1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// MachineScheduler schedules machine instructions after phi elimination. It 11// preserves LiveIntervals so it can be invoked before register allocation. 12// 13//===----------------------------------------------------------------------===// 14 15#include "llvm/CodeGen/MachineScheduler.h" 16#include "llvm/ADT/PriorityQueue.h" 17#include "llvm/Analysis/AliasAnalysis.h" 18#include "llvm/CodeGen/LiveIntervalAnalysis.h" 19#include "llvm/CodeGen/MachineDominators.h" 20#include "llvm/CodeGen/MachineLoopInfo.h" 21#include "llvm/CodeGen/MachineRegisterInfo.h" 22#include "llvm/CodeGen/Passes.h" 23#include "llvm/CodeGen/RegisterClassInfo.h" 24#include "llvm/CodeGen/ScheduleDFS.h" 25#include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26#include "llvm/Support/CommandLine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/GraphWriter.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/Target/TargetInstrInfo.h" 32#include <queue> 33 34using namespace llvm; 35 36#define DEBUG_TYPE "misched" 37 38namespace llvm { 39cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43cl::opt<bool> 44DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46} 47 48#ifndef NDEBUG 49static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 53 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 54 55static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 56 cl::desc("Only schedule this function")); 57static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 58 cl::desc("Only schedule this MBB#")); 59#else 60static bool ViewMISchedDAGs = false; 61#endif // NDEBUG 62 63static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 64 cl::desc("Enable register pressure scheduling."), cl::init(true)); 65 66static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 67 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 68 69static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 70 cl::desc("Enable load clustering."), cl::init(true)); 71 72// Experimental heuristics 73static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 74 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 75 76static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 77 cl::desc("Verify machine instrs before and after machine scheduling")); 78 79// DAG subtrees must have at least this many nodes. 80static const unsigned MinSubtreeSize = 8; 81 82// Pin the vtables to this file. 83void MachineSchedStrategy::anchor() {} 84void ScheduleDAGMutation::anchor() {} 85 86//===----------------------------------------------------------------------===// 87// Machine Instruction Scheduling Pass and Registry 88//===----------------------------------------------------------------------===// 89 90MachineSchedContext::MachineSchedContext(): 91 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 92 RegClassInfo = new RegisterClassInfo(); 93} 94 95MachineSchedContext::~MachineSchedContext() { 96 delete RegClassInfo; 97} 98 99namespace { 100/// Base class for a machine scheduler class that can run at any point. 101class MachineSchedulerBase : public MachineSchedContext, 102 public MachineFunctionPass { 103public: 104 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 105 106 void print(raw_ostream &O, const Module* = nullptr) const override; 107 108protected: 109 void scheduleRegions(ScheduleDAGInstrs &Scheduler); 110}; 111 112/// MachineScheduler runs after coalescing and before register allocation. 113class MachineScheduler : public MachineSchedulerBase { 114public: 115 MachineScheduler(); 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override; 118 119 bool runOnMachineFunction(MachineFunction&) override; 120 121 static char ID; // Class identification, replacement for typeinfo 122 123protected: 124 ScheduleDAGInstrs *createMachineScheduler(); 125}; 126 127/// PostMachineScheduler runs after shortly before code emission. 128class PostMachineScheduler : public MachineSchedulerBase { 129public: 130 PostMachineScheduler(); 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override; 133 134 bool runOnMachineFunction(MachineFunction&) override; 135 136 static char ID; // Class identification, replacement for typeinfo 137 138protected: 139 ScheduleDAGInstrs *createPostMachineScheduler(); 140}; 141} // namespace 142 143char MachineScheduler::ID = 0; 144 145char &llvm::MachineSchedulerID = MachineScheduler::ID; 146 147INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 148 "Machine Instruction Scheduler", false, false) 149INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 150INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 151INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 152INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 155MachineScheduler::MachineScheduler() 156: MachineSchedulerBase(ID) { 157 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 158} 159 160void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 161 AU.setPreservesCFG(); 162 AU.addRequiredID(MachineDominatorsID); 163 AU.addRequired<MachineLoopInfo>(); 164 AU.addRequired<AliasAnalysis>(); 165 AU.addRequired<TargetPassConfig>(); 166 AU.addRequired<SlotIndexes>(); 167 AU.addPreserved<SlotIndexes>(); 168 AU.addRequired<LiveIntervals>(); 169 AU.addPreserved<LiveIntervals>(); 170 MachineFunctionPass::getAnalysisUsage(AU); 171} 172 173char PostMachineScheduler::ID = 0; 174 175char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 176 177INITIALIZE_PASS(PostMachineScheduler, "postmisched", 178 "PostRA Machine Instruction Scheduler", false, false) 179 180PostMachineScheduler::PostMachineScheduler() 181: MachineSchedulerBase(ID) { 182 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 183} 184 185void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 186 AU.setPreservesCFG(); 187 AU.addRequiredID(MachineDominatorsID); 188 AU.addRequired<MachineLoopInfo>(); 189 AU.addRequired<TargetPassConfig>(); 190 MachineFunctionPass::getAnalysisUsage(AU); 191} 192 193MachinePassRegistry MachineSchedRegistry::Registry; 194 195/// A dummy default scheduler factory indicates whether the scheduler 196/// is overridden on the command line. 197static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 198 return nullptr; 199} 200 201/// MachineSchedOpt allows command line selection of the scheduler. 202static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 203 RegisterPassParser<MachineSchedRegistry> > 204MachineSchedOpt("misched", 205 cl::init(&useDefaultMachineSched), cl::Hidden, 206 cl::desc("Machine instruction scheduler to use")); 207 208static MachineSchedRegistry 209DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 210 useDefaultMachineSched); 211 212static cl::opt<bool> EnableMachineSched( 213 "enable-misched", 214 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 215 cl::Hidden); 216 217/// Forward declare the standard machine scheduler. This will be used as the 218/// default scheduler if the target does not set a default. 219static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 220static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 221 222/// Decrement this iterator until reaching the top or a non-debug instr. 223static MachineBasicBlock::const_iterator 224priorNonDebug(MachineBasicBlock::const_iterator I, 225 MachineBasicBlock::const_iterator Beg) { 226 assert(I != Beg && "reached the top of the region, cannot decrement"); 227 while (--I != Beg) { 228 if (!I->isDebugValue()) 229 break; 230 } 231 return I; 232} 233 234/// Non-const version. 235static MachineBasicBlock::iterator 236priorNonDebug(MachineBasicBlock::iterator I, 237 MachineBasicBlock::const_iterator Beg) { 238 return const_cast<MachineInstr*>( 239 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 240} 241 242/// If this iterator is a debug value, increment until reaching the End or a 243/// non-debug instruction. 244static MachineBasicBlock::const_iterator 245nextIfDebug(MachineBasicBlock::const_iterator I, 246 MachineBasicBlock::const_iterator End) { 247 for(; I != End; ++I) { 248 if (!I->isDebugValue()) 249 break; 250 } 251 return I; 252} 253 254/// Non-const version. 255static MachineBasicBlock::iterator 256nextIfDebug(MachineBasicBlock::iterator I, 257 MachineBasicBlock::const_iterator End) { 258 // Cast the return value to nonconst MachineInstr, then cast to an 259 // instr_iterator, which does not check for null, finally return a 260 // bundle_iterator. 261 return MachineBasicBlock::instr_iterator( 262 const_cast<MachineInstr*>( 263 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 264} 265 266/// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 267ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 268 // Select the scheduler, or set the default. 269 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 270 if (Ctor != useDefaultMachineSched) 271 return Ctor(this); 272 273 // Get the default scheduler set by the target for this function. 274 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 275 if (Scheduler) 276 return Scheduler; 277 278 // Default to GenericScheduler. 279 return createGenericSchedLive(this); 280} 281 282/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 283/// the caller. We don't have a command line option to override the postRA 284/// scheduler. The Target must configure it. 285ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 286 // Get the postRA scheduler set by the target for this function. 287 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 288 if (Scheduler) 289 return Scheduler; 290 291 // Default to GenericScheduler. 292 return createGenericSchedPostRA(this); 293} 294 295/// Top-level MachineScheduler pass driver. 296/// 297/// Visit blocks in function order. Divide each block into scheduling regions 298/// and visit them bottom-up. Visiting regions bottom-up is not required, but is 299/// consistent with the DAG builder, which traverses the interior of the 300/// scheduling regions bottom-up. 301/// 302/// This design avoids exposing scheduling boundaries to the DAG builder, 303/// simplifying the DAG builder's support for "special" target instructions. 304/// At the same time the design allows target schedulers to operate across 305/// scheduling boundaries, for example to bundle the boudary instructions 306/// without reordering them. This creates complexity, because the target 307/// scheduler must update the RegionBegin and RegionEnd positions cached by 308/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 309/// design would be to split blocks at scheduling boundaries, but LLVM has a 310/// general bias against block splitting purely for implementation simplicity. 311bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 312 if (EnableMachineSched.getNumOccurrences()) { 313 if (!EnableMachineSched) 314 return false; 315 } else if (!mf.getSubtarget().enableMachineScheduler()) 316 return false; 317 318 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 319 320 // Initialize the context of the pass. 321 MF = &mf; 322 MLI = &getAnalysis<MachineLoopInfo>(); 323 MDT = &getAnalysis<MachineDominatorTree>(); 324 PassConfig = &getAnalysis<TargetPassConfig>(); 325 AA = &getAnalysis<AliasAnalysis>(); 326 327 LIS = &getAnalysis<LiveIntervals>(); 328 329 if (VerifyScheduling) { 330 DEBUG(LIS->dump()); 331 MF->verify(this, "Before machine scheduling."); 332 } 333 RegClassInfo->runOnMachineFunction(*MF); 334 335 // Instantiate the selected scheduler for this target, function, and 336 // optimization level. 337 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 338 scheduleRegions(*Scheduler); 339 340 DEBUG(LIS->dump()); 341 if (VerifyScheduling) 342 MF->verify(this, "After machine scheduling."); 343 return true; 344} 345 346bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 347 if (skipOptnoneFunction(*mf.getFunction())) 348 return false; 349 350 if (!mf.getSubtarget().enablePostMachineScheduler()) { 351 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 352 return false; 353 } 354 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 355 356 // Initialize the context of the pass. 357 MF = &mf; 358 PassConfig = &getAnalysis<TargetPassConfig>(); 359 360 if (VerifyScheduling) 361 MF->verify(this, "Before post machine scheduling."); 362 363 // Instantiate the selected scheduler for this target, function, and 364 // optimization level. 365 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 366 scheduleRegions(*Scheduler); 367 368 if (VerifyScheduling) 369 MF->verify(this, "After post machine scheduling."); 370 return true; 371} 372 373/// Return true of the given instruction should not be included in a scheduling 374/// region. 375/// 376/// MachineScheduler does not currently support scheduling across calls. To 377/// handle calls, the DAG builder needs to be modified to create register 378/// anti/output dependencies on the registers clobbered by the call's regmask 379/// operand. In PreRA scheduling, the stack pointer adjustment already prevents 380/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 381/// the boundary, but there would be no benefit to postRA scheduling across 382/// calls this late anyway. 383static bool isSchedBoundary(MachineBasicBlock::iterator MI, 384 MachineBasicBlock *MBB, 385 MachineFunction *MF, 386 const TargetInstrInfo *TII, 387 bool IsPostRA) { 388 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 389} 390 391/// Main driver for both MachineScheduler and PostMachineScheduler. 392void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) { 393 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 394 bool IsPostRA = Scheduler.isPostRA(); 395 396 // Visit all machine basic blocks. 397 // 398 // TODO: Visit blocks in global postorder or postorder within the bottom-up 399 // loop tree. Then we can optionally compute global RegPressure. 400 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 401 MBB != MBBEnd; ++MBB) { 402 403 Scheduler.startBlock(MBB); 404 405#ifndef NDEBUG 406 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 407 continue; 408 if (SchedOnlyBlock.getNumOccurrences() 409 && (int)SchedOnlyBlock != MBB->getNumber()) 410 continue; 411#endif 412 413 // Break the block into scheduling regions [I, RegionEnd), and schedule each 414 // region as soon as it is discovered. RegionEnd points the scheduling 415 // boundary at the bottom of the region. The DAG does not include RegionEnd, 416 // but the region does (i.e. the next RegionEnd is above the previous 417 // RegionBegin). If the current block has no terminator then RegionEnd == 418 // MBB->end() for the bottom region. 419 // 420 // The Scheduler may insert instructions during either schedule() or 421 // exitRegion(), even for empty regions. So the local iterators 'I' and 422 // 'RegionEnd' are invalid across these calls. 423 // 424 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 425 // as a single instruction. 