1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARMISelLowering.h"
16#include "ARMCallingConv.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMPerfectShuffle.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "ARMTargetObjectFile.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/StringSwitch.h"
27#include "llvm/CodeGen/CallingConvLower.h"
28#include "llvm/CodeGen/IntrinsicLowering.h"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GlobalValue.h"
41#include "llvm/IR/IRBuilder.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/Type.h"
47#include "llvm/MC/MCSectionMachO.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetOptions.h"
54#include <utility>
55using namespace llvm;
56
57#define DEBUG_TYPE "arm-isel"
58
59STATISTIC(NumTailCalls, "Number of tail calls");
60STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
61STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
62
63cl::opt<bool>
64EnableARMLongCalls("arm-long-calls", cl::Hidden,
65  cl::desc("Generate calls via indirect call instructions"),
66  cl::init(false));
67
68static cl::opt<bool>
69ARMInterworking("arm-interworking", cl::Hidden,
70  cl::desc("Enable / disable ARM interworking (for debugging only)"),
71  cl::init(true));
72
73namespace {
74  class ARMCCState : public CCState {
75  public:
76    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77               SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
78               ParmContext PC)
79        : CCState(CC, isVarArg, MF, locs, C) {
80      assert(((PC == Call) || (PC == Prologue)) &&
81             "ARMCCState users must specify whether their context is call"
82             "or prologue generation.");
83      CallOrPrologue = PC;
84    }
85  };
86}
87
88// The APCS parameter registers.
89static const MCPhysReg GPRArgRegs[] = {
90  ARM::R0, ARM::R1, ARM::R2, ARM::R3
91};
92
93void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94                                       MVT PromotedBitwiseVT) {
95  if (VT != PromotedLdStVT) {
96    setOperationAction(ISD::LOAD, VT, Promote);
97    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99    setOperationAction(ISD::STORE, VT, Promote);
100    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101  }
102
103  MVT ElemTy = VT.getVectorElementType();
104  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105    setOperationAction(ISD::SETCC, VT, Custom);
106  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108  if (ElemTy == MVT::i32) {
109    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113  } else {
114    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118  }
119  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
120  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
121  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
122  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123  setOperationAction(ISD::SELECT,            VT, Expand);
124  setOperationAction(ISD::SELECT_CC,         VT, Expand);
125  setOperationAction(ISD::VSELECT,           VT, Expand);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
127  if (VT.isInteger()) {
128    setOperationAction(ISD::SHL, VT, Custom);
129    setOperationAction(ISD::SRA, VT, Custom);
130    setOperationAction(ISD::SRL, VT, Custom);
131  }
132
133  // Promote all bit-wise operations.
134  if (VT.isInteger() && VT != PromotedBitwiseVT) {
135    setOperationAction(ISD::AND, VT, Promote);
136    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
137    setOperationAction(ISD::OR,  VT, Promote);
138    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
139    setOperationAction(ISD::XOR, VT, Promote);
140    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
141  }
142
143  // Neon does not support vector divide/remainder operations.
144  setOperationAction(ISD::SDIV, VT, Expand);
145  setOperationAction(ISD::UDIV, VT, Expand);
146  setOperationAction(ISD::FDIV, VT, Expand);
147  setOperationAction(ISD::SREM, VT, Expand);
148  setOperationAction(ISD::UREM, VT, Expand);
149  setOperationAction(ISD::FREM, VT, Expand);
150}
151
152void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153  addRegisterClass(VT, &ARM::DPRRegClass);
154  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155}
156
157void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158  addRegisterClass(VT, &ARM::DPairRegClass);
159  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160}
161
162ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
163                                     const ARMSubtarget &STI)
164    : TargetLowering(TM), Subtarget(&STI) {
165  RegInfo = Subtarget->getRegisterInfo();
166  Itins = Subtarget->getInstrItineraryData();
167
168  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
169
170  if (Subtarget->isTargetMachO()) {
171    // Uses VFP for Thumb libfuncs if available.
172    if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
173        Subtarget->hasARMOps() && !TM.Options.UseSoftFloat) {
174      // Single-precision floating-point arithmetic.
175      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
176      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
177      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
178      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
179
180      // Double-precision floating-point arithmetic.
181      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
182      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
183      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
184      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
185
186      // Single-precision comparisons.
187      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
188      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
189      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
190      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
191      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
192      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
193      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
194      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
195
196      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
197      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
198      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
199      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
203      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
204
205      // Double-precision comparisons.
206      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
207      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
208      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
209      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
210      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
211      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
212      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
213      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
214
215      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
216      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
217      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
218      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
219      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
220      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
221      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
222      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
223
224      // Floating-point to integer conversions.
225      // i64 conversions are done via library routines even when generating VFP
226      // instructions, so use the same ones.
227      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
228      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
229      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
230      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
231
232      // Conversions between floating types.
233      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
234      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
235
236      // Integer to floating-point conversions.
237      // i64 conversions are done via library routines even when generating VFP
238      // instructions, so use the same ones.
239      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
240      // e.g., __floatunsidf vs. __floatunssidfvfp.
241      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
242      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
243      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
244      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
245    }
246  }
247
248  // These libcalls are not available in 32-bit.
249  setLibcallName(RTLIB::SHL_I128, nullptr);
250  setLibcallName(RTLIB::SRL_I128, nullptr);
251  setLibcallName(RTLIB::SRA_I128, nullptr);
252
253  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetMachO() &&
254      !Subtarget->isTargetWindows()) {
255    static const struct {
256      const RTLIB::Libcall Op;
257      const char * const Name;
258      const CallingConv::ID CC;
259      const ISD::CondCode Cond;
260    } LibraryCalls[] = {
261      // Double-precision floating-point arithmetic helper functions
262      // RTABI chapter 4.1.2, Table 2
263      { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
264      { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
265      { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
266      { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
267
268      // Double-precision floating-point comparison helper functions
269      // RTABI chapter 4.1.2, Table 3
270      { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
271      { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
272      { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
273      { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
274      { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
275      { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
276      { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
277      { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
278
279      // Single-precision floating-point arithmetic helper functions
280      // RTABI chapter 4.1.2, Table 4
281      { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
282      { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
283      { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
284      { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
285
286      // Single-precision floating-point comparison helper functions
287      // RTABI chapter 4.1.2, Table 5
288      { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
289      { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
290      { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
291      { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
292      { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
293      { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
294      { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
295      { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
296
297      // Floating-point to integer conversions.
298      // RTABI chapter 4.1.2, Table 6
299      { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
300      { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
301      { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
302      { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
303      { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
304      { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
305      { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
306      { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
307
308      // Conversions between floating types.
309      // RTABI chapter 4.1.2, Table 7
310      { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
311      { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
312      { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
313
314      // Integer to floating-point conversions.
315      // RTABI chapter 4.1.2, Table 8
316      { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
317      { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
318      { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
319      { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
320      { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
321      { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
322      { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
323      { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
324
325      // Long long helper functions
326      // RTABI chapter 4.2, Table 9
327      { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
328      { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
329      { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
330      { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
331
332      // Integer division functions
333      // RTABI chapter 4.3.1
334      { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
335      { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
336      { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
337      { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338      { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339      { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
340      { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
341      { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
342
343      // Memory operations
344      // RTABI chapter 4.3.4
345      { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
346      { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
347      { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
348    };
349
350    for (const auto &LC : LibraryCalls) {
351      setLibcallName(LC.Op, LC.Name);
352      setLibcallCallingConv(LC.Op, LC.CC);
353      if (LC.Cond != ISD::SETCC_INVALID)
354        setCmpLibcallCC(LC.Op, LC.Cond);
355    }
356  }
357
358  if (Subtarget->isTargetWindows()) {
359    static const struct {
360      const RTLIB::Libcall Op;
361      const char * const Name;
362      const CallingConv::ID CC;
363    } LibraryCalls[] = {
364      { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
365      { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
366      { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
367      { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
368      { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
369      { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
370      { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
371      { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
372    };
373
374    for (const auto &LC : LibraryCalls) {
375      setLibcallName(LC.Op, LC.Name);
376      setLibcallCallingConv(LC.Op, LC.CC);
377    }
378  }
379
380  // Use divmod compiler-rt calls for iOS 5.0 and later.
381  if (Subtarget->getTargetTriple().isiOS() &&
382      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
383    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
384    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
385  }
386
387  // The half <-> float conversion functions are always soft-float, but are
388  // needed for some targets which use a hard-float calling convention by
389  // default.
390  if (Subtarget->isAAPCS_ABI()) {
391    setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
393    setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
394  } else {
395    setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
396    setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
397    setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
398  }
399
400  if (Subtarget->isThumb1Only())
401    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
402  else
403    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
404  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
405      !Subtarget->isThumb1Only()) {
406    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
407    addRegisterClass(MVT::f64, &ARM::DPRRegClass);
408  }
409
410  for (MVT VT : MVT::vector_valuetypes()) {
411    for (MVT InnerVT : MVT::vector_valuetypes()) {
412      setTruncStoreAction(VT, InnerVT, Expand);
413      setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
414      setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
415      setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
416    }
417
418    setOperationAction(ISD::MULHS, VT, Expand);
419    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
420    setOperationAction(ISD::MULHU, VT, Expand);
421    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
422
423    setOperationAction(ISD::BSWAP, VT, Expand);
424  }
425
426  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
427  setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
428
429  if (Subtarget->hasNEON()) {
430    addDRTypeForNEON(MVT::v2f32);
431    addDRTypeForNEON(MVT::v8i8);
432    addDRTypeForNEON(MVT::v4i16);
433    addDRTypeForNEON(MVT::v2i32);
434    addDRTypeForNEON(MVT::v1i64);
435
436    addQRTypeForNEON(MVT::v4f32);
437    addQRTypeForNEON(MVT::v2f64);
438    addQRTypeForNEON(MVT::v16i8);
439    addQRTypeForNEON(MVT::v8i16);
440    addQRTypeForNEON(MVT::v4i32);
441    addQRTypeForNEON(MVT::v2i64);
442
443    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
444    // neither Neon nor VFP support any arithmetic operations on it.
445    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
446    // supported for v4f32.
447    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
448    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
449    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
450    // FIXME: Code duplication: FDIV and FREM are expanded always, see
451    // ARMTargetLowering::addTypeForNEON method for details.
452    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
453    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
454    // FIXME: Create unittest.
455    // In another words, find a way when "copysign" appears in DAG with vector
456    // operands.
457    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
458    // FIXME: Code duplication: SETCC has custom operation action, see
459    // ARMTargetLowering::addTypeForNEON method for details.
460    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
461    // FIXME: Create unittest for FNEG and for FABS.
462    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
463    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
464    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
465    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
466    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
467    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
468    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
469    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
470    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
471    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
472    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
473    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
474    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
475    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
476    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
477    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
478    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
479    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
480    setOperationAction(ISD::FMA, MVT::v2f64, Expand);
481
482    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
483    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
484    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
485    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
486    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
487    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
488    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
489    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
490    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
491    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
492    setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
493    setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
494    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
495    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
496    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
497
498    // Mark v2f32 intrinsics.
499    setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
500    setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
501    setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
502    setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
503    setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
504    setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
505    setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
506    setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
507    setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
508    setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
509    setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
510    setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
511    setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
512    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
513    setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
514
515    // Neon does not support some operations on v1i64 and v2i64 types.
516    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
517    // Custom handling for some quad-vector types to detect VMULL.
518    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
519    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
520    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
521    // Custom handling for some vector types to avoid expensive expansions
522    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
523    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
524    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
525    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
526    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
527    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
528    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
529    // a destination type that is wider than the source, and nor does
530    // it have a FP_TO_[SU]INT instruction with a narrower destination than
531    // source.
532    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
533    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
534    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
535    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
536
537    setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
538    setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
539
540    // NEON does not have single instruction CTPOP for vectors with element
541    // types wider than 8-bits.  However, custom lowering can leverage the
542    // v8i8/v16i8 vcnt instruction.
543    setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
544    setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
545    setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
546    setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
547
548    // NEON only has FMA instructions as of VFP4.
549    if (!Subtarget->hasVFP4()) {
550      setOperationAction(ISD::FMA, MVT::v2f32, Expand);
551      setOperationAction(ISD::FMA, MVT::v4f32, Expand);
552    }
553
554    setTargetDAGCombine(ISD::INTRINSIC_VOID);
555    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
556    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
557    setTargetDAGCombine(ISD::SHL);
558    setTargetDAGCombine(ISD::SRL);
559    setTargetDAGCombine(ISD::SRA);
560    setTargetDAGCombine(ISD::SIGN_EXTEND);
561    setTargetDAGCombine(ISD::ZERO_EXTEND);
562    setTargetDAGCombine(ISD::ANY_EXTEND);
563    setTargetDAGCombine(ISD::SELECT_CC);
564    setTargetDAGCombine(ISD::BUILD_VECTOR);
565    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
566    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
567    setTargetDAGCombine(ISD::STORE);
568    setTargetDAGCombine(ISD::FP_TO_SINT);
569    setTargetDAGCombine(ISD::FP_TO_UINT);
570    setTargetDAGCombine(ISD::FDIV);
571    setTargetDAGCombine(ISD::LOAD);
572
573    // It is legal to extload from v4i8 to v4i16 or v4i32.
574    for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
575                   MVT::v2i32}) {
576      for (MVT VT : MVT::integer_vector_valuetypes()) {
577        setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
578        setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
579        setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
580      }
581    }
582  }
583
584  // ARM and Thumb2 support UMLAL/SMLAL.
585  if (!Subtarget->isThumb1Only())
586    setTargetDAGCombine(ISD::ADDC);
587
588  if (Subtarget->isFPOnlySP()) {
589    // When targetting a floating-point unit with only single-precision
590    // operations, f64 is legal for the few double-precision instructions which
591    // are present However, no double-precision operations other than moves,
592    // loads and stores are provided by the hardware.
593    setOperationAction(ISD::FADD,       MVT::f64, Expand);
594    setOperationAction(ISD::FSUB,       MVT::f64, Expand);
595    setOperationAction(ISD::FMUL,       MVT::f64, Expand);
596    setOperationAction(ISD::FMA,        MVT::f64, Expand);
597    setOperationAction(ISD::FDIV,       MVT::f64, Expand);
598    setOperationAction(ISD::FREM,       MVT::f64, Expand);
599    setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
600    setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
601    setOperationAction(ISD::FNEG,       MVT::f64, Expand);
602    setOperationAction(ISD::FABS,       MVT::f64, Expand);
603    setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
604    setOperationAction(ISD::FSIN,       MVT::f64, Expand);
605    setOperationAction(ISD::FCOS,       MVT::f64, Expand);
606    setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
607    setOperationAction(ISD::FPOW,       MVT::f64, Expand);
608    setOperationAction(ISD::FLOG,       MVT::f64, Expand);
609    setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
610    setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
611    setOperationAction(ISD::FEXP,       MVT::f64, Expand);
612    setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
613    setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
614    setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
615    setOperationAction(ISD::FRINT,      MVT::f64, Expand);
616    setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
617    setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
618    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
619    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
620    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
621    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
622    setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
623    setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
624    setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
625    setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
626  }
627
628  computeRegisterProperties(Subtarget->getRegisterInfo());
629
630  // ARM does not have floating-point extending loads.
631  for (MVT VT : MVT::fp_valuetypes()) {
632    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
633    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
634  }
635
636  // ... or truncating stores
637  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
638  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
639  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
640
641  // ARM does not have i1 sign extending load.
642  for (MVT VT : MVT::integer_valuetypes())
643    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
644
645  // ARM supports all 4 flavors of integer indexed load / store.
646  if (!Subtarget->isThumb1Only()) {
647    for (unsigned im = (unsigned)ISD::PRE_INC;
648         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
649      setIndexedLoadAction(im,  MVT::i1,  Legal);
650      setIndexedLoadAction(im,  MVT::i8,  Legal);
651      setIndexedLoadAction(im,  MVT::i16, Legal);
652      setIndexedLoadAction(im,  MVT::i32, Legal);
653      setIndexedStoreAction(im, MVT::i1,  Legal);
654      setIndexedStoreAction(im, MVT::i8,  Legal);
655      setIndexedStoreAction(im, MVT::i16, Legal);
656      setIndexedStoreAction(im, MVT::i32, Legal);
657    }
658  }
659
660  setOperationAction(ISD::SADDO, MVT::i32, Custom);
661  setOperationAction(ISD::UADDO, MVT::i32, Custom);
662  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
663  setOperationAction(ISD::USUBO, MVT::i32, Custom);
664
665  // i64 operation support.
666  setOperationAction(ISD::MUL,     MVT::i64, Expand);
667  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
668  if (Subtarget->isThumb1Only()) {
669    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
670    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
671  }
672  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
673      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
674    setOperationAction(ISD::MULHS, MVT::i32, Expand);
675
676  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
677  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
678  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
679  setOperationAction(ISD::SRL,       MVT::i64, Custom);
680  setOperationAction(ISD::SRA,       MVT::i64, Custom);
681
682  if (!Subtarget->isThumb1Only()) {
683    // FIXME: We should do this for Thumb1 as well.
684    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
685    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
686    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
687    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
688  }
689
690  // ARM does not have ROTL.
691  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
692  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
693  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
694  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
695    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
696
697  // These just redirect to CTTZ and CTLZ on ARM.
698  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
699  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
700
701  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
702
703  // Only ARMv6 has BSWAP.
704  if (!Subtarget->hasV6Ops())
705    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
706
707  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
708      !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
709    // These are expanded into libcalls if the cpu doesn't have HW divider.
710    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
711    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
712  }
713
714  // FIXME: Also set divmod for SREM on EABI
715  setOperationAction(ISD::SREM,  MVT::i32, Expand);
716  setOperationAction(ISD::UREM,  MVT::i32, Expand);
717  // Register based DivRem for AEABI (RTABI 4.2)
718  if (Subtarget->isTargetAEABI()) {
719    setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
720    setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
721    setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
722    setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
723    setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
724    setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
725    setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
726    setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
727
728    setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
729    setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
730    setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
731    setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
732    setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
733    setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
734    setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
735    setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
736
737    setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
738    setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
739  } else {
740    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
741    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
742  }
743
744  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
745  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
746  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
747  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
748  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
749
750  setOperationAction(ISD::TRAP, MVT::Other, Legal);
751
752  // Use the default implementation.
753  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
754  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
755  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
756  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
757  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
758  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
759
760  if (!Subtarget->isTargetMachO()) {
761    // Non-MachO platforms may return values in these registers via the
762    // personality function.
763    setExceptionPointerRegister(ARM::R0);
764    setExceptionSelectorRegister(ARM::R1);
765  }
766
767  if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
768    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
769  else
770    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
771
772  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
773  // the default expansion. If we are targeting a single threaded system,
774  // then set them all for expand so we can lower them later into their
775  // non-atomic form.
776  if (TM.Options.ThreadModel == ThreadModel::Single)
777    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
778  else if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
779    // ATOMIC_FENCE needs custom lowering; the others should have been expanded
780    // to ldrex/strex loops already.
781    setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
782
783    // On v8, we have particularly efficient implementations of atomic fences
784    // if they can be combined with nearby atomic loads and stores.
785    if (!Subtarget->hasV8Ops()) {
786      // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
787      setInsertFencesForAtomic(true);
788    }
789  } else {
790    // If there's anything we can use as a barrier, go through custom lowering
791    // for ATOMIC_FENCE.
792    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
793                       Subtarget->hasAnyDataBarrier() ? Custom : Expand);
794
795    // Set them all for expansion, which will force libcalls.
796    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
797    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
798    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
799    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
800    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
801    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
802    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
803    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
804    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
805    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
806    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
807    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
808    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
809    // Unordered/Monotonic case.
810    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
811    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
812  }
813
814  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
815
816  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
817  if (!Subtarget->hasV6Ops()) {
818    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
819    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
820  }
821  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
822
823  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
824      !Subtarget->isThumb1Only()) {
825    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
826    // iff target supports vfp2.
827    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
828    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
829  }
830
831  // We want to custom lower some of our intrinsics.
832  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
833  if (Subtarget->isTargetDarwin()) {
834    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
835    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
836    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
837  }
838
839  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
840  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
841  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
842  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
843  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
844  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
845  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
846  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
847  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
848
849  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
850  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
851  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
852  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
853  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
854
855  // We don't support sin/cos/fmod/copysign/pow
856  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
857  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
858  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
859  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
860  setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
861  setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
862  setOperationAction(ISD::FREM,      MVT::f64, Expand);
863  setOperationAction(ISD::FREM,      MVT::f32, Expand);
864  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
865      !Subtarget->isThumb1Only()) {
866    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
867    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
868  }
869  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
870  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
871
872  if (!Subtarget->hasVFP4()) {
873    setOperationAction(ISD::FMA, MVT::f64, Expand);
874    setOperationAction(ISD::FMA, MVT::f32, Expand);
875  }
876
877  // Various VFP goodness
878  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
879    // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
880    if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
881      setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
882      setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
883    }
884
885    // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
886    if (!Subtarget->hasFP16()) {
887      setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
888      setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
889    }
890  }
891
892  // Combine sin / cos into one node or libcall if possible.
893  if (Subtarget->hasSinCos()) {
894    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
895    setLibcallName(RTLIB::SINCOS_F64, "sincos");
896    if (Subtarget->getTargetTriple().isiOS()) {
897      // For iOS, we don't want to the normal expansion of a libcall to
898      // sincos. We want to issue a libcall to __sincos_stret.
899      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
900      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
901    }
902  }
903
904  // FP-ARMv8 implements a lot of rounding-like FP operations.
905  if (Subtarget->hasFPARMv8()) {
906    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
907    setOperationAction(ISD::FCEIL, MVT::f32, Legal);
908    setOperationAction(ISD::FROUND, MVT::f32, Legal);
909    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
910    setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
911    setOperationAction(ISD::FRINT, MVT::f32, Legal);
912    if (!Subtarget->isFPOnlySP()) {
913      setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
914      setOperationAction(ISD::FCEIL, MVT::f64, Legal);
915      setOperationAction(ISD::FROUND, MVT::f64, Legal);
916      setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
917      setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
918      setOperationAction(ISD::FRINT, MVT::f64, Legal);
919    }
920  }
921  // We have target-specific dag combine patterns for the following nodes:
922  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
923  setTargetDAGCombine(ISD::ADD);
924  setTargetDAGCombine(ISD::SUB);
925  setTargetDAGCombine(ISD::MUL);
926  setTargetDAGCombine(ISD::AND);
927  setTargetDAGCombine(ISD::OR);
928  setTargetDAGCombine(ISD::XOR);
929
930  if (Subtarget->hasV6Ops())
931    setTargetDAGCombine(ISD::SRL);
932
933  setStackPointerRegisterToSaveRestore(ARM::SP);
934
935  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
936      !Subtarget->hasVFP2())
937    setSchedulingPreference(Sched::RegPressure);
938  else
939    setSchedulingPreference(Sched::Hybrid);
940
941  //// temporary - rewrite interface to use type
942  MaxStoresPerMemset = 8;
943  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
944  MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
945  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
946  MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
947  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
948
949  // On ARM arguments smaller than 4 bytes are extended, so all arguments
950  // are at least 4 bytes aligned.
