1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineScheduler.h"
16#include "llvm/ADT/PriorityQueue.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/CodeGen/LiveIntervalAnalysis.h"
19#include "llvm/CodeGen/MachineDominators.h"
20#include "llvm/CodeGen/MachineLoopInfo.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/RegisterClassInfo.h"
24#include "llvm/CodeGen/ScheduleDFS.h"
25#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/GraphWriter.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include <queue>
33
34using namespace llvm;
35
36#define DEBUG_TYPE "misched"
37
38namespace llvm {
39cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                           cl::desc("Force top-down list scheduling"));
41cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                            cl::desc("Force bottom-up list scheduling"));
43cl::opt<bool>
44DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45                       cl::desc("Print critical path length to stdout"));
46}
47
48#ifndef NDEBUG
49static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50  cl::desc("Pop up a window to show MISched dags after they are processed"));
51
52static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
53  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
54
55static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
56  cl::desc("Only schedule this function"));
57static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
58  cl::desc("Only schedule this MBB#"));
59#else
60static bool ViewMISchedDAGs = false;
61#endif // NDEBUG
62
63static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
64  cl::desc("Enable register pressure scheduling."), cl::init(true));
65
66static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
67  cl::desc("Enable cyclic critical path analysis."), cl::init(true));
68
69static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
70  cl::desc("Enable load clustering."), cl::init(true));
71
72// Experimental heuristics
73static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
74  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
75
76static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
77  cl::desc("Verify machine instrs before and after machine scheduling"));
78
79// DAG subtrees must have at least this many nodes.
80static const unsigned MinSubtreeSize = 8;
81
82// Pin the vtables to this file.
83void MachineSchedStrategy::anchor() {}
84void ScheduleDAGMutation::anchor() {}
85
86//===----------------------------------------------------------------------===//
87// Machine Instruction Scheduling Pass and Registry
88//===----------------------------------------------------------------------===//
89
90MachineSchedContext::MachineSchedContext():
91    MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
92  RegClassInfo = new RegisterClassInfo();
93}
94
95MachineSchedContext::~MachineSchedContext() {
96  delete RegClassInfo;
97}
98
99namespace {
100/// Base class for a machine scheduler class that can run at any point.
101class MachineSchedulerBase : public MachineSchedContext,
102                             public MachineFunctionPass {
103public:
104  MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
105
106  void print(raw_ostream &O, const Module* = nullptr) const override;
107
108protected:
109  void scheduleRegions(ScheduleDAGInstrs &Scheduler);
110};
111
112/// MachineScheduler runs after coalescing and before register allocation.
113class MachineScheduler : public MachineSchedulerBase {
114public:
115  MachineScheduler();
116
117  void getAnalysisUsage(AnalysisUsage &AU) const override;
118
119  bool runOnMachineFunction(MachineFunction&) override;
120
121  static char ID; // Class identification, replacement for typeinfo
122
123protected:
124  ScheduleDAGInstrs *createMachineScheduler();
125};
126
127/// PostMachineScheduler runs after shortly before code emission.
128class PostMachineScheduler : public MachineSchedulerBase {
129public:
130  PostMachineScheduler();
131
132  void getAnalysisUsage(AnalysisUsage &AU) const override;
133
134  bool runOnMachineFunction(MachineFunction&) override;
135
136  static char ID; // Class identification, replacement for typeinfo
137
138protected:
139  ScheduleDAGInstrs *createPostMachineScheduler();
140};
141} // namespace
142
143char MachineScheduler::ID = 0;
144
145char &llvm::MachineSchedulerID = MachineScheduler::ID;
146
147INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
148                      "Machine Instruction Scheduler", false, false)
149INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
150INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
151INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
152INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
153                    "Machine Instruction Scheduler", false, false)
154
155MachineScheduler::MachineScheduler()
156: MachineSchedulerBase(ID) {
157  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
158}
159
160void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
161  AU.setPreservesCFG();
162  AU.addRequiredID(MachineDominatorsID);
163  AU.addRequired<MachineLoopInfo>();
164  AU.addRequired<AliasAnalysis>();
165  AU.addRequired<TargetPassConfig>();
166  AU.addRequired<SlotIndexes>();
167  AU.addPreserved<SlotIndexes>();
168  AU.addRequired<LiveIntervals>();
169  AU.addPreserved<LiveIntervals>();
170  MachineFunctionPass::getAnalysisUsage(AU);
171}
172
173char PostMachineScheduler::ID = 0;
174
175char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
176
177INITIALIZE_PASS(PostMachineScheduler, "postmisched",
178                "PostRA Machine Instruction Scheduler", false, false)
179
180PostMachineScheduler::PostMachineScheduler()
181: MachineSchedulerBase(ID) {
182  initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
183}
184
185void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
186  AU.setPreservesCFG();
187  AU.addRequiredID(MachineDominatorsID);
188  AU.addRequired<MachineLoopInfo>();
189  AU.addRequired<TargetPassConfig>();
190  MachineFunctionPass::getAnalysisUsage(AU);
191}
192
193MachinePassRegistry MachineSchedRegistry::Registry;
194
195/// A dummy default scheduler factory indicates whether the scheduler
196/// is overridden on the command line.
197static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
198  return nullptr;
199}
200
201/// MachineSchedOpt allows command line selection of the scheduler.
202static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
203               RegisterPassParser<MachineSchedRegistry> >
204MachineSchedOpt("misched",
205                cl::init(&useDefaultMachineSched), cl::Hidden,
206                cl::desc("Machine instruction scheduler to use"));
207
208static MachineSchedRegistry
209DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
210                     useDefaultMachineSched);
211
212static cl::opt<bool> EnableMachineSched(
213    "enable-misched",
214    cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
215    cl::Hidden);
216
217/// Forward declare the standard machine scheduler. This will be used as the
218/// default scheduler if the target does not set a default.
219static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
220static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
221
222/// Decrement this iterator until reaching the top or a non-debug instr.
223static MachineBasicBlock::const_iterator
224priorNonDebug(MachineBasicBlock::const_iterator I,
225              MachineBasicBlock::const_iterator Beg) {
226  assert(I != Beg && "reached the top of the region, cannot decrement");
227  while (--I != Beg) {
228    if (!I->isDebugValue())
229      break;
230  }
231  return I;
232}
233
234/// Non-const version.
235static MachineBasicBlock::iterator
236priorNonDebug(MachineBasicBlock::iterator I,
237              MachineBasicBlock::const_iterator Beg) {
238  return const_cast<MachineInstr*>(
239    &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
240}
241
242/// If this iterator is a debug value, increment until reaching the End or a
243/// non-debug instruction.
244static MachineBasicBlock::const_iterator
245nextIfDebug(MachineBasicBlock::const_iterator I,
246            MachineBasicBlock::const_iterator End) {
247  for(; I != End; ++I) {
248    if (!I->isDebugValue())
249      break;
250  }
251  return I;
252}
253
254/// Non-const version.
255static MachineBasicBlock::iterator
256nextIfDebug(MachineBasicBlock::iterator I,
257            MachineBasicBlock::const_iterator End) {
258  // Cast the return value to nonconst MachineInstr, then cast to an
259  // instr_iterator, which does not check for null, finally return a
260  // bundle_iterator.
261  return MachineBasicBlock::instr_iterator(
262    const_cast<MachineInstr*>(
263      &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
264}
265
266/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
267ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
268  // Select the scheduler, or set the default.
269  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
270  if (Ctor != useDefaultMachineSched)
271    return Ctor(this);
272
273  // Get the default scheduler set by the target for this function.
274  ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
275  if (Scheduler)
276    return Scheduler;
277
278  // Default to GenericScheduler.
279  return createGenericSchedLive(this);
280}
281
282/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
283/// the caller. We don't have a command line option to override the postRA
284/// scheduler. The Target must configure it.
285ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
286  // Get the postRA scheduler set by the target for this function.
287  ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
288  if (Scheduler)
289    return Scheduler;
290
291  // Default to GenericScheduler.
292  return createGenericSchedPostRA(this);
293}
294
295/// Top-level MachineScheduler pass driver.
296///
297/// Visit blocks in function order. Divide each block into scheduling regions
298/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
299/// consistent with the DAG builder, which traverses the interior of the
300/// scheduling regions bottom-up.
301///
302/// This design avoids exposing scheduling boundaries to the DAG builder,
303/// simplifying the DAG builder's support for "special" target instructions.
304/// At the same time the design allows target schedulers to operate across
305/// scheduling boundaries, for example to bundle the boudary instructions
306/// without reordering them. This creates complexity, because the target
307/// scheduler must update the RegionBegin and RegionEnd positions cached by
308/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
309/// design would be to split blocks at scheduling boundaries, but LLVM has a
310/// general bias against block splitting purely for implementation simplicity.
311bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
312  if (EnableMachineSched.getNumOccurrences()) {
313    if (!EnableMachineSched)
314      return false;
315  } else if (!mf.getSubtarget().enableMachineScheduler())
316    return false;
317
318  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
319
320  // Initialize the context of the pass.
321  MF = &mf;
322  MLI = &getAnalysis<MachineLoopInfo>();
323  MDT = &getAnalysis<MachineDominatorTree>();
324  PassConfig = &getAnalysis<TargetPassConfig>();
325  AA = &getAnalysis<AliasAnalysis>();
326
327  LIS = &getAnalysis<LiveIntervals>();
328
329  if (VerifyScheduling) {
330    DEBUG(LIS->dump());
331    MF->verify(this, "Before machine scheduling.");
332  }
333  RegClassInfo->runOnMachineFunction(*MF);
334
335  // Instantiate the selected scheduler for this target, function, and
336  // optimization level.
337  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
338  scheduleRegions(*Scheduler);
339
340  DEBUG(LIS->dump());
341  if (VerifyScheduling)
342    MF->verify(this, "After machine scheduling.");
343  return true;
344}
345
346bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
347  if (skipOptnoneFunction(*mf.getFunction()))
348    return false;
349
350  if (!mf.getSubtarget().enablePostMachineScheduler()) {
351    DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
352    return false;
353  }
354  DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
355
356  // Initialize the context of the pass.
357  MF = &mf;
358  PassConfig = &getAnalysis<TargetPassConfig>();
359
360  if (VerifyScheduling)
361    MF->verify(this, "Before post machine scheduling.");
362
363  // Instantiate the selected scheduler for this target, function, and
364  // optimization level.
365  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
366  scheduleRegions(*Scheduler);
367
368  if (VerifyScheduling)
369    MF->verify(this, "After post machine scheduling.");
370  return true;
371}
372
373/// Return true of the given instruction should not be included in a scheduling
374/// region.
375///
376/// MachineScheduler does not currently support scheduling across calls. To
377/// handle calls, the DAG builder needs to be modified to create register
378/// anti/output dependencies on the registers clobbered by the call's regmask
379/// operand. In PreRA scheduling, the stack pointer adjustment already prevents
380/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
381/// the boundary, but there would be no benefit to postRA scheduling across
382/// calls this late anyway.
383static bool isSchedBoundary(MachineBasicBlock::iterator MI,
384                            MachineBasicBlock *MBB,
385                            MachineFunction *MF,
386                            const TargetInstrInfo *TII,
387                            bool IsPostRA) {
388  return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
389}
390
391/// Main driver for both MachineScheduler and PostMachineScheduler.
392void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
393  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
394  bool IsPostRA = Scheduler.isPostRA();
395
396  // Visit all machine basic blocks.
397  //
398  // TODO: Visit blocks in global postorder or postorder within the bottom-up
399  // loop tree. Then we can optionally compute global RegPressure.
400  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
401       MBB != MBBEnd; ++MBB) {
402
403    Scheduler.startBlock(MBB);
404
405#ifndef NDEBUG
406    if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
407      continue;
408    if (SchedOnlyBlock.getNumOccurrences()
409        && (int)SchedOnlyBlock != MBB->getNumber())
410      continue;
411#endif
412
413    // Break the block into scheduling regions [I, RegionEnd), and schedule each
414    // region as soon as it is discovered. RegionEnd points the scheduling
415    // boundary at the bottom of the region. The DAG does not include RegionEnd,
416    // but the region does (i.e. the next RegionEnd is above the previous
417    // RegionBegin). If the current block has no terminator then RegionEnd ==
418    // MBB->end() for the bottom region.
419    //
420    // The Scheduler may insert instructions during either schedule() or
421    // exitRegion(), even for empty regions. So the local iterators 'I' and
422    // 'RegionEnd' are invalid across these calls.
423    //
424    // MBB::size() uses instr_iterator to count. Here we need a bundle to count
425    // as a single instruction.
426    unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
427    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
428        RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
429
430      // Avoid decrementing RegionEnd for blocks with no terminator.
431      if (RegionEnd != MBB->end() ||
432          isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
433        --RegionEnd;
434        // Count the boundary instruction.
435        --RemainingInstrs;
436      }
437
438      // The next region starts above the previous region. Look backward in the
439      // instruction stream until we find the nearest boundary.
440      unsigned NumRegionInstrs = 0;
441      MachineBasicBlock::iterator I = RegionEnd;
442      for(;I != MBB->begin(); --I, --RemainingInstrs) {
443        if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
444          break;
445        if (!I->isDebugValue())
446          ++NumRegionInstrs;
447      }
448      // Notify the scheduler of the region, even if we may skip scheduling
449      // it. Perhaps it still needs to be bundled.