426 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 427 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 428 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 429 430 // Avoid decrementing RegionEnd for blocks with no terminator. 431 if (RegionEnd != MBB->end() || 432 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) { 433 --RegionEnd; 434 // Count the boundary instruction. 435 --RemainingInstrs; 436 } 437 438 // The next region starts above the previous region. Look backward in the 439 // instruction stream until we find the nearest boundary. 440 unsigned NumRegionInstrs = 0; 441 MachineBasicBlock::iterator I = RegionEnd; 442 for(;I != MBB->begin(); --I, --RemainingInstrs) { 443 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA)) 444 break; 445 if (!I->isDebugValue()) 446 ++NumRegionInstrs; 447 } 448 // Notify the scheduler of the region, even if we may skip scheduling 449 // it. Perhaps it still needs to be bundled. 450 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 451 452 // Skip empty scheduling regions (0 or 1 schedulable instructions). 453 if (I == RegionEnd || I == std::prev(RegionEnd)) { 454 // Close the current region. Bundle the terminator if needed. 455 // This invalidates 'RegionEnd' and 'I'. 456 Scheduler.exitRegion(); 457 continue; 458 } 459 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "") 460 << "MI Scheduling **********\n"); 461 DEBUG(dbgs() << MF->getName() 462 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 463 << "\n From: " << *I << " To: "; 464 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 465 else dbgs() << "End"; 466 dbgs() << " RegionInstrs: " << NumRegionInstrs 467 << " Remaining: " << RemainingInstrs << "\n"); 468 if (DumpCriticalPathLength) { 469 errs() << MF->getName(); 470 errs() << ":BB# " << MBB->getNumber(); 471 errs() << " " << MBB->getName() << " \n"; 472 } 473 474 // Schedule a region: possibly reorder instructions. 475 // This invalidates 'RegionEnd' and 'I'. 476 Scheduler.schedule(); 477 478 // Close the current region. 479 Scheduler.exitRegion(); 480 481 // Scheduling has invalidated the current iterator 'I'. Ask the 482 // scheduler for the top of it's scheduled region. 483 RegionEnd = Scheduler.begin(); 484 } 485 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 486 Scheduler.finishBlock(); 487 if (Scheduler.isPostRA()) { 488 // FIXME: Ideally, no further passes should rely on kill flags. However, 489 // thumb2 size reduction is currently an exception. 490 Scheduler.fixupKills(MBB); 491 } 492 } 493 Scheduler.finalizeSchedule(); 494} 495 496void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 497 // unimplemented 498} 499 500LLVM_DUMP_METHOD 501void ReadyQueue::dump() { 502 dbgs() << Name << ": "; 503 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 504 dbgs() << Queue[i]->NodeNum << " "; 505 dbgs() << "\n"; 506} 507 508//===----------------------------------------------------------------------===// 509// ScheduleDAGMI - Basic machine instruction scheduling. This is 510// independent of PreRA/PostRA scheduling and involves no extra book-keeping for 511// virtual registers. 512// ===----------------------------------------------------------------------===/ 513 514// Provide a vtable anchor. 515ScheduleDAGMI::~ScheduleDAGMI() { 516} 517 518bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 519 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 520} 521 522bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 523 if (SuccSU != &ExitSU) { 524 // Do not use WillCreateCycle, it assumes SD scheduling. 525 // If Pred is reachable from Succ, then the edge creates a cycle. 526 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 527 return false; 528 Topo.AddPred(SuccSU, PredDep.getSUnit()); 529 } 530 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 531 // Return true regardless of whether a new edge needed to be inserted. 532 return true; 533} 534 535/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 536/// NumPredsLeft reaches zero, release the successor node. 537/// 538/// FIXME: Adjust SuccSU height based on MinLatency. 539void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 540 SUnit *SuccSU = SuccEdge->getSUnit(); 541 542 if (SuccEdge->isWeak()) { 543 --SuccSU->WeakPredsLeft; 544 if (SuccEdge->isCluster()) 545 NextClusterSucc = SuccSU; 546 return; 547 } 548#ifndef NDEBUG 549 if (SuccSU->NumPredsLeft == 0) { 550 dbgs() << "*** Scheduling failed! ***\n"; 551 SuccSU->dump(this); 552 dbgs() << " has been released too many times!\n"; 553 llvm_unreachable(nullptr); 554 } 555#endif 556 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 557 // CurrCycle may have advanced since then. 558 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 559 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 560 561 --SuccSU->NumPredsLeft; 562 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 563 SchedImpl->releaseTopNode(SuccSU); 564} 565 566/// releaseSuccessors - Call releaseSucc on each of SU's successors. 567void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 568 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 569 I != E; ++I) { 570 releaseSucc(SU, &*I); 571 } 572} 573 574/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 575/// NumSuccsLeft reaches zero, release the predecessor node. 576/// 577/// FIXME: Adjust PredSU height based on MinLatency. 578void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 579 SUnit *PredSU = PredEdge->getSUnit(); 580 581 if (PredEdge->isWeak()) { 582 --PredSU->WeakSuccsLeft; 583 if (PredEdge->isCluster()) 584 NextClusterPred = PredSU; 585 return; 586 } 587#ifndef NDEBUG 588 if (PredSU->NumSuccsLeft == 0) { 589 dbgs() << "*** Scheduling failed! ***\n"; 590 PredSU->dump(this); 591 dbgs() << " has been released too many times!\n"; 592 llvm_unreachable(nullptr); 593 } 594#endif 595 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 596 // CurrCycle may have advanced since then. 597 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 598 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 599 600 --PredSU->NumSuccsLeft; 601 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 602 SchedImpl->releaseBottomNode(PredSU); 603} 604 605/// releasePredecessors - Call releasePred on each of SU's predecessors. 606void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 607 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 608 I != E; ++I) { 609 releasePred(SU, &*I); 610 } 611} 612 613/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 614/// crossing a scheduling boundary. [begin, end) includes all instructions in 615/// the region, including the boundary itself and single-instruction regions 616/// that don't get scheduled. 617void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 618 MachineBasicBlock::iterator begin, 619 MachineBasicBlock::iterator end, 620 unsigned regioninstrs) 621{ 622 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 623 624 SchedImpl->initPolicy(begin, end, regioninstrs); 625} 626 627/// This is normally called from the main scheduler loop but may also be invoked 628/// by the scheduling strategy to perform additional code motion. 629void ScheduleDAGMI::moveInstruction( 630 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 631 // Advance RegionBegin if the first instruction moves down. 632 if (&*RegionBegin == MI) 633 ++RegionBegin; 634 635 // Update the instruction stream. 636 BB->splice(InsertPos, BB, MI); 637 638 // Update LiveIntervals 639 if (LIS) 640 LIS->handleMove(MI, /*UpdateFlags=*/true); 641 642 // Recede RegionBegin if an instruction moves above the first. 643 if (RegionBegin == InsertPos) 644 RegionBegin = MI; 645} 646 647bool ScheduleDAGMI::checkSchedLimit() { 648#ifndef NDEBUG 649 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 650 CurrentTop = CurrentBottom; 651 return false; 652 } 653 ++NumInstrsScheduled; 654#endif 655 return true; 656} 657 658/// Per-region scheduling driver, called back from 659/// MachineScheduler::runOnMachineFunction. This is a simplified driver that 660/// does not consider liveness or register pressure. It is useful for PostRA 661/// scheduling and potentially other custom schedulers. 662void ScheduleDAGMI::schedule() { 663 // Build the DAG. 664 buildSchedGraph(AA); 665 666 Topo.InitDAGTopologicalSorting(); 667 668 postprocessDAG(); 669 670 SmallVector<SUnit*, 8> TopRoots, BotRoots; 671 findRootsAndBiasEdges(TopRoots, BotRoots); 672 673 // Initialize the strategy before modifying the DAG. 674 // This may initialize a DFSResult to be used for queue priority. 675 SchedImpl->initialize(this); 676 677 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 678 SUnits[su].dumpAll(this)); 679 if (ViewMISchedDAGs) viewGraph(); 680 681 // Initialize ready queues now that the DAG and priority data are finalized. 682 initQueues(TopRoots, BotRoots); 683 684 bool IsTopNode = false; 685 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 686 assert(!SU->isScheduled && "Node already scheduled"); 687 if (!checkSchedLimit()) 688 break; 689 690 MachineInstr *MI = SU->getInstr(); 691 if (IsTopNode) { 692 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 693 if (&*CurrentTop == MI) 694 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 695 else 696 moveInstruction(MI, CurrentTop); 697 } 698 else { 699 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 700 MachineBasicBlock::iterator priorII = 701 priorNonDebug(CurrentBottom, CurrentTop); 702 if (&*priorII == MI) 703 CurrentBottom = priorII; 704 else { 705 if (&*CurrentTop == MI) 706 CurrentTop = nextIfDebug(++CurrentTop, priorII); 707 moveInstruction(MI, CurrentBottom); 708 CurrentBottom = MI; 709 } 710 } 711 // Notify the scheduling strategy before updating the DAG. 712 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 713 // runs, it can then use the accurate ReadyCycle time to determine whether 714 // newly released nodes can move to the readyQ. 715 SchedImpl->schedNode(SU, IsTopNode); 716 717 updateQueues(SU, IsTopNode); 718 } 719 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 720 721 placeDebugValues(); 722 723 DEBUG({ 724 unsigned BBNum = begin()->getParent()->getNumber(); 725 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 726 dumpSchedule(); 727 dbgs() << '\n'; 728 }); 729} 730 731/// Apply each ScheduleDAGMutation step in order. 732void ScheduleDAGMI::postprocessDAG() { 733 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 734 Mutations[i]->apply(this); 735 } 736} 737 738void ScheduleDAGMI:: 739findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 740 SmallVectorImpl<SUnit*> &BotRoots) { 741 for (std::vector<SUnit>::iterator 742 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 743 SUnit *SU = &(*I); 744 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 745 746 // Order predecessors so DFSResult follows the critical path. 747 SU->biasCriticalPath(); 748 749 // A SUnit is ready to top schedule if it has no predecessors. 750 if (!I->NumPredsLeft) 751 TopRoots.push_back(SU); 752 // A SUnit is ready to bottom schedule if it has no successors. 753 if (!I->NumSuccsLeft) 754 BotRoots.push_back(SU); 755 } 756 ExitSU.biasCriticalPath(); 757} 758 759/// Identify DAG roots and setup scheduler queues. 760void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 761 ArrayRef<SUnit*> BotRoots) { 762 NextClusterSucc = nullptr; 763 NextClusterPred = nullptr; 764 765 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 766 // 767 // Nodes with unreleased weak edges can still be roots. 768 // Release top roots in forward order. 769 for (SmallVectorImpl<SUnit*>::const_iterator 770 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 771 SchedImpl->releaseTopNode(*I); 772 } 773 // Release bottom roots in reverse order so the higher priority nodes appear 774 // first. This is more natural and slightly more efficient. 775 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 776 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 777 SchedImpl->releaseBottomNode(*I); 778 } 779 780 releaseSuccessors(&EntrySU); 781 releasePredecessors(&ExitSU); 782 783 SchedImpl->registerRoots(); 784 785 // Advance past initial DebugValues. 786 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 787 CurrentBottom = RegionEnd; 788} 789 790/// Update scheduler queues after scheduling an instruction. 791void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 792 // Release dependent instructions for scheduling. 793 if (IsTopNode) 794 releaseSuccessors(SU); 795 else 796 releasePredecessors(SU); 797 798 SU->isScheduled = true; 799} 800 801/// Reinsert any remaining debug_values, just like the PostRA scheduler. 802void ScheduleDAGMI::placeDebugValues() { 803 // If first instruction was a DBG_VALUE then put it back. 804 if (FirstDbgValue) { 805 BB->splice(RegionBegin, BB, FirstDbgValue); 806 RegionBegin = FirstDbgValue; 807 } 808 809 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 810 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 811 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 812 MachineInstr *DbgValue = P.first; 813 MachineBasicBlock::iterator OrigPrevMI = P.second; 814 if (&*RegionBegin == DbgValue) 815 ++RegionBegin; 816 BB->splice(++OrigPrevMI, BB, DbgValue); 817 if (OrigPrevMI == std::prev(RegionEnd)) 818 RegionEnd = DbgValue; 819 } 820 DbgValues.clear(); 821 FirstDbgValue = nullptr; 822} 823 824#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 825void ScheduleDAGMI::dumpSchedule() const { 826 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 827 if (SUnit *SU = getSUnit(&(*MI))) 828 SU->dump(this); 829 else 830 dbgs() << "Missing SUnit\n"; 831 } 832} 833#endif 834 835//===----------------------------------------------------------------------===// 836// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 837// preservation. 838//===----------------------------------------------------------------------===// 839 840ScheduleDAGMILive::~ScheduleDAGMILive() { 841 delete DFSResult; 842} 843 844/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 845/// crossing a scheduling boundary. [begin, end) includes all instructions in 846/// the region, including the boundary itself and single-instruction regions 847/// that don't get scheduled. 848void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 849 MachineBasicBlock::iterator begin, 850 MachineBasicBlock::iterator end, 851 unsigned regioninstrs) 852{ 853 // ScheduleDAGMI initializes SchedImpl's per-region policy. 854 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 855 856 // For convenience remember the end of the liveness region. 857 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 858 859 SUPressureDiffs.clear(); 860 861 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 862} 863 864// Setup the register pressure trackers for the top scheduled top and bottom 865// scheduled regions. 