getModRefBehavior(const Function *F) override;
307    ModRefResult getModRefInfo(ImmutableCallSite CS,
308                               const Location &Loc) override;
309    ModRefResult getModRefInfo(ImmutableCallSite CS1,
310                               ImmutableCallSite CS2) override;
311  };
312}  // End of anonymous namespace
313
314// Register this pass...
315char TypeBasedAliasAnalysis::ID = 0;
316INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
317                   "Type-Based Alias Analysis", false, true, false)
318
319ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
320  return new TypeBasedAliasAnalysis();
321}
322
323bool TypeBasedAliasAnalysis::doInitialization(Module &M) {
324  InitializeAliasAnalysis(this, &M.getDataLayout());
325  return true;
326}
327
328void
329TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
330  AU.setPreservesAll();
331  AliasAnalysis::getAnalysisUsage(AU);
332}
333
334/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
335/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
336/// format.
337static bool isStructPathTBAA(const MDNode *MD) {
338  // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
339  // a TBAA tag.
340  return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
341}
342
343/// Aliases - Test whether the type represented by A may alias the
344/// type represented by B.
345bool
346TypeBasedAliasAnalysis::Aliases(const MDNode *A,
347                                const MDNode *B) const {
348  // Make sure that both MDNodes are struct-path aware.
349  if (isStructPathTBAA(A) && isStructPathTBAA(B))
350    return PathAliases(A, B);
351
352  // Keep track of the root node for A and B.
353  TBAANode RootA, RootB;
354
355  // Climb the tree from A to see if we reach B.
356  for (TBAANode T(A); ; ) {
357    if (T.getNode() == B)
358      // B is an ancestor of A.
359      return true;
360
361    RootA = T;
362    T = T.getParent();
363    if (!T.getNode())
364      break;
365  }
366
367  // Climb the tree from B to see if we reach A.
368  for (TBAANode T(B); ; ) {
369    if (T.getNode() == A)
370      // A is an ancestor of B.
371      return true;
372
373    RootB = T;
374    T = T.getParent();
375    if (!T.getNode())
376      break;
377  }
378
379  // Neither node is an ancestor of the other.
380
381  // If they have different roots, they're part of different potentially
382  // unrelated type systems, so we must be conservative.
383  if (RootA.getNode() != RootB.getNode())
384    return true;
385
386  // If they have the same root, then we've proved there's no alias.
387  return false;
388}
389
390/// Test whether the struct-path tag represented by A may alias the
391/// struct-path tag represented by B.
392bool
393TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
394                                    const MDNode *B) const {
395  // Verify that both input nodes are struct-path aware.
396  assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
397  assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
398
399  // Keep track of the root node for A and B.
400  TBAAStructTypeNode RootA, RootB;
401  TBAAStructTagNode TagA(A), TagB(B);
402
403  // TODO: We need to check if AccessType of TagA encloses AccessType of
404  // TagB to support aggregate AccessType. If yes, return true.
405
406  // Start from the base type of A, follow the edge with the correct offset in
407  // the type DAG and adjust the offset until we reach the base type of B or
408  // until we reach the Root node.
409  // Compare the adjusted offset once we have the same base.
410
411  // Climb the type DAG from base type of A to see if we reach base type of B.
412  const MDNode *BaseA = TagA.getBaseType();
413  const MDNode *BaseB = TagB.getBaseType();
414  uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
415  for (TBAAStructTypeNode T(BaseA); ; ) {
416    if (T.getNode() == BaseB)
417      // Base type of A encloses base type of B, check if the offsets match.
418      return OffsetA == OffsetB;
419
420    RootA = T;
421    // Follow the edge with the correct offset, OffsetA will be adjusted to
422    // be relative to the field type.
423    T = T.getParent(OffsetA);
424    if (!T.getNode())
425      break;
426  }
427
428  // Reset OffsetA and climb the type DAG from base type of B to see if we reach
429  // base type of A.
430  OffsetA = TagA.getOffset();
431  for (TBAAStructTypeNode T(BaseB); ; ) {
432    if (T.getNode() == BaseA)
433      // Base type of B encloses base type of A, check if the offsets match.
434      return OffsetA == OffsetB;
435
436    RootB = T;
437    // Follow the edge with the correct offset, OffsetB will be adjusted to
438    // be relative to the field type.
439    T = T.getParent(OffsetB);
440    if (!T.getNode())
441      break;
442  }
443
444  // Neither node is an ancestor of the other.
445
446  // If they have different roots, they're part of different potentially
447  // unrelated type systems, so we must be conservative.
448  if (RootA.getNode() != RootB.getNode())
449    return true;
450
451  // If they have the same root, then we've proved there's no alias.
452  return false;
453}
454
455AliasAnalysis::AliasResult
456TypeBasedAliasAnalysis::alias(const Location &LocA,
457                              const Location &LocB) {
458  if (!EnableTBAA)
459    return AliasAnalysis::alias(LocA, LocB);
460
461  // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
462  // be conservative.