951  setMinStackArgumentAlignment(4);
952
953  // Prefer likely predicted branches to selects on out-of-order cores.
954  PredictableSelectIsExpensive = Subtarget->isLikeA9();
955
956  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
957}
958
959// FIXME: It might make sense to define the representative register class as the
960// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
961// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
962// SPR's representative would be DPR_VFP2. This should work well if register
963// pressure tracking were modified such that a register use would increment the
964// pressure of the register class's representative and all of it's super
965// classes' representatives transitively. We have not implemented this because
966// of the difficulty prior to coalescing of modeling operand register classes
967// due to the common occurrence of cross class copies and subregister insertions
968// and extractions.
969std::pair<const TargetRegisterClass *, uint8_t>
970ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
971                                           MVT VT) const {
972  const TargetRegisterClass *RRC = nullptr;
973  uint8_t Cost = 1;
974  switch (VT.SimpleTy) {
975  default:
976    return TargetLowering::findRepresentativeClass(TRI, VT);
977  // Use DPR as representative register class for all floating point
978  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
979  // the cost is 1 for both f32 and f64.
980  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
981  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
982    RRC = &ARM::DPRRegClass;
983    // When NEON is used for SP, only half of the register file is available
984    // because operations that define both SP and DP results will be constrained
985    // to the VFP2 class (D0-D15). We currently model this constraint prior to
986    // coalescing by double-counting the SP regs. See the FIXME above.
987    if (Subtarget->useNEONForSinglePrecisionFP())
988      Cost = 2;
989    break;
990  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
991  case MVT::v4f32: case MVT::v2f64:
992    RRC = &ARM::DPRRegClass;
993    Cost = 2;
994    break;
995  case MVT::v4i64:
996    RRC = &ARM::DPRRegClass;
997    Cost = 4;
998    break;
999  case MVT::v8i64:
1000    RRC = &ARM::DPRRegClass;
1001    Cost = 8;
1002    break;
1003  }
1004  return std::make_pair(RRC, Cost);
1005}
1006
1007const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1008  switch (Opcode) {
1009  default: return nullptr;
1010  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1011  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1012  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1013  case ARMISD::CALL:          return "ARMISD::CALL";
1014  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1015  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1016  case ARMISD::tCALL:         return "ARMISD::tCALL";
1017  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1018  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1019  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1020  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1021  case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1022  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1023  case ARMISD::CMP:           return "ARMISD::CMP";
1024  case ARMISD::CMN:           return "ARMISD::CMN";
1025  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1026  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1027  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1028  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1029  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1030
1031  case ARMISD::CMOV:          return "ARMISD::CMOV";
1032
1033  case ARMISD::RBIT:          return "ARMISD::RBIT";
1034
1035  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1036  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1037  case ARMISD::RRX:           return "ARMISD::RRX";
1038
1039  case ARMISD::ADDC:          return "ARMISD::ADDC";
1040  case ARMISD::ADDE:          return "ARMISD::ADDE";
1041  case ARMISD::SUBC:          return "ARMISD::SUBC";
1042  case ARMISD::SUBE:          return "ARMISD::SUBE";
1043
1044  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1045  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1046
1047  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1048  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
1049
1050  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1051
1052  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1053
1054  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1055
1056  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1057
1058  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1059
1060  case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
1061
1062  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1063  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1064  case ARMISD::VCGE:          return "ARMISD::VCGE";
1065  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1066  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1067  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1068  case ARMISD::VCGT:          return "ARMISD::VCGT";
1069  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1070  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1071  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1072  case ARMISD::VTST:          return "ARMISD::VTST";
1073
1074  case ARMISD::VSHL:          return "ARMISD::VSHL";
1075  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1076  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1077  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1078  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1079  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1080  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1081  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1082  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1083  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1084  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1085  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1086  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1087  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1088  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1089  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1090  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1091  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1092  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1093  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1094  case ARMISD::VDUP:          return "ARMISD::VDUP";
1095  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1096  case ARMISD::VEXT:          return "ARMISD::VEXT";
1097  case ARMISD::VREV64:        return "ARMISD::VREV64";
1098  case ARMISD::VREV32:        return "ARMISD::VREV32";
1099  case ARMISD::VREV16:        return "ARMISD::VREV16";
1100  case ARMISD::VZIP:          return "ARMISD::VZIP";
1101  case ARMISD::VUZP:          return "ARMISD::VUZP";
1102  case ARMISD::VTRN:          return "ARMISD::VTRN";
1103  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1104  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1105  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1106  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1107  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1108  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1109  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1110  case ARMISD::FMAX:          return "ARMISD::FMAX";
1111  case ARMISD::FMIN:          return "ARMISD::FMIN";
1112  case ARMISD::VMAXNM:        return "ARMISD::VMAX";
1113  case ARMISD::VMINNM:        return "ARMISD::VMIN";
1114  case ARMISD::BFI:           return "ARMISD::BFI";
1115  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1116  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1117  case ARMISD::VBSL:          return "ARMISD::VBSL";
1118  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1119  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1120  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1121  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1122  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1123  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1124  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1125  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1126  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1127  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1128  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1129  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1130  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1131  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1132  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1133  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1134  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1135  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1136  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1137  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1138  }
1139}
1140
1141EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1142  if (!VT.isVector()) return getPointerTy();
1143  return VT.changeVectorElementTypeToInteger();
1144}
1145
1146/// getRegClassFor - Return the register class that should be used for the
1147/// specified value type.
1148const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1149  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1150  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1151  // load / store 4 to 8 consecutive D registers.
1152  if (Subtarget->hasNEON()) {
1153    if (VT == MVT::v4i64)
1154      return &ARM::QQPRRegClass;
1155    if (VT == MVT::v8i64)
1156      return &ARM::QQQQPRRegClass;
1157  }
1158  return TargetLowering::getRegClassFor(VT);
1159}
1160
1161// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1162// source/dest is aligned and the copy size is large enough. We therefore want
1163// to align such objects passed to memory intrinsics.
1164bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1165                                               unsigned &PrefAlign) const {
1166  if (!isa<MemIntrinsic>(CI))
1167    return false;
1168  MinSize = 8;
1169  // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1170  // cycle faster than 4-byte aligned LDM.
1171  PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1172  return true;
1173}
1174
1175// Create a fast isel object.
1176FastISel *
1177ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1178                                  const TargetLibraryInfo *libInfo) const {
1179  return ARM::createFastISel(funcInfo, libInfo);
1180}
1181
1182Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1183  unsigned NumVals = N->getNumValues();
1184  if (!NumVals)
1185    return Sched::RegPressure;
1186
1187  for (unsigned i = 0; i != NumVals; ++i) {
1188    EVT VT = N->getValueType(i);
1189    if (VT == MVT::Glue || VT == MVT::Other)
1190      continue;
1191    if (VT.isFloatingPoint() || VT.isVector())
1192      return Sched::ILP;
1193  }
1194
1195  if (!N->isMachineOpcode())
1196    return Sched::RegPressure;
1197
1198  // Load are scheduled for latency even if there instruction itinerary
1199  // is not available.
1200  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1201  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1202
1203  if (MCID.getNumDefs() == 0)
1204    return Sched::RegPressure;
1205  if (!Itins->isEmpty() &&
1206      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1207    return Sched::ILP;
1208
1209  return Sched::RegPressure;
1210}
1211
1212//===----------------------------------------------------------------------===//
1213// Lowering Code
1214//===----------------------------------------------------------------------===//
1215
1216/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1217static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1218  switch (CC) {
1219  default: llvm_unreachable("Unknown condition code!");
1220  case ISD::SETNE:  return ARMCC::NE;
1221  case ISD::SETEQ:  return ARMCC::EQ;
1222  case ISD::SETGT:  return ARMCC::GT;
1223  case ISD::SETGE:  return ARMCC::GE;
1224  case ISD::SETLT:  return ARMCC::LT;
1225  case ISD::SETLE:  return ARMCC::LE;
1226  case ISD::SETUGT: return ARMCC::HI;
1227  case ISD::SETUGE: return ARMCC::HS;
1228  case ISD::SETULT: return ARMCC::LO;
1229  case ISD::SETULE: return ARMCC::LS;
1230  }
1231}
1232
1233/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1234static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1235                        ARMCC::CondCodes &CondCode2) {
1236  CondCode2 = ARMCC::AL;
1237  switch (CC) {
1238  default: llvm_unreachable("Unknown FP condition!");
1239  case ISD::SETEQ:
1240  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1241  case ISD::SETGT:
1242  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1243  case ISD::SETGE:
1244  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1245  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1246  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1247  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1248  case ISD::SETO:   CondCode = ARMCC::VC; break;
1249  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1250  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1251  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1252  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1253  case ISD::SETLT:
1254  case ISD::SETULT: CondCode = ARMCC::LT; break;
1255  case ISD::SETLE:
1256  case ISD::SETULE: CondCode = ARMCC::LE; break;
1257  case ISD::SETNE:
1258  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1259  }
1260}
1261
1262//===----------------------------------------------------------------------===//
1263//                      Calling Convention Implementation
1264//===----------------------------------------------------------------------===//
1265
1266#include "ARMGenCallingConv.inc"
1267
1268/// getEffectiveCallingConv - Get the effective calling convention, taking into
1269/// account presence of floating point hardware and calling convention
1270/// limitations, such as support for variadic functions.
1271CallingConv::ID
1272ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1273                                           bool isVarArg) const {
1274  switch (CC) {
1275  default:
1276    llvm_unreachable("Unsupported calling convention");
1277  case CallingConv::ARM_AAPCS:
1278  case CallingConv::ARM_APCS:
1279  case CallingConv::GHC:
1280    return CC;
1281  case CallingConv::ARM_AAPCS_VFP:
1282    return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1283  case CallingConv::C:
1284    if (!Subtarget->isAAPCS_ABI())
1285      return CallingConv::ARM_APCS;
1286    else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1287             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1288             !isVarArg)
1289      return CallingConv::ARM_AAPCS_VFP;
1290    else
1291      return CallingConv::ARM_AAPCS;
1292  case CallingConv::Fast:
1293    if (!Subtarget->isAAPCS_ABI()) {
1294      if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1295        return CallingConv::Fast;
1296      return CallingConv::ARM_APCS;
1297    } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1298      return CallingConv::ARM_AAPCS_VFP;
1299    else
1300      return CallingConv::ARM_AAPCS;
1301  }
1302}
1303
1304/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1305/// CallingConvention.
1306CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1307                                                 bool Return,
1308                                                 bool isVarArg) const {
1309  switch (getEffectiveCallingConv(CC, isVarArg)) {
1310  default:
1311    llvm_unreachable("Unsupported calling convention");
1312  case CallingConv::ARM_APCS:
1313    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1314  case CallingConv::ARM_AAPCS:
1315    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1316  case CallingConv::ARM_AAPCS_VFP:
1317    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1318  case CallingConv::Fast:
1319    return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1320  case CallingConv::GHC:
1321    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1322  }
1323}
1324
1325/// LowerCallResult - Lower the result values of a call into the
1326/// appropriate copies out of appropriate physical registers.
1327SDValue
1328ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1329                                   CallingConv::ID CallConv, bool isVarArg,
1330                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1331                                   SDLoc dl, SelectionDAG &DAG,
1332                                   SmallVectorImpl<SDValue> &InVals,
1333                                   bool isThisReturn, SDValue ThisVal) const {
1334
1335  // Assign locations to each value returned by this call.
1336  SmallVector<CCValAssign, 16> RVLocs;
1337  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1338                    *DAG.getContext(), Call);
1339  CCInfo.AnalyzeCallResult(Ins,
1340                           CCAssignFnForNode(CallConv, /* Return*/ true,
1341                                             isVarArg));
1342
1343  // Copy all of the result registers out of their specified physreg.
1344  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1345    CCValAssign VA = RVLocs[i];
1346
1347    // Pass 'this' value directly from the argument to return value, to avoid
1348    // reg unit interference
1349    if (i == 0 && isThisReturn) {
1350      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1351             "unexpected return calling convention register assignment");
1352      InVals.push_back(ThisVal);
1353      continue;
1354    }
1355
1356    SDValue Val;
1357    if (VA.needsCustom()) {
1358      // Handle f64 or half of a v2f64.
1359      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1360                                      InFlag);
1361      Chain = Lo.getValue(1);
1362      InFlag = Lo.getValue(2);
1363      VA = RVLocs[++i]; // skip ahead to next loc
1364      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1365                                      InFlag);
1366      Chain = Hi.getValue(1);
1367      InFlag = Hi.getValue(2);
1368      if (!Subtarget->isLittle())
1369        std::swap (Lo, Hi);
1370      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1371
1372      if (VA.getLocVT() == MVT::v2f64) {
1373        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1374        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1375                          DAG.getConstant(0, MVT::i32));
1376
1377        VA = RVLocs[++i]; // skip ahead to next loc
1378        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1379        Chain = Lo.getValue(1);
1380        InFlag = Lo.getValue(2);
1381        VA = RVLocs[++i]; // skip ahead to next loc
1382        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1383        Chain = Hi.getValue(1);
1384        InFlag = Hi.getValue(2);
1385        if (!Subtarget->isLittle())
1386          std::swap (Lo, Hi);
1387        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1388        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1389                          DAG.getConstant(1, MVT::i32));
1390      }
1391    } else {
1392      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1393                               InFlag);
1394      Chain = Val.getValue(1);
1395      InFlag = Val.getValue(2);
1396    }
1397
1398    switch (VA.getLocInfo()) {
1399    default: llvm_unreachable("Unknown loc info!");
1400    case CCValAssign::Full: break;
1401    case CCValAssign::BCvt:
1402      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1403      break;
1404    }
1405
1406    InVals.push_back(Val);
1407  }
1408
1409  return Chain;
1410}
1411
1412/// LowerMemOpCallTo - Store the argument to the stack.
1413SDValue
1414ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1415                                    SDValue StackPtr, SDValue Arg,
1416                                    SDLoc dl, SelectionDAG &DAG,
1417                                    const CCValAssign &VA,
1418                                    ISD::ArgFlagsTy Flags) const {
1419  unsigned LocMemOffset = VA.getLocMemOffset();
1420  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1421  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1422  return DAG.getStore(Chain, dl, Arg, PtrOff,
1423                      MachinePointerInfo::getStack(LocMemOffset),
1424                      false, false, 0);
1425}
1426
1427void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
1428                                         SDValue Chain, SDValue &Arg,
1429                                         RegsToPassVector &RegsToPass,
1430                                         CCValAssign &VA, CCValAssign &NextVA,
1431                                         SDValue &StackPtr,
1432                                         SmallVectorImpl<SDValue> &MemOpChains,
1433                                         ISD::ArgFlagsTy Flags) const {
1434
1435  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1436                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1437  unsigned id = Subtarget->isLittle() ? 0 : 1;
1438  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1439
1440  if (NextVA.isRegLoc())
1441    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1442  else {
1443    assert(NextVA.isMemLoc());
1444    if (!StackPtr.getNode())
1445      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1446
1447    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1448                                           dl, DAG, NextVA,
1449                                           Flags));
1450  }
1451}
1452
1453/// LowerCall - Lowering a call into a callseq_start <-
1454/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1455/// nodes.
1456SDValue
1457ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1458                             SmallVectorImpl<SDValue> &InVals) const {
1459  SelectionDAG &DAG                     = CLI.DAG;
1460  SDLoc &dl                          = CLI.DL;
1461  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1462  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1463  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1464  SDValue Chain                         = CLI.Chain;
1465  SDValue Callee                        = CLI.Callee;
1466  bool &isTailCall                      = CLI.IsTailCall;
1467  CallingConv::ID CallConv              = CLI.CallConv;
1468  bool doesNotRet                       = CLI.DoesNotReturn;
1469  bool isVarArg                         = CLI.IsVarArg;
1470
1471  MachineFunction &MF = DAG.getMachineFunction();
1472  bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1473  bool isThisReturn   = false;
1474  bool isSibCall      = false;
1475
1476  // Disable tail calls if they're not supported.
1477  if (!Subtarget->supportsTailCall() || MF.getTarget().Options.DisableTailCalls)
1478    isTailCall = false;
1479
1480  if (isTailCall) {
1481    // Check if it's really possible to do a tail call.
1482    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1483                    isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1484                                                   Outs, OutVals, Ins, DAG);
1485    if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
1486      report_fatal_error("failed to perform tail call elimination on a call "
1487                         "site marked musttail");
1488    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1489    // detected sibcalls.
1490    if (isTailCall) {
1491      ++NumTailCalls;
1492      isSibCall = true;
1493    }
1494  }
1495
1496  // Analyze operands of the call, assigning locations to each operand.
1497  SmallVector<CCValAssign, 16> ArgLocs;
1498  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1499                    *DAG.getContext(), Call);
1500  CCInfo.AnalyzeCallOperands(Outs,
1501                             CCAssignFnForNode(CallConv, /* Return*/ false,
1502                                               isVarArg));
1503
1504  // Get a count of how many bytes are to be pushed on the stack.
1505  unsigned NumBytes = CCInfo.getNextStackOffset();
1506
1507  // For tail calls, memory operands are available in our caller's stack.
1508  if (isSibCall)
1509    NumBytes = 0;
1510
1511  // Adjust the stack pointer for the new arguments...
1512  // These operations are automatically eliminated by the prolog/epilog pass
1513  if (!isSibCall)
1514    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1515                                 dl);
1516
1517  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1518
1519  RegsToPassVector RegsToPass;
1520  SmallVector<SDValue, 8> MemOpChains;
1521
1522  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1523  // of tail call optimization, arguments are handled later.
1524  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1525       i != e;
1526       ++i, ++realArgIdx) {
1527    CCValAssign &VA = ArgLocs[i];
1528    SDValue Arg = OutVals[realArgIdx];
1529    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1530    bool isByVal = Flags.isByVal();
1531
1532    // Promote the value if needed.
1533    switch (VA.getLocInfo()) {
1534    default: llvm_unreachable("Unknown loc info!");
1535    case CCValAssign::Full: break;
1536    case CCValAssign::SExt:
1537      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1538      break;
1539    case CCValAssign::ZExt:
1540      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1541      break;
1542    case CCValAssign::AExt:
1543      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1544      break;
1545    case CCValAssign::BCvt:
1546      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1547      break;
1548    }
1549
1550    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1551    if (VA.needsCustom()) {
1552      if (VA.getLocVT() == MVT::v2f64) {
1553        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1554                                  DAG.getConstant(0, MVT::i32));
1555        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1556                                  DAG.getConstant(1, MVT::i32));
1557
1558        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1559                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1560
1561        VA = ArgLocs[++i]; // skip ahead to next loc
1562        if (VA.isRegLoc()) {
1563          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1564                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1565        } else {
1566          assert(VA.isMemLoc());
1567
1568          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1569                                                 dl, DAG, VA, Flags));
1570        }
1571      } else {
1572        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1573                         StackPtr, MemOpChains, Flags);
1574      }
1575    } else if (VA.isRegLoc()) {
1576      if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1577        assert(VA.getLocVT() == MVT::i32 &&
1578               "unexpected calling convention register assignment");
1579        assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1580               "unexpected use of 'returned'");
1581        isThisReturn = true;
1582      }
1583      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1584    } else if (isByVal) {
1585      assert(VA.isMemLoc());
1586      unsigned offset = 0;
1587
1588      // True if this byval aggregate will be split between registers
1589      // and memory.
1590      unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1591      unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1592
1593      if (CurByValIdx < ByValArgsCount) {
1594
1595        unsigned RegBegin, RegEnd;
1596        CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1597
1598        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1599        unsigned int i, j;
1600        for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1601          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1602          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1603          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1604                                     MachinePointerInfo(),
1605                                     false, false, false,
1606                                     DAG.InferPtrAlignment(AddArg));
1607          MemOpChains.push_back(Load.getValue(1));
1608          RegsToPass.push_back(std::make_pair(j, Load));
1609        }
1610
1611        // If parameter size outsides register area, "offset" value
1612        // helps us to calculate stack slot for remained part properly.
1613        offset = RegEnd - RegBegin;
1614
1615        CCInfo.nextInRegsParam();
1616      }
1617
1618      if (Flags.getByValSize() > 4*offset) {
1619        unsigned LocMemOffset = VA.getLocMemOffset();
1620        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1621        SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1622                                  StkPtrOff);
1623        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1624        SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1625        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1626                                           MVT::i32);
1627        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1628
1629        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1630        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1631        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1632                                          Ops));
1633      }
1634    } else if (!isSibCall) {
1635      assert(VA.isMemLoc());
1636
1637      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1638                                             dl, DAG, VA, Flags));
1639    }
1640  }
1641
1642  if (!MemOpChains.empty())
1643    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1644
1645  // Build a sequence of copy-to-reg nodes chained together with token chain
1646  // and flag operands which copy the outgoing args into the appropriate regs.
1647  SDValue InFlag;
1648  // Tail call byval lowering might overwrite argument registers so in case of
1649  // tail call optimization the copies to registers are lowered later.
1650  if (!isTailCall)
1651    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1652      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1653                               RegsToPass[i].second, InFlag);
1654      InFlag = Chain.getValue(1);
1655    }
1656
1657  // For tail calls lower the arguments to the 'real' stack slot.
1658  if (isTailCall) {
1659    // Force all the incoming stack arguments to be loaded from the stack
1660    // before any new outgoing arguments are stored to the stack, because the
1661    // outgoing stack slots may alias the incoming argument stack slots, and
1662    // the alias isn't otherwise explicit. This is slightly more conservative
1663    // than necessary, because it means that each store effectively depends
1664    // on every argument instead of just those arguments it would clobber.
1665
1666    // Do not flag preceding copytoreg stuff together with the following stuff.
