1//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveRange and LiveInterval classes.  Given some
11// numbering of each the machine instructions an interval [i, j) is said to be a
12// live range for register v if there is no instruction with number j' >= j
13// such that v is live at j' and there is no instruction with number i' < i such
14// that v is live at i'. In this implementation ranges can have holes,
15// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16// individual segment is represented as an instance of LiveRange::Segment,
17// and the whole range is represented as an instance of LiveRange.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/CodeGen/LiveInterval.h"
22#include "RegisterCoalescer.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/CodeGen/LiveIntervalAnalysis.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Format.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36//===----------------------------------------------------------------------===//
37// Implementation of various methods necessary for calculation of live ranges.
38// The implementation of the methods abstracts from the concrete type of the
39// segment collection.
40//
41// Implementation of the class follows the Template design pattern. The base
42// class contains generic algorithms that call collection-specific methods,
43// which are provided in concrete subclasses. In order to avoid virtual calls
44// these methods are provided by means of C++ template instantiation.
45// The base class calls the methods of the subclass through method impl(),
46// which casts 'this' pointer to the type of the subclass.
47//
48//===----------------------------------------------------------------------===//
49
50template <typename ImplT, typename IteratorT, typename CollectionT>
51class CalcLiveRangeUtilBase {
52protected:
53  LiveRange *LR;
54
55protected:
56  CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
57
58public:
59  typedef LiveRange::Segment Segment;
60  typedef IteratorT iterator;
61
62  VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
63    assert(!Def.isDead() && "Cannot define a value at the dead slot");
64
65    iterator I = impl().find(Def);
66    if (I == segments().end()) {
67      VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
68      impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
69      return VNI;
70    }
71
72    Segment *S = segmentAt(I);
73    if (SlotIndex::isSameInstr(Def, S->start)) {
74      assert(S->valno->def == S->start && "Inconsistent existing value def");
75
76      // It is possible to have both normal and early-clobber defs of the same
77      // register on an instruction. It doesn't make a lot of sense, but it is
78      // possible to specify in inline assembly.
79      //
80      // Just convert everything to early-clobber.
81      Def = std::min(Def, S->start);
82      if (Def != S->start)
83        S->start = S->valno->def = Def;
84      return S->valno;
85    }
86    assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
87    VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
88    segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
89    return VNI;
90  }
91
92  VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
93    if (segments().empty())
94      return nullptr;
95    iterator I =
96        impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
97    if (I == segments().begin())
98      return nullptr;
99    --I;
100    if (I->end <= StartIdx)
101      return nullptr;
102    if (I->end < Use)
103      extendSegmentEndTo(I, Use);
104    return I->valno;
105  }
106
107  /// This method is used when we want to extend the segment specified
108  /// by I to end at the specified endpoint. To do this, we should
109  /// merge and eliminate all segments that this will overlap
110  /// with. The iterator is not invalidated.
111  void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
112    assert(I != segments().end() && "Not a valid segment!");
113    Segment *S = segmentAt(I);
114    VNInfo *ValNo = I->valno;
115
116    // Search for the first segment that we can't merge with.
117    iterator MergeTo = std::next(I);
118    for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
119      assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
120
121    // If NewEnd was in the middle of a segment, make sure to get its endpoint.
122    S->end = std::max(NewEnd, std::prev(MergeTo)->end);
123
124    // If the newly formed segment now touches the segment after it and if they
125    // have the same value number, merge the two segments into one segment.
126    if (MergeTo != segments().end() && MergeTo->start <= I->end &&
127        MergeTo->valno == ValNo) {
128      S->end = MergeTo->end;
129      ++MergeTo;
130    }
131
132    // Erase any dead segments.
133    segments().erase(std::next(I), MergeTo);
134  }
135
136  /// This method is used when we want to extend the segment specified
137  /// by I to start at the specified endpoint.  To do this, we should
138  /// merge and eliminate all segments that this will overlap with.
139  iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
140    assert(I != segments().end() && "Not a valid segment!");
141    Segment *S = segmentAt(I);
142    VNInfo *ValNo = I->valno;
143
144    // Search for the first segment that we can't merge with.
145    iterator MergeTo = I;
146    do {
147      if (MergeTo == segments().begin()) {
148        S->start = NewStart;
149        segments().erase(MergeTo, I);
150        return I;
151      }
152      assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
153      --MergeTo;
154    } while (NewStart <= MergeTo->start);
155
156    // If we start in the middle of another segment, just delete a range and
157    // extend that segment.
158    if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
159      segmentAt(MergeTo)->end = S->end;
160    } else {
161      // Otherwise, extend the segment right after.
162      ++MergeTo;
163      Segment *MergeToSeg = segmentAt(MergeTo);
164      MergeToSeg->start = NewStart;
165      MergeToSeg->end = S->end;
166    }
167
168    segments().erase(std::next(MergeTo), std::next(I));
169    return MergeTo;
170  }
171
172  iterator addSegment(Segment S) {
173    SlotIndex Start = S.start, End = S.end;
174    iterator I = impl().findInsertPos(S);
175
176    // If the inserted segment starts in the middle or right at the end of
177    // another segment, just extend that segment to contain the segment of S.
178    if (I != segments().begin()) {
179      iterator B = std::prev(I);
180      if (S.valno == B->valno) {
181        if (B->start <= Start && B->end >= Start) {
182          extendSegmentEndTo(B, End);
183          return B;
184        }
185      } else {
186        // Check to make sure that we are not overlapping two live segments with
187        // different valno's.
188        assert(B->end <= Start &&
189               "Cannot overlap two segments with differing ValID's"
190               " (did you def the same reg twice in a MachineInstr?)");
191      }
192    }
193
194    // Otherwise, if this segment ends in the middle of, or right next
195    // to, another segment, merge it into that segment.