450      Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
451
452      // Skip empty scheduling regions (0 or 1 schedulable instructions).
453      if (I == RegionEnd || I == std::prev(RegionEnd)) {
454        // Close the current region. Bundle the terminator if needed.
455        // This invalidates 'RegionEnd' and 'I'.
456        Scheduler.exitRegion();
457        continue;
458      }
459      DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
460            << "MI Scheduling **********\n");
461      DEBUG(dbgs() << MF->getName()
462            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
463            << "\n  From: " << *I << "    To: ";
464            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
465            else dbgs() << "End";
466            dbgs() << " RegionInstrs: " << NumRegionInstrs
467            << " Remaining: " << RemainingInstrs << "\n");
468      if (DumpCriticalPathLength) {
469        errs() << MF->getName();
470        errs() << ":BB# " << MBB->getNumber();
471        errs() << " " << MBB->getName() << " \n";
472      }
473
474      // Schedule a region: possibly reorder instructions.
475      // This invalidates 'RegionEnd' and 'I'.
476      Scheduler.schedule();
477
478      // Close the current region.
479      Scheduler.exitRegion();
480
481      // Scheduling has invalidated the current iterator 'I'. Ask the
482      // scheduler for the top of it's scheduled region.
483      RegionEnd = Scheduler.begin();
484    }
485    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
486    Scheduler.finishBlock();
487    if (Scheduler.isPostRA()) {
488      // FIXME: Ideally, no further passes should rely on kill flags. However,
489      // thumb2 size reduction is currently an exception.
490      Scheduler.fixupKills(MBB);
491    }
492  }
493  Scheduler.finalizeSchedule();
494}
495
496void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
497  // unimplemented
498}
499
500LLVM_DUMP_METHOD
501void ReadyQueue::dump() {
502  dbgs() << Name << ": ";
503  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
504    dbgs() << Queue[i]->NodeNum << " ";
505  dbgs() << "\n";
506}
507
508//===----------------------------------------------------------------------===//
509// ScheduleDAGMI - Basic machine instruction scheduling. This is
510// independent of PreRA/PostRA scheduling and involves no extra book-keeping for
511// virtual registers.
512// ===----------------------------------------------------------------------===/
513
514// Provide a vtable anchor.
515ScheduleDAGMI::~ScheduleDAGMI() {
516}
517
518bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
519  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
520}
521
522bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
523  if (SuccSU != &ExitSU) {
524    // Do not use WillCreateCycle, it assumes SD scheduling.
525    // If Pred is reachable from Succ, then the edge creates a cycle.
526    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
527      return false;
528    Topo.AddPred(SuccSU, PredDep.getSUnit());
529  }
530  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
531  // Return true regardless of whether a new edge needed to be inserted.
532  return true;
533}
534
535/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
536/// NumPredsLeft reaches zero, release the successor node.
537///
538/// FIXME: Adjust SuccSU height based on MinLatency.
539void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
540  SUnit *SuccSU = SuccEdge->getSUnit();
541
542  if (SuccEdge->isWeak()) {
543    --SuccSU->WeakPredsLeft;
544    if (SuccEdge->isCluster())
545      NextClusterSucc = SuccSU;
546    return;
547  }
548#ifndef NDEBUG
549  if (SuccSU->NumPredsLeft == 0) {
550    dbgs() << "*** Scheduling failed! ***\n";
551    SuccSU->dump(this);
552    dbgs() << " has been released too many times!\n";
553    llvm_unreachable(nullptr);
554  }
555#endif
556  // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
557  // CurrCycle may have advanced since then.
558  if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
559    SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
560
561  --SuccSU->NumPredsLeft;
562  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
563    SchedImpl->releaseTopNode(SuccSU);
564}
565
566/// releaseSuccessors - Call releaseSucc on each of SU's successors.
567void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
568  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
569       I != E; ++I) {
570    releaseSucc(SU, &*I);
571  }
572}
573
574/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
575/// NumSuccsLeft reaches zero, release the predecessor node.
576///
577/// FIXME: Adjust PredSU height based on MinLatency.
578void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
579  SUnit *PredSU = PredEdge->getSUnit();
580
581  if (PredEdge->isWeak()) {
582    --PredSU->WeakSuccsLeft;
583    if (PredEdge->isCluster())
584      NextClusterPred = PredSU;
585    return;
586  }
587#ifndef NDEBUG
588  if (PredSU->NumSuccsLeft == 0) {
589    dbgs() << "*** Scheduling failed! ***\n";
590    PredSU->dump(this);
591    dbgs() << " has been released too many times!\n";
592    llvm_unreachable(nullptr);
593  }
594#endif
595  // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
596  // CurrCycle may have advanced since then.
597  if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
598    PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
599
600  --PredSU->NumSuccsLeft;
601  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
602    SchedImpl->releaseBottomNode(PredSU);
603}
604
605/// releasePredecessors - Call releasePred on each of SU's predecessors.
606void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
607  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
608       I != E; ++I) {
609    releasePred(SU, &*I);
610  }
611}
612
613/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
614/// crossing a scheduling boundary. [begin, end) includes all instructions in
615/// the region, including the boundary itself and single-instruction regions
616/// that don't get scheduled.
617void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
618                                     MachineBasicBlock::iterator begin,
619                                     MachineBasicBlock::iterator end,
620                                     unsigned regioninstrs)
621{
622  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
623
624  SchedImpl->initPolicy(begin, end, regioninstrs);
625}
626
627/// This is normally called from the main scheduler loop but may also be invoked
628/// by the scheduling strategy to perform additional code motion.
629void ScheduleDAGMI::moveInstruction(
630  MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
631  // Advance RegionBegin if the first instruction moves down.
632  if (&*RegionBegin == MI)
633    ++RegionBegin;
634
635  // Update the instruction stream.
636  BB->splice(InsertPos, BB, MI);
637
638  // Update LiveIntervals
639  if (LIS)
640    LIS->handleMove(MI, /*UpdateFlags=*/true);
641
642  // Recede RegionBegin if an instruction moves above the first.
643  if (RegionBegin == InsertPos)
644    RegionBegin = MI;
645}
646
647bool ScheduleDAGMI::checkSchedLimit() {
648#ifndef NDEBUG
649  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
650    CurrentTop = CurrentBottom;
651    return false;
652  }
653  ++NumInstrsScheduled;
654#endif
655  return true;
656}
657
658/// Per-region scheduling driver, called back from
659/// MachineScheduler::runOnMachineFunction. This is a simplified driver that
660/// does not consider liveness or register pressure. It is useful for PostRA
661/// scheduling and potentially other custom schedulers.
662void ScheduleDAGMI::schedule() {
663  // Build the DAG.
664  buildSchedGraph(AA);
665
666  Topo.InitDAGTopologicalSorting();
667
668  postprocessDAG();
669
670  SmallVector<SUnit*, 8> TopRoots, BotRoots;
671  findRootsAndBiasEdges(TopRoots, BotRoots);
672
673  // Initialize the strategy before modifying the DAG.
674  // This may initialize a DFSResult to be used for queue priority.
675  SchedImpl->initialize(this);
676
677  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
678          SUnits[su].dumpAll(this));
679  if (ViewMISchedDAGs) viewGraph();
680
681  // Initialize ready queues now that the DAG and priority data are finalized.
682  initQueues(TopRoots, BotRoots);
683
684  bool IsTopNode = false;
685  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
686    assert(!SU->isScheduled && "Node already scheduled");
687    if (!checkSchedLimit())
688      break;
689
690    MachineInstr *MI = SU->getInstr();
691    if (IsTopNode) {
692      assert(SU->isTopReady() && "node still has unscheduled dependencies");
693      if (&*CurrentTop == MI)
694        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
695      else
696        moveInstruction(MI, CurrentTop);
697    }
698    else {
699      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
700      MachineBasicBlock::iterator priorII =
701        priorNonDebug(CurrentBottom, CurrentTop);
702      if (&*priorII == MI)
703        CurrentBottom = priorII;
704      else {
705        if (&*CurrentTop == MI)
706          CurrentTop = nextIfDebug(++CurrentTop, priorII);
707        moveInstruction(MI, CurrentBottom);
708        CurrentBottom = MI;
709      }
710    }
711    // Notify the scheduling strategy before updating the DAG.
712    // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
713    // runs, it can then use the accurate ReadyCycle time to determine whether
714    // newly released nodes can move to the readyQ.
715    SchedImpl->schedNode(SU, IsTopNode);
716
717    updateQueues(SU, IsTopNode);
718  }
719  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
720
721  placeDebugValues();
722
723  DEBUG({
724      unsigned BBNum = begin()->getParent()->getNumber();
725      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
726      dumpSchedule();
727      dbgs() << '\n';
728    });
729}
730
731/// Apply each ScheduleDAGMutation step in order.
732void ScheduleDAGMI::postprocessDAG() {
733  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
734    Mutations[i]->apply(this);
735  }
736}
737
738void ScheduleDAGMI::
739findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
740                      SmallVectorImpl<SUnit*> &BotRoots) {
741  for (std::vector<SUnit>::iterator
742         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
743    SUnit *SU = &(*I);
744    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
745
746    // Order predecessors so DFSResult follows the critical path.
747    SU->biasCriticalPath();
748
749    // A SUnit is ready to top schedule if it has no predecessors.
750    if (!I->NumPredsLeft)
751      TopRoots.push_back(SU);
752    // A SUnit is ready to bottom schedule if it has no successors.
753    if (!I->NumSuccsLeft)
754      BotRoots.push_back(SU);
755  }
756  ExitSU.biasCriticalPath();
757}
758
759/// Identify DAG roots and setup scheduler queues.
760void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
761                               ArrayRef<SUnit*> BotRoots) {
762  NextClusterSucc = nullptr;
763  NextClusterPred = nullptr;
764
765  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
766  //
767  // Nodes with unreleased weak edges can still be roots.
768  // Release top roots in forward order.
769  for (SmallVectorImpl<SUnit*>::const_iterator
770         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
771    SchedImpl->releaseTopNode(*I);
772  }
773  // Release bottom roots in reverse order so the higher priority nodes appear
774  // first. This is more natural and slightly more efficient.
775  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
776         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
777    SchedImpl->releaseBottomNode(*I);
778  }
779
780  releaseSuccessors(&EntrySU);
781  releasePredecessors(&ExitSU);
782
783  SchedImpl->registerRoots();
784
785  // Advance past initial DebugValues.
786  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
787  CurrentBottom = RegionEnd;
788}
789
790/// Update scheduler queues after scheduling an instruction.
791void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
792  // Release dependent instructions for scheduling.
793  if (IsTopNode)
794    releaseSuccessors(SU);
795  else
796    releasePredecessors(SU);
797
798  SU->isScheduled = true;
799}
800
801/// Reinsert any remaining debug_values, just like the PostRA scheduler.
802void ScheduleDAGMI::placeDebugValues() {
803  // If first instruction was a DBG_VALUE then put it back.
804  if (FirstDbgValue) {
805    BB->splice(RegionBegin, BB, FirstDbgValue);
806    RegionBegin = FirstDbgValue;
807  }
808
809  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
810         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
811    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
812    MachineInstr *DbgValue = P.first;
813    MachineBasicBlock::iterator OrigPrevMI = P.second;
814    if (&*RegionBegin == DbgValue)
815      ++RegionBegin;
816    BB->splice(++OrigPrevMI, BB, DbgValue);
817    if (OrigPrevMI == std::prev(RegionEnd))
818      RegionEnd = DbgValue;
819  }
820  DbgValues.clear();
821  FirstDbgValue = nullptr;
822}
823
824#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
825void ScheduleDAGMI::dumpSchedule() const {
826  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
827    if (SUnit *SU = getSUnit(&(*MI)))
828      SU->dump(this);
829    else
830      dbgs() << "Missing SUnit\n";
831  }
832}
833#endif
834
835//===----------------------------------------------------------------------===//
836// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
837// preservation.
838//===----------------------------------------------------------------------===//
839
840ScheduleDAGMILive::~ScheduleDAGMILive() {
841  delete DFSResult;
842}
843
844/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
845/// crossing a scheduling boundary. [begin, end) includes all instructions in
846/// the region, including the boundary itself and single-instruction regions
847/// that don't get scheduled.
848void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
849                                MachineBasicBlock::iterator begin,
850                                MachineBasicBlock::iterator end,
851                                unsigned regioninstrs)
852{
853  // ScheduleDAGMI initializes SchedImpl's per-region policy.
854  ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
855
856  // For convenience remember the end of the liveness region.
857  LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
858
859  SUPressureDiffs.clear();
860
861  ShouldTrackPressure = SchedImpl->shouldTrackPressure();
862}
863
864// Setup the register pressure trackers for the top scheduled top and bottom
865// scheduled regions.
866void ScheduleDAGMILive::initRegPressure() {
867  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
868  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
869
870  // Close the RPTracker to finalize live ins.
871  RPTracker.closeRegion();
872
873  DEBUG(RPTracker.dump());
874
875  // Initialize the live ins and live outs.
876  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
877  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
878
879  // Close one end of the tracker so we can call
880  // getMaxUpward/DownwardPressureDelta before advancing across any
881  // instructions. This converts currently live regs into live ins/outs.