1667    InFlag = SDValue();
1668    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1669      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1670                               RegsToPass[i].second, InFlag);
1671      InFlag = Chain.getValue(1);
1672    }
1673    InFlag = SDValue();
1674  }
1675
1676  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1677  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1678  // node so that legalize doesn't hack it.
1679  bool isDirect = false;
1680  bool isARMFunc = false;
1681  bool isLocalARMFunc = false;
1682  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1683
1684  if (EnableARMLongCalls) {
1685    assert((Subtarget->isTargetWindows() ||
1686            getTargetMachine().getRelocationModel() == Reloc::Static) &&
1687           "long-calls with non-static relocation model!");
1688    // Handle a global address or an external symbol. If it's not one of
1689    // those, the target's already in a register, so we don't need to do
1690    // anything extra.
1691    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1692      const GlobalValue *GV = G->getGlobal();
1693      // Create a constant pool entry for the callee address
1694      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1695      ARMConstantPoolValue *CPV =
1696        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1697
1698      // Get the address of the callee into a register
1699      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1700      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1701      Callee = DAG.getLoad(getPointerTy(), dl,
1702                           DAG.getEntryNode(), CPAddr,
1703                           MachinePointerInfo::getConstantPool(),
1704                           false, false, false, 0);
1705    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1706      const char *Sym = S->getSymbol();
1707
1708      // Create a constant pool entry for the callee address
1709      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1710      ARMConstantPoolValue *CPV =
1711        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1712                                      ARMPCLabelIndex, 0);
1713      // Get the address of the callee into a register
1714      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1715      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1716      Callee = DAG.getLoad(getPointerTy(), dl,
1717                           DAG.getEntryNode(), CPAddr,
1718                           MachinePointerInfo::getConstantPool(),
1719                           false, false, false, 0);
1720    }
1721  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1722    const GlobalValue *GV = G->getGlobal();
1723    isDirect = true;
1724    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1725    bool isStub = (isExt && Subtarget->isTargetMachO()) &&
1726                   getTargetMachine().getRelocationModel() != Reloc::Static;
1727    isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1728    // ARM call to a local ARM function is predicable.
1729    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1730    // tBX takes a register source operand.
1731    if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1732      assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
1733      Callee = DAG.getNode(ARMISD::WrapperPIC, dl, getPointerTy(),
1734                           DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
1735                                                      0, ARMII::MO_NONLAZY));
1736      Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
1737                           MachinePointerInfo::getGOT(), false, false, true, 0);
1738    } else if (Subtarget->isTargetCOFF()) {
1739      assert(Subtarget->isTargetWindows() &&
1740             "Windows is the only supported COFF target");
1741      unsigned TargetFlags = GV->hasDLLImportStorageClass()
1742                                 ? ARMII::MO_DLLIMPORT
1743                                 : ARMII::MO_NO_FLAG;
1744      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), /*Offset=*/0,
1745                                          TargetFlags);
1746      if (GV->hasDLLImportStorageClass())
1747        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
1748                             DAG.getNode(ARMISD::Wrapper, dl, getPointerTy(),
1749                                         Callee), MachinePointerInfo::getGOT(),
1750                             false, false, false, 0);
1751    } else {
1752      // On ELF targets for PIC code, direct calls should go through the PLT
1753      unsigned OpFlags = 0;
1754      if (Subtarget->isTargetELF() &&
1755          getTargetMachine().getRelocationModel() == Reloc::PIC_)
1756        OpFlags = ARMII::MO_PLT;
1757      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1758    }
1759  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1760    isDirect = true;
1761    bool isStub = Subtarget->isTargetMachO() &&
1762                  getTargetMachine().getRelocationModel() != Reloc::Static;
1763    isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1764    // tBX takes a register source operand.
1765    const char *Sym = S->getSymbol();
1766    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1767      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1768      ARMConstantPoolValue *CPV =
1769        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1770                                      ARMPCLabelIndex, 4);
1771      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1772      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1773      Callee = DAG.getLoad(getPointerTy(), dl,
1774                           DAG.getEntryNode(), CPAddr,
1775                           MachinePointerInfo::getConstantPool(),
1776                           false, false, false, 0);
1777      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1778      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1779                           getPointerTy(), Callee, PICLabel);
1780    } else {
1781      unsigned OpFlags = 0;
1782      // On ELF targets for PIC code, direct calls should go through the PLT
1783      if (Subtarget->isTargetELF() &&
1784                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1785        OpFlags = ARMII::MO_PLT;
1786      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1787    }
1788  }
1789
1790  // FIXME: handle tail calls differently.
1791  unsigned CallOpc;
1792  bool HasMinSizeAttr = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
1793  if (Subtarget->isThumb()) {
1794    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1795      CallOpc = ARMISD::CALL_NOLINK;
1796    else
1797      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1798  } else {
1799    if (!isDirect && !Subtarget->hasV5TOps())
1800      CallOpc = ARMISD::CALL_NOLINK;
1801    else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1802               // Emit regular call when code size is the priority
1803               !HasMinSizeAttr)
1804      // "mov lr, pc; b _foo" to avoid confusing the RSP
1805      CallOpc = ARMISD::CALL_NOLINK;
1806    else
1807      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1808  }
1809
1810  std::vector<SDValue> Ops;
1811  Ops.push_back(Chain);
1812  Ops.push_back(Callee);
1813
1814  // Add argument registers to the end of the list so that they are known live
1815  // into the call.
1816  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1817    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1818                                  RegsToPass[i].second.getValueType()));
1819
1820  // Add a register mask operand representing the call-preserved registers.
1821  if (!isTailCall) {
1822    const uint32_t *Mask;
1823    const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
1824    if (isThisReturn) {
1825      // For 'this' returns, use the R0-preserving mask if applicable
1826      Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
1827      if (!Mask) {
1828        // Set isThisReturn to false if the calling convention is not one that
1829        // allows 'returned' to be modeled in this way, so LowerCallResult does
1830        // not try to pass 'this' straight through
1831        isThisReturn = false;
1832        Mask = ARI->getCallPreservedMask(MF, CallConv);
1833      }
1834    } else
1835      Mask = ARI->getCallPreservedMask(MF, CallConv);
1836
1837    assert(Mask && "Missing call preserved mask for calling convention");
1838    Ops.push_back(DAG.getRegisterMask(Mask));
1839  }
1840
1841  if (InFlag.getNode())
1842    Ops.push_back(InFlag);
1843
1844  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1845  if (isTailCall)
1846    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
1847
1848  // Returns a chain and a flag for retval copy to use.
1849  Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
1850  InFlag = Chain.getValue(1);
1851
1852  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1853                             DAG.getIntPtrConstant(0, true), InFlag, dl);
1854  if (!Ins.empty())
1855    InFlag = Chain.getValue(1);
1856
1857  // Handle result values, copying them out of physregs into vregs that we
1858  // return.
1859  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1860                         InVals, isThisReturn,
1861                         isThisReturn ? OutVals[0] : SDValue());
1862}
1863
1864/// HandleByVal - Every parameter *after* a byval parameter is passed
1865/// on the stack.  Remember the next parameter register to allocate,
1866/// and then confiscate the rest of the parameter registers to insure
1867/// this.
1868void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
1869                                    unsigned Align) const {
1870  assert((State->getCallOrPrologue() == Prologue ||
1871          State->getCallOrPrologue() == Call) &&
1872         "unhandled ParmContext");
1873
1874  // Byval (as with any stack) slots are always at least 4 byte aligned.
1875  Align = std::max(Align, 4U);
1876
1877  unsigned Reg = State->AllocateReg(GPRArgRegs);
1878  if (!Reg)
1879    return;
1880
1881  unsigned AlignInRegs = Align / 4;
1882  unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
1883  for (unsigned i = 0; i < Waste; ++i)
1884    Reg = State->AllocateReg(GPRArgRegs);
1885
1886  if (!Reg)
1887    return;
1888
1889  unsigned Excess = 4 * (ARM::R4 - Reg);
1890
1891  // Special case when NSAA != SP and parameter size greater than size of
1892  // all remained GPR regs. In that case we can't split parameter, we must
1893  // send it to stack. We also must set NCRN to R4, so waste all
1894  // remained registers.
1895  const unsigned NSAAOffset = State->getNextStackOffset();
1896  if (NSAAOffset != 0 && Size > Excess) {
1897    while (State->AllocateReg(GPRArgRegs))
1898      ;
1899    return;
1900  }
1901
1902  // First register for byval parameter is the first register that wasn't
1903  // allocated before this method call, so it would be "reg".
1904  // If parameter is small enough to be saved in range [reg, r4), then
1905  // the end (first after last) register would be reg + param-size-in-regs,
1906  // else parameter would be splitted between registers and stack,
1907  // end register would be r4 in this case.
1908  unsigned ByValRegBegin = Reg;
1909  unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
1910  State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
1911  // Note, first register is allocated in the beginning of function already,
1912  // allocate remained amount of registers we need.
1913  for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
1914    State->AllocateReg(GPRArgRegs);
1915  // A byval parameter that is split between registers and memory needs its
1916  // size truncated here.
1917  // In the case where the entire structure fits in registers, we set the
1918  // size in memory to zero.
1919  Size = std::max<int>(Size - Excess, 0);
1920}
1921
1922
1923/// MatchingStackOffset - Return true if the given stack call argument is
1924/// already available in the same position (relatively) of the caller's
1925/// incoming argument stack.
1926static
1927bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1928                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1929                         const TargetInstrInfo *TII) {
1930  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1931  int FI = INT_MAX;
1932  if (Arg.getOpcode() == ISD::CopyFromReg) {
1933    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1934    if (!TargetRegisterInfo::isVirtualRegister(VR))
1935      return false;
1936    MachineInstr *Def = MRI->getVRegDef(VR);
1937    if (!Def)
1938      return false;
1939    if (!Flags.isByVal()) {
1940      if (!TII->isLoadFromStackSlot(Def, FI))
1941        return false;
1942    } else {
1943      return false;
1944    }
1945  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1946    if (Flags.isByVal())
1947      // ByVal argument is passed in as a pointer but it's now being
1948      // dereferenced. e.g.
1949      // define @foo(%struct.X* %A) {
1950      //   tail call @bar(%struct.X* byval %A)
1951      // }
1952      return false;
1953    SDValue Ptr = Ld->getBasePtr();
1954    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1955    if (!FINode)
1956      return false;
1957    FI = FINode->getIndex();
1958  } else
1959    return false;
1960
1961  assert(FI != INT_MAX);
1962  if (!MFI->isFixedObjectIndex(FI))
1963    return false;
1964  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1965}
1966
1967/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1968/// for tail call optimization. Targets which want to do tail call
1969/// optimization should implement this function.
1970bool
1971ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1972                                                     CallingConv::ID CalleeCC,
1973                                                     bool isVarArg,
1974                                                     bool isCalleeStructRet,
1975                                                     bool isCallerStructRet,
1976                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1977                                    const SmallVectorImpl<SDValue> &OutVals,
1978                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1979                                                     SelectionDAG& DAG) const {
1980  const Function *CallerF = DAG.getMachineFunction().getFunction();
1981  CallingConv::ID CallerCC = CallerF->getCallingConv();
1982  bool CCMatch = CallerCC == CalleeCC;
1983
1984  // Look for obvious safe cases to perform tail call optimization that do not
1985  // require ABI changes. This is what gcc calls sibcall.
1986
1987  // Do not sibcall optimize vararg calls unless the call site is not passing
1988  // any arguments.
1989  if (isVarArg && !Outs.empty())
1990    return false;
1991
1992  // Exception-handling functions need a special set of instructions to indicate
1993  // a return to the hardware. Tail-calling another function would probably
1994  // break this.
1995  if (CallerF->hasFnAttribute("interrupt"))
1996    return false;
1997
1998  // Also avoid sibcall optimization if either caller or callee uses struct
1999  // return semantics.
2000  if (isCalleeStructRet || isCallerStructRet)
2001    return false;
2002
2003  // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
2004  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
2005  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
2006  // support in the assembler and linker to be used. This would need to be
2007  // fixed to fully support tail calls in Thumb1.
2008  //
2009  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
2010  // LR.  This means if we need to reload LR, it takes an extra instructions,
2011  // which outweighs the value of the tail call; but here we don't know yet
2012  // whether LR is going to be used.  Probably the right approach is to
2013  // generate the tail call here and turn it back into CALL/RET in
2014  // emitEpilogue if LR is used.
2015
2016  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
2017  // but we need to make sure there are enough registers; the only valid
2018  // registers are the 4 used for parameters.  We don't currently do this
2019  // case.
2020  if (Subtarget->isThumb1Only())
2021    return false;
2022
2023  // Externally-defined functions with weak linkage should not be
2024  // tail-called on ARM when the OS does not support dynamic
2025  // pre-emption of symbols, as the AAELF spec requires normal calls
2026  // to undefined weak functions to be replaced with a NOP or jump to the
2027  // next instruction. The behaviour of branch instructions in this
2028  // situation (as used for tail calls) is implementation-defined, so we
2029  // cannot rely on the linker replacing the tail call with a return.
2030  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2031    const GlobalValue *GV = G->getGlobal();
2032    const Triple TT(getTargetMachine().getTargetTriple());
2033    if (GV->hasExternalWeakLinkage() &&
2034        (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2035      return false;
2036  }
2037
2038  // If the calling conventions do not match, then we'd better make sure the
2039  // results are returned in the same way as what the caller expects.
2040  if (!CCMatch) {
2041    SmallVector<CCValAssign, 16> RVLocs1;
2042    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2043                       *DAG.getContext(), Call);
2044    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
2045
2046    SmallVector<CCValAssign, 16> RVLocs2;
2047    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2048                       *DAG.getContext(), Call);
2049    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
2050
2051    if (RVLocs1.size() != RVLocs2.size())
2052      return false;
2053    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2054      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2055        return false;
2056      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2057        return false;
2058      if (RVLocs1[i].isRegLoc()) {
2059        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2060          return false;
2061      } else {
2062        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2063          return false;
2064      }
2065    }
2066  }
2067
2068  // If Caller's vararg or byval argument has been split between registers and
2069  // stack, do not perform tail call, since part of the argument is in caller's
2070  // local frame.
2071  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
2072                                      getInfo<ARMFunctionInfo>();
2073  if (AFI_Caller->getArgRegsSaveSize())
2074    return false;
2075
2076  // If the callee takes no arguments then go on to check the results of the
2077  // call.
2078  if (!Outs.empty()) {
2079    // Check if stack adjustment is needed. For now, do not do this if any
2080    // argument is passed on the stack.
2081    SmallVector<CCValAssign, 16> ArgLocs;
2082    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2083                      *DAG.getContext(), Call);
2084    CCInfo.AnalyzeCallOperands(Outs,
2085                               CCAssignFnForNode(CalleeCC, false, isVarArg));
2086    if (CCInfo.getNextStackOffset()) {
2087      MachineFunction &MF = DAG.getMachineFunction();
2088
2089      // Check if the arguments are already laid out in the right way as
2090      // the caller's fixed stack objects.
2091      MachineFrameInfo *MFI = MF.getFrameInfo();
2092      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2093      const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2094      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2095           i != e;
2096           ++i, ++realArgIdx) {
2097        CCValAssign &VA = ArgLocs[i];
2098        EVT RegVT = VA.getLocVT();
2099        SDValue Arg = OutVals[realArgIdx];
2100        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2101        if (VA.getLocInfo() == CCValAssign::Indirect)
2102          return false;
2103        if (VA.needsCustom()) {
2104          // f64 and vector types are split into multiple registers or
2105          // register/stack-slot combinations.  The types will not match
2106          // the registers; give up on memory f64 refs until we figure
2107          // out what to do about this.
2108          if (!VA.isRegLoc())
2109            return false;
2110          if (!ArgLocs[++i].isRegLoc())
2111            return false;
2112          if (RegVT == MVT::v2f64) {
2113            if (!ArgLocs[++i].isRegLoc())
2114              return false;
2115            if (!ArgLocs[++i].isRegLoc())
2116              return false;
2117          }
2118        } else if (!VA.isRegLoc()) {
2119          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2120                                   MFI, MRI, TII))
2121            return false;
2122        }
2123      }
2124    }
2125  }
2126
2127  return true;
2128}
2129
2130bool
2131ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2132                                  MachineFunction &MF, bool isVarArg,
2133                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2134                                  LLVMContext &Context) const {
2135  SmallVector<CCValAssign, 16> RVLocs;
2136  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2137  return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2138                                                    isVarArg));
2139}
2140
2141static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2142                                    SDLoc DL, SelectionDAG &DAG) {
2143  const MachineFunction &MF = DAG.getMachineFunction();
2144  const Function *F = MF.getFunction();
2145
2146  StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2147
2148  // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2149  // version of the "preferred return address". These offsets affect the return
2150  // instruction if this is a return from PL1 without hypervisor extensions.
2151  //    IRQ/FIQ: +4     "subs pc, lr, #4"
2152  //    SWI:     0      "subs pc, lr, #0"
2153  //    ABORT:   +4     "subs pc, lr, #4"
2154  //    UNDEF:   +4/+2  "subs pc, lr, #0"
2155  // UNDEF varies depending on where the exception came from ARM or Thumb
2156  // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2157
2158  int64_t LROffset;
2159  if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2160      IntKind == "ABORT")
2161    LROffset = 4;
2162  else if (IntKind == "SWI" || IntKind == "UNDEF")
2163    LROffset = 0;
2164  else
2165    report_fatal_error("Unsupported interrupt attribute. If present, value "
2166                       "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2167
2168  RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, MVT::i32, false));
2169
2170  return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2171}
2172
2173SDValue
2174ARMTargetLowering::LowerReturn(SDValue Chain,
2175                               CallingConv::ID CallConv, bool isVarArg,
2176                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2177                               const SmallVectorImpl<SDValue> &OutVals,
2178                               SDLoc dl, SelectionDAG &DAG) const {
2179
2180  // CCValAssign - represent the assignment of the return value to a location.
2181  SmallVector<CCValAssign, 16> RVLocs;
2182
2183  // CCState - Info about the registers and stack slots.
2184  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2185                    *DAG.getContext(), Call);
2186
2187  // Analyze outgoing return values.
2188  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2189                                               isVarArg));
2190
2191  SDValue Flag;
2192  SmallVector<SDValue, 4> RetOps;
2193  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2194  bool isLittleEndian = Subtarget->isLittle();
2195
2196  MachineFunction &MF = DAG.getMachineFunction();
2197  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2198  AFI->setReturnRegsCount(RVLocs.size());
2199
2200  // Copy the result values into the output registers.
2201  for (unsigned i = 0, realRVLocIdx = 0;
2202       i != RVLocs.size();
2203       ++i, ++realRVLocIdx) {
2204    CCValAssign &VA = RVLocs[i];
2205    assert(VA.isRegLoc() && "Can only return in registers!");
2206
2207    SDValue Arg = OutVals[realRVLocIdx];
2208
2209    switch (VA.getLocInfo()) {
2210    default: llvm_unreachable("Unknown loc info!");
2211    case CCValAssign::Full: break;
2212    case CCValAssign::BCvt:
2213      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2214      break;
2215    }
2216
2217    if (VA.needsCustom()) {
2218      if (VA.getLocVT() == MVT::v2f64) {
2219        // Extract the first half and return it in two registers.
2220        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2221                                   DAG.getConstant(0, MVT::i32));
2222        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2223                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
2224
2225        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2226                                 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2227                                 Flag);
2228        Flag = Chain.getValue(1);
2229        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2230        VA = RVLocs[++i]; // skip ahead to next loc
2231        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2232                                 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2233                                 Flag);
2234        Flag = Chain.getValue(1);
2235        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2236        VA = RVLocs[++i]; // skip ahead to next loc
2237
2238        // Extract the 2nd half and fall through to handle it as an f64 value.
2239        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2240                          DAG.getConstant(1, MVT::i32));
2241      }
2242      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2243      // available.
2244      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2245                                  DAG.getVTList(MVT::i32, MVT::i32), Arg);
2246      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2247                               fmrrd.getValue(isLittleEndian ? 0 : 1),
2248                               Flag);
2249      Flag = Chain.getValue(1);
2250      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2251      VA = RVLocs[++i]; // skip ahead to next loc
2252      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2253                               fmrrd.getValue(isLittleEndian ? 1 : 0),
2254                               Flag);
2255    } else
2256      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2257
2258    // Guarantee that all emitted copies are
2259    // stuck together, avoiding something bad.
2260    Flag = Chain.getValue(1);
2261    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2262  }
2263
2264  // Update chain and glue.
2265  RetOps[0] = Chain;
2266  if (Flag.getNode())
2267    RetOps.push_back(Flag);
2268
2269  // CPUs which aren't M-class use a special sequence to return from
2270  // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2271  // though we use "subs pc, lr, #N").
2272  //
2273  // M-class CPUs actually use a normal return sequence with a special
2274  // (hardware-provided) value in LR, so the normal code path works.
2275  if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2276      !Subtarget->isMClass()) {
2277    if (Subtarget->isThumb1Only())
2278      report_fatal_error("interrupt attribute is not supported in Thumb1");
2279    return LowerInterruptReturn(RetOps, dl, DAG);
2280  }
2281
2282  return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2283}
2284
2285bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2286  if (N->getNumValues() != 1)
2287    return false;
2288  if (!N->hasNUsesOfValue(1, 0))
2289    return false;
2290
2291  SDValue TCChain = Chain;
2292  SDNode *Copy = *N->use_begin();
2293  if (Copy->getOpcode() == ISD::CopyToReg) {
2294    // If the copy has a glue operand, we conservatively assume it isn't safe to
2295    // perform a tail call.
2296    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2297      return false;
2298    TCChain = Copy->getOperand(0);
2299  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2300    SDNode *VMov = Copy;
2301    // f64 returned in a pair of GPRs.
2302    SmallPtrSet<SDNode*, 2> Copies;
2303    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2304         UI != UE; ++UI) {
2305      if (UI->getOpcode() != ISD::CopyToReg)
2306        return false;
2307      Copies.insert(*UI);
2308    }
2309    if (Copies.size() > 2)
2310      return false;
2311
2312    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2313         UI != UE; ++UI) {
2314      SDValue UseChain = UI->getOperand(0);
2315      if (Copies.count(UseChain.getNode()))
2316        // Second CopyToReg
2317        Copy = *UI;
2318      else {
2319        // We are at the top of this chain.
2320        // If the copy has a glue operand, we conservatively assume it
2321        // isn't safe to perform a tail call.