196    if (I != segments().end()) {
197      if (S.valno == I->valno) {
198        if (I->start <= End) {
199          I = extendSegmentStartTo(I, Start);
200
201          // If S is a complete superset of a segment, we may need to grow its
202          // endpoint as well.
203          if (End > I->end)
204            extendSegmentEndTo(I, End);
205          return I;
206        }
207      } else {
208        // Check to make sure that we are not overlapping two live segments with
209        // different valno's.
210        assert(I->start >= End &&
211               "Cannot overlap two segments with differing ValID's");
212      }
213    }
214
215    // Otherwise, this is just a new segment that doesn't interact with
216    // anything.
217    // Insert it.
218    return segments().insert(I, S);
219  }
220
221private:
222  ImplT &impl() { return *static_cast<ImplT *>(this); }
223
224  CollectionT &segments() { return impl().segmentsColl(); }
225
226  Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
227};
228
229//===----------------------------------------------------------------------===//
230//   Instantiation of the methods for calculation of live ranges
231//   based on a segment vector.
232//===----------------------------------------------------------------------===//
233
234class CalcLiveRangeUtilVector;
235typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
236                              LiveRange::Segments> CalcLiveRangeUtilVectorBase;
237
238class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
239public:
240  CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
241
242private:
243  friend CalcLiveRangeUtilVectorBase;
244
245  LiveRange::Segments &segmentsColl() { return LR->segments; }
246
247  void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
248
249  iterator find(SlotIndex Pos) { return LR->find(Pos); }
250
251  iterator findInsertPos(Segment S) {
252    return std::upper_bound(LR->begin(), LR->end(), S.start);
253  }
254};
255
256//===----------------------------------------------------------------------===//
257//   Instantiation of the methods for calculation of live ranges
258//   based on a segment set.
259//===----------------------------------------------------------------------===//
260
261class CalcLiveRangeUtilSet;
262typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
263                              LiveRange::SegmentSet::iterator,
264                              LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
265
266class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
267public:
268  CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
269
270private:
271  friend CalcLiveRangeUtilSetBase;
272
273  LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
274
275  void insertAtEnd(const Segment &S) {
276    LR->segmentSet->insert(LR->segmentSet->end(), S);
277  }
278
279  iterator find(SlotIndex Pos) {
280    iterator I =
281        LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
282    if (I == LR->segmentSet->begin())
283      return I;
284    iterator PrevI = std::prev(I);
285    if (Pos < (*PrevI).end)
286      return PrevI;
287    return I;
288  }
289
290  iterator findInsertPos(Segment S) {
291    iterator I = LR->segmentSet->upper_bound(S);
292    if (I != LR->segmentSet->end() && !(S.start < *I))
293      ++I;
294    return I;
295  }
296};
297} // namespace
298
299//===----------------------------------------------------------------------===//
300//   LiveRange methods
301//===----------------------------------------------------------------------===//
302
303LiveRange::iterator LiveRange::find(SlotIndex Pos) {
304  // This algorithm is basically std::upper_bound.
305  // Unfortunately, std::upper_bound cannot be used with mixed types until we
306  // adopt C++0x. Many libraries can do it, but not all.
307  if (empty() || Pos >= endIndex())
308    return end();
309  iterator I = begin();
310  size_t Len = size();
311  do {
312    size_t Mid = Len >> 1;
313    if (Pos < I[Mid].end)
314      Len = Mid;
315    else
316      I += Mid + 1, Len -= Mid + 1;
317  } while (Len);
318  return I;
319}
320
321VNInfo *LiveRange::createDeadDef(SlotIndex Def,
322                                  VNInfo::Allocator &VNInfoAllocator) {
323  // Use the segment set, if it is available.
324  if (segmentSet != nullptr)
325    return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
326  // Otherwise use the segment vector.
327  return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
328}
329
330// overlaps - Return true if the intersection of the two live ranges is
331// not empty.
332//
333// An example for overlaps():
334//
335// 0: A = ...
336// 4: B = ...
337// 8: C = A + B ;; last use of A
338//
339// The live ranges should look like:
340//
341// A = [3, 11)
342// B = [7, x)
343// C = [11, y)
344//
345// A->overlaps(C) should return false since we want to be able to join
346// A and C.
347//
348bool LiveRange::overlapsFrom(const LiveRange& other,
349                             const_iterator StartPos) const {
350  assert(!empty() && "empty range");
351  const_iterator i = begin();
352  const_iterator ie = end();
353  const_iterator j = StartPos;
354  const_iterator je = other.end();
355
356  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
357         StartPos != other.end() && "Bogus start position hint!");
358
359  if (i->start < j->start) {
360    i = std::upper_bound(i, ie, j->start);
361    if (i != begin()) --i;
362  } else if (j->start < i->start) {
363    ++StartPos;
364    if (StartPos != other.end() && StartPos->start <= i->start) {
365      assert(StartPos < other.end() && i < end());
366      j = std::upper_bound(j, je, i->start);
367      if (j != other.begin()) --j;
368    }
369  } else {
370    return true;
371  }
372
373  if (j == je) return false;
374
375  while (i != ie) {
376    if (i->start > j->start) {
377      std::swap(i, j);
378      std::swap(ie, je);
379    }
380
381    if (i->end > j->start)
382      return true;
383    ++i;
384  }
385
386  return false;
387}
388
389bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
390                         const SlotIndexes &Indexes) const {
391  assert(!empty() && "empty range");
392  if (Other.empty())
393    return false;
394
395  // Use binary searches to find initial positions.
396  const_iterator I = find(Other.beginIndex());
397  const_iterator IE = end();
398  if (I == IE)
399    return false;
400  const_iterator J = Other.find(I->start);
401  const_iterator JE = Other.end();
402  if (J == JE)
403    return false;
404
405  for (;;) {
406    // J has just been advanced to satisfy:
407    assert(J->end >= I->start);
408    // Check for an overlap.