882  TopRPTracker.closeTop();
883  BotRPTracker.closeBottom();
884
885  BotRPTracker.initLiveThru(RPTracker);
886  if (!BotRPTracker.getLiveThru().empty()) {
887    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
888    DEBUG(dbgs() << "Live Thru: ";
889          dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
890  };
891
892  // For each live out vreg reduce the pressure change associated with other
893  // uses of the same vreg below the live-out reaching def.
894  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
895
896  // Account for liveness generated by the region boundary.
897  if (LiveRegionEnd != RegionEnd) {
898    SmallVector<unsigned, 8> LiveUses;
899    BotRPTracker.recede(&LiveUses);
900    updatePressureDiffs(LiveUses);
901  }
902
903  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
904
905  // Cache the list of excess pressure sets in this region. This will also track
906  // the max pressure in the scheduled code for these sets.
907  RegionCriticalPSets.clear();
908  const std::vector<unsigned> &RegionPressure =
909    RPTracker.getPressure().MaxSetPressure;
910  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
911    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
912    if (RegionPressure[i] > Limit) {
913      DEBUG(dbgs() << TRI->getRegPressureSetName(i)
914            << " Limit " << Limit
915            << " Actual " << RegionPressure[i] << "\n");
916      RegionCriticalPSets.push_back(PressureChange(i));
917    }
918  }
919  DEBUG(dbgs() << "Excess PSets: ";
920        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
921          dbgs() << TRI->getRegPressureSetName(
922            RegionCriticalPSets[i].getPSet()) << " ";
923        dbgs() << "\n");
924}
925
926void ScheduleDAGMILive::
927updateScheduledPressure(const SUnit *SU,
928                        const std::vector<unsigned> &NewMaxPressure) {
929  const PressureDiff &PDiff = getPressureDiff(SU);
930  unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
931  for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
932       I != E; ++I) {
933    if (!I->isValid())
934      break;
935    unsigned ID = I->getPSet();
936    while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
937      ++CritIdx;
938    if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
939      if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
940          && NewMaxPressure[ID] <= INT16_MAX)
941        RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
942    }
943    unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
944    if (NewMaxPressure[ID] >= Limit - 2) {
945      DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
946            << NewMaxPressure[ID] << " > " << Limit << "(+ "
947            << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
948    }
949  }
950}
951
952/// Update the PressureDiff array for liveness after scheduling this
953/// instruction.
954void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
955  for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
956    /// FIXME: Currently assuming single-use physregs.
957    unsigned Reg = LiveUses[LUIdx];
958    DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
959    if (!TRI->isVirtualRegister(Reg))
960      continue;
961
962    // This may be called before CurrentBottom has been initialized. However,
963    // BotRPTracker must have a valid position. We want the value live into the
964    // instruction or live out of the block, so ask for the previous
965    // instruction's live-out.
966    const LiveInterval &LI = LIS->getInterval(Reg);
967    VNInfo *VNI;
968    MachineBasicBlock::const_iterator I =
969      nextIfDebug(BotRPTracker.getPos(), BB->end());
970    if (I == BB->end())
971      VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
972    else {
973      LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
974      VNI = LRQ.valueIn();
975    }
976    // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
977    assert(VNI && "No live value at use.");
978    for (VReg2UseMap::iterator
979           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
980      SUnit *SU = UI->SU;
981      DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
982            << *SU->getInstr());
983      // If this use comes before the reaching def, it cannot be a last use, so
984      // descrease its pressure change.
985      if (!SU->isScheduled && SU != &ExitSU) {
986        LiveQueryResult LRQ
987          = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
988        if (LRQ.valueIn() == VNI)
989          getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
990      }
991    }
992  }
993}
994
995/// schedule - Called back from MachineScheduler::runOnMachineFunction
996/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
997/// only includes instructions that have DAG nodes, not scheduling boundaries.
998///
999/// This is a skeletal driver, with all the functionality pushed into helpers,
1000/// so that it can be easilly extended by experimental schedulers. Generally,
1001/// implementing MachineSchedStrategy should be sufficient to implement a new
1002/// scheduling algorithm. However, if a scheduler further subclasses
1003/// ScheduleDAGMILive then it will want to override this virtual method in order
1004/// to update any specialized state.
1005void ScheduleDAGMILive::schedule() {
1006  buildDAGWithRegPressure();
1007
1008  Topo.InitDAGTopologicalSorting();
1009
1010  postprocessDAG();
1011
1012  SmallVector<SUnit*, 8> TopRoots, BotRoots;
1013  findRootsAndBiasEdges(TopRoots, BotRoots);
1014
1015  // Initialize the strategy before modifying the DAG.
1016  // This may initialize a DFSResult to be used for queue priority.
1017  SchedImpl->initialize(this);
1018
1019  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
1020          SUnits[su].dumpAll(this));
1021  if (ViewMISchedDAGs) viewGraph();
1022
1023  // Initialize ready queues now that the DAG and priority data are finalized.
1024  initQueues(TopRoots, BotRoots);
1025
1026  if (ShouldTrackPressure) {
1027    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1028    TopRPTracker.setPos(CurrentTop);
1029  }
1030
1031  bool IsTopNode = false;
1032  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
1033    assert(!SU->isScheduled && "Node already scheduled");
1034    if (!checkSchedLimit())
1035      break;
1036
1037    scheduleMI(SU, IsTopNode);
1038
1039    if (DFSResult) {
1040      unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1041      if (!ScheduledTrees.test(SubtreeID)) {
1042        ScheduledTrees.set(SubtreeID);
1043        DFSResult->scheduleTree(SubtreeID);
1044        SchedImpl->scheduleTree(SubtreeID);
1045      }
1046    }
1047
1048    // Notify the scheduling strategy after updating the DAG.
1049    SchedImpl->schedNode(SU, IsTopNode);
1050
1051    updateQueues(SU, IsTopNode);
1052  }
1053  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1054
1055  placeDebugValues();
1056
1057  DEBUG({
1058      unsigned BBNum = begin()->getParent()->getNumber();
1059      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1060      dumpSchedule();
1061      dbgs() << '\n';
1062    });
1063}
1064
1065/// Build the DAG and setup three register pressure trackers.
1066void ScheduleDAGMILive::buildDAGWithRegPressure() {
1067  if (!ShouldTrackPressure) {
1068    RPTracker.reset();
1069    RegionCriticalPSets.clear();
1070    buildSchedGraph(AA);
1071    return;
1072  }
1073
1074  // Initialize the register pressure tracker used by buildSchedGraph.
1075  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1076                 /*TrackUntiedDefs=*/true);
1077
1078  // Account for liveness generate by the region boundary.
1079  if (LiveRegionEnd != RegionEnd)
1080    RPTracker.recede();
1081
1082  // Build the DAG, and compute current register pressure.
1083  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1084
1085  // Initialize top/bottom trackers after computing region pressure.
1086  initRegPressure();
1087}
1088
1089void ScheduleDAGMILive::computeDFSResult() {
1090  if (!DFSResult)
1091    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1092  DFSResult->clear();
1093  ScheduledTrees.clear();
1094  DFSResult->resize(SUnits.size());
1095  DFSResult->compute(SUnits);
1096  ScheduledTrees.resize(DFSResult->getNumSubtrees());
1097}
1098
1099/// Compute the max cyclic critical path through the DAG. The scheduling DAG
1100/// only provides the critical path for single block loops. To handle loops that
1101/// span blocks, we could use the vreg path latencies provided by
1102/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1103/// available for use in the scheduler.
1104///
1105/// The cyclic path estimation identifies a def-use pair that crosses the back
1106/// edge and considers the depth and height of the nodes. For example, consider
1107/// the following instruction sequence where each instruction has unit latency
1108/// and defines an epomymous virtual register:
1109///
1110/// a->b(a,c)->c(b)->d(c)->exit
1111///
1112/// The cyclic critical path is a two cycles: b->c->b
1113/// The acyclic critical path is four cycles: a->b->c->d->exit
1114/// LiveOutHeight = height(c) = len(c->d->exit) = 2
1115/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1116/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1117/// LiveInDepth = depth(b) = len(a->b) = 1
1118///
1119/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1120/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1121/// CyclicCriticalPath = min(2, 2) = 2
1122///
1123/// This could be relevant to PostRA scheduling, but is currently implemented
1124/// assuming LiveIntervals.
1125unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1126  // This only applies to single block loop.
1127  if (!BB->isSuccessor(BB))
1128    return 0;
1129
1130  unsigned MaxCyclicLatency = 0;
1131  // Visit each live out vreg def to find def/use pairs that cross iterations.
1132  ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1133  for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1134       RI != RE; ++RI) {
1135    unsigned Reg = *RI;
1136    if (!TRI->isVirtualRegister(Reg))
1137        continue;
1138    const LiveInterval &LI = LIS->getInterval(Reg);
1139    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1140    if (!DefVNI)
1141      continue;
1142
1143    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1144    const SUnit *DefSU = getSUnit(DefMI);
1145    if (!DefSU)
1146      continue;
1147
1148    unsigned LiveOutHeight = DefSU->getHeight();
1149    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1150    // Visit all local users of the vreg def.
1151    for (VReg2UseMap::iterator
1152           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
1153      if (UI->SU == &ExitSU)
1154        continue;
1155
1156      // Only consider uses of the phi.
1157      LiveQueryResult LRQ =
1158        LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
1159      if (!LRQ.valueIn()->isPHIDef())
1160        continue;
1161
1162      // Assume that a path spanning two iterations is a cycle, which could
1163      // overestimate in strange cases. This allows cyclic latency to be
1164      // estimated as the minimum slack of the vreg's depth or height.
1165      unsigned CyclicLatency = 0;
1166      if (LiveOutDepth > UI->SU->getDepth())
1167        CyclicLatency = LiveOutDepth - UI->SU->getDepth();
1168
1169      unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
1170      if (LiveInHeight > LiveOutHeight) {
1171        if (LiveInHeight - LiveOutHeight < CyclicLatency)
1172          CyclicLatency = LiveInHeight - LiveOutHeight;
1173      }
1174      else
1175        CyclicLatency = 0;
1176
1177      DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1178            << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
1179      if (CyclicLatency > MaxCyclicLatency)
1180        MaxCyclicLatency = CyclicLatency;
1181    }
1182  }
1183  DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1184  return MaxCyclicLatency;
1185}
1186
1187/// Move an instruction and update register pressure.
1188void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1189  // Move the instruction to its new location in the instruction stream.
1190  MachineInstr *MI = SU->getInstr();
1191
1192  if (IsTopNode) {
1193    assert(SU->isTopReady() && "node still has unscheduled dependencies");
1194    if (&*CurrentTop == MI)
1195      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1196    else {
1197      moveInstruction(MI, CurrentTop);
1198      TopRPTracker.setPos(MI);
1199    }
1200
1201    if (ShouldTrackPressure) {
1202      // Update top scheduled pressure.
1203      TopRPTracker.advance();
1204      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1205      updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1206    }
1207  }
1208  else {
1209    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1210    MachineBasicBlock::iterator priorII =
1211      priorNonDebug(CurrentBottom, CurrentTop);
1212    if (&*priorII == MI)
1213      CurrentBottom = priorII;
1214    else {
1215      if (&*CurrentTop == MI) {
1216        CurrentTop = nextIfDebug(++CurrentTop, priorII);
1217        TopRPTracker.setPos(CurrentTop);
1218      }
1219      moveInstruction(MI, CurrentBottom);
1220      CurrentBottom = MI;
1221    }
1222    if (ShouldTrackPressure) {
1223      // Update bottom scheduled pressure.
1224      SmallVector<unsigned, 8> LiveUses;
1225      BotRPTracker.recede(&LiveUses);
1226      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1227      updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1228      updatePressureDiffs(LiveUses);
1229    }
1230  }
1231}
1232
1233//===----------------------------------------------------------------------===//
1234// LoadClusterMutation - DAG post-processing to cluster loads.
1235//===----------------------------------------------------------------------===//
1236
1237namespace {
1238/// \brief Post-process the DAG to create cluster edges between neighboring
1239/// loads.
1240class LoadClusterMutation : public ScheduleDAGMutation {
1241  struct LoadInfo {
1242    SUnit *SU;
1243    unsigned BaseReg;
1244    unsigned Offset;
1245    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1246      : SU(su), BaseReg(reg), Offset(ofs) {}
1247
1248    bool operator<(const LoadInfo &RHS) const {
1249      return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1250    }
1251  };
1252
1253  const TargetInstrInfo *TII;
1254  const TargetRegisterInfo *TRI;
1255public:
1256  LoadClusterMutation(const TargetInstrInfo *tii,
1257                      const TargetRegisterInfo *tri)
1258    : TII(tii), TRI(tri) {}
1259
1260  void apply(ScheduleDAGMI *DAG) override;
1261protected:
1262  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1263};
1264} // anonymous
1265
1266void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1267                                                  ScheduleDAGMI *DAG) {
1268  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1269  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1270    SUnit *SU = Loads[Idx];
1271    unsigned BaseReg;
1272    unsigned Offset;
1273    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1274      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1275  }
1276  if (LoadRecords.size() < 2)
1277    return;
1278  std::sort(LoadRecords.begin(), LoadRecords.end());
1279  unsigned ClusterLength = 1;
1280  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1281    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1282      ClusterLength = 1;
1283      continue;
1284    }
1285
1286    SUnit *SUa = LoadRecords[Idx].SU;
1287    SUnit *SUb = LoadRecords[Idx+1].SU;
1288    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1289        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1290
1291      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1292            << SUb->NodeNum << ")\n");
1293      // Copy successor edges from SUa to SUb. Interleaving computation
1294      // dependent on SUa can prevent load combining due to register reuse.