2322        if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2323          return false;
2324        // First CopyToReg
2325        TCChain = UseChain;
2326      }
2327    }
2328  } else if (Copy->getOpcode() == ISD::BITCAST) {
2329    // f32 returned in a single GPR.
2330    if (!Copy->hasOneUse())
2331      return false;
2332    Copy = *Copy->use_begin();
2333    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2334      return false;
2335    // If the copy has a glue operand, we conservatively assume it isn't safe to
2336    // perform a tail call.
2337    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2338      return false;
2339    TCChain = Copy->getOperand(0);
2340  } else {
2341    return false;
2342  }
2343
2344  bool HasRet = false;
2345  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2346       UI != UE; ++UI) {
2347    if (UI->getOpcode() != ARMISD::RET_FLAG &&
2348        UI->getOpcode() != ARMISD::INTRET_FLAG)
2349      return false;
2350    HasRet = true;
2351  }
2352
2353  if (!HasRet)
2354    return false;
2355
2356  Chain = TCChain;
2357  return true;
2358}
2359
2360bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2361  if (!Subtarget->supportsTailCall())
2362    return false;
2363
2364  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2365    return false;
2366
2367  return !Subtarget->isThumb1Only();
2368}
2369
2370// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2371// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2372// one of the above mentioned nodes. It has to be wrapped because otherwise
2373// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2374// be used to form addressing mode. These wrapped nodes will be selected
2375// into MOVi.
2376static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2377  EVT PtrVT = Op.getValueType();
2378  // FIXME there is no actual debug info here
2379  SDLoc dl(Op);
2380  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2381  SDValue Res;
2382  if (CP->isMachineConstantPoolEntry())
2383    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2384                                    CP->getAlignment());
2385  else
2386    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2387                                    CP->getAlignment());
2388  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2389}
2390
2391unsigned ARMTargetLowering::getJumpTableEncoding() const {
2392  return MachineJumpTableInfo::EK_Inline;
2393}
2394
2395SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2396                                             SelectionDAG &DAG) const {
2397  MachineFunction &MF = DAG.getMachineFunction();
2398  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2399  unsigned ARMPCLabelIndex = 0;
2400  SDLoc DL(Op);
2401  EVT PtrVT = getPointerTy();
2402  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2403  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2404  SDValue CPAddr;
2405  if (RelocM == Reloc::Static) {
2406    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2407  } else {
2408    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2409    ARMPCLabelIndex = AFI->createPICLabelUId();
2410    ARMConstantPoolValue *CPV =
2411      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2412                                      ARMCP::CPBlockAddress, PCAdj);
2413    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2414  }
2415  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2416  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2417                               MachinePointerInfo::getConstantPool(),
2418                               false, false, false, 0);
2419  if (RelocM == Reloc::Static)
2420    return Result;
2421  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2422  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2423}
2424
2425// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2426SDValue
2427ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2428                                                 SelectionDAG &DAG) const {
2429  SDLoc dl(GA);
2430  EVT PtrVT = getPointerTy();
2431  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2432  MachineFunction &MF = DAG.getMachineFunction();
2433  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2434  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2435  ARMConstantPoolValue *CPV =
2436    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2437                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2438  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2439  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2440  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2441                         MachinePointerInfo::getConstantPool(),
2442                         false, false, false, 0);
2443  SDValue Chain = Argument.getValue(1);
2444
2445  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2446  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2447
2448  // call __tls_get_addr.
2449  ArgListTy Args;
2450  ArgListEntry Entry;
2451  Entry.Node = Argument;
2452  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2453  Args.push_back(Entry);
2454
2455  // FIXME: is there useful debug info available here?
2456  TargetLowering::CallLoweringInfo CLI(DAG);
2457  CLI.setDebugLoc(dl).setChain(Chain)
2458    .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2459               DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
2460               0);
2461
2462  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2463  return CallResult.first;
2464}
2465
2466// Lower ISD::GlobalTLSAddress using the "initial exec" or
2467// "local exec" model.
2468SDValue
2469ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2470                                        SelectionDAG &DAG,
2471                                        TLSModel::Model model) const {
2472  const GlobalValue *GV = GA->getGlobal();
2473  SDLoc dl(GA);
2474  SDValue Offset;
2475  SDValue Chain = DAG.getEntryNode();
2476  EVT PtrVT = getPointerTy();
2477  // Get the Thread Pointer
2478  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2479
2480  if (model == TLSModel::InitialExec) {
2481    MachineFunction &MF = DAG.getMachineFunction();
2482    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2483    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2484    // Initial exec model.
2485    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2486    ARMConstantPoolValue *CPV =
2487      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2488                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2489                                      true);
2490    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2491    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2492    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2493                         MachinePointerInfo::getConstantPool(),
2494                         false, false, false, 0);
2495    Chain = Offset.getValue(1);
2496
2497    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2498    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2499
2500    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2501                         MachinePointerInfo::getConstantPool(),
2502                         false, false, false, 0);
2503  } else {
2504    // local exec model
2505    assert(model == TLSModel::LocalExec);
2506    ARMConstantPoolValue *CPV =
2507      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2508    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2509    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2510    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2511                         MachinePointerInfo::getConstantPool(),
2512                         false, false, false, 0);
2513  }
2514
2515  // The address of the thread local variable is the add of the thread
2516  // pointer with the offset of the variable.
2517  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2518}
2519
2520SDValue
2521ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2522  // TODO: implement the "local dynamic" model
2523  assert(Subtarget->isTargetELF() &&
2524         "TLS not implemented for non-ELF targets");
2525  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2526
2527  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2528
2529  switch (model) {
2530    case TLSModel::GeneralDynamic:
2531    case TLSModel::LocalDynamic:
2532      return LowerToTLSGeneralDynamicModel(GA, DAG);
2533    case TLSModel::InitialExec:
2534    case TLSModel::LocalExec:
2535      return LowerToTLSExecModels(GA, DAG, model);
2536  }
2537  llvm_unreachable("bogus TLS model");
2538}
2539
2540SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2541                                                 SelectionDAG &DAG) const {
2542  EVT PtrVT = getPointerTy();
2543  SDLoc dl(Op);
2544  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2545  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2546    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2547    ARMConstantPoolValue *CPV =
2548      ARMConstantPoolConstant::Create(GV,
2549                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2550    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2551    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2552    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2553                                 CPAddr,
2554                                 MachinePointerInfo::getConstantPool(),
2555                                 false, false, false, 0);
2556    SDValue Chain = Result.getValue(1);
2557    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2558    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2559    if (!UseGOTOFF)
2560      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2561                           MachinePointerInfo::getGOT(),
2562                           false, false, false, 0);
2563    return Result;
2564  }
2565
2566  // If we have T2 ops, we can materialize the address directly via movt/movw
2567  // pair. This is always cheaper.
2568  if (Subtarget->useMovt(DAG.getMachineFunction())) {
2569    ++NumMovwMovt;
2570    // FIXME: Once remat is capable of dealing with instructions with register
2571    // operands, expand this into two nodes.
2572    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2573                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2574  } else {
2575    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2576    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2577    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2578                       MachinePointerInfo::getConstantPool(),
2579                       false, false, false, 0);
2580  }
2581}
2582
2583SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2584                                                    SelectionDAG &DAG) const {
2585  EVT PtrVT = getPointerTy();
2586  SDLoc dl(Op);
2587  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2588  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2589
2590  if (Subtarget->useMovt(DAG.getMachineFunction()))
2591    ++NumMovwMovt;
2592
2593  // FIXME: Once remat is capable of dealing with instructions with register
2594  // operands, expand this into multiple nodes
2595  unsigned Wrapper =
2596      RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
2597
2598  SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
2599  SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
2600
2601  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2602    Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2603                         MachinePointerInfo::getGOT(), false, false, false, 0);
2604  return Result;
2605}
2606
2607SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
2608                                                     SelectionDAG &DAG) const {
2609  assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
2610  assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
2611         "Windows on ARM expects to use movw/movt");
2612
2613  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2614  const ARMII::TOF TargetFlags =
2615    (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
2616  EVT PtrVT = getPointerTy();
2617  SDValue Result;
2618  SDLoc DL(Op);
2619
2620  ++NumMovwMovt;
2621
2622  // FIXME: Once remat is capable of dealing with instructions with register
2623  // operands, expand this into two nodes.
2624  Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
2625                       DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
2626                                                  TargetFlags));
2627  if (GV->hasDLLImportStorageClass())
2628    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2629                         MachinePointerInfo::getGOT(), false, false, false, 0);
2630  return Result;
2631}
2632
2633SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2634                                                    SelectionDAG &DAG) const {
2635  assert(Subtarget->isTargetELF() &&
2636         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2637  MachineFunction &MF = DAG.getMachineFunction();
2638  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2639  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2640  EVT PtrVT = getPointerTy();
2641  SDLoc dl(Op);
2642  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2643  ARMConstantPoolValue *CPV =
2644    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2645                                  ARMPCLabelIndex, PCAdj);
2646  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2647  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2648  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2649                               MachinePointerInfo::getConstantPool(),
2650                               false, false, false, 0);
2651  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2652  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2653}
2654
2655SDValue
2656ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2657  SDLoc dl(Op);
2658  SDValue Val = DAG.getConstant(0, MVT::i32);
2659  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2660                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2661                     Op.getOperand(1), Val);
2662}
2663
2664SDValue
2665ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2666  SDLoc dl(Op);
2667  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2668                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2669}
2670
2671SDValue
2672ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2673                                          const ARMSubtarget *Subtarget) const {
2674  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2675  SDLoc dl(Op);
2676  switch (IntNo) {
2677  default: return SDValue();    // Don't custom lower most intrinsics.
2678  case Intrinsic::arm_rbit: {
2679    assert(Op.getOperand(1).getValueType() == MVT::i32 &&
2680           "RBIT intrinsic must have i32 type!");
2681    return DAG.getNode(ARMISD::RBIT, dl, MVT::i32, Op.getOperand(1));
2682  }
2683  case Intrinsic::arm_thread_pointer: {
2684    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2685    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2686  }
2687  case Intrinsic::eh_sjlj_lsda: {
2688    MachineFunction &MF = DAG.getMachineFunction();
2689    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2690    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2691    EVT PtrVT = getPointerTy();
2692    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2693    SDValue CPAddr;
2694    unsigned PCAdj = (RelocM != Reloc::PIC_)
2695      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2696    ARMConstantPoolValue *CPV =
2697      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2698                                      ARMCP::CPLSDA, PCAdj);
2699    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2700    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2701    SDValue Result =
2702      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2703                  MachinePointerInfo::getConstantPool(),
2704                  false, false, false, 0);
2705
2706    if (RelocM == Reloc::PIC_) {
2707      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2708      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2709    }
2710    return Result;
2711  }
2712  case Intrinsic::arm_neon_vmulls:
2713  case Intrinsic::arm_neon_vmullu: {
2714    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2715      ? ARMISD::VMULLs : ARMISD::VMULLu;
2716    return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2717                       Op.getOperand(1), Op.getOperand(2));
2718  }
2719  }
2720}
2721
2722static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2723                                 const ARMSubtarget *Subtarget) {
2724  // FIXME: handle "fence singlethread" more efficiently.
2725  SDLoc dl(Op);
2726  if (!Subtarget->hasDataBarrier()) {
2727    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2728    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2729    // here.
2730    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2731           "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
2732    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2733                       DAG.getConstant(0, MVT::i32));
2734  }
2735
2736  ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
2737  AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
2738  ARM_MB::MemBOpt Domain = ARM_MB::ISH;
2739  if (Subtarget->isMClass()) {
2740    // Only a full system barrier exists in the M-class architectures.
2741    Domain = ARM_MB::SY;
2742  } else if (Subtarget->isSwift() && Ord == Release) {
2743    // Swift happens to implement ISHST barriers in a way that's compatible with
2744    // Release semantics but weaker than ISH so we'd be fools not to use
2745    // it. Beware: other processors probably don't!
2746    Domain = ARM_MB::ISHST;
2747  }
2748
2749  return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
2750                     DAG.getConstant(Intrinsic::arm_dmb, MVT::i32),
2751                     DAG.getConstant(Domain, MVT::i32));
2752}
2753
2754static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2755                             const ARMSubtarget *Subtarget) {
2756  // ARM pre v5TE and Thumb1 does not have preload instructions.
2757  if (!(Subtarget->isThumb2() ||
2758        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2759    // Just preserve the chain.
2760    return Op.getOperand(0);
2761
2762  SDLoc dl(Op);
2763  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2764  if (!isRead &&
2765      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2766    // ARMv7 with MP extension has PLDW.
2767    return Op.getOperand(0);
2768
2769  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2770  if (Subtarget->isThumb()) {
2771    // Invert the bits.
2772    isRead = ~isRead & 1;
2773    isData = ~isData & 1;
2774  }
2775
2776  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2777                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2778                     DAG.getConstant(isData, MVT::i32));
2779}
2780
2781static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2782  MachineFunction &MF = DAG.getMachineFunction();
2783  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2784
2785  // vastart just stores the address of the VarArgsFrameIndex slot into the
2786  // memory location argument.
2787  SDLoc dl(Op);
2788  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2789  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2790  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2791  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2792                      MachinePointerInfo(SV), false, false, 0);
2793}
2794
2795SDValue
2796ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2797                                        SDValue &Root, SelectionDAG &DAG,
2798                                        SDLoc dl) const {
2799  MachineFunction &MF = DAG.getMachineFunction();
2800  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2801
2802  const TargetRegisterClass *RC;
2803  if (AFI->isThumb1OnlyFunction())
2804    RC = &ARM::tGPRRegClass;
2805  else
2806    RC = &ARM::GPRRegClass;
2807
2808  // Transform the arguments stored in physical registers into virtual ones.
2809  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2810  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2811
2812  SDValue ArgValue2;
2813  if (NextVA.isMemLoc()) {
2814    MachineFrameInfo *MFI = MF.getFrameInfo();
2815    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2816
2817    // Create load node to retrieve arguments from the stack.
2818    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2819    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2820                            MachinePointerInfo::getFixedStack(FI),
2821                            false, false, false, 0);
2822  } else {
2823    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2824    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2825  }
2826  if (!Subtarget->isLittle())
2827    std::swap (ArgValue, ArgValue2);
2828  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2829}
2830
2831// The remaining GPRs hold either the beginning of variable-argument
2832// data, or the beginning of an aggregate passed by value (usually
2833// byval).  Either way, we allocate stack slots adjacent to the data
2834// provided by our caller, and store the unallocated registers there.
2835// If this is a variadic function, the va_list pointer will begin with
2836// these values; otherwise, this reassembles a (byval) structure that
2837// was split between registers and memory.
2838// Return: The frame index registers were stored into.
2839int
2840ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
2841                                  SDLoc dl, SDValue &Chain,
2842                                  const Value *OrigArg,
2843                                  unsigned InRegsParamRecordIdx,
2844                                  int ArgOffset,
2845                                  unsigned ArgSize) const {
2846  // Currently, two use-cases possible:
2847  // Case #1. Non-var-args function, and we meet first byval parameter.
2848  //          Setup first unallocated register as first byval register;
2849  //          eat all remained registers
2850  //          (these two actions are performed by HandleByVal method).
2851  //          Then, here, we initialize stack frame with
2852  //          "store-reg" instructions.
2853  // Case #2. Var-args function, that doesn't contain byval parameters.
2854  //          The same: eat all remained unallocated registers,
2855  //          initialize stack frame.
2856
2857  MachineFunction &MF = DAG.getMachineFunction();
2858  MachineFrameInfo *MFI = MF.getFrameInfo();
2859  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2860  unsigned RBegin, REnd;
2861  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2862    CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2863  } else {
2864    unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
2865    RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
2866    REnd = ARM::R4;
2867  }
2868
2869  if (REnd != RBegin)
2870    ArgOffset = -4 * (ARM::R4 - RBegin);
2871
2872  int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
2873  SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
2874
2875  SmallVector<SDValue, 4> MemOps;
2876  const TargetRegisterClass *RC =
2877      AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
2878
2879  for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
2880    unsigned VReg = MF.addLiveIn(Reg, RC);
2881    SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2882    SDValue Store =
2883        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2884                     MachinePointerInfo(OrigArg, 4 * i), false, false, 0);
2885    MemOps.push_back(Store);
2886    FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2887                      DAG.getConstant(4, getPointerTy()));
2888  }
2889
2890  if (!MemOps.empty())
2891    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2892  return FrameIndex;
2893}
2894
2895// Setup stack frame, the va_list pointer will start from.
2896void
2897ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2898                                        SDLoc dl, SDValue &Chain,
2899                                        unsigned ArgOffset,
2900                                        unsigned TotalArgRegsSaveSize,
2901                                        bool ForceMutable) const {
2902  MachineFunction &MF = DAG.getMachineFunction();
2903  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2904
2905  // Try to store any remaining integer argument regs
2906  // to their spots on the stack so that they may be loaded by deferencing
2907  // the result of va_next.
2908  // If there is no regs to be stored, just point address after last
2909  // argument passed via stack.
2910  int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
2911                                  CCInfo.getInRegsParamsCount(),
2912                                  CCInfo.getNextStackOffset(), 4);
2913  AFI->setVarArgsFrameIndex(FrameIndex);
2914}
2915
2916SDValue
2917ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2918                                        CallingConv::ID CallConv, bool isVarArg,
2919                                        const SmallVectorImpl<ISD::InputArg>
2920                                          &Ins,
2921                                        SDLoc dl, SelectionDAG &DAG,
2922                                        SmallVectorImpl<SDValue> &InVals)
2923                                          const {
2924  MachineFunction &MF = DAG.getMachineFunction();
2925  MachineFrameInfo *MFI = MF.getFrameInfo();
2926
2927  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2928
2929  // Assign locations to all of the incoming arguments.
2930  SmallVector<CCValAssign, 16> ArgLocs;
2931  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2932                    *DAG.getContext(), Prologue);
2933  CCInfo.AnalyzeFormalArguments(Ins,
2934                                CCAssignFnForNode(CallConv, /* Return*/ false,
2935                                                  isVarArg));
2936
2937  SmallVector<SDValue, 16> ArgValues;
2938  SDValue ArgValue;
2939  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2940  unsigned CurArgIdx = 0;
2941
2942  // Initially ArgRegsSaveSize is zero.
2943  // Then we increase this value each time we meet byval parameter.
2944  // We also increase this value in case of varargs function.
2945  AFI->setArgRegsSaveSize(0);
2946
2947  // Calculate the amount of stack space that we need to allocate to store
2948  // byval and variadic arguments that are passed in registers.
2949  // We need to know this before we allocate the first byval or variadic
2950  // argument, as they will be allocated a stack slot below the CFA (Canonical
2951  // Frame Address, the stack pointer at entry to the function).
2952  unsigned ArgRegBegin = ARM::R4;
2953  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2954    if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
2955      break;
2956
2957    CCValAssign &VA = ArgLocs[i];
2958    unsigned Index = VA.getValNo();
2959    ISD::ArgFlagsTy Flags = Ins[Index].Flags;
2960    if (!Flags.isByVal())
2961      continue;
2962
2963    assert(VA.isMemLoc() && "unexpected byval pointer in reg");
2964    unsigned RBegin, REnd;
2965    CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
2966    ArgRegBegin = std::min(ArgRegBegin, RBegin);
2967
2968    CCInfo.nextInRegsParam();
2969  }
2970  CCInfo.rewindByValRegsInfo();
2971
2972  int lastInsIndex = -1;
2973  if (isVarArg && MFI->hasVAStart()) {
2974    unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
2975    if (RegIdx != array_lengthof(GPRArgRegs))
2976      ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
2977  }
2978
2979  unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
2980  AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
2981
2982  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2983    CCValAssign &VA = ArgLocs[i];
2984    if (Ins[VA.getValNo()].isOrigArg()) {
2985      std::advance(CurOrigArg,
2986                   Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
2987      CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
2988    }
2989    // Arguments stored in registers.
2990    if (VA.isRegLoc()) {
2991      EVT RegVT = VA.getLocVT();
2992
2993      if (VA.needsCustom()) {
2994        // f64 and vector types are split up into multiple registers or
2995        // combinations of registers and stack slots.
2996        if (VA.getLocVT() == MVT::v2f64) {
2997          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2998                                                   Chain, DAG, dl);
2999          VA = ArgLocs[++i]; // skip ahead to next loc
3000          SDValue ArgValue2;
3001          if (VA.isMemLoc()) {
3002            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
3003            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3004            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3005                                    MachinePointerInfo::getFixedStack(FI),
3006                                    false, false, false, 0);
3007          } else {
3008            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3009                                             Chain, DAG, dl);
3010          }
3011          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3012          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3013                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
3014          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3015                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
3016        } else
3017          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3018
3019      } else {
3020        const TargetRegisterClass *RC;
3021
3022        if (RegVT == MVT::f32)
3023          RC = &ARM::SPRRegClass;
3024        else if (RegVT == MVT::f64)
3025          RC = &ARM::DPRRegClass;
3026        else if (RegVT == MVT::v2f64)
3027          RC = &ARM::QPRRegClass;
3028        else if (RegVT == MVT::i32)
3029          RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3030                                           : &ARM::GPRRegClass;
3031        else
3032          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3033
3034        // Transform the arguments in physical registers into virtual ones.
3035        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3036        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3037      }
3038
3039      // If this is an 8 or 16-bit value, it is really passed promoted
3040      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3041      // truncate to the right size.
3042      switch (VA.getLocInfo()) {
3043      default: llvm_unreachable("Unknown loc info!");
3044      case CCValAssign::Full: break;
3045      case CCValAssign::BCvt:
3046        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3047        break;
3048      case CCValAssign::SExt:
3049        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3050                               DAG.getValueType(VA.getValVT()));
3051        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3052        break;
3053      case CCValAssign::ZExt:
3054        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3055                               DAG.getValueType(VA.getValVT()));
3056        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3057        break;
3058      }
3059
3060      InVals.push_back(ArgValue);
3061
3062    } else { // VA.isRegLoc()
3063
3064      // sanity check
3065      assert(VA.isMemLoc());
3066      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3067
3068      int index = VA.getValNo();
3069
3070      // Some Ins[] entries become multiple ArgLoc[] entries.
3071      // Process them only once.
3072      if (index != lastInsIndex)
3073        {
3074          ISD::ArgFlagsTy Flags = Ins[index].Flags;
3075          // FIXME: For now, all byval parameter objects are marked mutable.
3076          // This can be changed with more analysis.
3077          // In case of tail call optimization mark all arguments mutable.
3078          // Since they could be overwritten by lowering of arguments in case of
3079          // a tail call.