409    if (J->start < I->end) {
410      // I and J are overlapping. Find the later start.
411      SlotIndex Def = std::max(I->start, J->start);
412      // Allow the overlap if Def is a coalescable copy.
413      if (Def.isBlock() ||
414          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
415        return true;
416    }
417    // Advance the iterator that ends first to check for more overlaps.
418    if (J->end > I->end) {
419      std::swap(I, J);
420      std::swap(IE, JE);
421    }
422    // Advance J until J->end >= I->start.
423    do
424      if (++J == JE)
425        return false;
426    while (J->end < I->start);
427  }
428}
429
430/// overlaps - Return true if the live range overlaps an interval specified
431/// by [Start, End).
432bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
433  assert(Start < End && "Invalid range");
434  const_iterator I = std::lower_bound(begin(), end(), End);
435  return I != begin() && (--I)->end > Start;
436}
437
438bool LiveRange::covers(const LiveRange &Other) const {
439  if (empty())
440    return Other.empty();
441
442  const_iterator I = begin();
443  for (const Segment &O : Other.segments) {
444    I = advanceTo(I, O.start);
445    if (I == end() || I->start > O.start)
446      return false;
447
448    // Check adjacent live segments and see if we can get behind O.end.
449    while (I->end < O.end) {
450      const_iterator Last = I;
451      // Get next segment and abort if it was not adjacent.
452      ++I;
453      if (I == end() || Last->end != I->start)
454        return false;
455    }
456  }
457  return true;
458}
459
460/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
461/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
462/// it can be nuked later.
463void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
464  if (ValNo->id == getNumValNums()-1) {
465    do {
466      valnos.pop_back();
467    } while (!valnos.empty() && valnos.back()->isUnused());
468  } else {
469    ValNo->markUnused();
470  }
471}
472
473/// RenumberValues - Renumber all values in order of appearance and delete the
474/// remaining unused values.
475void LiveRange::RenumberValues() {
476  SmallPtrSet<VNInfo*, 8> Seen;
477  valnos.clear();
478  for (const Segment &S : segments) {
479    VNInfo *VNI = S.valno;
480    if (!Seen.insert(VNI).second)
481      continue;
482    assert(!VNI->isUnused() && "Unused valno used by live segment");
483    VNI->id = (unsigned)valnos.size();
484    valnos.push_back(VNI);
485  }
486}
487
488void LiveRange::addSegmentToSet(Segment S) {
489  CalcLiveRangeUtilSet(this).addSegment(S);
490}
491
492LiveRange::iterator LiveRange::addSegment(Segment S) {
493  // Use the segment set, if it is available.
494  if (segmentSet != nullptr) {
495    addSegmentToSet(S);
496    return end();
497  }
498  // Otherwise use the segment vector.
499  return CalcLiveRangeUtilVector(this).addSegment(S);
500}
501
502void LiveRange::append(const Segment S) {
503  // Check that the segment belongs to the back of the list.
504  assert(segments.empty() || segments.back().end <= S.start);
505  segments.push_back(S);
506}
507
508/// extendInBlock - If this range is live before Kill in the basic
509/// block that starts at StartIdx, extend it to be live up to Kill and return
510/// the value. If there is no live range before Kill, return NULL.
511VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
512  // Use the segment set, if it is available.
513  if (segmentSet != nullptr)
514    return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
515  // Otherwise use the segment vector.
516  return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
517}
518
519/// Remove the specified segment from this range.  Note that the segment must
520/// be in a single Segment in its entirety.
521void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
522                              bool RemoveDeadValNo) {
523  // Find the Segment containing this span.
524  iterator I = find(Start);
525  assert(I != end() && "Segment is not in range!");
526  assert(I->containsInterval(Start, End)
527         && "Segment is not entirely in range!");
528
529  // If the span we are removing is at the start of the Segment, adjust it.
530  VNInfo *ValNo = I->valno;
531  if (I->start == Start) {
532    if (I->end == End) {
533      if (RemoveDeadValNo) {
534        // Check if val# is dead.
535        bool isDead = true;
536        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
537          if (II != I && II->valno == ValNo) {
538            isDead = false;
539            break;
540          }
541        if (isDead) {
542          // Now that ValNo is dead, remove it.
543          markValNoForDeletion(ValNo);
544        }
545      }
546
547      segments.erase(I);  // Removed the whole Segment.
548    } else
549      I->start = End;
550    return;
551  }
552
553  // Otherwise if the span we are removing is at the end of the Segment,
554  // adjust the other way.
555  if (I->end == End) {
556    I->end = Start;
557    return;
558  }
559
560  // Otherwise, we are splitting the Segment into two pieces.
561  SlotIndex OldEnd = I->end;
562  I->end = Start;   // Trim the old segment.
563
564  // Insert the new one.
565  segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
566}
567
568/// removeValNo - Remove all the segments defined by the specified value#.
569/// Also remove the value# from value# list.
570void LiveRange::removeValNo(VNInfo *ValNo) {
571  if (empty()) return;
572  segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
573    return S.valno == ValNo;
574  }), end());
575  // Now that ValNo is dead, remove it.
576  markValNoForDeletion(ValNo);
577}
578
579void LiveRange::join(LiveRange &Other,
580                     const int *LHSValNoAssignments,
581                     const int *RHSValNoAssignments,
582                     SmallVectorImpl<VNInfo *> &NewVNInfo) {
583  verify();
584
585  // Determine if any of our values are mapped.  This is uncommon, so we want
586  // to avoid the range scan if not.
587  bool MustMapCurValNos = false;
588  unsigned NumVals = getNumValNums();
589  unsigned NumNewVals = NewVNInfo.size();
590  for (unsigned i = 0; i != NumVals; ++i) {
591    unsigned LHSValID = LHSValNoAssignments[i];
592    if (i != LHSValID ||
593        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
594      MustMapCurValNos = true;
595      break;
596    }
597  }
598
599  // If we have to apply a mapping to our base range assignment, rewrite it now.