1295      // Predecessor edges do not need to be copied from SUb to SUa since nearby
1296      // loads should have effectively the same inputs.
1297      for (SUnit::const_succ_iterator
1298             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1299        if (SI->getSUnit() == SUb)
1300          continue;
1301        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1302        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1303      }
1304      ++ClusterLength;
1305    }
1306    else
1307      ClusterLength = 1;
1308  }
1309}
1310
1311/// \brief Callback from DAG postProcessing to create cluster edges for loads.
1312void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1313  // Map DAG NodeNum to store chain ID.
1314  DenseMap<unsigned, unsigned> StoreChainIDs;
1315  // Map each store chain to a set of dependent loads.
1316  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1317  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1318    SUnit *SU = &DAG->SUnits[Idx];
1319    if (!SU->getInstr()->mayLoad())
1320      continue;
1321    unsigned ChainPredID = DAG->SUnits.size();
1322    for (SUnit::const_pred_iterator
1323           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1324      if (PI->isCtrl()) {
1325        ChainPredID = PI->getSUnit()->NodeNum;
1326        break;
1327      }
1328    }
1329    // Check if this chain-like pred has been seen
1330    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1331    unsigned NumChains = StoreChainDependents.size();
1332    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1333      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1334    if (Result.second)
1335      StoreChainDependents.resize(NumChains + 1);
1336    StoreChainDependents[Result.first->second].push_back(SU);
1337  }
1338  // Iterate over the store chains.
1339  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1340    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1341}
1342
1343//===----------------------------------------------------------------------===//
1344// MacroFusion - DAG post-processing to encourage fusion of macro ops.
1345//===----------------------------------------------------------------------===//
1346
1347namespace {
1348/// \brief Post-process the DAG to create cluster edges between instructions
1349/// that may be fused by the processor into a single operation.
1350class MacroFusion : public ScheduleDAGMutation {
1351  const TargetInstrInfo *TII;
1352public:
1353  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
1354
1355  void apply(ScheduleDAGMI *DAG) override;
1356};
1357} // anonymous
1358
1359/// \brief Callback from DAG postProcessing to create cluster edges to encourage
1360/// fused operations.
1361void MacroFusion::apply(ScheduleDAGMI *DAG) {
1362  // For now, assume targets can only fuse with the branch.
1363  MachineInstr *Branch = DAG->ExitSU.getInstr();
1364  if (!Branch)
1365    return;
1366
1367  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
1368    SUnit *SU = &DAG->SUnits[--Idx];
1369    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
1370      continue;
1371
1372    // Create a single weak edge from SU to ExitSU. The only effect is to cause
1373    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1374    // need to copy predecessor edges from ExitSU to SU, since top-down
1375    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1376    // of SU, we could create an artificial edge from the deepest root, but it
1377    // hasn't been needed yet.
1378    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
1379    (void)Success;
1380    assert(Success && "No DAG nodes should be reachable from ExitSU");
1381
1382    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
1383    break;
1384  }
1385}
1386
1387//===----------------------------------------------------------------------===//
1388// CopyConstrain - DAG post-processing to encourage copy elimination.
1389//===----------------------------------------------------------------------===//
1390
1391namespace {
1392/// \brief Post-process the DAG to create weak edges from all uses of a copy to
1393/// the one use that defines the copy's source vreg, most likely an induction
1394/// variable increment.
1395class CopyConstrain : public ScheduleDAGMutation {
1396  // Transient state.
1397  SlotIndex RegionBeginIdx;
1398  // RegionEndIdx is the slot index of the last non-debug instruction in the
1399  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1400  SlotIndex RegionEndIdx;
1401public:
1402  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1403
1404  void apply(ScheduleDAGMI *DAG) override;
1405
1406protected:
1407  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1408};
1409} // anonymous
1410
1411/// constrainLocalCopy handles two possibilities:
1412/// 1) Local src:
1413/// I0:     = dst
1414/// I1: src = ...
1415/// I2:     = dst
1416/// I3: dst = src (copy)
1417/// (create pred->succ edges I0->I1, I2->I1)
1418///
1419/// 2) Local copy:
1420/// I0: dst = src (copy)
1421/// I1:     = dst
1422/// I2: src = ...
1423/// I3:     = dst
1424/// (create pred->succ edges I1->I2, I3->I2)
1425///
1426/// Although the MachineScheduler is currently constrained to single blocks,
1427/// this algorithm should handle extended blocks. An EBB is a set of
1428/// contiguously numbered blocks such that the previous block in the EBB is
1429/// always the single predecessor.
1430void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1431  LiveIntervals *LIS = DAG->getLIS();
1432  MachineInstr *Copy = CopySU->getInstr();
1433
1434  // Check for pure vreg copies.
1435  unsigned SrcReg = Copy->getOperand(1).getReg();
1436  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1437    return;
1438
1439  unsigned DstReg = Copy->getOperand(0).getReg();
1440  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1441    return;
1442
1443  // Check if either the dest or source is local. If it's live across a back
1444  // edge, it's not local. Note that if both vregs are live across the back
1445  // edge, we cannot successfully contrain the copy without cyclic scheduling.
1446  // If both the copy's source and dest are local live intervals, then we
1447  // should treat the dest as the global for the purpose of adding
1448  // constraints. This adds edges from source's other uses to the copy.
1449  unsigned LocalReg = SrcReg;
1450  unsigned GlobalReg = DstReg;
1451  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1452  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1453    LocalReg = DstReg;
1454    GlobalReg = SrcReg;
1455    LocalLI = &LIS->getInterval(LocalReg);
1456    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1457      return;
1458  }
1459  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1460
1461  // Find the global segment after the start of the local LI.
1462  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1463  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1464  // local live range. We could create edges from other global uses to the local
1465  // start, but the coalescer should have already eliminated these cases, so
1466  // don't bother dealing with it.
1467  if (GlobalSegment == GlobalLI->end())
1468    return;
1469
1470  // If GlobalSegment is killed at the LocalLI->start, the call to find()
1471  // returned the next global segment. But if GlobalSegment overlaps with
1472  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1473  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1474  if (GlobalSegment->contains(LocalLI->beginIndex()))
1475    ++GlobalSegment;
1476
1477  if (GlobalSegment == GlobalLI->end())
1478    return;
1479
1480  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1481  if (GlobalSegment != GlobalLI->begin()) {
1482    // Two address defs have no hole.
1483    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1484                               GlobalSegment->start)) {
1485      return;
1486    }
1487    // If the prior global segment may be defined by the same two-address
1488    // instruction that also defines LocalLI, then can't make a hole here.
1489    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1490                               LocalLI->beginIndex())) {
1491      return;
1492    }
1493    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1494    // it would be a disconnected component in the live range.
1495    assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1496           "Disconnected LRG within the scheduling region.");
1497  }
1498  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1499  if (!GlobalDef)
1500    return;
1501
1502  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1503  if (!GlobalSU)
1504    return;
1505
1506  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1507  // constraining the uses of the last local def to precede GlobalDef.
1508  SmallVector<SUnit*,8> LocalUses;
1509  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1510  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1511  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1512  for (SUnit::const_succ_iterator
1513         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1514       I != E; ++I) {
1515    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1516      continue;
1517    if (I->getSUnit() == GlobalSU)
1518      continue;
1519    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1520      return;
1521    LocalUses.push_back(I->getSUnit());
1522  }
1523  // Open the top of the GlobalLI hole by constraining any earlier global uses
1524  // to precede the start of LocalLI.
1525  SmallVector<SUnit*,8> GlobalUses;
1526  MachineInstr *FirstLocalDef =
1527    LIS->getInstructionFromIndex(LocalLI->beginIndex());
1528  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1529  for (SUnit::const_pred_iterator
1530         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1531    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1532      continue;
1533    if (I->getSUnit() == FirstLocalSU)
1534      continue;
1535    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1536      return;
1537    GlobalUses.push_back(I->getSUnit());
1538  }
1539  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1540  // Add the weak edges.
1541  for (SmallVectorImpl<SUnit*>::const_iterator
1542         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1543    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1544          << GlobalSU->NodeNum << ")\n");
1545    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1546  }
1547  for (SmallVectorImpl<SUnit*>::const_iterator
1548         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1549    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1550          << FirstLocalSU->NodeNum << ")\n");
1551    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1552  }
1553}
1554
1555/// \brief Callback from DAG postProcessing to create weak edges to encourage
1556/// copy elimination.
1557void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1558  assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1559
1560  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1561  if (FirstPos == DAG->end())
1562    return;
1563  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1564  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1565    &*priorNonDebug(DAG->end(), DAG->begin()));
1566
1567  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1568    SUnit *SU = &DAG->SUnits[Idx];
1569    if (!SU->getInstr()->isCopy())
1570      continue;
1571
1572    constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1573  }
1574}
1575
1576//===----------------------------------------------------------------------===//
1577// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1578// and possibly other custom schedulers.
1579//===----------------------------------------------------------------------===//
1580
1581static const unsigned InvalidCycle = ~0U;
1582
1583SchedBoundary::~SchedBoundary() { delete HazardRec; }
1584
1585void SchedBoundary::reset() {
1586  // A new HazardRec is created for each DAG and owned by SchedBoundary.
1587  // Destroying and reconstructing it is very expensive though. So keep
1588  // invalid, placeholder HazardRecs.
1589  if (HazardRec && HazardRec->isEnabled()) {
1590    delete HazardRec;
1591    HazardRec = nullptr;
1592  }
1593  Available.clear();
1594  Pending.clear();
1595  CheckPending = false;
1596  NextSUs.clear();
1597  CurrCycle = 0;
1598  CurrMOps = 0;
1599  MinReadyCycle = UINT_MAX;
1600  ExpectedLatency = 0;
1601  DependentLatency = 0;
1602  RetiredMOps = 0;
1603  MaxExecutedResCount = 0;
1604  ZoneCritResIdx = 0;
1605  IsResourceLimited = false;
1606  ReservedCycles.clear();
1607#ifndef NDEBUG
1608  // Track the maximum number of stall cycles that could arise either from the
1609  // latency of a DAG edge or the number of cycles that a processor resource is
1610  // reserved (SchedBoundary::ReservedCycles).
1611  MaxObservedStall = 0;
1612#endif
1613  // Reserve a zero-count for invalid CritResIdx.
1614  ExecutedResCounts.resize(1);
1615  assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1616}
1617
1618void SchedRemainder::
1619init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1620  reset();
1621  if (!SchedModel->hasInstrSchedModel())
1622    return;
1623  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1624  for (std::vector<SUnit>::iterator
1625         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1626    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1627    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1628      * SchedModel->getMicroOpFactor();
1629    for (TargetSchedModel::ProcResIter
1630           PI = SchedModel->getWriteProcResBegin(SC),
1631           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1632      unsigned PIdx = PI->ProcResourceIdx;
1633      unsigned Factor = SchedModel->getResourceFactor(PIdx);
1634      RemainingCounts[PIdx] += (Factor * PI->Cycles);
1635    }
1636  }
1637}
1638
1639void SchedBoundary::
1640init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1641  reset();
1642  DAG = dag;
1643  SchedModel = smodel;
1644  Rem = rem;
1645  if (SchedModel->hasInstrSchedModel()) {
1646    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1647    ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1648  }
1649}
1650
1651/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1652/// these "soft stalls" differently than the hard stall cycles based on CPU
1653/// resources and computed by checkHazard(). A fully in-order model
1654/// (MicroOpBufferSize==0) will not make use of this since instructions are not
1655/// available for scheduling until they are ready. However, a weaker in-order
1656/// model may use this for heuristics. For example, if a processor has in-order
1657/// behavior when reading certain resources, this may come into play.
1658unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1659  if (!SU->isUnbuffered)
1660    return 0;
1661
1662  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1663  if (ReadyCycle > CurrCycle)
1664    return ReadyCycle - CurrCycle;
1665  return 0;
1666}
1667
1668/// Compute the next cycle at which the given processor resource can be
1669/// scheduled.
1670unsigned SchedBoundary::
1671getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1672  unsigned NextUnreserved = ReservedCycles[PIdx];
1673  // If this resource has never been used, always return cycle zero.
1674  if (NextUnreserved == InvalidCycle)
1675    return 0;
1676  // For bottom-up scheduling add the cycles needed for the current operation.
1677  if (!isTop())
1678    NextUnreserved += Cycles;
1679  return NextUnreserved;
1680}
1681
1682/// Does this SU have a hazard within the current instruction group.
1683///
1684/// The scheduler supports two modes of hazard recognition. The first is the
1685/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1686/// supports highly complicated in-order reservation tables
1687/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1688///
1689/// The second is a streamlined mechanism that checks for hazards based on
1690/// simple counters that the scheduler itself maintains. It explicitly checks
1691/// for instruction dispatch limitations, including the number of micro-ops that
1692/// can dispatch per cycle.
1693///
1694/// TODO: Also check whether the SU must start a new group.