3080          if (Flags.isByVal()) {
3081            assert(Ins[index].isOrigArg() &&
3082                   "Byval arguments cannot be implicit");
3083            unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3084
3085            int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, CurOrigArg,
3086                                            CurByValIndex, VA.getLocMemOffset(),
3087                                            Flags.getByValSize());
3088            InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
3089            CCInfo.nextInRegsParam();
3090          } else {
3091            unsigned FIOffset = VA.getLocMemOffset();
3092            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3093                                            FIOffset, true);
3094
3095            // Create load nodes to retrieve arguments from the stack.
3096            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3097            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3098                                         MachinePointerInfo::getFixedStack(FI),
3099                                         false, false, false, 0));
3100          }
3101          lastInsIndex = index;
3102        }
3103    }
3104  }
3105
3106  // varargs
3107  if (isVarArg && MFI->hasVAStart())
3108    VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3109                         CCInfo.getNextStackOffset(),
3110                         TotalArgRegsSaveSize);
3111
3112  AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3113
3114  return Chain;
3115}
3116
3117/// isFloatingPointZero - Return true if this is +0.0.
3118static bool isFloatingPointZero(SDValue Op) {
3119  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3120    return CFP->getValueAPF().isPosZero();
3121  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3122    // Maybe this has already been legalized into the constant pool?
3123    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3124      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3125      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3126        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3127          return CFP->getValueAPF().isPosZero();
3128    }
3129  } else if (Op->getOpcode() == ISD::BITCAST &&
3130             Op->getValueType(0) == MVT::f64) {
3131    // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3132    // created by LowerConstantFP().
3133    SDValue BitcastOp = Op->getOperand(0);
3134    if (BitcastOp->getOpcode() == ARMISD::VMOVIMM) {
3135      SDValue MoveOp = BitcastOp->getOperand(0);
3136      if (MoveOp->getOpcode() == ISD::TargetConstant &&
3137          cast<ConstantSDNode>(MoveOp)->getZExtValue() == 0) {
3138        return true;
3139      }
3140    }
3141  }
3142  return false;
3143}
3144
3145/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3146/// the given operands.
3147SDValue
3148ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3149                             SDValue &ARMcc, SelectionDAG &DAG,
3150                             SDLoc dl) const {
3151  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3152    unsigned C = RHSC->getZExtValue();
3153    if (!isLegalICmpImmediate(C)) {
3154      // Constant does not fit, try adjusting it by one?
3155      switch (CC) {
3156      default: break;
3157      case ISD::SETLT:
3158      case ISD::SETGE:
3159        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3160          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3161          RHS = DAG.getConstant(C-1, MVT::i32);
3162        }
3163        break;
3164      case ISD::SETULT:
3165      case ISD::SETUGE:
3166        if (C != 0 && isLegalICmpImmediate(C-1)) {
3167          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3168          RHS = DAG.getConstant(C-1, MVT::i32);
3169        }
3170        break;
3171      case ISD::SETLE:
3172      case ISD::SETGT:
3173        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3174          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3175          RHS = DAG.getConstant(C+1, MVT::i32);
3176        }
3177        break;
3178      case ISD::SETULE:
3179      case ISD::SETUGT:
3180        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3181          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3182          RHS = DAG.getConstant(C+1, MVT::i32);
3183        }
3184        break;
3185      }
3186    }
3187  }
3188
3189  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3190  ARMISD::NodeType CompareType;
3191  switch (CondCode) {
3192  default:
3193    CompareType = ARMISD::CMP;
3194    break;
3195  case ARMCC::EQ:
3196  case ARMCC::NE:
3197    // Uses only Z Flag
3198    CompareType = ARMISD::CMPZ;
3199    break;
3200  }
3201  ARMcc = DAG.getConstant(CondCode, MVT::i32);
3202  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3203}
3204
3205/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3206SDValue
3207ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
3208                             SDLoc dl) const {
3209  assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3210  SDValue Cmp;
3211  if (!isFloatingPointZero(RHS))
3212    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3213  else
3214    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3215  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3216}
3217
3218/// duplicateCmp - Glue values can have only one use, so this function
3219/// duplicates a comparison node.
3220SDValue
3221ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3222  unsigned Opc = Cmp.getOpcode();
3223  SDLoc DL(Cmp);
3224  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3225    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3226
3227  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3228  Cmp = Cmp.getOperand(0);
3229  Opc = Cmp.getOpcode();
3230  if (Opc == ARMISD::CMPFP)
3231    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3232  else {
3233    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3234    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3235  }
3236  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3237}
3238
3239std::pair<SDValue, SDValue>
3240ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3241                                 SDValue &ARMcc) const {
3242  assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3243
3244  SDValue Value, OverflowCmp;
3245  SDValue LHS = Op.getOperand(0);
3246  SDValue RHS = Op.getOperand(1);
3247
3248
3249  // FIXME: We are currently always generating CMPs because we don't support
3250  // generating CMN through the backend. This is not as good as the natural
3251  // CMP case because it causes a register dependency and cannot be folded
3252  // later.
3253
3254  switch (Op.getOpcode()) {
3255  default:
3256    llvm_unreachable("Unknown overflow instruction!");
3257  case ISD::SADDO:
3258    ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
3259    Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
3260    OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
3261    break;
3262  case ISD::UADDO:
3263    ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
3264    Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
3265    OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
3266    break;
3267  case ISD::SSUBO:
3268    ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
3269    Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
3270    OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
3271    break;
3272  case ISD::USUBO:
3273    ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
3274    Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
3275    OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
3276    break;
3277  } // switch (...)
3278
3279  return std::make_pair(Value, OverflowCmp);
3280}
3281
3282
3283SDValue
3284ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
3285  // Let legalize expand this if it isn't a legal type yet.
3286  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3287    return SDValue();
3288
3289  SDValue Value, OverflowCmp;
3290  SDValue ARMcc;
3291  std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
3292  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3293  // We use 0 and 1 as false and true values.
3294  SDValue TVal = DAG.getConstant(1, MVT::i32);
3295  SDValue FVal = DAG.getConstant(0, MVT::i32);
3296  EVT VT = Op.getValueType();
3297
3298  SDValue Overflow = DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, TVal, FVal,
3299                                 ARMcc, CCR, OverflowCmp);
3300
3301  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3302  return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
3303}
3304
3305
3306SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3307  SDValue Cond = Op.getOperand(0);
3308  SDValue SelectTrue = Op.getOperand(1);
3309  SDValue SelectFalse = Op.getOperand(2);
3310  SDLoc dl(Op);
3311  unsigned Opc = Cond.getOpcode();
3312
3313  if (Cond.getResNo() == 1 &&
3314      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3315       Opc == ISD::USUBO)) {
3316    if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
3317      return SDValue();
3318
3319    SDValue Value, OverflowCmp;
3320    SDValue ARMcc;
3321    std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
3322    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3323    EVT VT = Op.getValueType();
3324
3325    return getCMOV(SDLoc(Op), VT, SelectTrue, SelectFalse, ARMcc, CCR,
3326                   OverflowCmp, DAG);
3327  }
3328
3329  // Convert:
3330  //
3331  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3332  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3333  //
3334  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3335    const ConstantSDNode *CMOVTrue =
3336      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3337    const ConstantSDNode *CMOVFalse =
3338      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3339
3340    if (CMOVTrue && CMOVFalse) {
3341      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3342      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3343
3344      SDValue True;
3345      SDValue False;
3346      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3347        True = SelectTrue;
3348        False = SelectFalse;
3349      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3350        True = SelectFalse;
3351        False = SelectTrue;
3352      }
3353
3354      if (True.getNode() && False.getNode()) {
3355        EVT VT = Op.getValueType();
3356        SDValue ARMcc = Cond.getOperand(2);
3357        SDValue CCR = Cond.getOperand(3);
3358        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3359        assert(True.getValueType() == VT);
3360        return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
3361      }
3362    }
3363  }
3364
3365  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3366  // undefined bits before doing a full-word comparison with zero.
3367  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3368                     DAG.getConstant(1, Cond.getValueType()));
3369
3370  return DAG.getSelectCC(dl, Cond,
3371                         DAG.getConstant(0, Cond.getValueType()),
3372                         SelectTrue, SelectFalse, ISD::SETNE);
3373}
3374
3375static ISD::CondCode getInverseCCForVSEL(ISD::CondCode CC) {
3376  if (CC == ISD::SETNE)
3377    return ISD::SETEQ;
3378  return ISD::getSetCCInverse(CC, true);
3379}
3380
3381static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
3382                                 bool &swpCmpOps, bool &swpVselOps) {
3383  // Start by selecting the GE condition code for opcodes that return true for
3384  // 'equality'
3385  if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3386      CC == ISD::SETULE)
3387    CondCode = ARMCC::GE;
3388
3389  // and GT for opcodes that return false for 'equality'.
3390  else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3391           CC == ISD::SETULT)
3392    CondCode = ARMCC::GT;
3393
3394  // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3395  // to swap the compare operands.
3396  if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3397      CC == ISD::SETULT)
3398    swpCmpOps = true;
3399
3400  // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3401  // If we have an unordered opcode, we need to swap the operands to the VSEL
3402  // instruction (effectively negating the condition).
3403  //
3404  // This also has the effect of swapping which one of 'less' or 'greater'
3405  // returns true, so we also swap the compare operands. It also switches
3406  // whether we return true for 'equality', so we compensate by picking the
3407  // opposite condition code to our original choice.
3408  if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3409      CC == ISD::SETUGT) {
3410    swpCmpOps = !swpCmpOps;
3411    swpVselOps = !swpVselOps;
3412    CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3413  }
3414
3415  // 'ordered' is 'anything but unordered', so use the VS condition code and
3416  // swap the VSEL operands.
3417  if (CC == ISD::SETO) {
3418    CondCode = ARMCC::VS;
3419    swpVselOps = true;
3420  }
3421
3422  // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3423  // code and swap the VSEL operands.
3424  if (CC == ISD::SETUNE) {
3425    CondCode = ARMCC::EQ;
3426    swpVselOps = true;
3427  }
3428}
3429
3430SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal,
3431                                   SDValue TrueVal, SDValue ARMcc, SDValue CCR,
3432                                   SDValue Cmp, SelectionDAG &DAG) const {
3433  if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
3434    FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3435                           DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
3436    TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3437                          DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
3438
3439    SDValue TrueLow = TrueVal.getValue(0);
3440    SDValue TrueHigh = TrueVal.getValue(1);
3441    SDValue FalseLow = FalseVal.getValue(0);
3442    SDValue FalseHigh = FalseVal.getValue(1);
3443
3444    SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
3445                              ARMcc, CCR, Cmp);
3446    SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
3447                               ARMcc, CCR, duplicateCmp(Cmp, DAG));
3448
3449    return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
3450  } else {
3451    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3452                       Cmp);
3453  }
3454}
3455
3456SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3457  EVT VT = Op.getValueType();
3458  SDValue LHS = Op.getOperand(0);
3459  SDValue RHS = Op.getOperand(1);
3460  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3461  SDValue TrueVal = Op.getOperand(2);
3462  SDValue FalseVal = Op.getOperand(3);
3463  SDLoc dl(Op);
3464
3465  if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3466    DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3467                                                    dl);
3468
3469    // If softenSetCCOperands only returned one value, we should compare it to
3470    // zero.
3471    if (!RHS.getNode()) {
3472      RHS = DAG.getConstant(0, LHS.getValueType());
3473      CC = ISD::SETNE;
3474    }
3475  }
3476
3477  if (LHS.getValueType() == MVT::i32) {
3478    // Try to generate VSEL on ARMv8.
3479    // The VSEL instruction can't use all the usual ARM condition
3480    // codes: it only has two bits to select the condition code, so it's
3481    // constrained to use only GE, GT, VS and EQ.
3482    //
3483    // To implement all the various ISD::SETXXX opcodes, we sometimes need to
3484    // swap the operands of the previous compare instruction (effectively
3485    // inverting the compare condition, swapping 'less' and 'greater') and
3486    // sometimes need to swap the operands to the VSEL (which inverts the
3487    // condition in the sense of firing whenever the previous condition didn't)
3488    if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3489                                    TrueVal.getValueType() == MVT::f64)) {
3490      ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3491      if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
3492          CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
3493        CC = getInverseCCForVSEL(CC);
3494        std::swap(TrueVal, FalseVal);
3495      }
3496    }
3497
3498    SDValue ARMcc;
3499    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3500    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3501    return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3502  }
3503
3504  ARMCC::CondCodes CondCode, CondCode2;
3505  FPCCToARMCC(CC, CondCode, CondCode2);
3506
3507  // Try to generate VMAXNM/VMINNM on ARMv8.
3508  if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3509                                  TrueVal.getValueType() == MVT::f64)) {
3510    // We can use VMAXNM/VMINNM for a compare followed by a select with the
3511    // same operands, as follows:
3512    //   c = fcmp [?gt, ?ge, ?lt, ?le] a, b
3513    //   select c, a, b
3514    // In NoNaNsFPMath the CC will have been changed from, e.g., 'ogt' to 'gt'.
3515    // We only do this transformation in UnsafeFPMath and for no-NaNs
3516    // comparisons, because signed zeros and NaNs are handled differently than
3517    // the original code sequence.
3518    // FIXME: There are more cases that can be transformed even with NaNs,
3519    // signed zeroes and safe math.  E.g. in the following, the result will be
3520    // FalseVal if a is a NaN or -0./0. and that's what vmaxnm will give, too.
3521    //   c = fcmp ogt, a, 0. ; select c, a, 0. => vmaxnm a, 0.
3522    // FIXME: There is similar code that allows some extensions in
3523    // AArch64TargetLowering::LowerSELECT_CC that should be shared with this
3524    // code.
3525    if (getTargetMachine().Options.UnsafeFPMath) {
3526      if (LHS == TrueVal && RHS == FalseVal) {
3527        if (CC == ISD::SETGT || CC == ISD::SETGE)
3528          return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
3529        if (CC == ISD::SETLT || CC == ISD::SETLE)
3530          return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
3531      } else if (LHS == FalseVal && RHS == TrueVal) {
3532        if (CC == ISD::SETLT || CC == ISD::SETLE)
3533          return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
3534        if (CC == ISD::SETGT || CC == ISD::SETGE)
3535          return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
3536      }
3537    }
3538
3539    bool swpCmpOps = false;
3540    bool swpVselOps = false;
3541    checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
3542
3543    if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
3544        CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
3545      if (swpCmpOps)
3546        std::swap(LHS, RHS);
3547      if (swpVselOps)
3548        std::swap(TrueVal, FalseVal);
3549    }
3550  }
3551
3552  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3553  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3554  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3555  SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3556  if (CondCode2 != ARMCC::AL) {
3557    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
3558    // FIXME: Needs another CMP because flag can have but one use.
3559    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3560    Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
3561  }
3562  return Result;
3563}
3564
3565/// canChangeToInt - Given the fp compare operand, return true if it is suitable
3566/// to morph to an integer compare sequence.
3567static bool canChangeToInt(SDValue Op, bool &SeenZero,
3568                           const ARMSubtarget *Subtarget) {
3569  SDNode *N = Op.getNode();
3570  if (!N->hasOneUse())
3571    // Otherwise it requires moving the value from fp to integer registers.
3572    return false;
3573  if (!N->getNumValues())
3574    return false;
3575  EVT VT = Op.getValueType();
3576  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3577    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3578    // vmrs are very slow, e.g. cortex-a8.
3579    return false;
3580
3581  if (isFloatingPointZero(Op)) {
3582    SeenZero = true;
3583    return true;
3584  }
3585  return ISD::isNormalLoad(N);
3586}
3587
3588static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3589  if (isFloatingPointZero(Op))
3590    return DAG.getConstant(0, MVT::i32);
3591
3592  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3593    return DAG.getLoad(MVT::i32, SDLoc(Op),
3594                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3595                       Ld->isVolatile(), Ld->isNonTemporal(),
3596                       Ld->isInvariant(), Ld->getAlignment());
3597
3598  llvm_unreachable("Unknown VFP cmp argument!");
3599}
3600
3601static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3602                           SDValue &RetVal1, SDValue &RetVal2) {
3603  if (isFloatingPointZero(Op)) {
3604    RetVal1 = DAG.getConstant(0, MVT::i32);
3605    RetVal2 = DAG.getConstant(0, MVT::i32);
3606    return;
3607  }
3608
3609  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3610    SDValue Ptr = Ld->getBasePtr();
3611    RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
3612                          Ld->getChain(), Ptr,
3613                          Ld->getPointerInfo(),
3614                          Ld->isVolatile(), Ld->isNonTemporal(),
3615                          Ld->isInvariant(), Ld->getAlignment());
3616
3617    EVT PtrType = Ptr.getValueType();
3618    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3619    SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
3620                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
3621    RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
3622                          Ld->getChain(), NewPtr,
3623                          Ld->getPointerInfo().getWithOffset(4),
3624                          Ld->isVolatile(), Ld->isNonTemporal(),
3625                          Ld->isInvariant(), NewAlign);
3626    return;
3627  }
3628
3629  llvm_unreachable("Unknown VFP cmp argument!");
3630}
3631
3632/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3633/// f32 and even f64 comparisons to integer ones.
3634SDValue
3635ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3636  SDValue Chain = Op.getOperand(0);
3637  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3638  SDValue LHS = Op.getOperand(2);
3639  SDValue RHS = Op.getOperand(3);
3640  SDValue Dest = Op.getOperand(4);
3641  SDLoc dl(Op);
3642
3643  bool LHSSeenZero = false;
3644  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3645  bool RHSSeenZero = false;
3646  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3647  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3648    // If unsafe fp math optimization is enabled and there are no other uses of
3649    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3650    // to an integer comparison.
3651    if (CC == ISD::SETOEQ)
3652      CC = ISD::SETEQ;
3653    else if (CC == ISD::SETUNE)
3654      CC = ISD::SETNE;
3655
3656    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3657    SDValue ARMcc;
3658    if (LHS.getValueType() == MVT::f32) {
3659      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3660                        bitcastf32Toi32(LHS, DAG), Mask);
3661      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3662                        bitcastf32Toi32(RHS, DAG), Mask);
3663      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3664      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3665      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3666                         Chain, Dest, ARMcc, CCR, Cmp);
3667    }
3668
3669    SDValue LHS1, LHS2;
3670    SDValue RHS1, RHS2;
3671    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3672    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3673    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3674    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3675    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3676    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3677    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3678    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3679    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
3680  }
3681
3682  return SDValue();
3683}
3684
3685SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3686  SDValue Chain = Op.getOperand(0);
3687  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3688  SDValue LHS = Op.getOperand(2);
3689  SDValue RHS = Op.getOperand(3);
3690  SDValue Dest = Op.getOperand(4);
3691  SDLoc dl(Op);
3692
3693  if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3694    DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3695                                                    dl);
3696
3697    // If softenSetCCOperands only returned one value, we should compare it to
3698    // zero.
3699    if (!RHS.getNode()) {
3700      RHS = DAG.getConstant(0, LHS.getValueType());
3701      CC = ISD::SETNE;
3702    }
3703  }
3704
3705  if (LHS.getValueType() == MVT::i32) {
3706    SDValue ARMcc;
3707    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3708    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3709    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3710                       Chain, Dest, ARMcc, CCR, Cmp);
3711  }
3712
3713  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3714
3715  if (getTargetMachine().Options.UnsafeFPMath &&
3716      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3717       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3718    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3719    if (Result.getNode())
3720      return Result;
3721  }
3722
3723  ARMCC::CondCodes CondCode, CondCode2;
3724  FPCCToARMCC(CC, CondCode, CondCode2);
3725
3726  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3727  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3728  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3729  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3730  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3731  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3732  if (CondCode2 != ARMCC::AL) {
3733    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3734    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3735    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3736  }
3737  return Res;
3738}
3739
3740SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3741  SDValue Chain = Op.getOperand(0);
3742  SDValue Table = Op.getOperand(1);
3743  SDValue Index = Op.getOperand(2);
3744  SDLoc dl(Op);
3745
3746  EVT PTy = getPointerTy();
3747  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3748  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3749  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3750  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3751  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3752  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3753  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3754  if (Subtarget->isThumb2()) {
3755    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3756    // which does another jump to the destination. This also makes it easier
3757    // to translate it to TBB / TBH later.
3758    // FIXME: This might not work if the function is extremely large.
3759    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3760                       Addr, Op.getOperand(2), JTI, UId);
3761  }
3762  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3763    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3764                       MachinePointerInfo::getJumpTable(),
3765                       false, false, false, 0);
3766    Chain = Addr.getValue(1);
3767    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3768    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3769  } else {
3770    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3771                       MachinePointerInfo::getJumpTable(),
3772                       false, false, false, 0);
3773    Chain = Addr.getValue(1);
3774    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3775  }
3776}
3777
3778static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3779  EVT VT = Op.getValueType();
3780  SDLoc dl(Op);
3781
3782  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3783    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3784      return Op;
3785    return DAG.UnrollVectorOp(Op.getNode());
3786  }
3787
3788  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3789         "Invalid type for custom lowering!");
3790  if (VT != MVT::v4i16)
3791    return DAG.UnrollVectorOp(Op.getNode());
3792
3793  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3794  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3795}
3796
3797SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
3798  EVT VT = Op.getValueType();
3799  if (VT.isVector())
3800    return LowerVectorFP_TO_INT(Op, DAG);
3801  if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
3802    RTLIB::Libcall LC;
3803    if (Op.getOpcode() == ISD::FP_TO_SINT)
3804      LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
3805                              Op.getValueType());
3806    else
3807      LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
3808                              Op.getValueType());
3809    return makeLibCall(DAG, LC, Op.getValueType(), &Op.getOperand(0), 1,
3810                       /*isSigned*/ false, SDLoc(Op)).first;
3811  }
3812
3813  return Op;
3814}
3815
3816static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3817  EVT VT = Op.getValueType();
3818  SDLoc dl(Op);
3819
3820  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3821    if (VT.getVectorElementType() == MVT::f32)
3822      return Op;
3823    return DAG.UnrollVectorOp(Op.getNode());
3824  }
3825
3826  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3827         "Invalid type for custom lowering!");
3828  if (VT != MVT::v4f32)
3829    return DAG.UnrollVectorOp(Op.getNode());
3830
3831  unsigned CastOpc;
3832  unsigned Opc;
3833  switch (Op.getOpcode()) {
3834  default: llvm_unreachable("Invalid opcode!");
3835  case ISD::SINT_TO_FP:
3836    CastOpc = ISD::SIGN_EXTEND;
3837    Opc = ISD::SINT_TO_FP;
3838    break;
3839  case ISD::UINT_TO_FP:
3840    CastOpc = ISD::ZERO_EXTEND;
3841    Opc = ISD::UINT_TO_FP;
3842    break;
3843  }
3844
3845  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3846  return DAG.getNode(Opc, dl, VT, Op);
3847}
3848
3849SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
3850  EVT VT = Op.getValueType();
3851  if (VT.isVector())
3852    return LowerVectorINT_TO_FP(Op, DAG);
3853  if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
3854    RTLIB::Libcall LC;
3855    if (Op.getOpcode() == ISD::SINT_TO_FP)
3856      LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
3857                              Op.getValueType());
3858    else
3859      LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
3860                              Op.getValueType());
3861    return makeLibCall(DAG, LC, Op.getValueType(), &Op.getOperand(0), 1,
3862                       /*isSigned*/ false, SDLoc(Op)).first;
3863  }
3864
3865  return Op;
3866}
3867
3868SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3869  // Implement fcopysign with a fabs and a conditional fneg.