600  if (MustMapCurValNos && !empty()) {
601    // Map the first live range.
602
603    iterator OutIt = begin();
604    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
605    for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
606      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
607      assert(nextValNo && "Huh?");
608
609      // If this live range has the same value # as its immediate predecessor,
610      // and if they are neighbors, remove one Segment.  This happens when we
611      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
612      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
613        OutIt->end = I->end;
614      } else {
615        // Didn't merge. Move OutIt to the next segment,
616        ++OutIt;
617        OutIt->valno = nextValNo;
618        if (OutIt != I) {
619          OutIt->start = I->start;
620          OutIt->end = I->end;
621        }
622      }
623    }
624    // If we merge some segments, chop off the end.
625    ++OutIt;
626    segments.erase(OutIt, end());
627  }
628
629  // Rewrite Other values before changing the VNInfo ids.
630  // This can leave Other in an invalid state because we're not coalescing
631  // touching segments that now have identical values. That's OK since Other is
632  // not supposed to be valid after calling join();
633  for (Segment &S : Other.segments)
634    S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
635
636  // Update val# info. Renumber them and make sure they all belong to this
637  // LiveRange now. Also remove dead val#'s.
638  unsigned NumValNos = 0;
639  for (unsigned i = 0; i < NumNewVals; ++i) {
640    VNInfo *VNI = NewVNInfo[i];
641    if (VNI) {
642      if (NumValNos >= NumVals)
643        valnos.push_back(VNI);
644      else
645        valnos[NumValNos] = VNI;
646      VNI->id = NumValNos++;  // Renumber val#.
647    }
648  }
649  if (NumNewVals < NumVals)
650    valnos.resize(NumNewVals);  // shrinkify
651
652  // Okay, now insert the RHS live segments into the LHS.
653  LiveRangeUpdater Updater(this);
654  for (Segment &S : Other.segments)
655    Updater.add(S);
656}
657
658/// Merge all of the segments in RHS into this live range as the specified
659/// value number.  The segments in RHS are allowed to overlap with segments in
660/// the current range, but only if the overlapping segments have the
661/// specified value number.
662void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
663                                       VNInfo *LHSValNo) {
664  LiveRangeUpdater Updater(this);
665  for (const Segment &S : RHS.segments)
666    Updater.add(S.start, S.end, LHSValNo);
667}
668
669/// MergeValueInAsValue - Merge all of the live segments of a specific val#
670/// in RHS into this live range as the specified value number.
671/// The segments in RHS are allowed to overlap with segments in the
672/// current range, it will replace the value numbers of the overlaped
673/// segments with the specified value number.
674void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
675                                    const VNInfo *RHSValNo,
676                                    VNInfo *LHSValNo) {
677  LiveRangeUpdater Updater(this);
678  for (const Segment &S : RHS.segments)
679    if (S.valno == RHSValNo)
680      Updater.add(S.start, S.end, LHSValNo);
681}
682
683/// MergeValueNumberInto - This method is called when two value nubmers
684/// are found to be equivalent.  This eliminates V1, replacing all
685/// segments with the V1 value number with the V2 value number.  This can
686/// cause merging of V1/V2 values numbers and compaction of the value space.
687VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
688  assert(V1 != V2 && "Identical value#'s are always equivalent!");
689
690  // This code actually merges the (numerically) larger value number into the
691  // smaller value number, which is likely to allow us to compactify the value
692  // space.  The only thing we have to be careful of is to preserve the
693  // instruction that defines the result value.
694
695  // Make sure V2 is smaller than V1.
696  if (V1->id < V2->id) {
697    V1->copyFrom(*V2);
698    std::swap(V1, V2);
699  }
700
701  // Merge V1 segments into V2.
702  for (iterator I = begin(); I != end(); ) {
703    iterator S = I++;
704    if (S->valno != V1) continue;  // Not a V1 Segment.
705
706    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
707    // range, extend it.
708    if (S != begin()) {
709      iterator Prev = S-1;
710      if (Prev->valno == V2 && Prev->end == S->start) {
711        Prev->end = S->end;
712
713        // Erase this live-range.
714        segments.erase(S);
715        I = Prev+1;
716        S = Prev;
717      }
718    }
719
720    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
721    // Ensure that it is a V2 live-range.
722    S->valno = V2;
723
724    // If we can merge it into later V2 segments, do so now.  We ignore any
725    // following V1 segments, as they will be merged in subsequent iterations
726    // of the loop.
727    if (I != end()) {
728      if (I->start == S->end && I->valno == V2) {
729        S->end = I->end;
730        segments.erase(I);
731        I = S+1;
732      }
733    }
734  }
735
736  // Now that V1 is dead, remove it.
737  markValNoForDeletion(V1);
738
739  return V2;
740}
741
742void LiveRange::flushSegmentSet() {
743  assert(segmentSet != nullptr && "segment set must have been created");
744  assert(
745      segments.empty() &&
746      "segment set can be used only initially before switching to the array");
747  segments.append(segmentSet->begin(), segmentSet->end());
748  segmentSet = nullptr;
749  verify();
750}
751
752void LiveInterval::freeSubRange(SubRange *S) {
753  S->~SubRange();
754  // Memory was allocated with BumpPtr allocator and is not freed here.
755}
756
757void LiveInterval::removeEmptySubRanges() {
758  SubRange **NextPtr = &SubRanges;
759  SubRange *I = *NextPtr;
760  while (I != nullptr) {
761    if (!I->empty()) {
762      NextPtr = &I->Next;
763      I = *NextPtr;
764      continue;
765    }
766    // Skip empty subranges until we find the first nonempty one.