1695bool SchedBoundary::checkHazard(SUnit *SU) {
1696  if (HazardRec->isEnabled()
1697      && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1698    return true;
1699  }
1700  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1701  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1702    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1703          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1704    return true;
1705  }
1706  if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1707    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1708    for (TargetSchedModel::ProcResIter
1709           PI = SchedModel->getWriteProcResBegin(SC),
1710           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1711      unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1712      if (NRCycle > CurrCycle) {
1713#ifndef NDEBUG
1714        MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1715#endif
1716        DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1717              << SchedModel->getResourceName(PI->ProcResourceIdx)
1718              << "=" << NRCycle << "c\n");
1719        return true;
1720      }
1721    }
1722  }
1723  return false;
1724}
1725
1726// Find the unscheduled node in ReadySUs with the highest latency.
1727unsigned SchedBoundary::
1728findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1729  SUnit *LateSU = nullptr;
1730  unsigned RemLatency = 0;
1731  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1732       I != E; ++I) {
1733    unsigned L = getUnscheduledLatency(*I);
1734    if (L > RemLatency) {
1735      RemLatency = L;
1736      LateSU = *I;
1737    }
1738  }
1739  if (LateSU) {
1740    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1741          << LateSU->NodeNum << ") " << RemLatency << "c\n");
1742  }
1743  return RemLatency;
1744}
1745
1746// Count resources in this zone and the remaining unscheduled
1747// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1748// resource index, or zero if the zone is issue limited.
1749unsigned SchedBoundary::
1750getOtherResourceCount(unsigned &OtherCritIdx) {
1751  OtherCritIdx = 0;
1752  if (!SchedModel->hasInstrSchedModel())
1753    return 0;
1754
1755  unsigned OtherCritCount = Rem->RemIssueCount
1756    + (RetiredMOps * SchedModel->getMicroOpFactor());
1757  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1758        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1759  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1760       PIdx != PEnd; ++PIdx) {
1761    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1762    if (OtherCount > OtherCritCount) {
1763      OtherCritCount = OtherCount;
1764      OtherCritIdx = PIdx;
1765    }
1766  }
1767  if (OtherCritIdx) {
1768    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1769          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1770          << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1771  }
1772  return OtherCritCount;
1773}
1774
1775void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1776  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1777
1778#ifndef NDEBUG
1779  // ReadyCycle was been bumped up to the CurrCycle when this node was
1780  // scheduled, but CurrCycle may have been eagerly advanced immediately after
1781  // scheduling, so may now be greater than ReadyCycle.
1782  if (ReadyCycle > CurrCycle)
1783    MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1784#endif
1785
1786  if (ReadyCycle < MinReadyCycle)
1787    MinReadyCycle = ReadyCycle;
1788
1789  // Check for interlocks first. For the purpose of other heuristics, an
1790  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1791  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1792  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1793    Pending.push(SU);
1794  else
1795    Available.push(SU);
1796
1797  // Record this node as an immediate dependent of the scheduled node.
1798  NextSUs.insert(SU);
1799}
1800
1801void SchedBoundary::releaseTopNode(SUnit *SU) {
1802  if (SU->isScheduled)
1803    return;
1804
1805  releaseNode(SU, SU->TopReadyCycle);
1806}
1807
1808void SchedBoundary::releaseBottomNode(SUnit *SU) {
1809  if (SU->isScheduled)
1810    return;
1811
1812  releaseNode(SU, SU->BotReadyCycle);
1813}
1814
1815/// Move the boundary of scheduled code by one cycle.
1816void SchedBoundary::bumpCycle(unsigned NextCycle) {
1817  if (SchedModel->getMicroOpBufferSize() == 0) {
1818    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1819    if (MinReadyCycle > NextCycle)
1820      NextCycle = MinReadyCycle;
1821  }
1822  // Update the current micro-ops, which will issue in the next cycle.
1823  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1824  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1825
1826  // Decrement DependentLatency based on the next cycle.
1827  if ((NextCycle - CurrCycle) > DependentLatency)
1828    DependentLatency = 0;
1829  else
1830    DependentLatency -= (NextCycle - CurrCycle);
1831
1832  if (!HazardRec->isEnabled()) {
1833    // Bypass HazardRec virtual calls.
1834    CurrCycle = NextCycle;
1835  }
1836  else {
1837    // Bypass getHazardType calls in case of long latency.
1838    for (; CurrCycle != NextCycle; ++CurrCycle) {
1839      if (isTop())
1840        HazardRec->AdvanceCycle();
1841      else
1842        HazardRec->RecedeCycle();
1843    }
1844  }
1845  CheckPending = true;
1846  unsigned LFactor = SchedModel->getLatencyFactor();
1847  IsResourceLimited =
1848    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1849    > (int)LFactor;
1850
1851  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1852}
1853
1854void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1855  ExecutedResCounts[PIdx] += Count;
1856  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1857    MaxExecutedResCount = ExecutedResCounts[PIdx];
1858}
1859
1860/// Add the given processor resource to this scheduled zone.
1861///
1862/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1863/// during which this resource is consumed.
1864///
1865/// \return the next cycle at which the instruction may execute without
1866/// oversubscribing resources.
1867unsigned SchedBoundary::
1868countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1869  unsigned Factor = SchedModel->getResourceFactor(PIdx);
1870  unsigned Count = Factor * Cycles;
1871  DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
1872        << " +" << Cycles << "x" << Factor << "u\n");
1873
1874  // Update Executed resources counts.
1875  incExecutedResources(PIdx, Count);
1876  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1877  Rem->RemainingCounts[PIdx] -= Count;
1878
1879  // Check if this resource exceeds the current critical resource. If so, it
1880  // becomes the critical resource.
1881  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1882    ZoneCritResIdx = PIdx;
1883    DEBUG(dbgs() << "  *** Critical resource "
1884          << SchedModel->getResourceName(PIdx) << ": "
1885          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1886  }
1887  // For reserved resources, record the highest cycle using the resource.
1888  unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1889  if (NextAvailable > CurrCycle) {
1890    DEBUG(dbgs() << "  Resource conflict: "
1891          << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1892          << NextAvailable << "\n");
1893  }
1894  return NextAvailable;
1895}
1896
1897/// Move the boundary of scheduled code by one SUnit.
1898void SchedBoundary::bumpNode(SUnit *SU) {
1899  // Update the reservation table.
1900  if (HazardRec->isEnabled()) {
1901    if (!isTop() && SU->isCall) {
1902      // Calls are scheduled with their preceding instructions. For bottom-up
1903      // scheduling, clear the pipeline state before emitting.
1904      HazardRec->Reset();
1905    }
1906    HazardRec->EmitInstruction(SU);
1907  }
1908  // checkHazard should prevent scheduling multiple instructions per cycle that
1909  // exceed the issue width.
1910  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1911  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1912  assert(
1913      (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1914      "Cannot schedule this instruction's MicroOps in the current cycle.");
1915
1916  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1917  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
1918
1919  unsigned NextCycle = CurrCycle;
1920  switch (SchedModel->getMicroOpBufferSize()) {
1921  case 0:
1922    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1923    break;
1924  case 1:
1925    if (ReadyCycle > NextCycle) {
1926      NextCycle = ReadyCycle;
1927      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
1928    }
1929    break;
1930  default:
1931    // We don't currently model the OOO reorder buffer, so consider all
1932    // scheduled MOps to be "retired". We do loosely model in-order resource
1933    // latency. If this instruction uses an in-order resource, account for any
1934    // likely stall cycles.
1935    if (SU->isUnbuffered && ReadyCycle > NextCycle)
1936      NextCycle = ReadyCycle;
1937    break;
1938  }
1939  RetiredMOps += IncMOps;
1940
1941  // Update resource counts and critical resource.
1942  if (SchedModel->hasInstrSchedModel()) {
1943    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1944    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1945    Rem->RemIssueCount -= DecRemIssue;
1946    if (ZoneCritResIdx) {
1947      // Scale scheduled micro-ops for comparing with the critical resource.
1948      unsigned ScaledMOps =
1949        RetiredMOps * SchedModel->getMicroOpFactor();
1950
1951      // If scaled micro-ops are now more than the previous critical resource by
1952      // a full cycle, then micro-ops issue becomes critical.
1953      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1954          >= (int)SchedModel->getLatencyFactor()) {
1955        ZoneCritResIdx = 0;
1956        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
1957              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1958      }
1959    }
1960    for (TargetSchedModel::ProcResIter
1961           PI = SchedModel->getWriteProcResBegin(SC),
1962           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1963      unsigned RCycle =
1964        countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
1965      if (RCycle > NextCycle)
1966        NextCycle = RCycle;
1967    }
1968    if (SU->hasReservedResource) {
1969      // For reserved resources, record the highest cycle using the resource.
1970      // For top-down scheduling, this is the cycle in which we schedule this
1971      // instruction plus the number of cycles the operations reserves the
1972      // resource. For bottom-up is it simply the instruction's cycle.
1973      for (TargetSchedModel::ProcResIter
1974             PI = SchedModel->getWriteProcResBegin(SC),
1975             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1976        unsigned PIdx = PI->ProcResourceIdx;
1977        if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
1978          if (isTop()) {
1979            ReservedCycles[PIdx] =
1980              std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
1981          }
1982          else
1983            ReservedCycles[PIdx] = NextCycle;
1984        }
1985      }
1986    }
1987  }
1988  // Update ExpectedLatency and DependentLatency.
1989  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
1990  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
1991  if (SU->getDepth() > TopLatency) {
1992    TopLatency = SU->getDepth();
1993    DEBUG(dbgs() << "  " << Available.getName()
1994          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
1995  }
1996  if (SU->getHeight() > BotLatency) {
1997    BotLatency = SU->getHeight();
1998    DEBUG(dbgs() << "  " << Available.getName()
1999          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2000  }
2001  // If we stall for any reason, bump the cycle.
2002  if (NextCycle > CurrCycle) {
2003    bumpCycle(NextCycle);
2004  }
2005  else {
2006    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2007    // resource limited. If a stall occurred, bumpCycle does this.
2008    unsigned LFactor = SchedModel->getLatencyFactor();
2009    IsResourceLimited =
2010      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2011      > (int)LFactor;
2012  }
2013  // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2014  // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2015  // one cycle.  Since we commonly reach the max MOps here, opportunistically
2016  // bump the cycle to avoid uselessly checking everything in the readyQ.
2017  CurrMOps += IncMOps;
2018  while (CurrMOps >= SchedModel->getIssueWidth()) {
2019    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2020          << " at cycle " << CurrCycle << '\n');
2021    bumpCycle(++NextCycle);
2022  }
2023  DEBUG(dumpScheduledState());
2024}
2025
2026/// Release pending ready nodes in to the available queue. This makes them
2027/// visible to heuristics.
2028void SchedBoundary::releasePending() {
2029  // If the available queue is empty, it is safe to reset MinReadyCycle.
2030  if (Available.empty())
2031    MinReadyCycle = UINT_MAX;
2032
2033  // Check to see if any of the pending instructions are ready to issue.  If
2034  // so, add them to the available queue.
2035  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2036  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2037    SUnit *SU = *(Pending.begin()+i);
2038    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2039
2040    if (ReadyCycle < MinReadyCycle)
2041      MinReadyCycle = ReadyCycle;
2042
2043    if (!IsBuffered && ReadyCycle > CurrCycle)
2044      continue;
2045
2046    if (checkHazard(SU))
2047      continue;
2048
2049    Available.push(SU);
2050    Pending.remove(Pending.begin()+i);
2051    --i; --e;
2052  }
2053  DEBUG(if (!Pending.empty()) Pending.dump());
2054  CheckPending = false;
2055}
2056
2057/// Remove SU from the ready set for this boundary.
2058void SchedBoundary::removeReady(SUnit *SU) {
2059  if (Available.isInQueue(SU))
2060    Available.remove(Available.find(SU));
2061  else {
2062    assert(Pending.isInQueue(SU) && "bad ready count");
2063    Pending.remove(Pending.find(SU));
2064  }
2065}
2066
2067/// If this queue only has one ready candidate, return it. As a side effect,
2068/// defer any nodes that now hit a hazard, and advance the cycle until at least
2069/// one node is ready. If multiple instructions are ready, return NULL.
2070SUnit *SchedBoundary::pickOnlyChoice() {
2071  if (CheckPending)
2072    releasePending();
2073
2074  if (CurrMOps > 0) {
2075    // Defer any ready instrs that now have a hazard.
2076    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2077      if (checkHazard(*I)) {
2078        Pending.push(*I);
2079        I = Available.remove(I);
2080        continue;
2081      }
2082      ++I;
2083    }
2084  }
2085  for (unsigned i = 0; Available.empty(); ++i) {
2086//  FIXME: Re-enable assert once PR20057 is resolved.
2087//    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2088//           "permanent hazard");
2089    (void)i;
2090    bumpCycle(CurrCycle + 1);
2091    releasePending();
2092  }
2093  if (Available.size() == 1)
2094    return *Available.begin();
2095  return nullptr;
2096}
2097
2098#ifndef NDEBUG
2099// This is useful information to dump after bumpNode.
2100// Note that the Queue contents are more useful before pickNodeFromQueue.