3870  SDValue Tmp0 = Op.getOperand(0);
3871  SDValue Tmp1 = Op.getOperand(1);
3872  SDLoc dl(Op);
3873  EVT VT = Op.getValueType();
3874  EVT SrcVT = Tmp1.getValueType();
3875  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3876    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3877  bool UseNEON = !InGPR && Subtarget->hasNEON();
3878
3879  if (UseNEON) {
3880    // Use VBSL to copy the sign bit.
3881    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3882    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3883                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3884    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3885    if (VT == MVT::f64)
3886      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3887                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3888                         DAG.getConstant(32, MVT::i32));
3889    else /*if (VT == MVT::f32)*/
3890      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3891    if (SrcVT == MVT::f32) {
3892      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3893      if (VT == MVT::f64)
3894        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3895                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3896                           DAG.getConstant(32, MVT::i32));
3897    } else if (VT == MVT::f32)
3898      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3899                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3900                         DAG.getConstant(32, MVT::i32));
3901    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3902    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3903
3904    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3905                                            MVT::i32);
3906    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3907    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3908                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3909
3910    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3911                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3912                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3913    if (VT == MVT::f32) {
3914      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3915      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3916                        DAG.getConstant(0, MVT::i32));
3917    } else {
3918      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3919    }
3920
3921    return Res;
3922  }
3923
3924  // Bitcast operand 1 to i32.
3925  if (SrcVT == MVT::f64)
3926    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3927                       Tmp1).getValue(1);
3928  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3929
3930  // Or in the signbit with integer operations.
3931  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3932  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3933  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3934  if (VT == MVT::f32) {
3935    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3936                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3937    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3938                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3939  }
3940
3941  // f64: Or the high part with signbit and then combine two parts.
3942  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3943                     Tmp0);
3944  SDValue Lo = Tmp0.getValue(0);
3945  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3946  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3947  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3948}
3949
3950SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3951  MachineFunction &MF = DAG.getMachineFunction();
3952  MachineFrameInfo *MFI = MF.getFrameInfo();
3953  MFI->setReturnAddressIsTaken(true);
3954
3955  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3956    return SDValue();
3957
3958  EVT VT = Op.getValueType();
3959  SDLoc dl(Op);
3960  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3961  if (Depth) {
3962    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3963    SDValue Offset = DAG.getConstant(4, MVT::i32);
3964    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3965                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3966                       MachinePointerInfo(), false, false, false, 0);
3967  }
3968
3969  // Return LR, which contains the return address. Mark it an implicit live-in.
3970  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3971  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3972}
3973
3974SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3975  const ARMBaseRegisterInfo &ARI =
3976    *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
3977  MachineFunction &MF = DAG.getMachineFunction();
3978  MachineFrameInfo *MFI = MF.getFrameInfo();
3979  MFI->setFrameAddressIsTaken(true);
3980
3981  EVT VT = Op.getValueType();
3982  SDLoc dl(Op);  // FIXME probably not meaningful
3983  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3984  unsigned FrameReg = ARI.getFrameRegister(MF);
3985  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3986  while (Depth--)
3987    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3988                            MachinePointerInfo(),
3989                            false, false, false, 0);
3990  return FrameAddr;
3991}
3992
3993// FIXME? Maybe this could be a TableGen attribute on some registers and
3994// this table could be generated automatically from RegInfo.
3995unsigned ARMTargetLowering::getRegisterByName(const char* RegName,
3996                                              EVT VT) const {
3997  unsigned Reg = StringSwitch<unsigned>(RegName)
3998                       .Case("sp", ARM::SP)
3999                       .Default(0);
4000  if (Reg)
4001    return Reg;
4002  report_fatal_error("Invalid register name global variable");
4003}
4004
4005/// ExpandBITCAST - If the target supports VFP, this function is called to
4006/// expand a bit convert where either the source or destination type is i64 to
4007/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
4008/// operand type is illegal (e.g., v2f32 for a target that doesn't support
4009/// vectors), since the legalizer won't know what to do with that.
4010static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
4011  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4012  SDLoc dl(N);
4013  SDValue Op = N->getOperand(0);
4014
4015  // This function is only supposed to be called for i64 types, either as the
4016  // source or destination of the bit convert.
4017  EVT SrcVT = Op.getValueType();
4018  EVT DstVT = N->getValueType(0);
4019  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
4020         "ExpandBITCAST called for non-i64 type");
4021
4022  // Turn i64->f64 into VMOVDRR.
4023  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
4024    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4025                             DAG.getConstant(0, MVT::i32));
4026    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4027                             DAG.getConstant(1, MVT::i32));
4028    return DAG.getNode(ISD::BITCAST, dl, DstVT,
4029                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
4030  }
4031
4032  // Turn f64->i64 into VMOVRRD.
4033  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
4034    SDValue Cvt;
4035    if (TLI.isBigEndian() && SrcVT.isVector() &&
4036        SrcVT.getVectorNumElements() > 1)
4037      Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4038                        DAG.getVTList(MVT::i32, MVT::i32),
4039                        DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
4040    else
4041      Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4042                        DAG.getVTList(MVT::i32, MVT::i32), Op);
4043    // Merge the pieces into a single i64 value.
4044    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
4045  }
4046
4047  return SDValue();
4048}
4049
4050/// getZeroVector - Returns a vector of specified type with all zero elements.
4051/// Zero vectors are used to represent vector negation and in those cases
4052/// will be implemented with the NEON VNEG instruction.  However, VNEG does
4053/// not support i64 elements, so sometimes the zero vectors will need to be
4054/// explicitly constructed.  Regardless, use a canonical VMOV to create the
4055/// zero vector.
4056static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
4057  assert(VT.isVector() && "Expected a vector type");
4058  // The canonical modified immediate encoding of a zero vector is....0!
4059  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
4060  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
4061  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
4062  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4063}
4064
4065/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4066/// i32 values and take a 2 x i32 value to shift plus a shift amount.
4067SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
4068                                                SelectionDAG &DAG) const {
4069  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4070  EVT VT = Op.getValueType();
4071  unsigned VTBits = VT.getSizeInBits();
4072  SDLoc dl(Op);
4073  SDValue ShOpLo = Op.getOperand(0);
4074  SDValue ShOpHi = Op.getOperand(1);
4075  SDValue ShAmt  = Op.getOperand(2);
4076  SDValue ARMcc;
4077  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4078
4079  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4080
4081  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4082                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
4083  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4084  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4085                                   DAG.getConstant(VTBits, MVT::i32));
4086  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4087  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4088  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4089
4090  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4091  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
4092                          ARMcc, DAG, dl);
4093  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4094  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
4095                           CCR, Cmp);
4096
4097  SDValue Ops[2] = { Lo, Hi };
4098  return DAG.getMergeValues(Ops, dl);
4099}
4100
4101/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4102/// i32 values and take a 2 x i32 value to shift plus a shift amount.
4103SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
4104                                               SelectionDAG &DAG) const {
4105  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4106  EVT VT = Op.getValueType();
4107  unsigned VTBits = VT.getSizeInBits();
4108  SDLoc dl(Op);
4109  SDValue ShOpLo = Op.getOperand(0);
4110  SDValue ShOpHi = Op.getOperand(1);
4111  SDValue ShAmt  = Op.getOperand(2);
4112  SDValue ARMcc;
4113
4114  assert(Op.getOpcode() == ISD::SHL_PARTS);
4115  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4116                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
4117  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4118  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4119                                   DAG.getConstant(VTBits, MVT::i32));
4120  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4121  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4122
4123  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4124  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4125  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
4126                          ARMcc, DAG, dl);
4127  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4128  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
4129                           CCR, Cmp);
4130
4131  SDValue Ops[2] = { Lo, Hi };
4132  return DAG.getMergeValues(Ops, dl);
4133}
4134
4135SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4136                                            SelectionDAG &DAG) const {
4137  // The rounding mode is in bits 23:22 of the FPSCR.
4138  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
4139  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
4140  // so that the shift + and get folded into a bitfield extract.
4141  SDLoc dl(Op);
4142  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
4143                              DAG.getConstant(Intrinsic::arm_get_fpscr,
4144                                              MVT::i32));
4145  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
4146                                  DAG.getConstant(1U << 22, MVT::i32));
4147  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
4148                              DAG.getConstant(22, MVT::i32));
4149  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
4150                     DAG.getConstant(3, MVT::i32));
4151}
4152
4153static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
4154                         const ARMSubtarget *ST) {
4155  EVT VT = N->getValueType(0);
4156  SDLoc dl(N);
4157
4158  if (!ST->hasV6T2Ops())
4159    return SDValue();
4160
4161  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
4162  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
4163}
4164
4165/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
4166/// for each 16-bit element from operand, repeated.  The basic idea is to
4167/// leverage vcnt to get the 8-bit counts, gather and add the results.
4168///
4169/// Trace for v4i16:
4170/// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
4171/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
4172/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
4173/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
4174///            [b0 b1 b2 b3 b4 b5 b6 b7]
4175///           +[b1 b0 b3 b2 b5 b4 b7 b6]
4176/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4177/// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
4178static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
4179  EVT VT = N->getValueType(0);
4180  SDLoc DL(N);
4181
4182  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4183  SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4184  SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4185  SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4186  SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4187  return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4188}
4189
4190/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4191/// bit-count for each 16-bit element from the operand.  We need slightly
4192/// different sequencing for v4i16 and v8i16 to stay within NEON's available
4193/// 64/128-bit registers.
4194///
4195/// Trace for v4i16:
4196/// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
4197/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4198/// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
4199/// v4i16:Extracted = [k0    k1    k2    k3    ]
4200static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
4201  EVT VT = N->getValueType(0);
4202  SDLoc DL(N);
4203
4204  SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4205  if (VT.is64BitVector()) {
4206    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4207    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4208                       DAG.getIntPtrConstant(0));
4209  } else {
4210    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4211                                    BitCounts, DAG.getIntPtrConstant(0));
4212    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4213  }
4214}
4215
4216/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
4217/// bit-count for each 32-bit element from the operand.  The idea here is
4218/// to split the vector into 16-bit elements, leverage the 16-bit count
4219/// routine, and then combine the results.
4220///
4221/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
4222/// input    = [v0    v1    ] (vi: 32-bit elements)
4223/// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
4224/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
4225/// vrev: N0 = [k1 k0 k3 k2 ]
4226///            [k0 k1 k2 k3 ]
4227///       N1 =+[k1 k0 k3 k2 ]
4228///            [k0 k2 k1 k3 ]
4229///       N2 =+[k1 k3 k0 k2 ]
4230///            [k0    k2    k1    k3    ]
4231/// Extended =+[k1    k3    k0    k2    ]
4232///            [k0    k2    ]
4233/// Extracted=+[k1    k3    ]
4234///
4235static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
4236  EVT VT = N->getValueType(0);
4237  SDLoc DL(N);
4238
4239  EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4240
4241  SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
4242  SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
4243  SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
4244  SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
4245  SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
4246
4247  if (VT.is64BitVector()) {
4248    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
4249    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
4250                       DAG.getIntPtrConstant(0));
4251  } else {
4252    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
4253                                    DAG.getIntPtrConstant(0));
4254    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
4255  }
4256}
4257
4258static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
4259                          const ARMSubtarget *ST) {
4260  EVT VT = N->getValueType(0);
4261
4262  assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
4263  assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
4264          VT == MVT::v4i16 || VT == MVT::v8i16) &&
4265         "Unexpected type for custom ctpop lowering");
4266
4267  if (VT.getVectorElementType() == MVT::i32)
4268    return lowerCTPOP32BitElements(N, DAG);
4269  else
4270    return lowerCTPOP16BitElements(N, DAG);
4271}
4272
4273static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
4274                          const ARMSubtarget *ST) {
4275  EVT VT = N->getValueType(0);
4276  SDLoc dl(N);
4277
4278  if (!VT.isVector())
4279    return SDValue();
4280
4281  // Lower vector shifts on NEON to use VSHL.
4282  assert(ST->hasNEON() && "unexpected vector shift");
4283
4284  // Left shifts translate directly to the vshiftu intrinsic.
4285  if (N->getOpcode() == ISD::SHL)
4286    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4287                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
4288                       N->getOperand(0), N->getOperand(1));
4289
4290  assert((N->getOpcode() == ISD::SRA ||
4291          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
4292
4293  // NEON uses the same intrinsics for both left and right shifts.  For
4294  // right shifts, the shift amounts are negative, so negate the vector of
4295  // shift amounts.
4296  EVT ShiftVT = N->getOperand(1).getValueType();
4297  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
4298                                     getZeroVector(ShiftVT, DAG, dl),
4299                                     N->getOperand(1));
4300  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
4301                             Intrinsic::arm_neon_vshifts :
4302                             Intrinsic::arm_neon_vshiftu);
4303  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4304                     DAG.getConstant(vshiftInt, MVT::i32),
4305                     N->getOperand(0), NegatedCount);
4306}
4307
4308static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
4309                                const ARMSubtarget *ST) {
4310  EVT VT = N->getValueType(0);
4311  SDLoc dl(N);
4312
4313  // We can get here for a node like i32 = ISD::SHL i32, i64
4314  if (VT != MVT::i64)
4315    return SDValue();
4316
4317  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
4318         "Unknown shift to lower!");
4319
4320  // We only lower SRA, SRL of 1 here, all others use generic lowering.
4321  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
4322      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
4323    return SDValue();
4324
4325  // If we are in thumb mode, we don't have RRX.
4326  if (ST->isThumb1Only()) return SDValue();
4327
4328  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
4329  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4330                           DAG.getConstant(0, MVT::i32));
4331  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4332                           DAG.getConstant(1, MVT::i32));
4333
4334  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
4335  // captures the result into a carry flag.
4336  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
4337  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
4338
4339  // The low part is an ARMISD::RRX operand, which shifts the carry in.
4340  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
4341
4342  // Merge the pieces into a single i64 value.
4343 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4344}
4345
4346static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4347  SDValue TmpOp0, TmpOp1;
4348  bool Invert = false;
4349  bool Swap = false;
4350  unsigned Opc = 0;
4351
4352  SDValue Op0 = Op.getOperand(0);
4353  SDValue Op1 = Op.getOperand(1);
4354  SDValue CC = Op.getOperand(2);
4355  EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
4356  EVT VT = Op.getValueType();
4357  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4358  SDLoc dl(Op);
4359
4360  if (Op1.getValueType().isFloatingPoint()) {
4361    switch (SetCCOpcode) {
4362    default: llvm_unreachable("Illegal FP comparison");
4363    case ISD::SETUNE:
4364    case ISD::SETNE:  Invert = true; // Fallthrough
4365    case ISD::SETOEQ:
4366    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4367    case ISD::SETOLT:
4368    case ISD::SETLT: Swap = true; // Fallthrough
4369    case ISD::SETOGT:
4370    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4371    case ISD::SETOLE:
4372    case ISD::SETLE:  Swap = true; // Fallthrough
4373    case ISD::SETOGE:
4374    case ISD::SETGE: Opc = ARMISD::VCGE; break;
4375    case ISD::SETUGE: Swap = true; // Fallthrough
4376    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
4377    case ISD::SETUGT: Swap = true; // Fallthrough
4378    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
4379    case ISD::SETUEQ: Invert = true; // Fallthrough
4380    case ISD::SETONE:
4381      // Expand this to (OLT | OGT).
4382      TmpOp0 = Op0;
4383      TmpOp1 = Op1;
4384      Opc = ISD::OR;
4385      Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
4386      Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
4387      break;
4388    case ISD::SETUO: Invert = true; // Fallthrough
4389    case ISD::SETO:
4390      // Expand this to (OLT | OGE).
4391      TmpOp0 = Op0;
4392      TmpOp1 = Op1;
4393      Opc = ISD::OR;
4394      Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
4395      Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
4396      break;
4397    }
4398  } else {
4399    // Integer comparisons.
4400    switch (SetCCOpcode) {
4401    default: llvm_unreachable("Illegal integer comparison");
4402    case ISD::SETNE:  Invert = true;
4403    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4404    case ISD::SETLT:  Swap = true;
4405    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4406    case ISD::SETLE:  Swap = true;
4407    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
4408    case ISD::SETULT: Swap = true;
4409    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4410    case ISD::SETULE: Swap = true;
4411    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4412    }
4413
4414    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4415    if (Opc == ARMISD::VCEQ) {
4416
4417      SDValue AndOp;
4418      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4419        AndOp = Op0;
4420      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4421        AndOp = Op1;
4422
4423      // Ignore bitconvert.
4424      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4425        AndOp = AndOp.getOperand(0);
4426
4427      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4428        Opc = ARMISD::VTST;
4429        Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
4430        Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
4431        Invert = !Invert;
4432      }
4433    }
4434  }
4435
4436  if (Swap)
4437    std::swap(Op0, Op1);
4438
4439  // If one of the operands is a constant vector zero, attempt to fold the
4440  // comparison to a specialized compare-against-zero form.
4441  SDValue SingleOp;
4442  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4443    SingleOp = Op0;
4444  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4445    if (Opc == ARMISD::VCGE)
4446      Opc = ARMISD::VCLEZ;
4447    else if (Opc == ARMISD::VCGT)
4448      Opc = ARMISD::VCLTZ;
4449    SingleOp = Op1;
4450  }
4451
4452  SDValue Result;
4453  if (SingleOp.getNode()) {
4454    switch (Opc) {
4455    case ARMISD::VCEQ:
4456      Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
4457    case ARMISD::VCGE:
4458      Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
4459    case ARMISD::VCLEZ:
4460      Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
4461    case ARMISD::VCGT:
4462      Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
4463    case ARMISD::VCLTZ:
4464      Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
4465    default:
4466      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
4467    }
4468  } else {
4469     Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
4470  }
4471
4472  Result = DAG.getSExtOrTrunc(Result, dl, VT);
4473
4474  if (Invert)
4475    Result = DAG.getNOT(dl, Result, VT);
4476
4477  return Result;
4478}
4479
4480/// isNEONModifiedImm - Check if the specified splat value corresponds to a
4481/// valid vector constant for a NEON instruction with a "modified immediate"
4482/// operand (e.g., VMOV).  If so, return the encoded value.
4483static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
4484                                 unsigned SplatBitSize, SelectionDAG &DAG,
4485                                 EVT &VT, bool is128Bits, NEONModImmType type) {
4486  unsigned OpCmode, Imm;
4487
4488  // SplatBitSize is set to the smallest size that splats the vector, so a
4489  // zero vector will always have SplatBitSize == 8.  However, NEON modified
4490  // immediate instructions others than VMOV do not support the 8-bit encoding
4491  // of a zero vector, and the default encoding of zero is supposed to be the
4492  // 32-bit version.
4493  if (SplatBits == 0)
4494    SplatBitSize = 32;
4495
4496  switch (SplatBitSize) {
4497  case 8:
4498    if (type != VMOVModImm)
4499      return SDValue();
4500    // Any 1-byte value is OK.  Op=0, Cmode=1110.
4501    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
4502    OpCmode = 0xe;
4503    Imm = SplatBits;
4504    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
4505    break;
4506
4507  case 16:
4508    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
4509    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
4510    if ((SplatBits & ~0xff) == 0) {
4511      // Value = 0x00nn: Op=x, Cmode=100x.
4512      OpCmode = 0x8;
4513      Imm = SplatBits;
4514      break;
4515    }
4516    if ((SplatBits & ~0xff00) == 0) {
4517      // Value = 0xnn00: Op=x, Cmode=101x.
4518      OpCmode = 0xa;
4519      Imm = SplatBits >> 8;
4520      break;
4521    }
4522    return SDValue();
4523
4524  case 32:
4525    // NEON's 32-bit VMOV supports splat values where:
4526    // * only one byte is nonzero, or
4527    // * the least significant byte is 0xff and the second byte is nonzero, or
4528    // * the least significant 2 bytes are 0xff and the third is nonzero.
4529    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
4530    if ((SplatBits & ~0xff) == 0) {
4531      // Value = 0x000000nn: Op=x, Cmode=000x.
4532      OpCmode = 0;
4533      Imm = SplatBits;
4534      break;
4535    }
4536    if ((SplatBits & ~0xff00) == 0) {
4537      // Value = 0x0000nn00: Op=x, Cmode=001x.
4538      OpCmode = 0x2;
4539      Imm = SplatBits >> 8;
4540      break;
4541    }
4542    if ((SplatBits & ~0xff0000) == 0) {
4543      // Value = 0x00nn0000: Op=x, Cmode=010x.
4544      OpCmode = 0x4;
4545      Imm = SplatBits >> 16;
4546      break;
4547    }
4548    if ((SplatBits & ~0xff000000) == 0) {
4549      // Value = 0xnn000000: Op=x, Cmode=011x.
4550      OpCmode = 0x6;
4551      Imm = SplatBits >> 24;
4552      break;
4553    }
4554
4555    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
4556    if (type == OtherModImm) return SDValue();
4557
4558    if ((SplatBits & ~0xffff) == 0 &&
4559        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
4560      // Value = 0x0000nnff: Op=x, Cmode=1100.
4561      OpCmode = 0xc;
4562      Imm = SplatBits >> 8;
4563      break;
4564    }
4565
4566    if ((SplatBits & ~0xffffff) == 0 &&
4567        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
4568      // Value = 0x00nnffff: Op=x, Cmode=1101.