767    do {
768      SubRange *Next = I->Next;
769      freeSubRange(I);
770      I = Next;
771    } while (I != nullptr && I->empty());
772    *NextPtr = I;
773  }
774}
775
776void LiveInterval::clearSubRanges() {
777  for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
778    Next = I->Next;
779    freeSubRange(I);
780  }
781  SubRanges = nullptr;
782}
783
784/// Helper function for constructMainRangeFromSubranges(): Search the CFG
785/// backwards until we find a place covered by a LiveRange segment that actually
786/// has a valno set.
787static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
788    const MachineBasicBlock *MBB,
789    SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
790  // We start the search at the end of MBB.
791  SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
792  // In our use case we can't live the area covered by the live segments without
793  // finding an actual VNI def.
794  LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
795  assert(I != LR.end());
796  LiveRange::Segment &S = *I;
797  if (S.valno != nullptr)
798    return S.valno;
799
800  VNInfo *VNI = nullptr;
801  // Continue at predecessors (we could even go to idom with domtree available).
802  for (const MachineBasicBlock *Pred : MBB->predecessors()) {
803    // Avoid going in circles.
804    if (!Visited.insert(Pred).second)
805      continue;
806
807    VNI = searchForVNI(Indexes, LR, Pred, Visited);
808    if (VNI != nullptr) {
809      S.valno = VNI;
810      break;
811    }
812  }
813
814  return VNI;
815}
816
817static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
818  SmallPtrSet<const MachineBasicBlock*, 5> Visited;
819
820  LiveRange::iterator OutIt;
821  VNInfo *PrevValNo = nullptr;
822  for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
823    LiveRange::Segment &S = *I;
824    // Determine final VNI if necessary.
825    if (S.valno == nullptr) {
826      // This can only happen at the begin of a basic block.
827      assert(S.start.isBlock() && "valno should only be missing at block begin");
828
829      Visited.clear();
830      const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
831      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
832        VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
833        if (VNI != nullptr) {
834          S.valno = VNI;
835          break;
836        }
837      }
838      assert(S.valno != nullptr && "could not determine valno");
839    }
840    // Merge with previous segment if it has the same VNI.
841    if (PrevValNo == S.valno && OutIt->end == S.start) {
842      OutIt->end = S.end;
843    } else {
844      // Didn't merge. Move OutIt to next segment.
845      if (PrevValNo == nullptr)
846        OutIt = LI.begin();
847      else
848        ++OutIt;
849
850      if (OutIt != I)
851        *OutIt = *I;
852      PrevValNo = S.valno;
853    }
854  }
855  // If we merged some segments chop off the end.
856  ++OutIt;
857  LI.segments.erase(OutIt, LI.end());
858}
859
860void LiveInterval::constructMainRangeFromSubranges(
861    const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
862  // The basic observations on which this algorithm is based:
863  // - Each Def/ValNo in a subrange must have a corresponding def on the main
864  //   range, but not further defs/valnos are necessary.
865  // - If any of the subranges is live at a point the main liverange has to be
866  //   live too, conversily if no subrange is live the main range mustn't be
867  //   live either.
868  // We do this by scannig through all the subranges simultaneously creating new
869  // segments in the main range as segments start/ends come up in the subranges.
870  assert(hasSubRanges() && "expected subranges to be present");
871  assert(segments.empty() && valnos.empty() && "expected empty main range");
872
873  // Collect subrange, iterator pairs for the walk and determine first and last
874  // SlotIndex involved.
875  SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
876  SlotIndex First;
877  SlotIndex Last;
878  for (const SubRange &SR : subranges()) {
879    if (SR.empty())
880      continue;
881    SRs.push_back(std::make_pair(&SR, SR.begin()));
882    if (!First.isValid() || SR.segments.front().start < First)
883      First = SR.segments.front().start;
884    if (!Last.isValid() || SR.segments.back().end > Last)
885      Last = SR.segments.back().end;
886  }
887
888  // Walk over all subranges simultaneously.
889  Segment CurrentSegment;
890  bool ConstructingSegment = false;
891  bool NeedVNIFixup = false;
892  unsigned ActiveMask = 0;
893  SlotIndex Pos = First;
894  while (true) {
895    SlotIndex NextPos = Last;
896    enum {
897      NOTHING,
898      BEGIN_SEGMENT,
899      END_SEGMENT,
900    } Event = NOTHING;
901    // Which subregister lanes are affected by the current event.
902    unsigned EventMask = 0;
903    // Whether a BEGIN_SEGMENT is also a valno definition point.
904    bool IsDef = false;
905    // Find the next begin or end of a subrange segment. Combine masks if we
906    // have multiple begins/ends at the same position. Ends take precedence over
907    // Begins.
908    for (auto &SRP : SRs) {
909      const SubRange &SR = *SRP.first;
910      const_iterator &I = SRP.second;
911      // Advance iterator of subrange to a segment involving Pos; the earlier
912      // segments are already merged at this point.
913      while (I != SR.end() &&
914             (I->end < Pos ||
915              (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
916        ++I;
917      if (I == SR.end())
918        continue;
919      if ((ActiveMask & SR.LaneMask) == 0 &&
920          Pos <= I->start && I->start <= NextPos) {
921        // Merge multiple begins at the same position.
922        if (I->start == NextPos && Event == BEGIN_SEGMENT) {
923          EventMask |= SR.LaneMask;
924          IsDef |= I->valno->def == I->start;
925        } else if (I->start < NextPos || Event != END_SEGMENT) {
926          Event = BEGIN_SEGMENT;
927          NextPos = I->start;
928          EventMask = SR.LaneMask;
929          IsDef = I->valno->def == I->start;
930        }
931      }
932      if ((ActiveMask & SR.LaneMask) != 0 &&
933          Pos <= I->end && I->end <= NextPos) {
934        // Merge multiple ends at the same position.