2101void SchedBoundary::dumpScheduledState() {
2102  unsigned ResFactor;
2103  unsigned ResCount;
2104  if (ZoneCritResIdx) {
2105    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2106    ResCount = getResourceCount(ZoneCritResIdx);
2107  }
2108  else {
2109    ResFactor = SchedModel->getMicroOpFactor();
2110    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2111  }
2112  unsigned LFactor = SchedModel->getLatencyFactor();
2113  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2114         << "  Retired: " << RetiredMOps;
2115  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2116  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2117         << ResCount / ResFactor << " "
2118         << SchedModel->getResourceName(ZoneCritResIdx)
2119         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2120         << (IsResourceLimited ? "  - Resource" : "  - Latency")
2121         << " limited.\n";
2122}
2123#endif
2124
2125//===----------------------------------------------------------------------===//
2126// GenericScheduler - Generic implementation of MachineSchedStrategy.
2127//===----------------------------------------------------------------------===//
2128
2129void GenericSchedulerBase::SchedCandidate::
2130initResourceDelta(const ScheduleDAGMI *DAG,
2131                  const TargetSchedModel *SchedModel) {
2132  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2133    return;
2134
2135  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2136  for (TargetSchedModel::ProcResIter
2137         PI = SchedModel->getWriteProcResBegin(SC),
2138         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2139    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2140      ResDelta.CritResources += PI->Cycles;
2141    if (PI->ProcResourceIdx == Policy.DemandResIdx)
2142      ResDelta.DemandedResources += PI->Cycles;
2143  }
2144}
2145
2146/// Set the CandPolicy given a scheduling zone given the current resources and
2147/// latencies inside and outside the zone.
2148void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2149                                     bool IsPostRA,
2150                                     SchedBoundary &CurrZone,
2151                                     SchedBoundary *OtherZone) {
2152  // Apply preemptive heuristics based on the the total latency and resources
2153  // inside and outside this zone. Potential stalls should be considered before
2154  // following this policy.
2155
2156  // Compute remaining latency. We need this both to determine whether the
2157  // overall schedule has become latency-limited and whether the instructions
2158  // outside this zone are resource or latency limited.
2159  //
2160  // The "dependent" latency is updated incrementally during scheduling as the
2161  // max height/depth of scheduled nodes minus the cycles since it was
2162  // scheduled:
2163  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2164  //
2165  // The "independent" latency is the max ready queue depth:
2166  //   ILat = max N.depth for N in Available|Pending
2167  //
2168  // RemainingLatency is the greater of independent and dependent latency.
2169  unsigned RemLatency = CurrZone.getDependentLatency();
2170  RemLatency = std::max(RemLatency,
2171                        CurrZone.findMaxLatency(CurrZone.Available.elements()));
2172  RemLatency = std::max(RemLatency,
2173                        CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2174
2175  // Compute the critical resource outside the zone.
2176  unsigned OtherCritIdx = 0;
2177  unsigned OtherCount =
2178    OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2179
2180  bool OtherResLimited = false;
2181  if (SchedModel->hasInstrSchedModel()) {
2182    unsigned LFactor = SchedModel->getLatencyFactor();
2183    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2184  }
2185  // Schedule aggressively for latency in PostRA mode. We don't check for
2186  // acyclic latency during PostRA, and highly out-of-order processors will
2187  // skip PostRA scheduling.
2188  if (!OtherResLimited) {
2189    if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2190      Policy.ReduceLatency |= true;
2191      DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2192            << " RemainingLatency " << RemLatency << " + "
2193            << CurrZone.getCurrCycle() << "c > CritPath "
2194            << Rem.CriticalPath << "\n");
2195    }
2196  }
2197  // If the same resource is limiting inside and outside the zone, do nothing.
2198  if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2199    return;
2200
2201  DEBUG(
2202    if (CurrZone.isResourceLimited()) {
2203      dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2204             << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2205             << "\n";
2206    }
2207    if (OtherResLimited)
2208      dbgs() << "  RemainingLimit: "
2209             << SchedModel->getResourceName(OtherCritIdx) << "\n";
2210    if (!CurrZone.isResourceLimited() && !OtherResLimited)
2211      dbgs() << "  Latency limited both directions.\n");
2212
2213  if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2214    Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2215
2216  if (OtherResLimited)
2217    Policy.DemandResIdx = OtherCritIdx;
2218}
2219
2220#ifndef NDEBUG
2221const char *GenericSchedulerBase::getReasonStr(
2222  GenericSchedulerBase::CandReason Reason) {
2223  switch (Reason) {
2224  case NoCand:         return "NOCAND    ";
2225  case PhysRegCopy:    return "PREG-COPY";
2226  case RegExcess:      return "REG-EXCESS";
2227  case RegCritical:    return "REG-CRIT  ";
2228  case Stall:          return "STALL     ";
2229  case Cluster:        return "CLUSTER   ";
2230  case Weak:           return "WEAK      ";
2231  case RegMax:         return "REG-MAX   ";
2232  case ResourceReduce: return "RES-REDUCE";
2233  case ResourceDemand: return "RES-DEMAND";
2234  case TopDepthReduce: return "TOP-DEPTH ";
2235  case TopPathReduce:  return "TOP-PATH  ";
2236  case BotHeightReduce:return "BOT-HEIGHT";
2237  case BotPathReduce:  return "BOT-PATH  ";
2238  case NextDefUse:     return "DEF-USE   ";
2239  case NodeOrder:      return "ORDER     ";
2240  };
2241  llvm_unreachable("Unknown reason!");
2242}
2243
2244void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2245  PressureChange P;
2246  unsigned ResIdx = 0;
2247  unsigned Latency = 0;
2248  switch (Cand.Reason) {
2249  default:
2250    break;
2251  case RegExcess:
2252    P = Cand.RPDelta.Excess;
2253    break;
2254  case RegCritical:
2255    P = Cand.RPDelta.CriticalMax;
2256    break;
2257  case RegMax:
2258    P = Cand.RPDelta.CurrentMax;
2259    break;
2260  case ResourceReduce:
2261    ResIdx = Cand.Policy.ReduceResIdx;
2262    break;
2263  case ResourceDemand:
2264    ResIdx = Cand.Policy.DemandResIdx;
2265    break;
2266  case TopDepthReduce:
2267    Latency = Cand.SU->getDepth();
2268    break;
2269  case TopPathReduce:
2270    Latency = Cand.SU->getHeight();
2271    break;
2272  case BotHeightReduce:
2273    Latency = Cand.SU->getHeight();
2274    break;
2275  case BotPathReduce:
2276    Latency = Cand.SU->getDepth();
2277    break;
2278  }
2279  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2280  if (P.isValid())
2281    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2282           << ":" << P.getUnitInc() << " ";
2283  else
2284    dbgs() << "      ";
2285  if (ResIdx)
2286    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2287  else
2288    dbgs() << "         ";
2289  if (Latency)
2290    dbgs() << " " << Latency << " cycles ";
2291  else
2292    dbgs() << "          ";
2293  dbgs() << '\n';
2294}
2295#endif
2296
2297/// Return true if this heuristic determines order.
2298static bool tryLess(int TryVal, int CandVal,
2299                    GenericSchedulerBase::SchedCandidate &TryCand,
2300                    GenericSchedulerBase::SchedCandidate &Cand,
2301                    GenericSchedulerBase::CandReason Reason) {
2302  if (TryVal < CandVal) {
2303    TryCand.Reason = Reason;
2304    return true;
2305  }
2306  if (TryVal > CandVal) {
2307    if (Cand.Reason > Reason)
2308      Cand.Reason = Reason;
2309    return true;
2310  }
2311  Cand.setRepeat(Reason);
2312  return false;
2313}
2314
2315static bool tryGreater(int TryVal, int CandVal,
2316                       GenericSchedulerBase::SchedCandidate &TryCand,
2317                       GenericSchedulerBase::SchedCandidate &Cand,
2318                       GenericSchedulerBase::CandReason Reason) {
2319  if (TryVal > CandVal) {
2320    TryCand.Reason = Reason;
2321    return true;
2322  }
2323  if (TryVal < CandVal) {
2324    if (Cand.Reason > Reason)
2325      Cand.Reason = Reason;
2326    return true;
2327  }
2328  Cand.setRepeat(Reason);
2329  return false;
2330}
2331
2332static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2333                       GenericSchedulerBase::SchedCandidate &Cand,
2334                       SchedBoundary &Zone) {
2335  if (Zone.isTop()) {
2336    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2337      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2338                  TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2339        return true;
2340    }
2341    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2342                   TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2343      return true;
2344  }
2345  else {
2346    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2347      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2348                  TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2349        return true;
2350    }
2351    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2352                   TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2353      return true;
2354  }
2355  return false;
2356}
2357
2358static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2359                      bool IsTop) {
2360  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2361        << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2362}
2363
2364void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2365  assert(dag->hasVRegLiveness() &&
2366         "(PreRA)GenericScheduler needs vreg liveness");
2367  DAG = static_cast<ScheduleDAGMILive*>(dag);
2368  SchedModel = DAG->getSchedModel();
2369  TRI = DAG->TRI;
2370
2371  Rem.init(DAG, SchedModel);
2372  Top.init(DAG, SchedModel, &Rem);
2373  Bot.init(DAG, SchedModel, &Rem);
2374
2375  // Initialize resource counts.
2376
2377  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2378  // are disabled, then these HazardRecs will be disabled.
2379  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2380  if (!Top.HazardRec) {
2381    Top.HazardRec =
2382        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2383            Itin, DAG);
2384  }
2385  if (!Bot.HazardRec) {
2386    Bot.HazardRec =
2387        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2388            Itin, DAG);
2389  }
2390}
2391
2392/// Initialize the per-region scheduling policy.
2393void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2394                                  MachineBasicBlock::iterator End,
2395                                  unsigned NumRegionInstrs) {
2396  const MachineFunction &MF = *Begin->getParent()->getParent();
2397  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2398
2399  // Avoid setting up the register pressure tracker for small regions to save
2400  // compile time. As a rough heuristic, only track pressure when the number of
2401  // schedulable instructions exceeds half the integer register file.
2402  RegionPolicy.ShouldTrackPressure = true;
2403  for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2404    MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2405    if (TLI->isTypeLegal(LegalIntVT)) {
2406      unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2407        TLI->getRegClassFor(LegalIntVT));
2408      RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2409    }
2410  }
2411
2412  // For generic targets, we default to bottom-up, because it's simpler and more
2413  // compile-time optimizations have been implemented in that direction.
2414  RegionPolicy.OnlyBottomUp = true;
2415
2416  // Allow the subtarget to override default policy.
2417  MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2418                                        NumRegionInstrs);
2419
2420  // After subtarget overrides, apply command line options.
2421  if (!EnableRegPressure)
2422    RegionPolicy.ShouldTrackPressure = false;
2423
2424  // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2425  // e.g. -misched-bottomup=false allows scheduling in both directions.
2426  assert((!ForceTopDown || !ForceBottomUp) &&
2427         "-misched-topdown incompatible with -misched-bottomup");
2428  if (ForceBottomUp.getNumOccurrences() > 0) {
2429    RegionPolicy.OnlyBottomUp = ForceBottomUp;
2430    if (RegionPolicy.OnlyBottomUp)
2431      RegionPolicy.OnlyTopDown = false;
2432  }
2433  if (ForceTopDown.getNumOccurrences() > 0) {
2434    RegionPolicy.OnlyTopDown = ForceTopDown;
2435    if (RegionPolicy.OnlyTopDown)
2436      RegionPolicy.OnlyBottomUp = false;
2437  }
2438}
2439
2440/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2441/// critical path by more cycles than it takes to drain the instruction buffer.
2442/// We estimate an upper bounds on in-flight instructions as:
2443///
2444/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2445/// InFlightIterations = AcyclicPath / CyclesPerIteration
2446/// InFlightResources = InFlightIterations * LoopResources
2447///
2448/// TODO: Check execution resources in addition to IssueCount.
2449void GenericScheduler::checkAcyclicLatency() {
2450  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2451    return;
2452
2453  // Scaled number of cycles per loop iteration.
2454  unsigned IterCount =
2455    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2456             Rem.RemIssueCount);
2457  // Scaled acyclic critical path.
2458  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2459  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2460  unsigned InFlightCount =
2461    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2462  unsigned BufferLimit =
2463    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2464
2465  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2466
2467  DEBUG(dbgs() << "IssueCycles="
2468        << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2469        << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2470        << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2471        << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2472        << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2473        if (Rem.IsAcyclicLatencyLimited)
2474          dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2475}
2476
2477void GenericScheduler::registerRoots() {
2478  Rem.CriticalPath = DAG->ExitSU.getDepth();
2479
2480  // Some roots may not feed into ExitSU. Check all of them in case.
2481  for (std::vector<SUnit*>::const_iterator
2482         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2483    if ((*I)->getDepth() > Rem.CriticalPath)
2484      Rem.CriticalPath = (*I)->getDepth();
2485  }
2486  DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2487  if (DumpCriticalPathLength) {
2488    errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2489  }
2490
2491  if (EnableCyclicPath) {
2492    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2493    checkAcyclicLatency();
2494  }
2495}
2496
2497static bool tryPressure(const PressureChange &TryP,
2498                        const PressureChange &CandP,
2499                        GenericSchedulerBase::SchedCandidate &TryCand,
2500                        GenericSchedulerBase::SchedCandidate &Cand,
2501                        GenericSchedulerBase::CandReason Reason) {
2502  int TryRank = TryP.getPSetOrMax();
2503  int CandRank = CandP.getPSetOrMax();
2504  // If both candidates affect the same set, go with the smallest increase.