4569      OpCmode = 0xd;
4570      Imm = SplatBits >> 16;
4571      break;
4572    }
4573
4574    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
4575    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
4576    // VMOV.I32.  A (very) minor optimization would be to replicate the value
4577    // and fall through here to test for a valid 64-bit splat.  But, then the
4578    // caller would also need to check and handle the change in size.
4579    return SDValue();
4580
4581  case 64: {
4582    if (type != VMOVModImm)
4583      return SDValue();
4584    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
4585    uint64_t BitMask = 0xff;
4586    uint64_t Val = 0;
4587    unsigned ImmMask = 1;
4588    Imm = 0;
4589    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
4590      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
4591        Val |= BitMask;
4592        Imm |= ImmMask;
4593      } else if ((SplatBits & BitMask) != 0) {
4594        return SDValue();
4595      }
4596      BitMask <<= 8;
4597      ImmMask <<= 1;
4598    }
4599
4600    if (DAG.getTargetLoweringInfo().isBigEndian())
4601      // swap higher and lower 32 bit word
4602      Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
4603
4604    // Op=1, Cmode=1110.
4605    OpCmode = 0x1e;
4606    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
4607    break;
4608  }
4609
4610  default:
4611    llvm_unreachable("unexpected size for isNEONModifiedImm");
4612  }
4613
4614  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
4615  return DAG.getTargetConstant(EncodedVal, MVT::i32);
4616}
4617
4618SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
4619                                           const ARMSubtarget *ST) const {
4620  if (!ST->hasVFP3())
4621    return SDValue();
4622
4623  bool IsDouble = Op.getValueType() == MVT::f64;
4624  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
4625
4626  // Use the default (constant pool) lowering for double constants when we have
4627  // an SP-only FPU
4628  if (IsDouble && Subtarget->isFPOnlySP())
4629    return SDValue();
4630
4631  // Try splatting with a VMOV.f32...
4632  APFloat FPVal = CFP->getValueAPF();
4633  int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
4634
4635  if (ImmVal != -1) {
4636    if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
4637      // We have code in place to select a valid ConstantFP already, no need to
4638      // do any mangling.
4639      return Op;
4640    }
4641
4642    // It's a float and we are trying to use NEON operations where
4643    // possible. Lower it to a splat followed by an extract.
4644    SDLoc DL(Op);
4645    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
4646    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
4647                                      NewVal);
4648    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
4649                       DAG.getConstant(0, MVT::i32));
4650  }
4651
4652  // The rest of our options are NEON only, make sure that's allowed before
4653  // proceeding..
4654  if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
4655    return SDValue();
4656
4657  EVT VMovVT;
4658  uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
4659
4660  // It wouldn't really be worth bothering for doubles except for one very
4661  // important value, which does happen to match: 0.0. So make sure we don't do
4662  // anything stupid.
4663  if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
4664    return SDValue();
4665
4666  // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
4667  SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
4668                                     false, VMOVModImm);
4669  if (NewVal != SDValue()) {
4670    SDLoc DL(Op);
4671    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
4672                                      NewVal);
4673    if (IsDouble)
4674      return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
4675
4676    // It's a float: cast and extract a vector element.
4677    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4678                                       VecConstant);
4679    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4680                       DAG.getConstant(0, MVT::i32));
4681  }
4682
4683  // Finally, try a VMVN.i32
4684  NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
4685                             false, VMVNModImm);
4686  if (NewVal != SDValue()) {
4687    SDLoc DL(Op);
4688    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
4689
4690    if (IsDouble)
4691      return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
4692
4693    // It's a float: cast and extract a vector element.
4694    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4695                                       VecConstant);
4696    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4697                       DAG.getConstant(0, MVT::i32));
4698  }
4699
4700  return SDValue();
4701}
4702
4703// check if an VEXT instruction can handle the shuffle mask when the
4704// vector sources of the shuffle are the same.
4705static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4706  unsigned NumElts = VT.getVectorNumElements();
4707
4708  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4709  if (M[0] < 0)
4710    return false;
4711
4712  Imm = M[0];
4713
4714  // If this is a VEXT shuffle, the immediate value is the index of the first
4715  // element.  The other shuffle indices must be the successive elements after
4716  // the first one.
4717  unsigned ExpectedElt = Imm;
4718  for (unsigned i = 1; i < NumElts; ++i) {
4719    // Increment the expected index.  If it wraps around, just follow it
4720    // back to index zero and keep going.
4721    ++ExpectedElt;
4722    if (ExpectedElt == NumElts)
4723      ExpectedElt = 0;
4724
4725    if (M[i] < 0) continue; // ignore UNDEF indices
4726    if (ExpectedElt != static_cast<unsigned>(M[i]))
4727      return false;
4728  }
4729
4730  return true;
4731}
4732
4733
4734static bool isVEXTMask(ArrayRef<int> M, EVT VT,
4735                       bool &ReverseVEXT, unsigned &Imm) {
4736  unsigned NumElts = VT.getVectorNumElements();
4737  ReverseVEXT = false;
4738
4739  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4740  if (M[0] < 0)
4741    return false;
4742
4743  Imm = M[0];
4744
4745  // If this is a VEXT shuffle, the immediate value is the index of the first
4746  // element.  The other shuffle indices must be the successive elements after
4747  // the first one.
4748  unsigned ExpectedElt = Imm;
4749  for (unsigned i = 1; i < NumElts; ++i) {
4750    // Increment the expected index.  If it wraps around, it may still be
4751    // a VEXT but the source vectors must be swapped.
4752    ExpectedElt += 1;
4753    if (ExpectedElt == NumElts * 2) {
4754      ExpectedElt = 0;
4755      ReverseVEXT = true;
4756    }
4757
4758    if (M[i] < 0) continue; // ignore UNDEF indices
4759    if (ExpectedElt != static_cast<unsigned>(M[i]))
4760      return false;
4761  }
4762
4763  // Adjust the index value if the source operands will be swapped.
4764  if (ReverseVEXT)
4765    Imm -= NumElts;
4766
4767  return true;
4768}
4769
4770/// isVREVMask - Check if a vector shuffle corresponds to a VREV
4771/// instruction with the specified blocksize.  (The order of the elements
4772/// within each block of the vector is reversed.)
4773static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4774  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
4775         "Only possible block sizes for VREV are: 16, 32, 64");
4776
4777  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4778  if (EltSz == 64)
4779    return false;
4780
4781  unsigned NumElts = VT.getVectorNumElements();
4782  unsigned BlockElts = M[0] + 1;
4783  // If the first shuffle index is UNDEF, be optimistic.
4784  if (M[0] < 0)
4785    BlockElts = BlockSize / EltSz;
4786
4787  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4788    return false;
4789
4790  for (unsigned i = 0; i < NumElts; ++i) {
4791    if (M[i] < 0) continue; // ignore UNDEF indices
4792    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4793      return false;
4794  }
4795
4796  return true;
4797}
4798
4799static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4800  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4801  // range, then 0 is placed into the resulting vector. So pretty much any mask
4802  // of 8 elements can work here.
4803  return VT == MVT::v8i8 && M.size() == 8;
4804}
4805
4806static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4807  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4808  if (EltSz == 64)
4809    return false;
4810
4811  unsigned NumElts = VT.getVectorNumElements();
4812  WhichResult = (M[0] == 0 ? 0 : 1);
4813  for (unsigned i = 0; i < NumElts; i += 2) {
4814    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4815        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4816      return false;
4817  }
4818  return true;
4819}
4820
4821/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4822/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4823/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4824static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4825  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4826  if (EltSz == 64)
4827    return false;
4828
4829  unsigned NumElts = VT.getVectorNumElements();
4830  WhichResult = (M[0] == 0 ? 0 : 1);
4831  for (unsigned i = 0; i < NumElts; i += 2) {
4832    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4833        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4834      return false;
4835  }
4836  return true;
4837}
4838
4839static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4840  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4841  if (EltSz == 64)
4842    return false;
4843
4844  unsigned NumElts = VT.getVectorNumElements();
4845  WhichResult = (M[0] == 0 ? 0 : 1);
4846  for (unsigned i = 0; i != NumElts; ++i) {
4847    if (M[i] < 0) continue; // ignore UNDEF indices
4848    if ((unsigned) M[i] != 2 * i + WhichResult)
4849      return false;
4850  }
4851
4852  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4853  if (VT.is64BitVector() && EltSz == 32)
4854    return false;
4855
4856  return true;
4857}
4858
4859/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4860/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4861/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4862static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4863  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4864  if (EltSz == 64)
4865    return false;
4866
4867  unsigned Half = VT.getVectorNumElements() / 2;
4868  WhichResult = (M[0] == 0 ? 0 : 1);
4869  for (unsigned j = 0; j != 2; ++j) {
4870    unsigned Idx = WhichResult;
4871    for (unsigned i = 0; i != Half; ++i) {
4872      int MIdx = M[i + j * Half];
4873      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4874        return false;
4875      Idx += 2;
4876    }
4877  }
4878
4879  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4880  if (VT.is64BitVector() && EltSz == 32)
4881    return false;
4882
4883  return true;
4884}
4885
4886static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4887  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4888  if (EltSz == 64)
4889    return false;
4890
4891  unsigned NumElts = VT.getVectorNumElements();
4892  WhichResult = (M[0] == 0 ? 0 : 1);
4893  unsigned Idx = WhichResult * NumElts / 2;
4894  for (unsigned i = 0; i != NumElts; i += 2) {
4895    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4896        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4897      return false;
4898    Idx += 1;
4899  }
4900
4901  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4902  if (VT.is64BitVector() && EltSz == 32)
4903    return false;
4904
4905  return true;
4906}
4907
4908/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4909/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4910/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4911static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4912  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4913  if (EltSz == 64)
4914    return false;
4915
4916  unsigned NumElts = VT.getVectorNumElements();
4917  WhichResult = (M[0] == 0 ? 0 : 1);
4918  unsigned Idx = WhichResult * NumElts / 2;
4919  for (unsigned i = 0; i != NumElts; i += 2) {
4920    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4921        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4922      return false;
4923    Idx += 1;
4924  }
4925
4926  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4927  if (VT.is64BitVector() && EltSz == 32)
4928    return false;
4929
4930  return true;
4931}
4932
4933/// \return true if this is a reverse operation on an vector.
4934static bool isReverseMask(ArrayRef<int> M, EVT VT) {
4935  unsigned NumElts = VT.getVectorNumElements();
4936  // Make sure the mask has the right size.
4937  if (NumElts != M.size())
4938      return false;
4939
4940  // Look for <15, ..., 3, -1, 1, 0>.
4941  for (unsigned i = 0; i != NumElts; ++i)
4942    if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
4943      return false;
4944
4945  return true;
4946}
4947
4948// If N is an integer constant that can be moved into a register in one
4949// instruction, return an SDValue of such a constant (will become a MOV
4950// instruction).  Otherwise return null.
4951static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4952                                     const ARMSubtarget *ST, SDLoc dl) {
4953  uint64_t Val;
4954  if (!isa<ConstantSDNode>(N))
4955    return SDValue();
4956  Val = cast<ConstantSDNode>(N)->getZExtValue();
4957
4958  if (ST->isThumb1Only()) {
4959    if (Val <= 255 || ~Val <= 255)
4960      return DAG.getConstant(Val, MVT::i32);
4961  } else {
4962    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4963      return DAG.getConstant(Val, MVT::i32);
4964  }
4965  return SDValue();
4966}
4967
4968// If this is a case we can't handle, return null and let the default
4969// expansion code take care of it.
4970SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4971                                             const ARMSubtarget *ST) const {
4972  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4973  SDLoc dl(Op);
4974  EVT VT = Op.getValueType();
4975
4976  APInt SplatBits, SplatUndef;
4977  unsigned SplatBitSize;
4978  bool HasAnyUndefs;
4979  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4980    if (SplatBitSize <= 64) {
4981      // Check if an immediate VMOV works.
4982      EVT VmovVT;
4983      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4984                                      SplatUndef.getZExtValue(), SplatBitSize,
4985                                      DAG, VmovVT, VT.is128BitVector(),
4986                                      VMOVModImm);
4987      if (Val.getNode()) {
4988        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4989        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4990      }
4991
4992      // Try an immediate VMVN.
4993      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4994      Val = isNEONModifiedImm(NegatedImm,
4995                                      SplatUndef.getZExtValue(), SplatBitSize,
4996                                      DAG, VmovVT, VT.is128BitVector(),
4997                                      VMVNModImm);
4998      if (Val.getNode()) {
4999        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
5000        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5001      }
5002
5003      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
5004      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
5005        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
5006        if (ImmVal != -1) {
5007          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
5008          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
5009        }
5010      }
5011    }
5012  }
5013
5014  // Scan through the operands to see if only one value is used.
5015  //
5016  // As an optimisation, even if more than one value is used it may be more
5017  // profitable to splat with one value then change some lanes.
5018  //
5019  // Heuristically we decide to do this if the vector has a "dominant" value,
5020  // defined as splatted to more than half of the lanes.
5021  unsigned NumElts = VT.getVectorNumElements();
5022  bool isOnlyLowElement = true;
5023  bool usesOnlyOneValue = true;
5024  bool hasDominantValue = false;
5025  bool isConstant = true;
5026
5027  // Map of the number of times a particular SDValue appears in the
5028  // element list.
5029  DenseMap<SDValue, unsigned> ValueCounts;
5030  SDValue Value;
5031  for (unsigned i = 0; i < NumElts; ++i) {
5032    SDValue V = Op.getOperand(i);
5033    if (V.getOpcode() == ISD::UNDEF)
5034      continue;
5035    if (i > 0)
5036      isOnlyLowElement = false;
5037    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5038      isConstant = false;
5039
5040    ValueCounts.insert(std::make_pair(V, 0));
5041    unsigned &Count = ValueCounts[V];
5042
5043    // Is this value dominant? (takes up more than half of the lanes)
5044    if (++Count > (NumElts / 2)) {
5045      hasDominantValue = true;
5046      Value = V;
5047    }
5048  }
5049  if (ValueCounts.size() != 1)
5050    usesOnlyOneValue = false;
5051  if (!Value.getNode() && ValueCounts.size() > 0)
5052    Value = ValueCounts.begin()->first;
5053
5054  if (ValueCounts.size() == 0)
5055    return DAG.getUNDEF(VT);
5056
5057  // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
5058  // Keep going if we are hitting this case.
5059  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
5060    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5061
5062  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5063
5064  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
5065  // i32 and try again.
5066  if (hasDominantValue && EltSize <= 32) {
5067    if (!isConstant) {
5068      SDValue N;
5069
5070      // If we are VDUPing a value that comes directly from a vector, that will
5071      // cause an unnecessary move to and from a GPR, where instead we could
5072      // just use VDUPLANE. We can only do this if the lane being extracted
5073      // is at a constant index, as the VDUP from lane instructions only have
5074      // constant-index forms.
5075      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5076          isa<ConstantSDNode>(Value->getOperand(1))) {
5077        // We need to create a new undef vector to use for the VDUPLANE if the
5078        // size of the vector from which we get the value is different than the
5079        // size of the vector that we need to create. We will insert the element
5080        // such that the register coalescer will remove unnecessary copies.
5081        if (VT != Value->getOperand(0).getValueType()) {
5082          ConstantSDNode *constIndex;
5083          constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
5084          assert(constIndex && "The index is not a constant!");
5085          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
5086                             VT.getVectorNumElements();
5087          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5088                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
5089                        Value, DAG.getConstant(index, MVT::i32)),
5090                           DAG.getConstant(index, MVT::i32));
5091        } else
5092          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5093                        Value->getOperand(0), Value->getOperand(1));
5094      } else
5095        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
5096
5097      if (!usesOnlyOneValue) {
5098        // The dominant value was splatted as 'N', but we now have to insert
5099        // all differing elements.
5100        for (unsigned I = 0; I < NumElts; ++I) {
5101          if (Op.getOperand(I) == Value)
5102            continue;
5103          SmallVector<SDValue, 3> Ops;
5104          Ops.push_back(N);
5105          Ops.push_back(Op.getOperand(I));
5106          Ops.push_back(DAG.getConstant(I, MVT::i32));
5107          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
5108        }
5109      }
5110      return N;
5111    }
5112    if (VT.getVectorElementType().isFloatingPoint()) {
5113      SmallVector<SDValue, 8> Ops;
5114      for (unsigned i = 0; i < NumElts; ++i)
5115        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
5116                                  Op.getOperand(i)));
5117      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
5118      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5119      Val = LowerBUILD_VECTOR(Val, DAG, ST);
5120      if (Val.getNode())
5121        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5122    }
5123    if (usesOnlyOneValue) {
5124      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
5125      if (isConstant && Val.getNode())
5126        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
5127    }
5128  }
5129
5130  // If all elements are constants and the case above didn't get hit, fall back
5131  // to the default expansion, which will generate a load from the constant
5132  // pool.
5133  if (isConstant)
5134    return SDValue();
5135
5136  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5137  if (NumElts >= 4) {
5138    SDValue shuffle = ReconstructShuffle(Op, DAG);
5139    if (shuffle != SDValue())
5140      return shuffle;
5141  }
5142
5143  // Vectors with 32- or 64-bit elements can be built by directly assigning
5144  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
5145  // will be legalized.
5146  if (EltSize >= 32) {
5147    // Do the expansion with floating-point types, since that is what the VFP
5148    // registers are defined to use, and since i64 is not legal.
5149    EVT EltVT = EVT::getFloatingPointVT(EltSize);
5150    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5151    SmallVector<SDValue, 8> Ops;
5152    for (unsigned i = 0; i < NumElts; ++i)
5153      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
5154    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5155    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5156  }
5157
5158  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5159  // know the default expansion would otherwise fall back on something even
5160  // worse. For a vector with one or two non-undef values, that's
5161  // scalar_to_vector for the elements followed by a shuffle (provided the
5162  // shuffle is valid for the target) and materialization element by element
5163  // on the stack followed by a load for everything else.
5164  if (!isConstant && !usesOnlyOneValue) {
5165    SDValue Vec = DAG.getUNDEF(VT);
5166    for (unsigned i = 0 ; i < NumElts; ++i) {
5167      SDValue V = Op.getOperand(i);
5168      if (V.getOpcode() == ISD::UNDEF)
5169        continue;
5170      SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
5171      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5172    }
5173    return Vec;
5174  }
5175
5176  return SDValue();
5177}
5178
5179// Gather data to see if the operation can be modelled as a
5180// shuffle in combination with VEXTs.
5181SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
5182                                              SelectionDAG &DAG) const {
5183  SDLoc dl(Op);
5184  EVT VT = Op.getValueType();
5185  unsigned NumElts = VT.getVectorNumElements();
5186
5187  SmallVector<SDValue, 2> SourceVecs;
5188  SmallVector<unsigned, 2> MinElts;
5189  SmallVector<unsigned, 2> MaxElts;
5190
5191  for (unsigned i = 0; i < NumElts; ++i) {
5192    SDValue V = Op.getOperand(i);
5193    if (V.getOpcode() == ISD::UNDEF)
5194      continue;
5195    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
5196      // A shuffle can only come from building a vector from various
5197      // elements of other vectors.
5198      return SDValue();
5199    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
5200               VT.getVectorElementType()) {
5201      // This code doesn't know how to handle shuffles where the vector
5202      // element types do not match (this happens because type legalization
5203      // promotes the return type of EXTRACT_VECTOR_ELT).
5204      // FIXME: It might be appropriate to extend this code to handle
5205      // mismatched types.
5206      return SDValue();
5207    }
5208
5209    // Record this extraction against the appropriate vector if possible...
5210    SDValue SourceVec = V.getOperand(0);
5211    // If the element number isn't a constant, we can't effectively
5212    // analyze what's going on.
5213    if (!isa<ConstantSDNode>(V.getOperand(1)))
5214      return SDValue();
5215    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5216    bool FoundSource = false;
5217    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
5218      if (SourceVecs[j] == SourceVec) {
5219        if (MinElts[j] > EltNo)
5220          MinElts[j] = EltNo;
5221        if (MaxElts[j] < EltNo)
5222          MaxElts[j] = EltNo;
5223        FoundSource = true;
5224        break;
5225      }
5226    }
5227
5228    // Or record a new source if not...
5229    if (!FoundSource) {
5230      SourceVecs.push_back(SourceVec);
5231      MinElts.push_back(EltNo);
5232      MaxElts.push_back(EltNo);
5233    }
5234  }
5235
5236  // Currently only do something sane when at most two source vectors
5237  // involved.
5238  if (SourceVecs.size() > 2)
5239    return SDValue();
5240
5241  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
5242  int VEXTOffsets[2] = {0, 0};
5243
5244  // This loop extracts the usage patterns of the source vectors
5245  // and prepares appropriate SDValues for a shuffle if possible.
5246  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
5247    if (SourceVecs[i].getValueType() == VT) {
5248      // No VEXT necessary
5249      ShuffleSrcs[i] = SourceVecs[i];
5250      VEXTOffsets[i] = 0;
5251      continue;
5252    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
5253      // It probably isn't worth padding out a smaller vector just to
5254      // break it down again in a shuffle.
5255      return SDValue();
5256    }
5257
5258    // Since only 64-bit and 128-bit vectors are legal on ARM and
5259    // we've eliminated the other cases...
5260    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
5261           "unexpected vector sizes in ReconstructShuffle");
5262
5263    if (MaxElts[i] - MinElts[i] >= NumElts) {
5264      // Span too large for a VEXT to cope
5265      return SDValue();
5266    }
5267
5268    if (MinElts[i] >= NumElts) {
5269      // The extraction can just take the second half
5270      VEXTOffsets[i] = NumElts;
5271      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5272                                   SourceVecs[i],
5273                                   DAG.getIntPtrConstant(NumElts));
5274    } else if (MaxElts[i] < NumElts) {
5275      // The extraction can just take the first half
5276      VEXTOffsets[i] = 0;
5277      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5278                                   SourceVecs[i],
5279                                   DAG.getIntPtrConstant(0));
5280    } else {
5281      // An actual VEXT is needed
5282      VEXTOffsets[i] = MinElts[i];
5283      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5284                                     SourceVecs[i],
5285                                     DAG.getIntPtrConstant(0));
5286      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5287                                     SourceVecs[i],
5288                                     DAG.getIntPtrConstant(NumElts));
5289      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
5290                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
5291    }
5292  }
5293
5294  SmallVector<int, 8> Mask;
5295
5296  for (unsigned i = 0; i < NumElts; ++i) {
5297    SDValue Entry = Op.getOperand(i);
5298    if (Entry.getOpcode() == ISD::UNDEF) {
5299      Mask.push_back(-1);
5300      continue;
5301    }
5302
5303    SDValue ExtractVec = Entry.getOperand(0);
5304    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
5305                                          .getOperand(1))->getSExtValue();
5306    if (ExtractVec == SourceVecs[0]) {
5307      Mask.push_back(ExtractElt - VEXTOffsets[0]);
5308    } else {
5309      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
5310    }
5311  }
5312
5313  // Final check before we try to produce nonsense...