935        if (I->end == NextPos && Event == END_SEGMENT)
936          EventMask |= SR.LaneMask;
937        else {
938          Event = END_SEGMENT;
939          NextPos = I->end;
940          EventMask = SR.LaneMask;
941        }
942      }
943    }
944
945    // Advance scan position.
946    Pos = NextPos;
947    if (Event == BEGIN_SEGMENT) {
948      if (ConstructingSegment && IsDef) {
949        // Finish previous segment because we have to start a new one.
950        CurrentSegment.end = Pos;
951        append(CurrentSegment);
952        ConstructingSegment = false;
953      }
954
955      // Start a new segment if necessary.
956      if (!ConstructingSegment) {
957        // Determine value number for the segment.
958        VNInfo *VNI;
959        if (IsDef) {
960          VNI = getNextValue(Pos, VNIAllocator);
961        } else {
962          // We have to reuse an existing value number, if we are lucky
963          // then we already passed one of the predecessor blocks and determined
964          // its value number (with blocks in reverse postorder this would be
965          // always true but we have no such guarantee).
966          assert(Pos.isBlock());
967          const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
968          // See if any of the predecessor blocks has a lower number and a VNI
969          for (const MachineBasicBlock *Pred : MBB->predecessors()) {
970            SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
971            VNI = getVNInfoBefore(PredEnd);
972            if (VNI != nullptr)
973              break;
974          }
975          // Def will come later: We have to do an extra fixup pass.
976          if (VNI == nullptr)
977            NeedVNIFixup = true;
978        }
979
980        // In rare cases we can produce adjacent segments with the same value
981        // number (if they come from different subranges, but happen to have
982        // the same defining instruction). VNIFixup will fix those cases.
983        if (!empty() && segments.back().end == Pos &&
984            segments.back().valno == VNI)
985          NeedVNIFixup = true;
986        CurrentSegment.start = Pos;
987        CurrentSegment.valno = VNI;
988        ConstructingSegment = true;
989      }
990      ActiveMask |= EventMask;
991    } else if (Event == END_SEGMENT) {
992      assert(ConstructingSegment);
993      // Finish segment if no lane is active anymore.
994      ActiveMask &= ~EventMask;
995      if (ActiveMask == 0) {
996        CurrentSegment.end = Pos;
997        append(CurrentSegment);
998        ConstructingSegment = false;
999      }
1000    } else {
1001      // We reached the end of the last subranges and can stop.
1002      assert(Event == NOTHING);
1003      break;
1004    }
1005  }
1006
1007  // We might not be able to assign new valnos for all segments if the basic
1008  // block containing the definition comes after a segment using the valno.
1009  // Do a fixup pass for this uncommon case.
1010  if (NeedVNIFixup)
1011    determineMissingVNIs(Indexes, *this);
1012
1013  assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
1014  verify();
1015}
1016
1017unsigned LiveInterval::getSize() const {
1018  unsigned Sum = 0;
1019  for (const Segment &S : segments)
1020    Sum += S.start.distance(S.end);
1021  return Sum;
1022}
1023
1024raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
1025  return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
1026}
1027
1028#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1029void LiveRange::Segment::dump() const {
1030  dbgs() << *this << "\n";
1031}
1032#endif
1033
1034void LiveRange::print(raw_ostream &OS) const {
1035  if (empty())
1036    OS << "EMPTY";
1037  else {
1038    for (const Segment &S : segments) {
1039      OS << S;
1040      assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1041    }
1042  }
1043
1044  // Print value number info.
1045  if (getNumValNums()) {
1046    OS << "  ";
1047    unsigned vnum = 0;
1048    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1049         ++i, ++vnum) {
1050      const VNInfo *vni = *i;
1051      if (vnum) OS << " ";
1052      OS << vnum << "@";
1053      if (vni->isUnused()) {
1054        OS << "x";
1055      } else {
1056        OS << vni->def;
1057        if (vni->isPHIDef())
1058          OS << "-phi";
1059      }
1060    }
1061  }
1062}
1063
1064void LiveInterval::print(raw_ostream &OS) const {
1065  OS << PrintReg(reg) << ' ';
1066  super::print(OS);
1067  // Print subranges
1068  for (const SubRange &SR : subranges()) {
1069    OS << format(" L%04X ", SR.LaneMask) << SR;
1070  }
1071}
1072
1073#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1074void LiveRange::dump() const {
1075  dbgs() << *this << "\n";
1076}
1077
1078void LiveInterval::dump() const {
1079  dbgs() << *this << "\n";
1080}
1081#endif
1082
1083#ifndef NDEBUG
1084void LiveRange::verify() const {
1085  for (const_iterator I = begin(), E = end(); I != E; ++I) {
1086    assert(I->start.isValid());
1087    assert(I->end.isValid());
1088    assert(I->start < I->end);
1089    assert(I->valno != nullptr);
1090    assert(I->valno->id < valnos.size());
1091    assert(I->valno == valnos[I->valno->id]);
1092    if (std::next(I) != E) {
1093      assert(I->end <= std::next(I)->start);
1094      if (I->end == std::next(I)->start)
1095        assert(I->valno != std::next(I)->valno);
1096    }
1097  }
1098}
1099
1100void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1101  super::verify();
1102
1103  // Make sure SubRanges are fine and LaneMasks are disjunct.
1104  unsigned Mask = 0;
1105  unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
1106  for (const SubRange &SR : subranges()) {
1107    // Subrange lanemask should be disjunct to any previous subrange masks.
1108    assert((Mask & SR.LaneMask) == 0);
1109    Mask |= SR.LaneMask;
1110
1111    // subrange mask should not contained in maximum lane mask for the vreg.
1112    assert((Mask & ~MaxMask) == 0);
1113
1114    SR.verify();
1115    // Main liverange should cover subrange.