2505  if (TryRank == CandRank) {
2506    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2507                   Reason);
2508  }
2509  // If one candidate decreases and the other increases, go with it.
2510  // Invalid candidates have UnitInc==0.
2511  if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2512                 Reason)) {
2513    return true;
2514  }
2515  // If the candidates are decreasing pressure, reverse priority.
2516  if (TryP.getUnitInc() < 0)
2517    std::swap(TryRank, CandRank);
2518  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2519}
2520
2521static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2522  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2523}
2524
2525/// Minimize physical register live ranges. Regalloc wants them adjacent to
2526/// their physreg def/use.
2527///
2528/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2529/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2530/// with the operation that produces or consumes the physreg. We'll do this when
2531/// regalloc has support for parallel copies.
2532static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2533  const MachineInstr *MI = SU->getInstr();
2534  if (!MI->isCopy())
2535    return 0;
2536
2537  unsigned ScheduledOper = isTop ? 1 : 0;
2538  unsigned UnscheduledOper = isTop ? 0 : 1;
2539  // If we have already scheduled the physreg produce/consumer, immediately
2540  // schedule the copy.
2541  if (TargetRegisterInfo::isPhysicalRegister(
2542        MI->getOperand(ScheduledOper).getReg()))
2543    return 1;
2544  // If the physreg is at the boundary, defer it. Otherwise schedule it
2545  // immediately to free the dependent. We can hoist the copy later.
2546  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2547  if (TargetRegisterInfo::isPhysicalRegister(
2548        MI->getOperand(UnscheduledOper).getReg()))
2549    return AtBoundary ? -1 : 1;
2550  return 0;
2551}
2552
2553/// Apply a set of heursitics to a new candidate. Heuristics are currently
2554/// hierarchical. This may be more efficient than a graduated cost model because
2555/// we don't need to evaluate all aspects of the model for each node in the
2556/// queue. But it's really done to make the heuristics easier to debug and
2557/// statistically analyze.
2558///
2559/// \param Cand provides the policy and current best candidate.
2560/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2561/// \param Zone describes the scheduled zone that we are extending.
2562/// \param RPTracker describes reg pressure within the scheduled zone.
2563/// \param TempTracker is a scratch pressure tracker to reuse in queries.
2564void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2565                                    SchedCandidate &TryCand,
2566                                    SchedBoundary &Zone,
2567                                    const RegPressureTracker &RPTracker,
2568                                    RegPressureTracker &TempTracker) {
2569
2570  if (DAG->isTrackingPressure()) {
2571    // Always initialize TryCand's RPDelta.
2572    if (Zone.isTop()) {
2573      TempTracker.getMaxDownwardPressureDelta(
2574        TryCand.SU->getInstr(),
2575        TryCand.RPDelta,
2576        DAG->getRegionCriticalPSets(),
2577        DAG->getRegPressure().MaxSetPressure);
2578    }
2579    else {
2580      if (VerifyScheduling) {
2581        TempTracker.getMaxUpwardPressureDelta(
2582          TryCand.SU->getInstr(),
2583          &DAG->getPressureDiff(TryCand.SU),
2584          TryCand.RPDelta,
2585          DAG->getRegionCriticalPSets(),
2586          DAG->getRegPressure().MaxSetPressure);
2587      }
2588      else {
2589        RPTracker.getUpwardPressureDelta(
2590          TryCand.SU->getInstr(),
2591          DAG->getPressureDiff(TryCand.SU),
2592          TryCand.RPDelta,
2593          DAG->getRegionCriticalPSets(),
2594          DAG->getRegPressure().MaxSetPressure);
2595      }
2596    }
2597  }
2598  DEBUG(if (TryCand.RPDelta.Excess.isValid())
2599          dbgs() << "  SU(" << TryCand.SU->NodeNum << ") "
2600                 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2601                 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2602
2603  // Initialize the candidate if needed.
2604  if (!Cand.isValid()) {
2605    TryCand.Reason = NodeOrder;
2606    return;
2607  }
2608
2609  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2610                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2611                 TryCand, Cand, PhysRegCopy))
2612    return;
2613
2614  // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2615  // invalid; convert it to INT_MAX to give it lowest priority.
2616  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2617                                               Cand.RPDelta.Excess,
2618                                               TryCand, Cand, RegExcess))
2619    return;
2620
2621  // Avoid increasing the max critical pressure in the scheduled region.
2622  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2623                                               Cand.RPDelta.CriticalMax,
2624                                               TryCand, Cand, RegCritical))
2625    return;
2626
2627  // For loops that are acyclic path limited, aggressively schedule for latency.
2628  // This can result in very long dependence chains scheduled in sequence, so
2629  // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2630  if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2631      && tryLatency(TryCand, Cand, Zone))
2632    return;
2633
2634  // Prioritize instructions that read unbuffered resources by stall cycles.
2635  if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2636              Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2637    return;
2638
2639  // Keep clustered nodes together to encourage downstream peephole
2640  // optimizations which may reduce resource requirements.
2641  //
2642  // This is a best effort to set things up for a post-RA pass. Optimizations
2643  // like generating loads of multiple registers should ideally be done within
2644  // the scheduler pass by combining the loads during DAG postprocessing.
2645  const SUnit *NextClusterSU =
2646    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2647  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2648                 TryCand, Cand, Cluster))
2649    return;
2650
2651  // Weak edges are for clustering and other constraints.
2652  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2653              getWeakLeft(Cand.SU, Zone.isTop()),
2654              TryCand, Cand, Weak)) {
2655    return;
2656  }
2657  // Avoid increasing the max pressure of the entire region.
2658  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2659                                               Cand.RPDelta.CurrentMax,
2660                                               TryCand, Cand, RegMax))
2661    return;
2662
2663  // Avoid critical resource consumption and balance the schedule.
2664  TryCand.initResourceDelta(DAG, SchedModel);
2665  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2666              TryCand, Cand, ResourceReduce))
2667    return;
2668  if (tryGreater(TryCand.ResDelta.DemandedResources,
2669                 Cand.ResDelta.DemandedResources,
2670                 TryCand, Cand, ResourceDemand))
2671    return;
2672
2673  // Avoid serializing long latency dependence chains.
2674  // For acyclic path limited loops, latency was already checked above.
2675  if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2676      && tryLatency(TryCand, Cand, Zone)) {
2677    return;
2678  }
2679
2680  // Prefer immediate defs/users of the last scheduled instruction. This is a
2681  // local pressure avoidance strategy that also makes the machine code
2682  // readable.
2683  if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2684                 TryCand, Cand, NextDefUse))
2685    return;
2686
2687  // Fall through to original instruction order.
2688  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2689      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2690    TryCand.Reason = NodeOrder;
2691  }
2692}
2693
2694/// Pick the best candidate from the queue.
2695///
2696/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2697/// DAG building. To adjust for the current scheduling location we need to
2698/// maintain the number of vreg uses remaining to be top-scheduled.
2699void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2700                                         const RegPressureTracker &RPTracker,
2701                                         SchedCandidate &Cand) {
2702  ReadyQueue &Q = Zone.Available;
2703
2704  DEBUG(Q.dump());
2705
2706  // getMaxPressureDelta temporarily modifies the tracker.
2707  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2708
2709  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2710
2711    SchedCandidate TryCand(Cand.Policy);
2712    TryCand.SU = *I;
2713    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2714    if (TryCand.Reason != NoCand) {
2715      // Initialize resource delta if needed in case future heuristics query it.
2716      if (TryCand.ResDelta == SchedResourceDelta())
2717        TryCand.initResourceDelta(DAG, SchedModel);
2718      Cand.setBest(TryCand);
2719      DEBUG(traceCandidate(Cand));
2720    }
2721  }
2722}
2723
2724/// Pick the best candidate node from either the top or bottom queue.
2725SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2726  // Schedule as far as possible in the direction of no choice. This is most
2727  // efficient, but also provides the best heuristics for CriticalPSets.
2728  if (SUnit *SU = Bot.pickOnlyChoice()) {
2729    IsTopNode = false;
2730    DEBUG(dbgs() << "Pick Bot NOCAND\n");
2731    return SU;
2732  }
2733  if (SUnit *SU = Top.pickOnlyChoice()) {
2734    IsTopNode = true;
2735    DEBUG(dbgs() << "Pick Top NOCAND\n");
2736    return SU;
2737  }
2738  CandPolicy NoPolicy;
2739  SchedCandidate BotCand(NoPolicy);
2740  SchedCandidate TopCand(NoPolicy);
2741  // Set the bottom-up policy based on the state of the current bottom zone and
2742  // the instructions outside the zone, including the top zone.
2743  setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2744  // Set the top-down policy based on the state of the current top zone and
2745  // the instructions outside the zone, including the bottom zone.
2746  setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2747
2748  // Prefer bottom scheduling when heuristics are silent.
2749  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2750  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2751
2752  // If either Q has a single candidate that provides the least increase in
2753  // Excess pressure, we can immediately schedule from that Q.
2754  //
2755  // RegionCriticalPSets summarizes the pressure within the scheduled region and
2756  // affects picking from either Q. If scheduling in one direction must
2757  // increase pressure for one of the excess PSets, then schedule in that
2758  // direction first to provide more freedom in the other direction.
2759  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2760      || (BotCand.Reason == RegCritical
2761          && !BotCand.isRepeat(RegCritical)))
2762  {
2763    IsTopNode = false;
2764    tracePick(BotCand, IsTopNode);
2765    return BotCand.SU;
2766  }
2767  // Check if the top Q has a better candidate.
2768  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2769  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2770
2771  // Choose the queue with the most important (lowest enum) reason.
2772  if (TopCand.Reason < BotCand.Reason) {
2773    IsTopNode = true;
2774    tracePick(TopCand, IsTopNode);
2775    return TopCand.SU;
2776  }
2777  // Otherwise prefer the bottom candidate, in node order if all else failed.
2778  IsTopNode = false;
2779  tracePick(BotCand, IsTopNode);
2780  return BotCand.SU;
2781}
2782
2783/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2784SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2785  if (DAG->top() == DAG->bottom()) {
2786    assert(Top.Available.empty() && Top.Pending.empty() &&
2787           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2788    return nullptr;
2789  }
2790  SUnit *SU;
2791  do {
2792    if (RegionPolicy.OnlyTopDown) {
2793      SU = Top.pickOnlyChoice();
2794      if (!SU) {
2795        CandPolicy NoPolicy;
2796        SchedCandidate TopCand(NoPolicy);
2797        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2798        assert(TopCand.Reason != NoCand && "failed to find a candidate");
2799        tracePick(TopCand, true);
2800        SU = TopCand.SU;
2801      }
2802      IsTopNode = true;
2803    }
2804    else if (RegionPolicy.OnlyBottomUp) {
2805      SU = Bot.pickOnlyChoice();
2806      if (!SU) {
2807        CandPolicy NoPolicy;
2808        SchedCandidate BotCand(NoPolicy);
2809        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2810        assert(BotCand.Reason != NoCand && "failed to find a candidate");
2811        tracePick(BotCand, false);
2812        SU = BotCand.SU;
2813      }
2814      IsTopNode = false;
2815    }
2816    else {
2817      SU = pickNodeBidirectional(IsTopNode);
2818    }
2819  } while (SU->isScheduled);
2820
2821  if (SU->isTopReady())
2822    Top.removeReady(SU);
2823  if (SU->isBottomReady())
2824    Bot.removeReady(SU);
2825
2826  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2827  return SU;
2828}
2829
2830void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2831
2832  MachineBasicBlock::iterator InsertPos = SU->getInstr();
2833  if (!isTop)
2834    ++InsertPos;
2835  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2836
2837  // Find already scheduled copies with a single physreg dependence and move
2838  // them just above the scheduled instruction.
2839  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2840       I != E; ++I) {
2841    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2842      continue;
2843    SUnit *DepSU = I->getSUnit();
2844    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2845      continue;
2846    MachineInstr *Copy = DepSU->getInstr();
2847    if (!Copy->isCopy())
2848      continue;
2849    DEBUG(dbgs() << "  Rescheduling physreg copy ";
2850          I->getSUnit()->dump(DAG));
2851    DAG->moveInstruction(Copy, InsertPos);
2852  }
2853}
2854
2855/// Update the scheduler's state after scheduling a node. This is the same node
2856/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2857/// update it's state based on the current cycle before MachineSchedStrategy
2858/// does.
2859///
2860/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2861/// them here. See comments in biasPhysRegCopy.
2862void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2863  if (IsTopNode) {
2864    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2865    Top.bumpNode(SU);
2866    if (SU->hasPhysRegUses)
2867      reschedulePhysRegCopies(SU, true);
2868  }
2869  else {
2870    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2871    Bot.bumpNode(SU);
2872    if (SU->hasPhysRegDefs)
2873      reschedulePhysRegCopies(SU, false);
2874  }
2875}
2876
2877/// Create the standard converging machine scheduler. This will be used as the
2878/// default scheduler if the target does not set a default.
2879static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
2880  ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
2881  // Register DAG post-processors.
2882  //
2883  // FIXME: extend the mutation API to allow earlier mutations to instantiate
2884  // data and pass it to later mutations. Have a single mutation that gathers
2885  // the interesting nodes in one pass.