463  const MDNode *AM = LocA.AATags.TBAA;
464  if (!AM) return AliasAnalysis::alias(LocA, LocB);
465  const MDNode *BM = LocB.AATags.TBAA;
466  if (!BM) return AliasAnalysis::alias(LocA, LocB);
467
468  // If they may alias, chain to the next AliasAnalysis.
469  if (Aliases(AM, BM))
470    return AliasAnalysis::alias(LocA, LocB);
471
472  // Otherwise return a definitive result.
473  return NoAlias;
474}
475
476bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
477                                                    bool OrLocal) {
478  if (!EnableTBAA)
479    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
480
481  const MDNode *M = Loc.AATags.TBAA;
482  if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
483
484  // If this is an "immutable" type, we can assume the pointer is pointing
485  // to constant memory.
486  if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
487      (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
488    return true;
489
490  return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
491}
492
493AliasAnalysis::ModRefBehavior
494TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
495  if (!EnableTBAA)
496    return AliasAnalysis::getModRefBehavior(CS);
497
498  ModRefBehavior Min = UnknownModRefBehavior;
499
500  // If this is an "immutable" type, we can assume the call doesn't write
501  // to memory.
502  if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
503    if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
504        (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
505      Min = OnlyReadsMemory;
506
507  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
508}
509
510AliasAnalysis::ModRefBehavior
511TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
512  // Functions don't have metadata. Just chain to the next implementation.
513  return AliasAnalysis::getModRefBehavior(F);
514}
515
516AliasAnalysis::ModRefResult
517TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
518                                      const Location &Loc) {
519  if (!EnableTBAA)
520    return AliasAnalysis::getModRefInfo(CS, Loc);
521
522  if (const MDNode *L = Loc.AATags.TBAA)
523    if (const MDNode *M =
524            CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
525      if (!Aliases(L, M))
526        return NoModRef;
527
528  return AliasAnalysis::getModRefInfo(CS, Loc);
529}
530
531AliasAnalysis::ModRefResult
532TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
533                                      ImmutableCallSite CS2) {
534  if (!EnableTBAA)
535    return AliasAnalysis::getModRefInfo(CS1, CS2);
536
537  if (const MDNode *M1 =
538          CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
539    if (const MDNode *M2 =
540            CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
541      if (!Aliases(M1, M2))
542        return NoModRef;
543
544  return AliasAnalysis::getModRefInfo(CS1, CS2);
545}
546
547bool MDNode::isTBAAVtableAccess() const {
548  if (!isStructPathTBAA(this)) {
549    if (getNumOperands() < 1) return false;
550    if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
551      if (Tag1->getString() == "vtable pointer") return true;
552    }
553    return false;
554  }
555
556  // For struct-path aware TBAA, we use the access type of the tag.
557  if (getNumOperands() < 2) return false;
558  MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
559  if (!Tag) return false;
560  if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
561    if (Tag1->getString() == "vtable pointer") return true;
562  }
563  return false;
564}
565
566MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
567  if (!A || !B)
568    return nullptr;
569
570  if (A == B)
571    return A;
572
573  // For struct-path aware TBAA, we use the access type of the tag.
574  bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
575  if (StructPath) {
576    A = cast_or_null<MDNode>(A->getOperand(1));
577    if (!A) return nullptr;
578    B = cast_or_null<MDNode>(B->getOperand(1));
579    if (!B) return nullptr;
580  }
581
582  SmallSetVector<MDNode *, 4> PathA;
583  MDNode *T = A;
584  while (T) {
585    if (PathA.count(T))
586      report_fatal_error("Cycle found in TBAA metadata.");
587    PathA.insert(T);
588    T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
589                                 : nullptr;
590  }
591
592  SmallSetVector<MDNode *, 4> PathB;
593  T = B;
594  while (T) {
595    if (PathB.count(T))
596      report_fatal_error("Cycle found in TBAA metadata.");
597    PathB.insert(T);
598    T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
599                                 : nullptr;
600  }
601
602  int IA = PathA.size() - 1;
603  int IB = PathB.size() - 1;
604
605  MDNode *Ret = nullptr;
606  while (IA >= 0 && IB >=0) {
607    if (PathA[IA] == PathB[IB])
608      Ret = PathA[IA];
609    else
610      break;
611    --IA;
612    --IB;
613  }
614  if (!StructPath)
615    return Ret;
616
617  if (!Ret)
618    return nullptr;
619  // We need to convert from a type node to a tag node.
620  Type *Int64 = IntegerType::get(A->getContext(), 64);
621  Metadata *Ops[3] = {Ret, Ret,
622                      ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
623  return MDNode::get(A->getContext(), Ops);
624}
625
626void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
627  if (Merge)
628    N.TBAA =
629        MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
630  else
631    N.TBAA = getMetadata(LLVMContext::MD_tbaa);
632
633  if (Merge)
634    N.Scope = MDNode::getMostGenericAliasScope(
635        N.Scope, getMetadata(LLVMContext::MD_alias_scope));
636  else
637    N.Scope = getMetadata(LLVMContext::MD_alias_scope);
638
639  if (Merge)
640    N.NoAlias =
641        MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
642  else
643    N.NoAlias = getMetadata(LLVMContext::MD_noalias);
644}
645
646