1116    assert(covers(SR));
1117  }
1118}
1119#endif
1120
1121
1122//===----------------------------------------------------------------------===//
1123//                           LiveRangeUpdater class
1124//===----------------------------------------------------------------------===//
1125//
1126// The LiveRangeUpdater class always maintains these invariants:
1127//
1128// - When LastStart is invalid, Spills is empty and the iterators are invalid.
1129//   This is the initial state, and the state created by flush().
1130//   In this state, isDirty() returns false.
1131//
1132// Otherwise, segments are kept in three separate areas:
1133//
1134// 1. [begin; WriteI) at the front of LR.
1135// 2. [ReadI; end) at the back of LR.
1136// 3. Spills.
1137//
1138// - LR.begin() <= WriteI <= ReadI <= LR.end().
1139// - Segments in all three areas are fully ordered and coalesced.
1140// - Segments in area 1 precede and can't coalesce with segments in area 2.
1141// - Segments in Spills precede and can't coalesce with segments in area 2.
1142// - No coalescing is possible between segments in Spills and segments in area
1143//   1, and there are no overlapping segments.
1144//
1145// The segments in Spills are not ordered with respect to the segments in area
1146// 1. They need to be merged.
1147//
1148// When they exist, Spills.back().start <= LastStart,
1149//                 and WriteI[-1].start <= LastStart.
1150
1151void LiveRangeUpdater::print(raw_ostream &OS) const {
1152  if (!isDirty()) {
1153    if (LR)
1154      OS << "Clean updater: " << *LR << '\n';
1155    else
1156      OS << "Null updater.\n";
1157    return;
1158  }
1159  assert(LR && "Can't have null LR in dirty updater.");
1160  OS << " updater with gap = " << (ReadI - WriteI)
1161     << ", last start = " << LastStart
1162     << ":\n  Area 1:";
1163  for (const auto &S : make_range(LR->begin(), WriteI))
1164    OS << ' ' << S;
1165  OS << "\n  Spills:";
1166  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1167    OS << ' ' << Spills[I];
1168  OS << "\n  Area 2:";
1169  for (const auto &S : make_range(ReadI, LR->end()))
1170    OS << ' ' << S;
1171  OS << '\n';
1172}
1173
1174void LiveRangeUpdater::dump() const
1175{
1176  print(errs());
1177}
1178
1179// Determine if A and B should be coalesced.
1180static inline bool coalescable(const LiveRange::Segment &A,
1181                               const LiveRange::Segment &B) {
1182  assert(A.start <= B.start && "Unordered live segments.");
1183  if (A.end == B.start)
1184    return A.valno == B.valno;
1185  if (A.end < B.start)
1186    return false;
1187  assert(A.valno == B.valno && "Cannot overlap different values");
1188  return true;
1189}
1190
1191void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1192  assert(LR && "Cannot add to a null destination");
1193
1194  // Fall back to the regular add method if the live range
1195  // is using the segment set instead of the segment vector.
1196  if (LR->segmentSet != nullptr) {
1197    LR->addSegmentToSet(Seg);
1198    return;
1199  }
1200
1201  // Flush the state if Start moves backwards.
1202  if (!LastStart.isValid() || LastStart > Seg.start) {
1203    if (isDirty())
1204      flush();
1205    // This brings us to an uninitialized state. Reinitialize.
1206    assert(Spills.empty() && "Leftover spilled segments");
1207    WriteI = ReadI = LR->begin();
1208  }
1209
1210  // Remember start for next time.
1211  LastStart = Seg.start;
1212
1213  // Advance ReadI until it ends after Seg.start.
1214  LiveRange::iterator E = LR->end();
1215  if (ReadI != E && ReadI->end <= Seg.start) {
1216    // First try to close the gap between WriteI and ReadI with spills.
1217    if (ReadI != WriteI)
1218      mergeSpills();
1219    // Then advance ReadI.
1220    if (ReadI == WriteI)
1221      ReadI = WriteI = LR->find(Seg.start);
1222    else
1223      while (ReadI != E && ReadI->end <= Seg.start)
1224        *WriteI++ = *ReadI++;
1225  }
1226
1227  assert(ReadI == E || ReadI->end > Seg.start);
1228
1229  // Check if the ReadI segment begins early.
1230  if (ReadI != E && ReadI->start <= Seg.start) {
1231    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1232    // Bail if Seg is completely contained in ReadI.
1233    if (ReadI->end >= Seg.end)
1234      return;
1235    // Coalesce into Seg.
1236    Seg.start = ReadI->start;
1237    ++ReadI;
1238  }
1239
1240  // Coalesce as much as possible from ReadI into Seg.
1241  while (ReadI != E && coalescable(Seg, *ReadI)) {
1242    Seg.end = std::max(Seg.end, ReadI->end);
1243    ++ReadI;
1244  }
1245
1246  // Try coalescing Spills.back() into Seg.
1247  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1248    Seg.start = Spills.back().start;
1249    Seg.end = std::max(Spills.back().end, Seg.end);
1250    Spills.pop_back();
1251  }
1252
1253  // Try coalescing Seg into WriteI[-1].
1254  if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1255    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1256    return;
1257  }
1258
1259  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1260  if (WriteI != ReadI) {
1261    *WriteI++ = Seg;
1262    return;
1263  }
1264
1265  // Finally, append to LR or Spills.
1266  if (WriteI == E) {
1267    LR->segments.push_back(Seg);
1268    WriteI = ReadI = LR->end();
1269  } else
1270    Spills.push_back(Seg);
1271}
1272
1273// Merge as many spilled segments as possible into the gap between WriteI
1274// and ReadI. Advance WriteI to reflect the inserted instructions.
1275void LiveRangeUpdater::mergeSpills() {
1276  // Perform a backwards merge of Spills and [SpillI;WriteI).