866void ScheduleDAGMILive::initRegPressure() { 867 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 868 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 869 870 // Close the RPTracker to finalize live ins. 871 RPTracker.closeRegion(); 872 873 DEBUG(RPTracker.dump()); 874 875 // Initialize the live ins and live outs. 876 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 877 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 878 879 // Close one end of the tracker so we can call 880 // getMaxUpward/DownwardPressureDelta before advancing across any 881 // instructions. This converts currently live regs into live ins/outs. 882 TopRPTracker.closeTop(); 883 BotRPTracker.closeBottom(); 884 885 BotRPTracker.initLiveThru(RPTracker); 886 if (!BotRPTracker.getLiveThru().empty()) { 887 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 888 DEBUG(dbgs() << "Live Thru: "; 889 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 890 }; 891 892 // For each live out vreg reduce the pressure change associated with other 893 // uses of the same vreg below the live-out reaching def. 894 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 895 896 // Account for liveness generated by the region boundary. 897 if (LiveRegionEnd != RegionEnd) { 898 SmallVector<unsigned, 8> LiveUses; 899 BotRPTracker.recede(&LiveUses); 900 updatePressureDiffs(LiveUses); 901 } 902 903 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 904 905 // Cache the list of excess pressure sets in this region. This will also track 906 // the max pressure in the scheduled code for these sets. 907 RegionCriticalPSets.clear(); 908 const std::vector<unsigned> &RegionPressure = 909 RPTracker.getPressure().MaxSetPressure; 910 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 911 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 912 if (RegionPressure[i] > Limit) { 913 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 914 << " Limit " << Limit 915 << " Actual " << RegionPressure[i] << "\n"); 916 RegionCriticalPSets.push_back(PressureChange(i)); 917 } 918 } 919 DEBUG(dbgs() << "Excess PSets: "; 920 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 921 dbgs() << TRI->getRegPressureSetName( 922 RegionCriticalPSets[i].getPSet()) << " "; 923 dbgs() << "\n"); 924} 925 926void ScheduleDAGMILive:: 927updateScheduledPressure(const SUnit *SU, 928 const std::vector<unsigned> &NewMaxPressure) { 929 const PressureDiff &PDiff = getPressureDiff(SU); 930 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 931 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 932 I != E; ++I) { 933 if (!I->isValid()) 934 break; 935 unsigned ID = I->getPSet(); 936 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 937 ++CritIdx; 938 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 939 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 940 && NewMaxPressure[ID] <= INT16_MAX) 941 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 942 } 943 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 944 if (NewMaxPressure[ID] >= Limit - 2) { 945 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 946 << NewMaxPressure[ID] << " > " << Limit << "(+ " 947 << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 948 } 949 } 950} 951 952/// Update the PressureDiff array for liveness after scheduling this 953/// instruction. 954void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 955 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 956 /// FIXME: Currently assuming single-use physregs. 957 unsigned Reg = LiveUses[LUIdx]; 958 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 959 if (!TRI->isVirtualRegister(Reg)) 960 continue; 961 962 // This may be called before CurrentBottom has been initialized. However, 963 // BotRPTracker must have a valid position. We want the value live into the 964 // instruction or live out of the block, so ask for the previous 965 // instruction's live-out. 966 const LiveInterval &LI = LIS->getInterval(Reg); 967 VNInfo *VNI; 968 MachineBasicBlock::const_iterator I = 969 nextIfDebug(BotRPTracker.getPos(), BB->end()); 970 if (I == BB->end()) 971 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 972 else { 973 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 974 VNI = LRQ.valueIn(); 975 } 976 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 977 assert(VNI && "No live value at use."); 978 for (VReg2UseMap::iterator 979 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 980 SUnit *SU = UI->SU; 981 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 982 << *SU->getInstr()); 983 // If this use comes before the reaching def, it cannot be a last use, so 984 // descrease its pressure change. 985 if (!SU->isScheduled && SU != &ExitSU) { 986 LiveQueryResult LRQ 987 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 988 if (LRQ.valueIn() == VNI) 989 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 990 } 991 } 992 } 993} 994 995/// schedule - Called back from MachineScheduler::runOnMachineFunction 996/// after setting up the current scheduling region. [RegionBegin, RegionEnd) 997/// only includes instructions that have DAG nodes, not scheduling boundaries. 998/// 999/// This is a skeletal driver, with all the functionality pushed into helpers, 1000/// so that it can be easilly extended by experimental schedulers. Generally, 1001/// implementing MachineSchedStrategy should be sufficient to implement a new 1002/// scheduling algorithm. However, if a scheduler further subclasses 1003/// ScheduleDAGMILive then it will want to override this virtual method in order 1004/// to update any specialized state. 1005void ScheduleDAGMILive::schedule() { 1006 buildDAGWithRegPressure(); 1007 1008 Topo.InitDAGTopologicalSorting(); 1009 1010 postprocessDAG(); 1011 1012 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1013 findRootsAndBiasEdges(TopRoots, BotRoots); 1014 1015 // Initialize the strategy before modifying the DAG. 1016 // This may initialize a DFSResult to be used for queue priority. 1017 SchedImpl->initialize(this); 1018 1019 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 1020 SUnits[su].dumpAll(this)); 1021 if (ViewMISchedDAGs) viewGraph(); 1022 1023 // Initialize ready queues now that the DAG and priority data are finalized. 1024 initQueues(TopRoots, BotRoots); 1025 1026 if (ShouldTrackPressure) { 1027 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1028 TopRPTracker.setPos(CurrentTop); 1029 } 1030 1031 bool IsTopNode = false; 1032 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 1033 assert(!SU->isScheduled && "Node already scheduled"); 1034 if (!checkSchedLimit()) 1035 break; 1036 1037 scheduleMI(SU, IsTopNode); 1038 1039 if (DFSResult) { 1040 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1041 if (!ScheduledTrees.test(SubtreeID)) { 1042 ScheduledTrees.set(SubtreeID); 1043 DFSResult->scheduleTree(SubtreeID); 1044 SchedImpl->scheduleTree(SubtreeID); 1045 } 1046 } 1047 1048 // Notify the scheduling strategy after updating the DAG. 1049 SchedImpl->schedNode(SU, IsTopNode); 1050 1051 updateQueues(SU, IsTopNode); 1052 } 1053 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1054 1055 placeDebugValues(); 1056 1057 DEBUG({ 1058 unsigned BBNum = begin()->getParent()->getNumber(); 1059 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1060 dumpSchedule(); 1061 dbgs() << '\n'; 1062 }); 1063} 1064 1065/// Build the DAG and setup three register pressure trackers. 1066void ScheduleDAGMILive::buildDAGWithRegPressure() { 1067 if (!ShouldTrackPressure) { 1068 RPTracker.reset(); 1069 RegionCriticalPSets.clear(); 1070 buildSchedGraph(AA); 1071 return; 1072 } 1073 1074 // Initialize the register pressure tracker used by buildSchedGraph. 1075 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1076 /*TrackUntiedDefs=*/true); 1077 1078 // Account for liveness generate by the region boundary. 1079 if (LiveRegionEnd != RegionEnd) 1080 RPTracker.recede(); 1081 1082 // Build the DAG, and compute current register pressure. 1083 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1084 1085 // Initialize top/bottom trackers after computing region pressure. 1086 initRegPressure(); 1087} 1088 1089void ScheduleDAGMILive::computeDFSResult() { 1090 if (!DFSResult) 1091 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1092 DFSResult->clear(); 1093 ScheduledTrees.clear(); 1094 DFSResult->resize(SUnits.size()); 1095 DFSResult->compute(SUnits); 1096 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1097} 1098 1099/// Compute the max cyclic critical path through the DAG. The scheduling DAG 1100/// only provides the critical path for single block loops. To handle loops that 1101/// span blocks, we could use the vreg path latencies provided by 1102/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1103/// available for use in the scheduler. 1104/// 1105/// The cyclic path estimation identifies a def-use pair that crosses the back 1106/// edge and considers the depth and height of the nodes. For example, consider 1107/// the following instruction sequence where each instruction has unit latency 1108/// and defines an epomymous virtual register: 1109/// 1110/// a->b(a,c)->c(b)->d(c)->exit 1111/// 1112/// The cyclic critical path is a two cycles: b->c->b 1113/// The acyclic critical path is four cycles: a->b->c->d->exit 1114/// LiveOutHeight = height(c) = len(c->d->exit) = 2 1115/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1116/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1117/// LiveInDepth = depth(b) = len(a->b) = 1 1118/// 1119/// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1120/// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1121/// CyclicCriticalPath = min(2, 2) = 2 1122/// 1123/// This could be relevant to PostRA scheduling, but is currently implemented 1124/// assuming LiveIntervals. 1125unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1126 // This only applies to single block loop. 1127 if (!BB->isSuccessor(BB)) 1128 return 0; 1129 1130 unsigned MaxCyclicLatency = 0; 1131 // Visit each live out vreg def to find def/use pairs that cross iterations. 1132 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1133 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1134 RI != RE; ++RI) { 1135 unsigned Reg = *RI; 1136 if (!TRI->isVirtualRegister(Reg)) 1137 continue; 1138 const LiveInterval &LI = LIS->getInterval(Reg); 1139 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1140 if (!DefVNI) 1141 continue; 1142 1143 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1144 const SUnit *DefSU = getSUnit(DefMI); 1145 if (!DefSU) 1146 continue; 1147 1148 unsigned LiveOutHeight = DefSU->getHeight(); 1149 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1150 // Visit all local users of the vreg def. 1151 for (VReg2UseMap::iterator 1152 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 1153 if (UI->SU == &ExitSU) 1154 continue; 1155 1156 // Only consider uses of the phi. 1157 LiveQueryResult LRQ = 1158 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); 1159 if (!LRQ.valueIn()->isPHIDef()) 1160 continue; 1161 1162 // Assume that a path spanning two iterations is a cycle, which could 1163 // overestimate in strange cases. This allows cyclic latency to be 1164 // estimated as the minimum slack of the vreg's depth or height. 1165 unsigned CyclicLatency = 0; 1166 if (LiveOutDepth > UI->SU->getDepth()) 1167 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 1168 1169 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 1170 if (LiveInHeight > LiveOutHeight) { 1171 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1172 CyclicLatency = LiveInHeight - LiveOutHeight; 1173 } 1174 else 1175 CyclicLatency = 0; 1176 1177 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1178 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1179 if (CyclicLatency > MaxCyclicLatency) 1180 MaxCyclicLatency = CyclicLatency; 1181 } 1182 } 1183 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1184 return MaxCyclicLatency; 1185} 1186 1187/// Move an instruction and update register pressure. 1188void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1189 // Move the instruction to its new location in the instruction stream. 1190 MachineInstr *MI = SU->getInstr(); 1191 1192 if (IsTopNode) { 1193 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1194 if (&*CurrentTop == MI) 1195 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1196 else { 1197 moveInstruction(MI, CurrentTop); 1198 TopRPTracker.setPos(MI); 1199 } 1200 1201 if (ShouldTrackPressure) { 1202 // Update top scheduled pressure. 1203 TopRPTracker.advance(); 1204 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1205 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1206 } 1207 } 1208 else { 1209 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1210 MachineBasicBlock::iterator priorII = 1211 priorNonDebug(CurrentBottom, CurrentTop); 1212 if (&*priorII == MI) 1213 CurrentBottom = priorII; 1214 else { 1215 if (&*CurrentTop == MI) { 1216 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1217 TopRPTracker.setPos(CurrentTop); 1218 } 1219 moveInstruction(MI, CurrentBottom); 1220 CurrentBottom = MI; 1221 } 1222 if (ShouldTrackPressure) { 1223 // Update bottom scheduled pressure. 1224 SmallVector<unsigned, 8> LiveUses; 1225 BotRPTracker.recede(&LiveUses); 1226 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1227 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1228 updatePressureDiffs(LiveUses); 1229 } 1230 } 1231} 1232 1233//===----------------------------------------------------------------------===// 1234// LoadClusterMutation - DAG post-processing to cluster loads. 1235//===----------------------------------------------------------------------===// 1236 1237namespace { 1238/// \brief Post-process the DAG to create cluster edges between neighboring 1239/// loads. 1240class LoadClusterMutation : public ScheduleDAGMutation { 1241 struct LoadInfo { 1242 SUnit *SU; 1243 unsigned BaseReg; 1244 unsigned Offset; 1245 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1246 : SU(su), BaseReg(reg), Offset(ofs) {} 1247 1248 bool operator<(const LoadInfo &RHS) const { 1249 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1250 } 1251 }; 1252 1253 const TargetInstrInfo *TII; 1254 const TargetRegisterInfo *TRI; 1255public: 1256 LoadClusterMutation(const TargetInstrInfo *tii, 1257 const TargetRegisterInfo *tri) 1258 : TII(tii), TRI(tri) {} 1259 1260 void apply(ScheduleDAGMI *DAG) override; 1261protected: 1262 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1263}; 1264} // anonymous 1265 1266void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1267 ScheduleDAGMI *DAG) { 1268 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1269 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1270 SUnit *SU = Loads[Idx]; 1271 unsigned BaseReg; 1272 unsigned Offset; 1273 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1274 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1275 } 1276 if (LoadRecords.size() < 2) 1277 return; 1278 std::sort(LoadRecords.begin(), LoadRecords.end()); 1279 unsigned ClusterLength = 1; 1280 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1281 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1282 ClusterLength = 1; 1283 continue; 1284 } 1285 1286 SUnit *SUa = LoadRecords[Idx].SU; 1287 SUnit *SUb = LoadRecords[Idx+1].SU; 1288 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1289 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1290 1291 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1292 << SUb->NodeNum << ")\n"); 1293 // Copy successor edges from SUa to SUb. Interleaving computation 1294 // dependent on SUa can prevent load combining due to register reuse. 