2886  DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
2887  if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2888    DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
2889  if (EnableMacroFusion)
2890    DAG->addMutation(make_unique<MacroFusion>(DAG->TII));
2891  return DAG;
2892}
2893
2894static MachineSchedRegistry
2895GenericSchedRegistry("converge", "Standard converging scheduler.",
2896                     createGenericSchedLive);
2897
2898//===----------------------------------------------------------------------===//
2899// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
2900//===----------------------------------------------------------------------===//
2901
2902void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
2903  DAG = Dag;
2904  SchedModel = DAG->getSchedModel();
2905  TRI = DAG->TRI;
2906
2907  Rem.init(DAG, SchedModel);
2908  Top.init(DAG, SchedModel, &Rem);
2909  BotRoots.clear();
2910
2911  // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
2912  // or are disabled, then these HazardRecs will be disabled.
2913  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2914  if (!Top.HazardRec) {
2915    Top.HazardRec =
2916        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2917            Itin, DAG);
2918  }
2919}
2920
2921
2922void PostGenericScheduler::registerRoots() {
2923  Rem.CriticalPath = DAG->ExitSU.getDepth();
2924
2925  // Some roots may not feed into ExitSU. Check all of them in case.
2926  for (SmallVectorImpl<SUnit*>::const_iterator
2927         I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
2928    if ((*I)->getDepth() > Rem.CriticalPath)
2929      Rem.CriticalPath = (*I)->getDepth();
2930  }
2931  DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
2932  if (DumpCriticalPathLength) {
2933    errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
2934  }
2935}
2936
2937/// Apply a set of heursitics to a new candidate for PostRA scheduling.
2938///
2939/// \param Cand provides the policy and current best candidate.
2940/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2941void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
2942                                        SchedCandidate &TryCand) {
2943
2944  // Initialize the candidate if needed.
2945  if (!Cand.isValid()) {
2946    TryCand.Reason = NodeOrder;
2947    return;
2948  }
2949
2950  // Prioritize instructions that read unbuffered resources by stall cycles.
2951  if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
2952              Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2953    return;
2954
2955  // Avoid critical resource consumption and balance the schedule.
2956  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2957              TryCand, Cand, ResourceReduce))
2958    return;
2959  if (tryGreater(TryCand.ResDelta.DemandedResources,
2960                 Cand.ResDelta.DemandedResources,
2961                 TryCand, Cand, ResourceDemand))
2962    return;
2963
2964  // Avoid serializing long latency dependence chains.
2965  if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
2966    return;
2967  }
2968
2969  // Fall through to original instruction order.
2970  if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
2971    TryCand.Reason = NodeOrder;
2972}
2973
2974void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
2975  ReadyQueue &Q = Top.Available;
2976
2977  DEBUG(Q.dump());
2978
2979  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2980    SchedCandidate TryCand(Cand.Policy);
2981    TryCand.SU = *I;
2982    TryCand.initResourceDelta(DAG, SchedModel);
2983    tryCandidate(Cand, TryCand);
2984    if (TryCand.Reason != NoCand) {
2985      Cand.setBest(TryCand);
2986      DEBUG(traceCandidate(Cand));
2987    }
2988  }
2989}
2990
2991/// Pick the next node to schedule.
2992SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
2993  if (DAG->top() == DAG->bottom()) {
2994    assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
2995    return nullptr;
2996  }
2997  SUnit *SU;
2998  do {
2999    SU = Top.pickOnlyChoice();
3000    if (!SU) {
3001      CandPolicy NoPolicy;
3002      SchedCandidate TopCand(NoPolicy);
3003      // Set the top-down policy based on the state of the current top zone and
3004      // the instructions outside the zone, including the bottom zone.
3005      setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3006      pickNodeFromQueue(TopCand);
3007      assert(TopCand.Reason != NoCand && "failed to find a candidate");
3008      tracePick(TopCand, true);
3009      SU = TopCand.SU;
3010    }
3011  } while (SU->isScheduled);
3012
3013  IsTopNode = true;
3014  Top.removeReady(SU);
3015
3016  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3017  return SU;
3018}
3019
3020/// Called after ScheduleDAGMI has scheduled an instruction and updated
3021/// scheduled/remaining flags in the DAG nodes.
3022void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3023  SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3024  Top.bumpNode(SU);
3025}
3026
3027/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3028static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3029  return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3030}
3031
3032//===----------------------------------------------------------------------===//
3033// ILP Scheduler. Currently for experimental analysis of heuristics.
3034//===----------------------------------------------------------------------===//
3035
3036namespace {
3037/// \brief Order nodes by the ILP metric.
3038struct ILPOrder {
3039  const SchedDFSResult *DFSResult;
3040  const BitVector *ScheduledTrees;
3041  bool MaximizeILP;
3042
3043  ILPOrder(bool MaxILP)
3044    : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3045
3046  /// \brief Apply a less-than relation on node priority.
3047  ///
3048  /// (Return true if A comes after B in the Q.)
3049  bool operator()(const SUnit *A, const SUnit *B) const {
3050    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3051    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3052    if (SchedTreeA != SchedTreeB) {
3053      // Unscheduled trees have lower priority.
3054      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3055        return ScheduledTrees->test(SchedTreeB);
3056
3057      // Trees with shallower connections have have lower priority.
3058      if (DFSResult->getSubtreeLevel(SchedTreeA)
3059          != DFSResult->getSubtreeLevel(SchedTreeB)) {
3060        return DFSResult->getSubtreeLevel(SchedTreeA)
3061          < DFSResult->getSubtreeLevel(SchedTreeB);
3062      }
3063    }
3064    if (MaximizeILP)
3065      return DFSResult->getILP(A) < DFSResult->getILP(B);
3066    else
3067      return DFSResult->getILP(A) > DFSResult->getILP(B);
3068  }
3069};
3070
3071/// \brief Schedule based on the ILP metric.
3072class ILPScheduler : public MachineSchedStrategy {
3073  ScheduleDAGMILive *DAG;
3074  ILPOrder Cmp;
3075
3076  std::vector<SUnit*> ReadyQ;
3077public:
3078  ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3079
3080  void initialize(ScheduleDAGMI *dag) override {
3081    assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3082    DAG = static_cast<ScheduleDAGMILive*>(dag);
3083    DAG->computeDFSResult();
3084    Cmp.DFSResult = DAG->getDFSResult();
3085    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3086    ReadyQ.clear();
3087  }
3088
3089  void registerRoots() override {
3090    // Restore the heap in ReadyQ with the updated DFS results.
3091    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3092  }
3093
3094  /// Implement MachineSchedStrategy interface.
3095  /// -----------------------------------------
3096
3097  /// Callback to select the highest priority node from the ready Q.
3098  SUnit *pickNode(bool &IsTopNode) override {
3099    if (ReadyQ.empty()) return nullptr;
3100    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3101    SUnit *SU = ReadyQ.back();
3102    ReadyQ.pop_back();
3103    IsTopNode = false;
3104    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3105          << " ILP: " << DAG->getDFSResult()->getILP(SU)
3106          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3107          << DAG->getDFSResult()->getSubtreeLevel(
3108            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3109          << "Scheduling " << *SU->getInstr());
3110    return SU;
3111  }
3112
3113  /// \brief Scheduler callback to notify that a new subtree is scheduled.
3114  void scheduleTree(unsigned SubtreeID) override {
3115    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3116  }
3117
3118  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3119  /// DFSResults, and resort the priority Q.
3120  void schedNode(SUnit *SU, bool IsTopNode) override {
3121    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3122  }
3123
3124  void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3125
3126  void releaseBottomNode(SUnit *SU) override {
3127    ReadyQ.push_back(SU);
3128    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3129  }
3130};
3131} // namespace
3132
3133static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3134  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3135}
3136static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3137  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3138}
3139static MachineSchedRegistry ILPMaxRegistry(
3140  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3141static MachineSchedRegistry ILPMinRegistry(
3142  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3143
3144//===----------------------------------------------------------------------===//
3145// Machine Instruction Shuffler for Correctness Testing
3146//===----------------------------------------------------------------------===//
3147
3148#ifndef NDEBUG
3149namespace {
3150/// Apply a less-than relation on the node order, which corresponds to the
3151/// instruction order prior to scheduling. IsReverse implements greater-than.
3152template<bool IsReverse>
3153struct SUnitOrder {
3154  bool operator()(SUnit *A, SUnit *B) const {
3155    if (IsReverse)
3156      return A->NodeNum > B->NodeNum;
3157    else
3158      return A->NodeNum < B->NodeNum;
3159  }
3160};
3161
3162/// Reorder instructions as much as possible.
3163class InstructionShuffler : public MachineSchedStrategy {
3164  bool IsAlternating;
3165  bool IsTopDown;
3166
3167  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3168  // gives nodes with a higher number higher priority causing the latest
3169  // instructions to be scheduled first.
3170  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3171    TopQ;
3172  // When scheduling bottom-up, use greater-than as the queue priority.
3173  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3174    BottomQ;
3175public:
3176  InstructionShuffler(bool alternate, bool topdown)
3177    : IsAlternating(alternate), IsTopDown(topdown) {}
3178
3179  void initialize(ScheduleDAGMI*) override {
3180    TopQ.clear();
3181    BottomQ.clear();
3182  }
3183
3184  /// Implement MachineSchedStrategy interface.
3185  /// -----------------------------------------
3186
3187  SUnit *pickNode(bool &IsTopNode) override {
3188    SUnit *SU;
3189    if (IsTopDown) {
3190      do {
3191        if (TopQ.empty()) return nullptr;
3192        SU = TopQ.top();
3193        TopQ.pop();
3194      } while (SU->isScheduled);
3195      IsTopNode = true;
3196    }
3197    else {
3198      do {
3199        if (BottomQ.empty()) return nullptr;
3200        SU = BottomQ.top();
3201        BottomQ.pop();
3202      } while (SU->isScheduled);
3203      IsTopNode = false;
3204    }
3205    if (IsAlternating)
3206      IsTopDown = !IsTopDown;
3207    return SU;
3208  }
3209
3210  void schedNode(SUnit *SU, bool IsTopNode) override {}
3211
3212  void releaseTopNode(SUnit *SU) override {
3213    TopQ.push(SU);
3214  }
3215  void releaseBottomNode(SUnit *SU) override {
3216    BottomQ.push(SU);
3217  }
3218};
3219} // namespace
3220
3221static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3222  bool Alternate = !ForceTopDown && !ForceBottomUp;
3223  bool TopDown = !ForceBottomUp;
3224  assert((TopDown || !ForceTopDown) &&
3225         "-misched-topdown incompatible with -misched-bottomup");
3226  return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3227}
3228static MachineSchedRegistry ShufflerRegistry(
3229  "shuffle", "Shuffle machine instructions alternating directions",
3230  createInstructionShuffler);
3231#endif // !NDEBUG
3232
3233//===----------------------------------------------------------------------===//
3234// GraphWriter support for ScheduleDAGMILive.
3235//===----------------------------------------------------------------------===//
3236
3237#ifndef NDEBUG
3238namespace llvm {
3239
3240template<> struct GraphTraits<
3241  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3242
3243template<>
3244struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3245
3246  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3247
3248  static std::string getGraphName(const ScheduleDAG *G) {
3249    return G->MF.getName();
3250  }
3251
3252  static bool renderGraphFromBottomUp() {
3253    return true;
3254  }
3255
3256  static bool isNodeHidden(const SUnit *Node) {
3257    return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
3258  }
3259
3260  static bool hasNodeAddressLabel(const SUnit *Node,
3261                                  const ScheduleDAG *Graph) {
3262    return false;
3263  }
3264
3265  /// If you want to override the dot attributes printed for a particular
3266  /// edge, override this method.
3267  static std::string getEdgeAttributes(const SUnit *Node,
3268                                       SUnitIterator EI,
3269                                       const ScheduleDAG *Graph) {
3270    if (EI.isArtificialDep())
3271      return "color=cyan,style=dashed";
3272    if (EI.isCtrlDep())
3273      return "color=blue,style=dashed";
3274    return "";
3275  }
3276
3277  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3278    std::string Str;
3279    raw_string_ostream SS(Str);
3280    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3281    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3282      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3283    SS << "SU:" << SU->NodeNum;
3284    if (DFS)
3285      SS << " I:" << DFS->getNumInstrs(SU);
3286    return SS.str();
3287  }
3288  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3289    return G->getGraphNodeLabel(SU);
3290  }
3291
3292  static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3293    std::string Str("shape=Mrecord");
3294    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3295    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3296      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3297    if (DFS) {
3298      Str += ",style=filled,fillcolor=\"#";
3299      Str += DOT::getColorString(DFS->getSubtreeID(N));
3300      Str += '"';
3301    }
3302    return Str;
3303  }
3304};
3305} // namespace llvm
3306#endif // NDEBUG
3307
3308/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3309/// rendered using 'dot'.
3310///
3311void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3312#ifndef NDEBUG
3313  ViewGraph(this, Name, false, Title);
3314#else
3315  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3316         << "systems with Graphviz or gv!\n";
3317#endif  // NDEBUG
3318}
3319
3320/// Out-of-line implementation with no arguments is handy for gdb.
3321void ScheduleDAGMI::viewGraph() {
3322  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3323}
3324