1277  size_t GapSize = ReadI - WriteI;
1278  size_t NumMoved = std::min(Spills.size(), GapSize);
1279  LiveRange::iterator Src = WriteI;
1280  LiveRange::iterator Dst = Src + NumMoved;
1281  LiveRange::iterator SpillSrc = Spills.end();
1282  LiveRange::iterator B = LR->begin();
1283
1284  // This is the new WriteI position after merging spills.
1285  WriteI = Dst;
1286
1287  // Now merge Src and Spills backwards.
1288  while (Src != Dst) {
1289    if (Src != B && Src[-1].start > SpillSrc[-1].start)
1290      *--Dst = *--Src;
1291    else
1292      *--Dst = *--SpillSrc;
1293  }
1294  assert(NumMoved == size_t(Spills.end() - SpillSrc));
1295  Spills.erase(SpillSrc, Spills.end());
1296}
1297
1298void LiveRangeUpdater::flush() {
1299  if (!isDirty())
1300    return;
1301  // Clear the dirty state.
1302  LastStart = SlotIndex();
1303
1304  assert(LR && "Cannot add to a null destination");
1305
1306  // Nothing to merge?
1307  if (Spills.empty()) {
1308    LR->segments.erase(WriteI, ReadI);
1309    LR->verify();
1310    return;
1311  }
1312
1313  // Resize the WriteI - ReadI gap to match Spills.
1314  size_t GapSize = ReadI - WriteI;
1315  if (GapSize < Spills.size()) {
1316    // The gap is too small. Make some room.
1317    size_t WritePos = WriteI - LR->begin();
1318    LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1319    // This also invalidated ReadI, but it is recomputed below.
1320    WriteI = LR->begin() + WritePos;
1321  } else {
1322    // Shrink the gap if necessary.
1323    LR->segments.erase(WriteI + Spills.size(), ReadI);
1324  }
1325  ReadI = WriteI + Spills.size();
1326  mergeSpills();
1327  LR->verify();
1328}
1329
1330unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
1331  // Create initial equivalence classes.
1332  EqClass.clear();
1333  EqClass.grow(LI->getNumValNums());
1334
1335  const VNInfo *used = nullptr, *unused = nullptr;
1336
1337  // Determine connections.
1338  for (const VNInfo *VNI : LI->valnos) {
1339    // Group all unused values into one class.
1340    if (VNI->isUnused()) {
1341      if (unused)
1342        EqClass.join(unused->id, VNI->id);
1343      unused = VNI;
1344      continue;
1345    }
1346    used = VNI;
1347    if (VNI->isPHIDef()) {
1348      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1349      assert(MBB && "Phi-def has no defining MBB");
1350      // Connect to values live out of predecessors.
1351      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1352           PE = MBB->pred_end(); PI != PE; ++PI)
1353        if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1354          EqClass.join(VNI->id, PVNI->id);
1355    } else {
1356      // Normal value defined by an instruction. Check for two-addr redef.
1357      // FIXME: This could be coincidental. Should we really check for a tied
1358      // operand constraint?
1359      // Note that VNI->def may be a use slot for an early clobber def.
1360      if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
1361        EqClass.join(VNI->id, UVNI->id);
1362    }
1363  }
1364
1365  // Lump all the unused values in with the last used value.
1366  if (used && unused)
1367    EqClass.join(used->id, unused->id);
1368
1369  EqClass.compress();
1370  return EqClass.getNumClasses();
1371}
1372
1373void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
1374                                          MachineRegisterInfo &MRI) {
1375  assert(LIV[0] && "LIV[0] must be set");
1376  LiveInterval &LI = *LIV[0];
1377
1378  // Rewrite instructions.
1379  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1380       RE = MRI.reg_end(); RI != RE;) {
1381    MachineOperand &MO = *RI;
1382    MachineInstr *MI = RI->getParent();
1383    ++RI;
1384    // DBG_VALUE instructions don't have slot indexes, so get the index of the
1385    // instruction before them.
1386    // Normally, DBG_VALUE instructions are removed before this function is
1387    // called, but it is not a requirement.
1388    SlotIndex Idx;
1389    if (MI->isDebugValue())
1390      Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
1391    else
1392      Idx = LIS.getInstructionIndex(MI);
1393    LiveQueryResult LRQ = LI.Query(Idx);
1394    const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1395    // In the case of an <undef> use that isn't tied to any def, VNI will be
1396    // NULL. If the use is tied to a def, VNI will be the defined value.
1397    if (!VNI)
1398      continue;
1399    MO.setReg(LIV[getEqClass(VNI)]->reg);
1400  }
1401
1402  // Move runs to new intervals.
1403  LiveInterval::iterator J = LI.begin(), E = LI.end();
1404  while (J != E && EqClass[J->valno->id] == 0)
1405    ++J;
1406  for (LiveInterval::iterator I = J; I != E; ++I) {
1407    if (unsigned eq = EqClass[I->valno->id]) {
1408      assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
1409             "New intervals should be empty");
1410      LIV[eq]->segments.push_back(*I);
1411    } else
1412      *J++ = *I;
1413  }
1414  // TODO: do not cheat anymore by simply cleaning all subranges
1415  LI.clearSubRanges();
1416  LI.segments.erase(J, E);
1417
1418  // Transfer VNInfos to their new owners and renumber them.
1419  unsigned j = 0, e = LI.getNumValNums();
1420  while (j != e && EqClass[j] == 0)
1421    ++j;
1422  for (unsigned i = j; i != e; ++i) {
1423    VNInfo *VNI = LI.getValNumInfo(i);
1424    if (unsigned eq = EqClass[i]) {
1425      VNI->id = LIV[eq]->getNumValNums();
1426      LIV[eq]->valnos.push_back(VNI);
1427    } else {
1428      VNI->id = j;
1429      LI.valnos[j++] = VNI;
1430    }
1431  }
1432  LI.valnos.resize(j);
1433}
1434