1295 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1296 // loads should have effectively the same inputs. 1297 for (SUnit::const_succ_iterator 1298 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1299 if (SI->getSUnit() == SUb) 1300 continue; 1301 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1302 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1303 } 1304 ++ClusterLength; 1305 } 1306 else 1307 ClusterLength = 1; 1308 } 1309} 1310 1311/// \brief Callback from DAG postProcessing to create cluster edges for loads. 1312void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1313 // Map DAG NodeNum to store chain ID. 1314 DenseMap<unsigned, unsigned> StoreChainIDs; 1315 // Map each store chain to a set of dependent loads. 1316 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1317 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1318 SUnit *SU = &DAG->SUnits[Idx]; 1319 if (!SU->getInstr()->mayLoad()) 1320 continue; 1321 unsigned ChainPredID = DAG->SUnits.size(); 1322 for (SUnit::const_pred_iterator 1323 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1324 if (PI->isCtrl()) { 1325 ChainPredID = PI->getSUnit()->NodeNum; 1326 break; 1327 } 1328 } 1329 // Check if this chain-like pred has been seen 1330 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1331 unsigned NumChains = StoreChainDependents.size(); 1332 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1333 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1334 if (Result.second) 1335 StoreChainDependents.resize(NumChains + 1); 1336 StoreChainDependents[Result.first->second].push_back(SU); 1337 } 1338 // Iterate over the store chains. 1339 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1340 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1341} 1342 1343//===----------------------------------------------------------------------===// 1344// MacroFusion - DAG post-processing to encourage fusion of macro ops. 1345//===----------------------------------------------------------------------===// 1346 1347namespace { 1348/// \brief Post-process the DAG to create cluster edges between instructions 1349/// that may be fused by the processor into a single operation. 1350class MacroFusion : public ScheduleDAGMutation { 1351 const TargetInstrInfo *TII; 1352public: 1353 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 1354 1355 void apply(ScheduleDAGMI *DAG) override; 1356}; 1357} // anonymous 1358 1359/// \brief Callback from DAG postProcessing to create cluster edges to encourage 1360/// fused operations. 1361void MacroFusion::apply(ScheduleDAGMI *DAG) { 1362 // For now, assume targets can only fuse with the branch. 1363 MachineInstr *Branch = DAG->ExitSU.getInstr(); 1364 if (!Branch) 1365 return; 1366 1367 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 1368 SUnit *SU = &DAG->SUnits[--Idx]; 1369 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 1370 continue; 1371 1372 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1373 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1374 // need to copy predecessor edges from ExitSU to SU, since top-down 1375 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1376 // of SU, we could create an artificial edge from the deepest root, but it 1377 // hasn't been needed yet. 1378 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 1379 (void)Success; 1380 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1381 1382 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 1383 break; 1384 } 1385} 1386 1387//===----------------------------------------------------------------------===// 1388// CopyConstrain - DAG post-processing to encourage copy elimination. 1389//===----------------------------------------------------------------------===// 1390 1391namespace { 1392/// \brief Post-process the DAG to create weak edges from all uses of a copy to 1393/// the one use that defines the copy's source vreg, most likely an induction 1394/// variable increment. 1395class CopyConstrain : public ScheduleDAGMutation { 1396 // Transient state. 1397 SlotIndex RegionBeginIdx; 1398 // RegionEndIdx is the slot index of the last non-debug instruction in the 1399 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1400 SlotIndex RegionEndIdx; 1401public: 1402 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1403 1404 void apply(ScheduleDAGMI *DAG) override; 1405 1406protected: 1407 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1408}; 1409} // anonymous 1410 1411/// constrainLocalCopy handles two possibilities: 1412/// 1) Local src: 1413/// I0: = dst 1414/// I1: src = ... 1415/// I2: = dst 1416/// I3: dst = src (copy) 1417/// (create pred->succ edges I0->I1, I2->I1) 1418/// 1419/// 2) Local copy: 1420/// I0: dst = src (copy) 1421/// I1: = dst 1422/// I2: src = ... 1423/// I3: = dst 1424/// (create pred->succ edges I1->I2, I3->I2) 1425/// 1426/// Although the MachineScheduler is currently constrained to single blocks, 1427/// this algorithm should handle extended blocks. An EBB is a set of 1428/// contiguously numbered blocks such that the previous block in the EBB is 1429/// always the single predecessor. 1430void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1431 LiveIntervals *LIS = DAG->getLIS(); 1432 MachineInstr *Copy = CopySU->getInstr(); 1433 1434 // Check for pure vreg copies. 1435 unsigned SrcReg = Copy->getOperand(1).getReg(); 1436 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1437 return; 1438 1439 unsigned DstReg = Copy->getOperand(0).getReg(); 1440 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1441 return; 1442 1443 // Check if either the dest or source is local. If it's live across a back 1444 // edge, it's not local. Note that if both vregs are live across the back 1445 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1446 // If both the copy's source and dest are local live intervals, then we 1447 // should treat the dest as the global for the purpose of adding 1448 // constraints. This adds edges from source's other uses to the copy. 1449 unsigned LocalReg = SrcReg; 1450 unsigned GlobalReg = DstReg; 1451 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1452 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1453 LocalReg = DstReg; 1454 GlobalReg = SrcReg; 1455 LocalLI = &LIS->getInterval(LocalReg); 1456 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1457 return; 1458 } 1459 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1460 1461 // Find the global segment after the start of the local LI. 1462 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1463 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1464 // local live range. We could create edges from other global uses to the local 1465 // start, but the coalescer should have already eliminated these cases, so 1466 // don't bother dealing with it. 1467 if (GlobalSegment == GlobalLI->end()) 1468 return; 1469 1470 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1471 // returned the next global segment. But if GlobalSegment overlaps with 1472 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1473 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1474 if (GlobalSegment->contains(LocalLI->beginIndex())) 1475 ++GlobalSegment; 1476 1477 if (GlobalSegment == GlobalLI->end()) 1478 return; 1479 1480 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1481 if (GlobalSegment != GlobalLI->begin()) { 1482 // Two address defs have no hole. 1483 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1484 GlobalSegment->start)) { 1485 return; 1486 } 1487 // If the prior global segment may be defined by the same two-address 1488 // instruction that also defines LocalLI, then can't make a hole here. 1489 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1490 LocalLI->beginIndex())) { 1491 return; 1492 } 1493 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1494 // it would be a disconnected component in the live range. 1495 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1496 "Disconnected LRG within the scheduling region."); 1497 } 1498 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1499 if (!GlobalDef) 1500 return; 1501 1502 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1503 if (!GlobalSU) 1504 return; 1505 1506 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1507 // constraining the uses of the last local def to precede GlobalDef. 1508 SmallVector<SUnit*,8> LocalUses; 1509 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1510 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1511 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1512 for (SUnit::const_succ_iterator 1513 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1514 I != E; ++I) { 1515 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1516 continue; 1517 if (I->getSUnit() == GlobalSU) 1518 continue; 1519 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1520 return; 1521 LocalUses.push_back(I->getSUnit()); 1522 } 1523 // Open the top of the GlobalLI hole by constraining any earlier global uses 1524 // to precede the start of LocalLI. 1525 SmallVector<SUnit*,8> GlobalUses; 1526 MachineInstr *FirstLocalDef = 1527 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1528 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1529 for (SUnit::const_pred_iterator 1530 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1531 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1532 continue; 1533 if (I->getSUnit() == FirstLocalSU) 1534 continue; 1535 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1536 return; 1537 GlobalUses.push_back(I->getSUnit()); 1538 } 1539 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1540 // Add the weak edges. 1541 for (SmallVectorImpl<SUnit*>::const_iterator 1542 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1543 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1544 << GlobalSU->NodeNum << ")\n"); 1545 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1546 } 1547 for (SmallVectorImpl<SUnit*>::const_iterator 1548 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1549 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1550 << FirstLocalSU->NodeNum << ")\n"); 1551 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1552 } 1553} 1554 1555/// \brief Callback from DAG postProcessing to create weak edges to encourage 1556/// copy elimination. 1557void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1558 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1559 1560 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1561 if (FirstPos == DAG->end()) 1562 return; 1563 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1564 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1565 &*priorNonDebug(DAG->end(), DAG->begin())); 1566 1567 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1568 SUnit *SU = &DAG->SUnits[Idx]; 1569 if (!SU->getInstr()->isCopy()) 1570 continue; 1571 1572 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1573 } 1574} 1575 1576//===----------------------------------------------------------------------===// 1577// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1578// and possibly other custom schedulers. 1579//===----------------------------------------------------------------------===// 1580 1581static const unsigned InvalidCycle = ~0U; 1582 1583SchedBoundary::~SchedBoundary() { delete HazardRec; } 1584 1585void SchedBoundary::reset() { 1586 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1587 // Destroying and reconstructing it is very expensive though. So keep 1588 // invalid, placeholder HazardRecs. 1589 if (HazardRec && HazardRec->isEnabled()) { 1590 delete HazardRec; 1591 HazardRec = nullptr; 1592 } 1593 Available.clear(); 1594 Pending.clear(); 1595 CheckPending = false; 1596 NextSUs.clear(); 1597 CurrCycle = 0; 1598 CurrMOps = 0; 1599 MinReadyCycle = UINT_MAX; 1600 ExpectedLatency = 0; 1601 DependentLatency = 0; 1602 RetiredMOps = 0; 1603 MaxExecutedResCount = 0; 1604 ZoneCritResIdx = 0; 1605 IsResourceLimited = false; 1606 ReservedCycles.clear(); 1607#ifndef NDEBUG 1608 // Track the maximum number of stall cycles that could arise either from the 1609 // latency of a DAG edge or the number of cycles that a processor resource is 1610 // reserved (SchedBoundary::ReservedCycles). 1611 MaxObservedStall = 0; 1612#endif 1613 // Reserve a zero-count for invalid CritResIdx. 1614 ExecutedResCounts.resize(1); 1615 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1616} 1617 1618void SchedRemainder:: 1619init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1620 reset(); 1621 if (!SchedModel->hasInstrSchedModel()) 1622 return; 1623 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1624 for (std::vector<SUnit>::iterator 1625 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1626 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1627 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1628 * SchedModel->getMicroOpFactor(); 1629 for (TargetSchedModel::ProcResIter 1630 PI = SchedModel->getWriteProcResBegin(SC), 1631 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1632 unsigned PIdx = PI->ProcResourceIdx; 1633 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1634 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1635 } 1636 } 1637} 1638 1639void SchedBoundary:: 1640init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1641 reset(); 1642 DAG = dag; 1643 SchedModel = smodel; 1644 Rem = rem; 1645 if (SchedModel->hasInstrSchedModel()) { 1646 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1647 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1648 } 1649} 1650 1651/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1652/// these "soft stalls" differently than the hard stall cycles based on CPU 1653/// resources and computed by checkHazard(). A fully in-order model 1654/// (MicroOpBufferSize==0) will not make use of this since instructions are not 1655/// available for scheduling until they are ready. However, a weaker in-order 1656/// model may use this for heuristics. For example, if a processor has in-order 1657/// behavior when reading certain resources, this may come into play. 1658unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1659 if (!SU->isUnbuffered) 1660 return 0; 1661 1662 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1663 if (ReadyCycle > CurrCycle) 1664 return ReadyCycle - CurrCycle; 1665 return 0; 1666} 1667 1668/// Compute the next cycle at which the given processor resource can be 1669/// scheduled. 1670unsigned SchedBoundary:: 1671getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1672 unsigned NextUnreserved = ReservedCycles[PIdx]; 1673 // If this resource has never been used, always return cycle zero. 1674 if (NextUnreserved == InvalidCycle) 1675 return 0; 1676 // For bottom-up scheduling add the cycles needed for the current operation. 1677 if (!isTop()) 1678 NextUnreserved += Cycles; 1679 return NextUnreserved; 1680} 1681 1682/// Does this SU have a hazard within the current instruction group. 1683/// 1684/// The scheduler supports two modes of hazard recognition. The first is the 1685/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1686/// supports highly complicated in-order reservation tables 1687/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1688/// 1689/// The second is a streamlined mechanism that checks for hazards based on 1690/// simple counters that the scheduler itself maintains. It explicitly checks 1691/// for instruction dispatch limitations, including the number of micro-ops that 1692/// can dispatch per cycle. 1693/// 1694/// TODO: Also check whether the SU must start a new group. 1695bool SchedBoundary::checkHazard(SUnit *SU) { 1696 if (HazardRec->isEnabled() 1697 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1698 return true; 1699 } 1700 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1701 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1702 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1703 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1704 return true; 1705 } 1706 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1707 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1708 for (TargetSchedModel::ProcResIter 1709 PI = SchedModel->getWriteProcResBegin(SC), 1710 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1711 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1712 if (NRCycle > CurrCycle) { 1713#ifndef NDEBUG 1714 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1715#endif 1716 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1717 << SchedModel->getResourceName(PI->ProcResourceIdx) 1718 << "=" << NRCycle << "c\n"); 1719 return true; 1720 } 1721 } 1722 } 1723 return false; 1724} 1725 1726// Find the unscheduled node in ReadySUs with the highest latency. 1727unsigned SchedBoundary:: 1728findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1729 SUnit *LateSU = nullptr; 1730 unsigned RemLatency = 0; 1731 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1732 I != E; ++I) { 1733 unsigned L = getUnscheduledLatency(*I); 1734 if (L > RemLatency) { 1735 RemLatency = L; 1736 LateSU = *I; 1737 } 1738 } 1739 if (LateSU) { 1740 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1741 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1742 } 1743 return RemLatency; 1744} 1745 1746// Count resources in this zone and the remaining unscheduled 1747// instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1748// resource index, or zero if the zone is issue limited. 1749unsigned SchedBoundary:: 1750getOtherResourceCount(unsigned &OtherCritIdx) { 1751 OtherCritIdx = 0; 1752 if (!SchedModel->hasInstrSchedModel()) 1753 return 0; 1754 1755 unsigned OtherCritCount = Rem->RemIssueCount 1756 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1757 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1758 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1759 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1760 PIdx != PEnd; ++PIdx) { 1761 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1762 if (OtherCount > OtherCritCount) { 1763 OtherCritCount = OtherCount; 1764 OtherCritIdx = PIdx; 1765 } 1766 } 1767 if (OtherCritIdx) { 1768 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1769 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1770 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1771 } 1772 return OtherCritCount; 1773} 1774 1775void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1776 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1777 1778#ifndef NDEBUG 1779 // ReadyCycle was been bumped up to the CurrCycle when this node was 1780 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1781 // scheduling, so may now be greater than ReadyCycle. 1782 if (ReadyCycle > CurrCycle) 1783 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1784#endif 1785 1786 if (ReadyCycle < MinReadyCycle) 1787 MinReadyCycle = ReadyCycle; 1788 1789 // Check for interlocks first. For the purpose of other heuristics, an 1790 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1791 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1792 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1793 Pending.push(SU); 1794 else 1795 Available.push(SU); 1796 1797 // Record this node as an immediate dependent of the scheduled node. 1798 NextSUs.insert(SU); 1799} 1800 1801void SchedBoundary::releaseTopNode(SUnit *SU) { 1802 if (SU->isScheduled) 1803 return; 1804 1805 releaseNode(SU, SU->TopReadyCycle); 1806} 1807 1808void SchedBoundary::releaseBottomNode(SUnit *SU) { 1809 if (SU->isScheduled) 1810 return; 1811 1812 releaseNode(SU, SU->BotReadyCycle); 1813} 1814 1815/// Move the boundary of scheduled code by one cycle. 1816void SchedBoundary::bumpCycle(unsigned NextCycle) { 1817 if (SchedModel->getMicroOpBufferSize() == 0) { 1818 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1819 if (MinReadyCycle > NextCycle) 1820 NextCycle = MinReadyCycle; 1821 } 1822 // Update the current micro-ops, which will issue in the next cycle. 1823 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1824 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1825 1826 // Decrement DependentLatency based on the next cycle. 1827 if ((NextCycle - CurrCycle) > DependentLatency) 1828 DependentLatency = 0; 1829 else 1830 DependentLatency -= (NextCycle - CurrCycle); 1831 1832 if (!HazardRec->isEnabled()) { 1833 // Bypass HazardRec virtual calls. 1834 CurrCycle = NextCycle; 1835 } 1836 else { 1837 // Bypass getHazardType calls in case of long latency. 1838 for (; CurrCycle != NextCycle; ++CurrCycle) { 1839 if (isTop()) 1840 HazardRec->AdvanceCycle(); 1841 else 1842 HazardRec->RecedeCycle(); 1843 } 1844 } 1845 CheckPending = true; 1846 unsigned LFactor = SchedModel->getLatencyFactor(); 1847 IsResourceLimited = 1848 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1849 > (int)LFactor; 1850 1851 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1852} 1853 1854void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1855 ExecutedResCounts[PIdx] += Count; 1856 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1857 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1858} 1859 1860/// Add the given processor resource to this scheduled zone. 1861/// 1862/// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1863/// during which this resource is consumed. 1864/// 1865/// \return the next cycle at which the instruction may execute without 1866/// oversubscribing resources. 1867unsigned SchedBoundary:: 1868countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1869 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1870 unsigned Count = Factor * Cycles; 1871 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1872 << " +" << Cycles << "x" << Factor << "u\n"); 1873 1874 // Update Executed resources counts. 1875 incExecutedResources(PIdx, Count); 1876 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1877 Rem->RemainingCounts[PIdx] -= Count; 1878 1879 // Check if this resource exceeds the current critical resource. If so, it 1880 // becomes the critical resource. 1881 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1882 ZoneCritResIdx = PIdx; 1883 DEBUG(dbgs() << " *** Critical resource " 1884 << SchedModel->getResourceName(PIdx) << ": " 1885 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1886 } 1887 // For reserved resources, record the highest cycle using the resource. 1888 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1889 if (NextAvailable > CurrCycle) { 1890 DEBUG(dbgs() << " Resource conflict: " 1891 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1892 << NextAvailable << "\n"); 1893 } 1894 return NextAvailable; 1895} 1896 1897/// Move the boundary of scheduled code by one SUnit. 1898void SchedBoundary::bumpNode(SUnit *SU) { 1899 // Update the reservation table. 1900 if (HazardRec->isEnabled()) { 1901 if (!isTop() && SU->isCall) { 1902 // Calls are scheduled with their preceding instructions. For bottom-up 1903 // scheduling, clear the pipeline state before emitting. 1904 HazardRec->Reset(); 1905 } 1906 HazardRec->EmitInstruction(SU); 1907 } 1908 // checkHazard should prevent scheduling multiple instructions per cycle that 1909 // exceed the issue width. 1910 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1911 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1912 assert( 1913 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1914 "Cannot schedule this instruction's MicroOps in the current cycle."); 1915 1916 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1917 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1918 1919 unsigned NextCycle = CurrCycle; 1920 switch (SchedModel->getMicroOpBufferSize()) { 1921 case 0: 1922 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1923 break; 1924 case 1: 1925 if (ReadyCycle > NextCycle) { 1926 NextCycle = ReadyCycle; 1927 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1928 } 1929 break; 1930 default: 1931 // We don't currently model the OOO reorder buffer, so consider all 1932 // scheduled MOps to be "retired". We do loosely model in-order resource 1933 // latency. If this instruction uses an in-order resource, account for any 1934 // likely stall cycles. 1935 if (SU->isUnbuffered && ReadyCycle > NextCycle) 1936 NextCycle = ReadyCycle; 1937 break; 1938 } 1939 RetiredMOps += IncMOps; 1940 1941 // Update resource counts and critical resource. 1942 if (SchedModel->hasInstrSchedModel()) { 1943 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1944 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1945 Rem->RemIssueCount -= DecRemIssue; 1946 if (ZoneCritResIdx) { 1947 // Scale scheduled micro-ops for comparing with the critical resource. 1948 unsigned ScaledMOps = 1949 RetiredMOps * SchedModel->getMicroOpFactor(); 1950 1951 // If scaled micro-ops are now more than the previous critical resource by 1952 // a full cycle, then micro-ops issue becomes critical. 1953 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1954 >= (int)SchedModel->getLatencyFactor()) { 1955 ZoneCritResIdx = 0; 1956 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1957 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1958 } 1959 } 1960 for (TargetSchedModel::ProcResIter 1961 PI = SchedModel->getWriteProcResBegin(SC), 1962 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1963 unsigned RCycle = 1964 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 1965 if (RCycle > NextCycle) 1966 NextCycle = RCycle; 1967 } 1968 if (SU->hasReservedResource) { 1969 // For reserved resources, record the highest cycle using the resource. 1970 // For top-down scheduling, this is the cycle in which we schedule this 1971 // instruction plus the number of cycles the operations reserves the 1972 // resource. For bottom-up is it simply the instruction's cycle. 1973 for (TargetSchedModel::ProcResIter 1974 PI = SchedModel->getWriteProcResBegin(SC), 1975 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1976 unsigned PIdx = PI->ProcResourceIdx; 1977 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 1978 if (isTop()) { 1979 ReservedCycles[PIdx] = 1980 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 1981 } 1982 else 1983 ReservedCycles[PIdx] = NextCycle; 1984 } 1985 } 1986 } 1987 } 1988 // Update ExpectedLatency and DependentLatency. 1989 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 1990 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 1991 if (SU->getDepth() > TopLatency) { 1992 TopLatency = SU->getDepth(); 1993 DEBUG(dbgs() << " " << Available.getName() 1994 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 1995 } 1996 if (SU->getHeight() > BotLatency) { 1997 BotLatency = SU->getHeight(); 1998 DEBUG(dbgs() << " " << Available.getName() 1999 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2000 } 2001 // If we stall for any reason, bump the cycle. 2002 if (NextCycle > CurrCycle) { 2003 bumpCycle(NextCycle); 2004 } 2005 else { 2006 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2007 // resource limited. If a stall occurred, bumpCycle does this. 2008 unsigned LFactor = SchedModel->getLatencyFactor(); 2009 IsResourceLimited = 2010 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2011 > (int)LFactor; 2012 } 2013 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2014 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2015 // one cycle. Since we commonly reach the max MOps here, opportunistically 2016 // bump the cycle to avoid uselessly checking everything in the readyQ. 2017 CurrMOps += IncMOps; 2018 while (CurrMOps >= SchedModel->getIssueWidth()) { 2019 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2020 << " at cycle " << CurrCycle << '\n'); 2021 bumpCycle(++NextCycle); 2022 } 2023 DEBUG(dumpScheduledState()); 2024} 2025 2026/// Release pending ready nodes in to the available queue. This makes them 2027/// visible to heuristics. 2028void SchedBoundary::releasePending() { 2029 // If the available queue is empty, it is safe to reset MinReadyCycle. 2030 if (Available.empty()) 2031 MinReadyCycle = UINT_MAX; 2032 2033 // Check to see if any of the pending instructions are ready to issue. If 2034 // so, add them to the available queue. 2035 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2036 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2037 SUnit *SU = *(Pending.begin()+i); 2038 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2039 2040 if (ReadyCycle < MinReadyCycle) 2041 MinReadyCycle = ReadyCycle; 2042 2043 if (!IsBuffered && ReadyCycle > CurrCycle) 2044 continue; 2045 2046 if (checkHazard(SU)) 2047 continue; 2048 2049 Available.push(SU); 2050 Pending.remove(Pending.begin()+i); 2051 --i; --e; 2052 } 2053 DEBUG(if (!Pending.empty()) Pending.dump()); 2054 CheckPending = false; 2055} 2056 2057/// Remove SU from the ready set for this boundary. 2058void SchedBoundary::removeReady(SUnit *SU) { 2059 if (Available.isInQueue(SU)) 2060 Available.remove(Available.find(SU)); 2061 else { 2062 assert(Pending.isInQueue(SU) && "bad ready count"); 2063 Pending.remove(Pending.find(SU)); 2064 } 2065} 2066 2067/// If this queue only has one ready candidate, return it. As a side effect, 2068/// defer any nodes that now hit a hazard, and advance the cycle until at least 2069/// one node is ready. If multiple instructions are ready, return NULL. 2070SUnit *SchedBoundary::pickOnlyChoice() { 2071 if (CheckPending) 2072 releasePending(); 2073 2074 if (CurrMOps > 0) { 2075 // Defer any ready instrs that now have a hazard. 2076 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2077 if (checkHazard(*I)) { 2078 Pending.push(*I); 2079 I = Available.remove(I); 2080 continue; 2081 } 2082 ++I; 2083 } 2084 } 2085 for (unsigned i = 0; Available.empty(); ++i) { 2086// FIXME: Re-enable assert once PR20057 is resolved. 2087// assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2088// "permanent hazard"); 2089 (void)i; 2090 bumpCycle(CurrCycle + 1); 2091 releasePending(); 2092 } 2093 if (Available.size() == 1) 2094 return *Available.begin(); 2095 return nullptr; 2096} 2097 2098#ifndef NDEBUG 2099// This is useful information to dump after bumpNode. 2100// Note that the Queue contents are more useful before pickNodeFromQueue. 2101void SchedBoundary::dumpScheduledState() { 2102 unsigned ResFactor; 2103 unsigned ResCount; 2104 if (ZoneCritResIdx) { 2105 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2106 ResCount = getResourceCount(ZoneCritResIdx); 2107 } 2108 else { 2109 ResFactor = SchedModel->getMicroOpFactor(); 2110 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2111 } 2112 unsigned LFactor = SchedModel->getLatencyFactor(); 2113 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2114 << " Retired: " << RetiredMOps; 2115 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2116 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2117 << ResCount / ResFactor << " " 2118 << SchedModel->getResourceName(ZoneCritResIdx) 2119 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2120 << (IsResourceLimited ? " - Resource" : " - Latency") 2121 << " limited.\n"; 2122} 2123#endif 2124 2125//===----------------------------------------------------------------------===// 2126// GenericScheduler - Generic implementation of MachineSchedStrategy. 2127//===----------------------------------------------------------------------===// 2128 2129void GenericSchedulerBase::SchedCandidate:: 2130initResourceDelta(const ScheduleDAGMI *DAG, 2131 const TargetSchedModel *SchedModel) { 2132 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2133 return; 2134 2135 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2136 for (TargetSchedModel::ProcResIter 2137 PI = SchedModel->getWriteProcResBegin(SC), 2138 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2139 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2140 ResDelta.CritResources += PI->Cycles; 2141 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2142 ResDelta.DemandedResources += PI->Cycles; 2143 } 2144} 2145 2146/// Set the CandPolicy given a scheduling zone given the current resources and 2147/// latencies inside and outside the zone. 2148void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2149 bool IsPostRA, 2150 SchedBoundary &CurrZone, 2151 SchedBoundary *OtherZone) { 2152 // Apply preemptive heuristics based on the the total latency and resources 2153 // inside and outside this zone. Potential stalls should be considered before 2154 // following this policy. 2155 2156 // Compute remaining latency. We need this both to determine whether the 2157 // overall schedule has become latency-limited and whether the instructions 2158 // outside this zone are resource or latency limited. 2159 // 2160 // The "dependent" latency is updated incrementally during scheduling as the 2161 // max height/depth of scheduled nodes minus the cycles since it was 2162 // scheduled: 2163 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2164 // 2165 // The "independent" latency is the max ready queue depth: 2166 // ILat = max N.depth for N in Available|Pending 2167 // 2168 // RemainingLatency is the greater of independent and dependent latency. 2169 unsigned RemLatency = CurrZone.getDependentLatency(); 2170 RemLatency = std::max(RemLatency, 2171 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2172 RemLatency = std::max(RemLatency, 2173 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2174 2175 // Compute the critical resource outside the zone. 2176 unsigned OtherCritIdx = 0; 2177 unsigned OtherCount = 2178 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2179 2180 bool OtherResLimited = false; 2181 if (SchedModel->hasInstrSchedModel()) { 2182 unsigned LFactor = SchedModel->getLatencyFactor(); 2183 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2184 } 2185 // Schedule aggressively for latency in PostRA mode. We don't check for 2186 // acyclic latency during PostRA, and highly out-of-order processors will 2187 // skip PostRA scheduling. 2188 if (!OtherResLimited) { 2189 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2190 Policy.ReduceLatency |= true; 2191 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2192 << " RemainingLatency " << RemLatency << " + " 2193 << CurrZone.getCurrCycle() << "c > CritPath " 2194 << Rem.CriticalPath << "\n"); 2195 } 2196 } 2197 // If the same resource is limiting inside and outside the zone, do nothing. 2198 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2199 return; 2200 2201 DEBUG( 2202 if (CurrZone.isResourceLimited()) { 2203 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2204 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2205 << "\n"; 2206 } 2207 if (OtherResLimited) 2208 dbgs() << " RemainingLimit: " 2209 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2210 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2211 dbgs() << " Latency limited both directions.\n"); 2212 2213 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2214 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2215 2216 if (OtherResLimited) 2217 Policy.DemandResIdx = OtherCritIdx; 2218} 2219 2220#ifndef NDEBUG 2221const char *GenericSchedulerBase::getReasonStr( 2222 GenericSchedulerBase::CandReason Reason) { 2223 switch (Reason) { 2224 case NoCand: return "NOCAND "; 2225 case PhysRegCopy: return "PREG-COPY"; 2226 case RegExcess: return "REG-EXCESS"; 2227 case RegCritical: return "REG-CRIT "; 2228 case Stall: return "STALL "; 2229 case Cluster: return "CLUSTER "; 2230 case Weak: return "WEAK "; 2231 case RegMax: return "REG-MAX "; 2232 case ResourceReduce: return "RES-REDUCE"; 2233 case ResourceDemand: return "RES-DEMAND"; 2234 case TopDepthReduce: return "TOP-DEPTH "; 2235 case TopPathReduce: return "TOP-PATH "; 2236 case BotHeightReduce:return "BOT-HEIGHT"; 2237 case BotPathReduce: return "BOT-PATH "; 2238 case NextDefUse: return "DEF-USE "; 2239 case NodeOrder: return "ORDER "; 2240 }; 2241 llvm_unreachable("Unknown reason!"); 2242} 2243 2244void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2245 PressureChange P; 2246 unsigned ResIdx = 0; 2247 unsigned Latency = 0; 2248 switch (Cand.Reason) { 2249 default: 2250 break; 2251 case RegExcess: 2252 P = Cand.RPDelta.Excess; 2253 break; 2254 case RegCritical: 2255 P = Cand.RPDelta.CriticalMax; 2256 break; 2257 case RegMax: 2258 P = Cand.RPDelta.CurrentMax; 2259 break; 2260 case ResourceReduce: 2261 ResIdx = Cand.Policy.ReduceResIdx; 2262 break; 2263 case ResourceDemand: 2264 ResIdx = Cand.Policy.DemandResIdx; 2265 break; 2266 case TopDepthReduce: 2267 Latency = Cand.SU->getDepth(); 2268 break; 2269 case TopPathReduce: 2270 Latency = Cand.SU->getHeight(); 2271 break; 2272 case BotHeightReduce: 2273 Latency = Cand.SU->getHeight(); 2274 break; 2275 case BotPathReduce: 2276 Latency = Cand.SU->getDepth(); 2277 break; 2278 } 2279 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2280 if (P.isValid()) 2281 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2282 << ":" << P.getUnitInc() << " "; 2283 else 2284 dbgs() << " "; 2285 if (ResIdx) 2286 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2287 else 2288 dbgs() << " "; 2289 if (Latency) 2290 dbgs() << " " << Latency << " cycles "; 2291 else 2292 dbgs() << " "; 2293 dbgs() << '\n'; 2294} 2295#endif 2296 2297/// Return true if this heuristic determines order. 2298static bool tryLess(int TryVal, int CandVal, 2299 GenericSchedulerBase::SchedCandidate &TryCand, 2300 GenericSchedulerBase::SchedCandidate &Cand, 2301 GenericSchedulerBase::CandReason Reason) { 2302 if (TryVal < CandVal) { 2303 TryCand.Reason = Reason; 2304 return true; 2305 } 2306 if (TryVal > CandVal) { 2307 if (Cand.Reason > Reason) 2308 Cand.Reason = Reason; 2309 return true; 2310 } 2311 Cand.setRepeat(Reason); 2312 return false; 2313} 2314 2315static bool tryGreater(int TryVal, int CandVal, 2316 GenericSchedulerBase::SchedCandidate &TryCand, 2317 GenericSchedulerBase::SchedCandidate &Cand, 2318 GenericSchedulerBase::CandReason Reason) { 2319 if (TryVal > CandVal) { 2320 TryCand.Reason = Reason; 2321 return true; 2322 } 2323 if (TryVal < CandVal) { 2324 if (Cand.Reason > Reason) 2325 Cand.Reason = Reason; 2326 return true; 2327 } 2328 Cand.setRepeat(Reason); 2329 return false; 2330} 2331 2332static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2333 GenericSchedulerBase::SchedCandidate &Cand, 2334 SchedBoundary &Zone) { 2335 if (Zone.isTop()) { 2336 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2337 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2338 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2339 return true; 2340 } 2341 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2342 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2343 return true; 2344 } 2345 else { 2346 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2347 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2348 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2349 return true; 2350 } 2351 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2352 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2353 return true; 2354 } 2355 return false; 2356} 2357 2358static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2359 bool IsTop) { 2360 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2361 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2362} 2363 2364void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2365 assert(dag->hasVRegLiveness() && 2366 "(PreRA)GenericScheduler needs vreg liveness"); 2367 DAG = static_cast<ScheduleDAGMILive*>(dag); 2368 SchedModel = DAG->getSchedModel(); 2369 TRI = DAG->TRI; 2370 2371 Rem.init(DAG, SchedModel); 2372 Top.init(DAG, SchedModel, &Rem); 2373 Bot.init(DAG, SchedModel, &Rem); 2374 2375 // Initialize resource counts. 2376 2377 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2378 // are disabled, then these HazardRecs will be disabled. 2379 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2380 if (!Top.HazardRec) { 2381 Top.HazardRec = 2382 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2383 Itin, DAG); 2384 } 2385 if (!Bot.HazardRec) { 2386 Bot.HazardRec = 2387 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2388 Itin, DAG); 2389 } 2390} 2391 2392/// Initialize the per-region scheduling policy. 2393void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2394 MachineBasicBlock::iterator End, 2395 unsigned NumRegionInstrs) { 2396 const MachineFunction &MF = *Begin->getParent()->getParent(); 2397 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2398 2399 // Avoid setting up the register pressure tracker for small regions to save 2400 // compile time. As a rough heuristic, only track pressure when the number of 2401 // schedulable instructions exceeds half the integer register file. 2402 RegionPolicy.ShouldTrackPressure = true; 2403 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2404 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2405 if (TLI->isTypeLegal(LegalIntVT)) { 2406 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2407 TLI->getRegClassFor(LegalIntVT)); 2408 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2409 } 2410 } 2411 2412 // For generic targets, we default to bottom-up, because it's simpler and more 2413 // compile-time optimizations have been implemented in that direction. 2414 RegionPolicy.OnlyBottomUp = true; 2415 2416 // Allow the subtarget to override default policy. 2417 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2418 NumRegionInstrs); 2419 2420 // After subtarget overrides, apply command line options. 2421 if (!EnableRegPressure) 2422 RegionPolicy.ShouldTrackPressure = false; 2423 2424 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2425 // e.g. -misched-bottomup=false allows scheduling in both directions. 2426 assert((!ForceTopDown || !ForceBottomUp) && 2427 "-misched-topdown incompatible with -misched-bottomup"); 2428 if (ForceBottomUp.getNumOccurrences() > 0) { 2429 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2430 if (RegionPolicy.OnlyBottomUp) 2431 RegionPolicy.OnlyTopDown = false; 2432 } 2433 if (ForceTopDown.getNumOccurrences() > 0) { 2434 RegionPolicy.OnlyTopDown = ForceTopDown; 2435 if (RegionPolicy.OnlyTopDown) 2436 RegionPolicy.OnlyBottomUp = false; 2437 } 2438} 2439 2440/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2441/// critical path by more cycles than it takes to drain the instruction buffer. 2442/// We estimate an upper bounds on in-flight instructions as: 2443/// 2444/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2445/// InFlightIterations = AcyclicPath / CyclesPerIteration 2446/// InFlightResources = InFlightIterations * LoopResources 2447/// 2448/// TODO: Check execution resources in addition to IssueCount. 2449void GenericScheduler::checkAcyclicLatency() { 2450 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2451 return; 2452 2453 // Scaled number of cycles per loop iteration. 2454 unsigned IterCount = 2455 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2456 Rem.RemIssueCount); 2457 // Scaled acyclic critical path. 2458 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2459 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2460 unsigned InFlightCount = 2461 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2462 unsigned BufferLimit = 2463 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2464 2465 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2466 2467 DEBUG(dbgs() << "IssueCycles=" 2468 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2469 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2470 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2471 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2472 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2473 if (Rem.IsAcyclicLatencyLimited) 2474 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2475} 2476 2477void GenericScheduler::registerRoots() { 2478 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2479 2480 // Some roots may not feed into ExitSU. Check all of them in case. 2481 for (std::vector<SUnit*>::const_iterator 2482 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2483 if ((*I)->getDepth() > Rem.CriticalPath) 2484 Rem.CriticalPath = (*I)->getDepth(); 2485 } 2486 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2487 if (DumpCriticalPathLength) { 2488 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2489 } 2490 2491 if (EnableCyclicPath) { 2492 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2493 checkAcyclicLatency(); 2494 } 2495} 2496 2497static bool tryPressure(const PressureChange &TryP, 2498 const PressureChange &CandP, 2499 GenericSchedulerBase::SchedCandidate &TryCand, 2500 GenericSchedulerBase::SchedCandidate &Cand, 2501 GenericSchedulerBase::CandReason Reason) { 2502 int TryRank = TryP.getPSetOrMax(); 2503 int CandRank = CandP.getPSetOrMax(); 2504 // If both candidates affect the same set, go with the smallest increase. 2505 if (TryRank == CandRank) { 2506 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2507 Reason); 2508 } 2509 // If one candidate decreases and the other increases, go with it. 2510 // Invalid candidates have UnitInc==0. 2511 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2512 Reason)) { 2513 return true; 2514 } 2515 // If the candidates are decreasing pressure, reverse priority. 2516 if (TryP.getUnitInc() < 0) 2517 std::swap(TryRank, CandRank); 2518 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2519} 2520 2521static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2522 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2523} 2524 2525/// Minimize physical register live ranges. Regalloc wants them adjacent to 2526/// their physreg def/use. 2527/// 2528/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2529/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2530/// with the operation that produces or consumes the physreg. We'll do this when 2531/// regalloc has support for parallel copies. 2532static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2533 const MachineInstr *MI = SU->getInstr(); 2534 if (!MI->isCopy()) 2535 return 0; 2536 2537 unsigned ScheduledOper = isTop ? 1 : 0; 2538 unsigned UnscheduledOper = isTop ? 0 : 1; 2539 // If we have already scheduled the physreg produce/consumer, immediately 2540 // schedule the copy. 2541 if (TargetRegisterInfo::isPhysicalRegister( 2542 MI->getOperand(ScheduledOper).getReg())) 2543 return 1; 2544 // If the physreg is at the boundary, defer it. Otherwise schedule it 2545 // immediately to free the dependent. We can hoist the copy later. 2546 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2547 if (TargetRegisterInfo::isPhysicalRegister( 2548 MI->getOperand(UnscheduledOper).getReg())) 2549 return AtBoundary ? -1 : 1; 2550 return 0; 2551} 2552 2553/// Apply a set of heursitics to a new candidate. Heuristics are currently 2554/// hierarchical. This may be more efficient than a graduated cost model because 2555/// we don't need to evaluate all aspects of the model for each node in the 2556/// queue. But it's really done to make the heuristics easier to debug and 2557/// statistically analyze. 2558/// 2559/// \param Cand provides the policy and current best candidate. 2560/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2561/// \param Zone describes the scheduled zone that we are extending. 2562/// \param RPTracker describes reg pressure within the scheduled zone. 2563/// \param TempTracker is a scratch pressure tracker to reuse in queries. 2564void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2565 SchedCandidate &TryCand, 2566 SchedBoundary &Zone, 2567 const RegPressureTracker &RPTracker, 2568 RegPressureTracker &TempTracker) { 2569 2570 if (DAG->isTrackingPressure()) { 2571 // Always initialize TryCand's RPDelta. 2572 if (Zone.isTop()) { 2573 TempTracker.getMaxDownwardPressureDelta( 2574 TryCand.SU->getInstr(), 2575 TryCand.RPDelta, 2576 DAG->getRegionCriticalPSets(), 2577 DAG->getRegPressure().MaxSetPressure); 2578 } 2579 else { 2580 if (VerifyScheduling) { 2581 TempTracker.getMaxUpwardPressureDelta( 2582 TryCand.SU->getInstr(), 2583 &DAG->getPressureDiff(TryCand.SU), 2584 TryCand.RPDelta, 2585 DAG->getRegionCriticalPSets(), 2586 DAG->getRegPressure().MaxSetPressure); 2587 } 2588 else { 2589 RPTracker.getUpwardPressureDelta( 2590 TryCand.SU->getInstr(), 2591 DAG->getPressureDiff(TryCand.SU), 2592 TryCand.RPDelta, 2593 DAG->getRegionCriticalPSets(), 2594 DAG->getRegPressure().MaxSetPressure); 2595 } 2596 } 2597 } 2598 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2599 dbgs() << " SU(" << TryCand.SU->NodeNum << ") " 2600 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2601 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2602 2603 // Initialize the candidate if needed. 2604 if (!Cand.isValid()) { 2605 TryCand.Reason = NodeOrder; 2606 return; 2607 } 2608 2609 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2610 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2611 TryCand, Cand, PhysRegCopy)) 2612 return; 2613 2614 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2615 // invalid; convert it to INT_MAX to give it lowest priority. 2616 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2617 Cand.RPDelta.Excess, 2618 TryCand, Cand, RegExcess)) 2619 return; 2620 2621 // Avoid increasing the max critical pressure in the scheduled region. 2622 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2623 Cand.RPDelta.CriticalMax, 2624 TryCand, Cand, RegCritical)) 2625 return; 2626 2627 // For loops that are acyclic path limited, aggressively schedule for latency. 2628 // This can result in very long dependence chains scheduled in sequence, so 2629 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2630 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2631 && tryLatency(TryCand, Cand, Zone)) 2632 return; 2633 2634 // Prioritize instructions that read unbuffered resources by stall cycles. 2635 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2636 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2637 return; 2638 2639 // Keep clustered nodes together to encourage downstream peephole 2640 // optimizations which may reduce resource requirements. 2641 // 2642 // This is a best effort to set things up for a post-RA pass. Optimizations 2643 // like generating loads of multiple registers should ideally be done within 2644 // the scheduler pass by combining the loads during DAG postprocessing. 2645 const SUnit *NextClusterSU = 2646 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2647 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2648 TryCand, Cand, Cluster)) 2649 return; 2650 2651 // Weak edges are for clustering and other constraints. 2652 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2653 getWeakLeft(Cand.SU, Zone.isTop()), 2654 TryCand, Cand, Weak)) { 2655 return; 2656 } 2657 // Avoid increasing the max pressure of the entire region. 2658 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2659 Cand.RPDelta.CurrentMax, 2660 TryCand, Cand, RegMax)) 2661 return; 2662 2663 // Avoid critical resource consumption and balance the schedule. 2664 TryCand.initResourceDelta(DAG, SchedModel); 2665 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2666 TryCand, Cand, ResourceReduce)) 2667 return; 2668 if (tryGreater(TryCand.ResDelta.DemandedResources, 2669 Cand.ResDelta.DemandedResources, 2670 TryCand, Cand, ResourceDemand)) 2671 return; 2672 2673 // Avoid serializing long latency dependence chains. 2674 // For acyclic path limited loops, latency was already checked above. 2675 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2676 && tryLatency(TryCand, Cand, Zone)) { 2677 return; 2678 } 2679 2680 // Prefer immediate defs/users of the last scheduled instruction. This is a 2681 // local pressure avoidance strategy that also makes the machine code 2682 // readable. 2683 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2684 TryCand, Cand, NextDefUse)) 2685 return; 2686 2687 // Fall through to original instruction order. 2688 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2689 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2690 TryCand.Reason = NodeOrder; 2691 } 2692} 2693 2694/// Pick the best candidate from the queue. 2695/// 2696/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2697/// DAG building. To adjust for the current scheduling location we need to 2698/// maintain the number of vreg uses remaining to be top-scheduled. 2699void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2700 const RegPressureTracker &RPTracker, 2701 SchedCandidate &Cand) { 2702 ReadyQueue &Q = Zone.Available; 2703 2704 DEBUG(Q.dump()); 2705 2706 // getMaxPressureDelta temporarily modifies the tracker. 2707 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2708 2709 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2710 2711 SchedCandidate TryCand(Cand.Policy); 2712 TryCand.SU = *I; 2713 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2714 if (TryCand.Reason != NoCand) { 2715 // Initialize resource delta if needed in case future heuristics query it. 2716 if (TryCand.ResDelta == SchedResourceDelta()) 2717 TryCand.initResourceDelta(DAG, SchedModel); 2718 Cand.setBest(TryCand); 2719 DEBUG(traceCandidate(Cand)); 2720 } 2721 } 2722} 2723 2724/// Pick the best candidate node from either the top or bottom queue. 2725SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2726 // Schedule as far as possible in the direction of no choice. This is most 2727 // efficient, but also provides the best heuristics for CriticalPSets. 2728 if (SUnit *SU = Bot.pickOnlyChoice()) { 2729 IsTopNode = false; 2730 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2731 return SU; 2732 } 2733 if (SUnit *SU = Top.pickOnlyChoice()) { 2734 IsTopNode = true; 2735 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2736 return SU; 2737 } 2738 CandPolicy NoPolicy; 2739 SchedCandidate BotCand(NoPolicy); 2740 SchedCandidate TopCand(NoPolicy); 2741 // Set the bottom-up policy based on the state of the current bottom zone and 2742 // the instructions outside the zone, including the top zone. 2743 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2744 // Set the top-down policy based on the state of the current top zone and 2745 // the instructions outside the zone, including the bottom zone. 2746 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2747 2748 // Prefer bottom scheduling when heuristics are silent. 2749 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2750 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2751 2752 // If either Q has a single candidate that provides the least increase in 2753 // Excess pressure, we can immediately schedule from that Q. 2754 // 2755 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2756 // affects picking from either Q. If scheduling in one direction must 2757 // increase pressure for one of the excess PSets, then schedule in that 2758 // direction first to provide more freedom in the other direction. 2759 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2760 || (BotCand.Reason == RegCritical 2761 && !BotCand.isRepeat(RegCritical))) 2762 { 2763 IsTopNode = false; 2764 tracePick(BotCand, IsTopNode); 2765 return BotCand.SU; 2766 } 2767 // Check if the top Q has a better candidate. 2768 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2769 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2770 2771 // Choose the queue with the most important (lowest enum) reason. 2772 if (TopCand.Reason < BotCand.Reason) { 2773 IsTopNode = true; 2774 tracePick(TopCand, IsTopNode); 2775 return TopCand.SU; 2776 } 2777 // Otherwise prefer the bottom candidate, in node order if all else failed. 2778 IsTopNode = false; 2779 tracePick(BotCand, IsTopNode); 2780 return BotCand.SU; 2781} 2782 2783/// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2784SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2785 if (DAG->top() == DAG->bottom()) { 2786 assert(Top.Available.empty() && Top.Pending.empty() && 2787 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2788 return nullptr; 2789 } 2790 SUnit *SU; 2791 do { 2792 if (RegionPolicy.OnlyTopDown) { 2793 SU = Top.pickOnlyChoice(); 2794 if (!SU) { 2795 CandPolicy NoPolicy; 2796 SchedCandidate TopCand(NoPolicy); 2797 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2798 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2799 tracePick(TopCand, true); 2800 SU = TopCand.SU; 2801 } 2802 IsTopNode = true; 2803 } 2804 else if (RegionPolicy.OnlyBottomUp) { 2805 SU = Bot.pickOnlyChoice(); 2806 if (!SU) { 2807 CandPolicy NoPolicy; 2808 SchedCandidate BotCand(NoPolicy); 2809 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2810 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2811 tracePick(BotCand, false); 2812 SU = BotCand.SU; 2813 } 2814 IsTopNode = false; 2815 } 2816 else { 2817 SU = pickNodeBidirectional(IsTopNode); 2818 } 2819 } while (SU->isScheduled); 2820 2821 if (SU->isTopReady()) 2822 Top.removeReady(SU); 2823 if (SU->isBottomReady()) 2824 Bot.removeReady(SU); 2825 2826 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2827 return SU; 2828} 2829 2830void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2831 2832 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2833 if (!isTop) 2834 ++InsertPos; 2835 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2836 2837 // Find already scheduled copies with a single physreg dependence and move 2838 // them just above the scheduled instruction. 2839 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2840 I != E; ++I) { 2841 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2842 continue; 2843 SUnit *DepSU = I->getSUnit(); 2844 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2845 continue; 2846 MachineInstr *Copy = DepSU->getInstr(); 2847 if (!Copy->isCopy()) 2848 continue; 2849 DEBUG(dbgs() << " Rescheduling physreg copy "; 2850 I->getSUnit()->dump(DAG)); 2851 DAG->moveInstruction(Copy, InsertPos); 2852 } 2853} 2854 2855/// Update the scheduler's state after scheduling a node. This is the same node 2856/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2857/// update it's state based on the current cycle before MachineSchedStrategy 2858/// does. 2859/// 2860/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2861/// them here. See comments in biasPhysRegCopy. 2862void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2863 if (IsTopNode) { 2864 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2865 Top.bumpNode(SU); 2866 if (SU->hasPhysRegUses) 2867 reschedulePhysRegCopies(SU, true); 2868 } 2869 else { 2870 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2871 Bot.bumpNode(SU); 2872 if (SU->hasPhysRegDefs) 2873 reschedulePhysRegCopies(SU, false); 2874 } 2875} 2876 2877/// Create the standard converging machine scheduler. This will be used as the 2878/// default scheduler if the target does not set a default. 2879static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 2880 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 2881 // Register DAG post-processors. 2882 // 2883 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2884 // data and pass it to later mutations. Have a single mutation that gathers 2885 // the interesting nodes in one pass. 2886 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 2887 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2888 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 2889 if (EnableMacroFusion) 2890 DAG->addMutation(make_unique<MacroFusion>(DAG->TII)); 2891 return DAG; 2892} 2893 2894static MachineSchedRegistry 2895GenericSchedRegistry("converge", "Standard converging scheduler.", 2896 createGenericSchedLive); 2897 2898//===----------------------------------------------------------------------===// 2899// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 2900//===----------------------------------------------------------------------===// 2901 2902void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 2903 DAG = Dag; 2904 SchedModel = DAG->getSchedModel(); 2905 TRI = DAG->TRI; 2906 2907 Rem.init(DAG, SchedModel); 2908 Top.init(DAG, SchedModel, &Rem); 2909 BotRoots.clear(); 2910 2911 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 2912 // or are disabled, then these HazardRecs will be disabled. 2913 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2914 if (!Top.HazardRec) { 2915 Top.HazardRec = 2916 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2917 Itin, DAG); 2918 } 2919} 2920 2921 2922void PostGenericScheduler::registerRoots() { 2923 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2924 2925 // Some roots may not feed into ExitSU. Check all of them in case. 2926 for (SmallVectorImpl<SUnit*>::const_iterator 2927 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 2928 if ((*I)->getDepth() > Rem.CriticalPath) 2929 Rem.CriticalPath = (*I)->getDepth(); 2930 } 2931 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 2932 if (DumpCriticalPathLength) { 2933 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 2934 } 2935} 2936 2937/// Apply a set of heursitics to a new candidate for PostRA scheduling. 2938/// 2939/// \param Cand provides the policy and current best candidate. 2940/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2941void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 2942 SchedCandidate &TryCand) { 2943 2944 // Initialize the candidate if needed. 2945 if (!Cand.isValid()) { 2946 TryCand.Reason = NodeOrder; 2947 return; 2948 } 2949 2950 // Prioritize instructions that read unbuffered resources by stall cycles. 2951 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 2952 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2953 return; 2954 2955 // Avoid critical resource consumption and balance the schedule. 2956 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2957 TryCand, Cand, ResourceReduce)) 2958 return; 2959 if (tryGreater(TryCand.ResDelta.DemandedResources, 2960 Cand.ResDelta.DemandedResources, 2961 TryCand, Cand, ResourceDemand)) 2962 return; 2963 2964 // Avoid serializing long latency dependence chains. 2965 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 2966 return; 2967 } 2968 2969 // Fall through to original instruction order. 2970 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 2971 TryCand.Reason = NodeOrder; 2972} 2973 2974void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 2975 ReadyQueue &Q = Top.Available; 2976 2977 DEBUG(Q.dump()); 2978 2979 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2980 SchedCandidate TryCand(Cand.Policy); 2981 TryCand.SU = *I; 2982 TryCand.initResourceDelta(DAG, SchedModel); 2983 tryCandidate(Cand, TryCand); 2984 if (TryCand.Reason != NoCand) { 2985 Cand.setBest(TryCand); 2986 DEBUG(traceCandidate(Cand)); 2987 } 2988 } 2989} 2990 2991/// Pick the next node to schedule. 2992SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 2993 if (DAG->top() == DAG->bottom()) { 2994 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 2995 return nullptr; 2996 } 2997 SUnit *SU; 2998 do { 2999 SU = Top.pickOnlyChoice(); 3000 if (!SU) { 3001 CandPolicy NoPolicy; 3002 SchedCandidate TopCand(NoPolicy); 3003 // Set the top-down policy based on the state of the current top zone and 3004 // the instructions outside the zone, including the bottom zone. 3005 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3006 pickNodeFromQueue(TopCand); 3007 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3008 tracePick(TopCand, true); 3009 SU = TopCand.SU; 3010 } 3011 } while (SU->isScheduled); 3012 3013 IsTopNode = true; 3014 Top.removeReady(SU); 3015 3016 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3017 return SU; 3018} 3019 3020/// Called after ScheduleDAGMI has scheduled an instruction and updated 3021/// scheduled/remaining flags in the DAG nodes. 3022void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3023 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3024 Top.bumpNode(SU); 3025} 3026 3027/// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3028static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3029 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3030} 3031 3032//===----------------------------------------------------------------------===// 3033// ILP Scheduler. Currently for experimental analysis of heuristics. 3034//===----------------------------------------------------------------------===// 3035 3036namespace { 3037/// \brief Order nodes by the ILP metric. 3038struct ILPOrder { 3039 const SchedDFSResult *DFSResult; 3040 const BitVector *ScheduledTrees; 3041 bool MaximizeILP; 3042 3043 ILPOrder(bool MaxILP) 3044 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3045 3046 /// \brief Apply a less-than relation on node priority. 3047 /// 3048 /// (Return true if A comes after B in the Q.) 3049 bool operator()(const SUnit *A, const SUnit *B) const { 3050 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3051 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3052 if (SchedTreeA != SchedTreeB) { 3053 // Unscheduled trees have lower priority. 3054 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3055 return ScheduledTrees->test(SchedTreeB); 3056 3057 // Trees with shallower connections have have lower priority. 3058 if (DFSResult->getSubtreeLevel(SchedTreeA) 3059 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3060 return DFSResult->getSubtreeLevel(SchedTreeA) 3061 < DFSResult->getSubtreeLevel(SchedTreeB); 3062 } 3063 } 3064 if (MaximizeILP) 3065 return DFSResult->getILP(A) < DFSResult->getILP(B); 3066 else 3067 return DFSResult->getILP(A) > DFSResult->getILP(B); 3068 } 3069}; 3070 3071/// \brief Schedule based on the ILP metric. 3072class ILPScheduler : public MachineSchedStrategy { 3073 ScheduleDAGMILive *DAG; 3074 ILPOrder Cmp; 3075 3076 std::vector<SUnit*> ReadyQ; 3077public: 3078 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3079 3080 void initialize(ScheduleDAGMI *dag) override { 3081 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3082 DAG = static_cast<ScheduleDAGMILive*>(dag); 3083 DAG->computeDFSResult(); 3084 Cmp.DFSResult = DAG->getDFSResult(); 3085 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3086 ReadyQ.clear(); 3087 } 3088 3089 void registerRoots() override { 3090 // Restore the heap in ReadyQ with the updated DFS results. 3091 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3092 } 3093 3094 /// Implement MachineSchedStrategy interface. 3095 /// ----------------------------------------- 3096 3097 /// Callback to select the highest priority node from the ready Q. 3098 SUnit *pickNode(bool &IsTopNode) override { 3099 if (ReadyQ.empty()) return nullptr; 3100 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3101 SUnit *SU = ReadyQ.back(); 3102 ReadyQ.pop_back(); 3103 IsTopNode = false; 3104 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3105 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3106 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3107 << DAG->getDFSResult()->getSubtreeLevel( 3108 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3109 << "Scheduling " << *SU->getInstr()); 3110 return SU; 3111 } 3112 3113 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3114 void scheduleTree(unsigned SubtreeID) override { 3115 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3116 } 3117 3118 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3119 /// DFSResults, and resort the priority Q. 3120 void schedNode(SUnit *SU, bool IsTopNode) override { 3121 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3122 } 3123 3124 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3125 3126 void releaseBottomNode(SUnit *SU) override { 3127 ReadyQ.push_back(SU); 3128 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3129 } 3130}; 3131} // namespace 3132 3133static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3134 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3135} 3136static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3137 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3138} 3139static MachineSchedRegistry ILPMaxRegistry( 3140 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3141static MachineSchedRegistry ILPMinRegistry( 3142 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3143 3144//===----------------------------------------------------------------------===// 3145// Machine Instruction Shuffler for Correctness Testing 3146//===----------------------------------------------------------------------===// 3147 3148#ifndef NDEBUG 3149namespace { 3150/// Apply a less-than relation on the node order, which corresponds to the 3151/// instruction order prior to scheduling. IsReverse implements greater-than. 3152template<bool IsReverse> 3153struct SUnitOrder { 3154 bool operator()(SUnit *A, SUnit *B) const { 3155 if (IsReverse) 3156 return A->NodeNum > B->NodeNum; 3157 else 3158 return A->NodeNum < B->NodeNum; 3159 } 3160}; 3161 3162/// Reorder instructions as much as possible. 3163class InstructionShuffler : public MachineSchedStrategy { 3164 bool IsAlternating; 3165 bool IsTopDown; 3166 3167 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3168 // gives nodes with a higher number higher priority causing the latest 3169 // instructions to be scheduled first. 3170 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3171 TopQ; 3172 // When scheduling bottom-up, use greater-than as the queue priority. 3173 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3174 BottomQ; 3175public: 3176 InstructionShuffler(bool alternate, bool topdown) 3177 : IsAlternating(alternate), IsTopDown(topdown) {} 3178 3179 void initialize(ScheduleDAGMI*) override { 3180 TopQ.clear(); 3181 BottomQ.clear(); 3182 } 3183 3184 /// Implement MachineSchedStrategy interface. 3185 /// ----------------------------------------- 3186 3187 SUnit *pickNode(bool &IsTopNode) override { 3188 SUnit *SU; 3189 if (IsTopDown) { 3190 do { 3191 if (TopQ.empty()) return nullptr; 3192 SU = TopQ.top(); 3193 TopQ.pop(); 3194 } while (SU->isScheduled); 3195 IsTopNode = true; 3196 } 3197 else { 3198 do { 3199 if (BottomQ.empty()) return nullptr; 3200 SU = BottomQ.top(); 3201 BottomQ.pop(); 3202 } while (SU->isScheduled); 3203 IsTopNode = false; 3204 } 3205 if (IsAlternating) 3206 IsTopDown = !IsTopDown; 3207 return SU; 3208 } 3209 3210 void schedNode(SUnit *SU, bool IsTopNode) override {} 3211 3212 void releaseTopNode(SUnit *SU) override { 3213 TopQ.push(SU); 3214 } 3215 void releaseBottomNode(SUnit *SU) override { 3216 BottomQ.push(SU); 3217 } 3218}; 3219} // namespace 3220 3221static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3222 bool Alternate = !ForceTopDown && !ForceBottomUp; 3223 bool TopDown = !ForceBottomUp; 3224 assert((TopDown || !ForceTopDown) && 3225 "-misched-topdown incompatible with -misched-bottomup"); 3226 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3227} 3228static MachineSchedRegistry ShufflerRegistry( 3229 "shuffle", "Shuffle machine instructions alternating directions", 3230 createInstructionShuffler); 3231#endif // !NDEBUG 3232 3233//===----------------------------------------------------------------------===// 3234// GraphWriter support for ScheduleDAGMILive. 3235//===----------------------------------------------------------------------===// 3236 3237#ifndef NDEBUG 3238namespace llvm { 3239 3240template<> struct GraphTraits< 3241 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3242 3243template<> 3244struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3245 3246 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3247 3248 static std::string getGraphName(const ScheduleDAG *G) { 3249 return G->MF.getName(); 3250 } 3251 3252 static bool renderGraphFromBottomUp() { 3253 return true; 3254 } 3255 3256 static bool isNodeHidden(const SUnit *Node) { 3257 return (Node->Preds.size() > 10 || Node->Succs.size() > 10); 3258 } 3259 3260 static bool hasNodeAddressLabel(const SUnit *Node, 3261 const ScheduleDAG *Graph) { 3262 return false; 3263 } 3264 3265 /// If you want to override the dot attributes printed for a particular 3266 /// edge, override this method. 3267 static std::string getEdgeAttributes(const SUnit *Node, 3268 SUnitIterator EI, 3269 const ScheduleDAG *Graph) { 3270 if (EI.isArtificialDep()) 3271 return "color=cyan,style=dashed"; 3272 if (EI.isCtrlDep()) 3273 return "color=blue,style=dashed"; 3274 return ""; 3275 } 3276 3277 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3278 std::string Str; 3279 raw_string_ostream SS(Str); 3280 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3281 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3282 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3283 SS << "SU:" << SU->NodeNum; 3284 if (DFS) 3285 SS << " I:" << DFS->getNumInstrs(SU); 3286 return SS.str(); 3287 } 3288 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3289 return G->getGraphNodeLabel(SU); 3290 } 3291 3292 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3293 std::string Str("shape=Mrecord"); 3294 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3295 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3296 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3297 if (DFS) { 3298 Str += ",style=filled,fillcolor=\"#"; 3299 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3300 Str += '"'; 3301 } 3302 return Str; 3303 } 3304}; 3305} // namespace llvm 3306#endif // NDEBUG 3307 3308/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3309/// rendered using 'dot'. 3310/// 3311void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3312#ifndef NDEBUG 3313 ViewGraph(this, Name, false, Title); 3314#else 3315 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3316 << "systems with Graphviz or gv!\n"; 3317#endif // NDEBUG 3318} 3319 3320/// Out-of-line implementation with no arguments is handy for gdb. 3321void ScheduleDAGMI::viewGraph() { 3322 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3323} 3324