5314  if (isShuffleMaskLegal(Mask, VT))
5315    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
5316                                &Mask[0]);
5317
5318  return SDValue();
5319}
5320
5321/// isShuffleMaskLegal - Targets can use this to indicate that they only
5322/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5323/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5324/// are assumed to be legal.
5325bool
5326ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5327                                      EVT VT) const {
5328  if (VT.getVectorNumElements() == 4 &&
5329      (VT.is128BitVector() || VT.is64BitVector())) {
5330    unsigned PFIndexes[4];
5331    for (unsigned i = 0; i != 4; ++i) {
5332      if (M[i] < 0)
5333        PFIndexes[i] = 8;
5334      else
5335        PFIndexes[i] = M[i];
5336    }
5337
5338    // Compute the index in the perfect shuffle table.
5339    unsigned PFTableIndex =
5340      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5341    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5342    unsigned Cost = (PFEntry >> 30);
5343
5344    if (Cost <= 4)
5345      return true;
5346  }
5347
5348  bool ReverseVEXT;
5349  unsigned Imm, WhichResult;
5350
5351  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5352  return (EltSize >= 32 ||
5353          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
5354          isVREVMask(M, VT, 64) ||
5355          isVREVMask(M, VT, 32) ||
5356          isVREVMask(M, VT, 16) ||
5357          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
5358          isVTBLMask(M, VT) ||
5359          isVTRNMask(M, VT, WhichResult) ||
5360          isVUZPMask(M, VT, WhichResult) ||
5361          isVZIPMask(M, VT, WhichResult) ||
5362          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
5363          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
5364          isVZIP_v_undef_Mask(M, VT, WhichResult) ||
5365          ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
5366}
5367
5368/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5369/// the specified operations to build the shuffle.
5370static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5371                                      SDValue RHS, SelectionDAG &DAG,
5372                                      SDLoc dl) {
5373  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5374  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5375  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5376
5377  enum {
5378    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5379    OP_VREV,
5380    OP_VDUP0,
5381    OP_VDUP1,
5382    OP_VDUP2,
5383    OP_VDUP3,
5384    OP_VEXT1,
5385    OP_VEXT2,
5386    OP_VEXT3,
5387    OP_VUZPL, // VUZP, left result
5388    OP_VUZPR, // VUZP, right result
5389    OP_VZIPL, // VZIP, left result
5390    OP_VZIPR, // VZIP, right result
5391    OP_VTRNL, // VTRN, left result
5392    OP_VTRNR  // VTRN, right result
5393  };
5394
5395  if (OpNum == OP_COPY) {
5396    if (LHSID == (1*9+2)*9+3) return LHS;
5397    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5398    return RHS;
5399  }
5400
5401  SDValue OpLHS, OpRHS;
5402  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5403  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5404  EVT VT = OpLHS.getValueType();
5405
5406  switch (OpNum) {
5407  default: llvm_unreachable("Unknown shuffle opcode!");
5408  case OP_VREV:
5409    // VREV divides the vector in half and swaps within the half.
5410    if (VT.getVectorElementType() == MVT::i32 ||
5411        VT.getVectorElementType() == MVT::f32)
5412      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
5413    // vrev <4 x i16> -> VREV32
5414    if (VT.getVectorElementType() == MVT::i16)
5415      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
5416    // vrev <4 x i8> -> VREV16
5417    assert(VT.getVectorElementType() == MVT::i8);
5418    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
5419  case OP_VDUP0:
5420  case OP_VDUP1:
5421  case OP_VDUP2:
5422  case OP_VDUP3:
5423    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5424                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
5425  case OP_VEXT1:
5426  case OP_VEXT2:
5427  case OP_VEXT3:
5428    return DAG.getNode(ARMISD::VEXT, dl, VT,
5429                       OpLHS, OpRHS,
5430                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
5431  case OP_VUZPL:
5432  case OP_VUZPR:
5433    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5434                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
5435  case OP_VZIPL:
5436  case OP_VZIPR:
5437    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5438                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
5439  case OP_VTRNL:
5440  case OP_VTRNR:
5441    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5442                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
5443  }
5444}
5445
5446static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
5447                                       ArrayRef<int> ShuffleMask,
5448                                       SelectionDAG &DAG) {
5449  // Check to see if we can use the VTBL instruction.
5450  SDValue V1 = Op.getOperand(0);
5451  SDValue V2 = Op.getOperand(1);
5452  SDLoc DL(Op);
5453
5454  SmallVector<SDValue, 8> VTBLMask;
5455  for (ArrayRef<int>::iterator
5456         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
5457    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
5458
5459  if (V2.getNode()->getOpcode() == ISD::UNDEF)
5460    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
5461                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
5462
5463  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
5464                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
5465}
5466
5467static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
5468                                                      SelectionDAG &DAG) {
5469  SDLoc DL(Op);
5470  SDValue OpLHS = Op.getOperand(0);
5471  EVT VT = OpLHS.getValueType();
5472
5473  assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
5474         "Expect an v8i16/v16i8 type");
5475  OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
5476  // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
5477  // extract the first 8 bytes into the top double word and the last 8 bytes
5478  // into the bottom double word. The v8i16 case is similar.
5479  unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
5480  return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
5481                     DAG.getConstant(ExtractNum, MVT::i32));
5482}
5483
5484static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
5485  SDValue V1 = Op.getOperand(0);
5486  SDValue V2 = Op.getOperand(1);
5487  SDLoc dl(Op);
5488  EVT VT = Op.getValueType();
5489  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5490
5491  // Convert shuffles that are directly supported on NEON to target-specific
5492  // DAG nodes, instead of keeping them as shuffles and matching them again
5493  // during code selection.  This is more efficient and avoids the possibility
5494  // of inconsistencies between legalization and selection.
5495  // FIXME: floating-point vectors should be canonicalized to integer vectors
5496  // of the same time so that they get CSEd properly.
5497  ArrayRef<int> ShuffleMask = SVN->getMask();
5498
5499  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5500  if (EltSize <= 32) {
5501    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
5502      int Lane = SVN->getSplatIndex();
5503      // If this is undef splat, generate it via "just" vdup, if possible.
5504      if (Lane == -1) Lane = 0;
5505
5506      // Test if V1 is a SCALAR_TO_VECTOR.
5507      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5508        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5509      }
5510      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
5511      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
5512      // reaches it).
5513      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
5514          !isa<ConstantSDNode>(V1.getOperand(0))) {
5515        bool IsScalarToVector = true;
5516        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
5517          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
5518            IsScalarToVector = false;
5519            break;
5520          }
5521        if (IsScalarToVector)
5522          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5523      }
5524      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
5525                         DAG.getConstant(Lane, MVT::i32));
5526    }
5527
5528    bool ReverseVEXT;
5529    unsigned Imm;
5530    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
5531      if (ReverseVEXT)
5532        std::swap(V1, V2);
5533      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
5534                         DAG.getConstant(Imm, MVT::i32));
5535    }
5536
5537    if (isVREVMask(ShuffleMask, VT, 64))
5538      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
5539    if (isVREVMask(ShuffleMask, VT, 32))
5540      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
5541    if (isVREVMask(ShuffleMask, VT, 16))
5542      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
5543
5544    if (V2->getOpcode() == ISD::UNDEF &&
5545        isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
5546      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
5547                         DAG.getConstant(Imm, MVT::i32));
5548    }
5549
5550    // Check for Neon shuffles that modify both input vectors in place.
5551    // If both results are used, i.e., if there are two shuffles with the same
5552    // source operands and with masks corresponding to both results of one of
5553    // these operations, DAG memoization will ensure that a single node is
5554    // used for both shuffles.
5555    unsigned WhichResult;
5556    if (isVTRNMask(ShuffleMask, VT, WhichResult))
5557      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5558                         V1, V2).getValue(WhichResult);
5559    if (isVUZPMask(ShuffleMask, VT, WhichResult))
5560      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5561                         V1, V2).getValue(WhichResult);
5562    if (isVZIPMask(ShuffleMask, VT, WhichResult))
5563      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5564                         V1, V2).getValue(WhichResult);
5565
5566    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5567      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5568                         V1, V1).getValue(WhichResult);
5569    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5570      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5571                         V1, V1).getValue(WhichResult);
5572    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5573      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5574                         V1, V1).getValue(WhichResult);
5575  }
5576
5577  // If the shuffle is not directly supported and it has 4 elements, use
5578  // the PerfectShuffle-generated table to synthesize it from other shuffles.
5579  unsigned NumElts = VT.getVectorNumElements();
5580  if (NumElts == 4) {
5581    unsigned PFIndexes[4];
5582    for (unsigned i = 0; i != 4; ++i) {
5583      if (ShuffleMask[i] < 0)
5584        PFIndexes[i] = 8;
5585      else
5586        PFIndexes[i] = ShuffleMask[i];
5587    }
5588
5589    // Compute the index in the perfect shuffle table.
5590    unsigned PFTableIndex =
5591      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5592    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5593    unsigned Cost = (PFEntry >> 30);
5594
5595    if (Cost <= 4)
5596      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5597  }
5598
5599  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
5600  if (EltSize >= 32) {
5601    // Do the expansion with floating-point types, since that is what the VFP
5602    // registers are defined to use, and since i64 is not legal.
5603    EVT EltVT = EVT::getFloatingPointVT(EltSize);
5604    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5605    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
5606    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
5607    SmallVector<SDValue, 8> Ops;
5608    for (unsigned i = 0; i < NumElts; ++i) {
5609      if (ShuffleMask[i] < 0)
5610        Ops.push_back(DAG.getUNDEF(EltVT));
5611      else
5612        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
5613                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
5614                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
5615                                                  MVT::i32)));
5616    }
5617    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5618    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5619  }
5620
5621  if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
5622    return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
5623
5624  if (VT == MVT::v8i8) {
5625    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
5626    if (NewOp.getNode())
5627      return NewOp;
5628  }
5629
5630  return SDValue();
5631}
5632
5633static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5634  // INSERT_VECTOR_ELT is legal only for immediate indexes.
5635  SDValue Lane = Op.getOperand(2);
5636  if (!isa<ConstantSDNode>(Lane))
5637    return SDValue();
5638
5639  return Op;
5640}
5641
5642static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5643  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
5644  SDValue Lane = Op.getOperand(1);
5645  if (!isa<ConstantSDNode>(Lane))
5646    return SDValue();
5647
5648  SDValue Vec = Op.getOperand(0);
5649  if (Op.getValueType() == MVT::i32 &&
5650      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
5651    SDLoc dl(Op);
5652    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
5653  }
5654
5655  return Op;
5656}
5657
5658static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5659  // The only time a CONCAT_VECTORS operation can have legal types is when
5660  // two 64-bit vectors are concatenated to a 128-bit vector.
5661  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
5662         "unexpected CONCAT_VECTORS");
5663  SDLoc dl(Op);
5664  SDValue Val = DAG.getUNDEF(MVT::v2f64);
5665  SDValue Op0 = Op.getOperand(0);
5666  SDValue Op1 = Op.getOperand(1);
5667  if (Op0.getOpcode() != ISD::UNDEF)
5668    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5669                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
5670                      DAG.getIntPtrConstant(0));
5671  if (Op1.getOpcode() != ISD::UNDEF)
5672    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5673                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
5674                      DAG.getIntPtrConstant(1));
5675  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
5676}
5677
5678/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
5679/// element has been zero/sign-extended, depending on the isSigned parameter,
5680/// from an integer type half its size.
5681static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
5682                                   bool isSigned) {
5683  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
5684  EVT VT = N->getValueType(0);
5685  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
5686    SDNode *BVN = N->getOperand(0).getNode();
5687    if (BVN->getValueType(0) != MVT::v4i32 ||
5688        BVN->getOpcode() != ISD::BUILD_VECTOR)
5689      return false;
5690    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5691    unsigned HiElt = 1 - LoElt;
5692    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
5693    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
5694    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
5695    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
5696    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
5697      return false;
5698    if (isSigned) {
5699      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
5700          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
5701        return true;
5702    } else {
5703      if (Hi0->isNullValue() && Hi1->isNullValue())
5704        return true;
5705    }
5706    return false;
5707  }
5708
5709  if (N->getOpcode() != ISD::BUILD_VECTOR)
5710    return false;
5711
5712  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5713    SDNode *Elt = N->getOperand(i).getNode();
5714    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
5715      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5716      unsigned HalfSize = EltSize / 2;
5717      if (isSigned) {
5718        if (!isIntN(HalfSize, C->getSExtValue()))
5719          return false;
5720      } else {
5721        if (!isUIntN(HalfSize, C->getZExtValue()))
5722          return false;
5723      }
5724      continue;
5725    }
5726    return false;
5727  }
5728
5729  return true;
5730}
5731
5732/// isSignExtended - Check if a node is a vector value that is sign-extended
5733/// or a constant BUILD_VECTOR with sign-extended elements.
5734static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
5735  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
5736    return true;
5737  if (isExtendedBUILD_VECTOR(N, DAG, true))
5738    return true;
5739  return false;
5740}
5741
5742/// isZeroExtended - Check if a node is a vector value that is zero-extended
5743/// or a constant BUILD_VECTOR with zero-extended elements.
5744static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
5745  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
5746    return true;
5747  if (isExtendedBUILD_VECTOR(N, DAG, false))
5748    return true;
5749  return false;
5750}
5751
5752static EVT getExtensionTo64Bits(const EVT &OrigVT) {
5753  if (OrigVT.getSizeInBits() >= 64)
5754    return OrigVT;
5755
5756  assert(OrigVT.isSimple() && "Expecting a simple value type");
5757
5758  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
5759  switch (OrigSimpleTy) {
5760  default: llvm_unreachable("Unexpected Vector Type");
5761  case MVT::v2i8:
5762  case MVT::v2i16:
5763     return MVT::v2i32;
5764  case MVT::v4i8:
5765    return  MVT::v4i16;
5766  }
5767}
5768
5769/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
5770/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
5771/// We insert the required extension here to get the vector to fill a D register.
5772static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
5773                                            const EVT &OrigTy,
5774                                            const EVT &ExtTy,
5775                                            unsigned ExtOpcode) {
5776  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
5777  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
5778  // 64-bits we need to insert a new extension so that it will be 64-bits.
5779  assert(ExtTy.is128BitVector() && "Unexpected extension size");
5780  if (OrigTy.getSizeInBits() >= 64)
5781    return N;
5782
5783  // Must extend size to at least 64 bits to be used as an operand for VMULL.
5784  EVT NewVT = getExtensionTo64Bits(OrigTy);
5785
5786  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
5787}
5788
5789/// SkipLoadExtensionForVMULL - return a load of the original vector size that
5790/// does not do any sign/zero extension. If the original vector is less
5791/// than 64 bits, an appropriate extension will be added after the load to
5792/// reach a total size of 64 bits. We have to add the extension separately
5793/// because ARM does not have a sign/zero extending load for vectors.
5794static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
5795  EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
5796
5797  // The load already has the right type.
5798  if (ExtendedTy == LD->getMemoryVT())
5799    return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
5800                LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
5801                LD->isNonTemporal(), LD->isInvariant(),
5802                LD->getAlignment());
5803
5804  // We need to create a zextload/sextload. We cannot just create a load
5805  // followed by a zext/zext node because LowerMUL is also run during normal
5806  // operation legalization where we can't create illegal types.
5807  return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
5808                        LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
5809                        LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
5810                        LD->isNonTemporal(), LD->getAlignment());
5811}
5812
5813/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
5814/// extending load, or BUILD_VECTOR with extended elements, return the
5815/// unextended value. The unextended vector should be 64 bits so that it can
5816/// be used as an operand to a VMULL instruction. If the original vector size
5817/// before extension is less than 64 bits we add a an extension to resize
5818/// the vector to 64 bits.
5819static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
5820  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
5821    return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
5822                                        N->getOperand(0)->getValueType(0),
5823                                        N->getValueType(0),
5824                                        N->getOpcode());
5825
5826  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
5827    return SkipLoadExtensionForVMULL(LD, DAG);
5828
5829  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
5830  // have been legalized as a BITCAST from v4i32.
5831  if (N->getOpcode() == ISD::BITCAST) {
5832    SDNode *BVN = N->getOperand(0).getNode();
5833    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
5834           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
5835    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5836    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
5837                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
5838  }
5839  // Construct a new BUILD_VECTOR with elements truncated to half the size.
5840  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
5841  EVT VT = N->getValueType(0);
5842  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
5843  unsigned NumElts = VT.getVectorNumElements();
5844  MVT TruncVT = MVT::getIntegerVT(EltSize);
5845  SmallVector<SDValue, 8> Ops;
5846  for (unsigned i = 0; i != NumElts; ++i) {
5847    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
5848    const APInt &CInt = C->getAPIntValue();
5849    // Element types smaller than 32 bits are not legal, so use i32 elements.
5850    // The values are implicitly truncated so sext vs. zext doesn't matter.
5851    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
5852  }
5853  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
5854                     MVT::getVectorVT(TruncVT, NumElts), Ops);
5855}
5856
5857static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
5858  unsigned Opcode = N->getOpcode();
5859  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5860    SDNode *N0 = N->getOperand(0).getNode();
5861    SDNode *N1 = N->getOperand(1).getNode();
5862    return N0->hasOneUse() && N1->hasOneUse() &&
5863      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
5864  }
5865  return false;
5866}
5867
5868static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
5869  unsigned Opcode = N->getOpcode();
5870  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5871    SDNode *N0 = N->getOperand(0).getNode();
5872    SDNode *N1 = N->getOperand(1).getNode();
5873    return N0->hasOneUse() && N1->hasOneUse() &&
5874      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
5875  }
5876  return false;
5877}
5878
5879static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
5880  // Multiplications are only custom-lowered for 128-bit vectors so that
5881  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
5882  EVT VT = Op.getValueType();
5883  assert(VT.is128BitVector() && VT.isInteger() &&
5884         "unexpected type for custom-lowering ISD::MUL");
5885  SDNode *N0 = Op.getOperand(0).getNode();
5886  SDNode *N1 = Op.getOperand(1).getNode();
5887  unsigned NewOpc = 0;
5888  bool isMLA = false;
5889  bool isN0SExt = isSignExtended(N0, DAG);
5890  bool isN1SExt = isSignExtended(N1, DAG);
5891  if (isN0SExt && isN1SExt)
5892    NewOpc = ARMISD::VMULLs;
5893  else {
5894    bool isN0ZExt = isZeroExtended(N0, DAG);
5895    bool isN1ZExt = isZeroExtended(N1, DAG);
5896    if (isN0ZExt && isN1ZExt)
5897      NewOpc = ARMISD::VMULLu;
5898    else if (isN1SExt || isN1ZExt) {
5899      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
5900      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
5901      if (isN1SExt && isAddSubSExt(N0, DAG)) {
5902        NewOpc = ARMISD::VMULLs;
5903        isMLA = true;
5904      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
5905        NewOpc = ARMISD::VMULLu;
5906        isMLA = true;
5907      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
5908        std::swap(N0, N1);
5909        NewOpc = ARMISD::VMULLu;
5910        isMLA = true;
5911      }
5912    }
5913
5914    if (!NewOpc) {
5915      if (VT == MVT::v2i64)
5916        // Fall through to expand this.  It is not legal.
5917        return SDValue();
5918      else
5919        // Other vector multiplications are legal.
5920        return Op;
5921    }
5922  }
5923
5924  // Legalize to a VMULL instruction.
5925  SDLoc DL(Op);
5926  SDValue Op0;
5927  SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
5928  if (!isMLA) {
5929    Op0 = SkipExtensionForVMULL(N0, DAG);
5930    assert(Op0.getValueType().is64BitVector() &&
5931           Op1.getValueType().is64BitVector() &&
5932           "unexpected types for extended operands to VMULL");
5933    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
5934  }
5935
5936  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
5937  // isel lowering to take advantage of no-stall back to back vmul + vmla.
5938  //   vmull q0, d4, d6
5939  //   vmlal q0, d5, d6
5940  // is faster than
5941  //   vaddl q0, d4, d5
5942  //   vmovl q1, d6
5943  //   vmul  q0, q0, q1
5944  SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
5945  SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
5946  EVT Op1VT = Op1.getValueType();
5947  return DAG.getNode(N0->getOpcode(), DL, VT,
5948                     DAG.getNode(NewOpc, DL, VT,
5949                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5950                     DAG.getNode(NewOpc, DL, VT,
5951                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5952}
5953
5954static SDValue
5955LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
5956  // Convert to float
5957  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5958  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5959  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5960  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5961  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5962  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5963  // Get reciprocal estimate.
5964  // float4 recip = vrecpeq_f32(yf);
5965  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5966                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5967  // Because char has a smaller range than uchar, we can actually get away
5968  // without any newton steps.  This requires that we use a weird bias
5969  // of 0xb000, however (again, this has been exhaustively tested).
5970  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5971  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5972  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5973  Y = DAG.getConstant(0xb000, MVT::i32);
5974  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5975  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5976  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5977  // Convert back to short.
5978  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5979  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5980  return X;
5981}
5982
5983static SDValue
5984LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
5985  SDValue N2;
5986  // Convert to float.
5987  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5988  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5989  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5990  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5991  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5992  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5993
5994  // Use reciprocal estimate and one refinement step.
5995  // float4 recip = vrecpeq_f32(yf);
5996  // recip *= vrecpsq_f32(yf, recip);
5997  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5998                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5999  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6000                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
6001                   N1, N2);
6002  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6003  // Because short has a smaller range than ushort, we can actually get away
6004  // with only a single newton step.  This requires that we use a weird bias
6005  // of 89, however (again, this has been exhaustively tested).
6006  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
6007  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6008  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6009  N1 = DAG.getConstant(0x89, MVT::i32);
6010  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
6011  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6012  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6013  // Convert back to integer and return.
6014  // return vmovn_s32(vcvt_s32_f32(result));
6015  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6016  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6017  return N0;
6018}
6019
6020static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
6021  EVT VT = Op.getValueType();
6022  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6023         "unexpected type for custom-lowering ISD::SDIV");
6024
6025  SDLoc dl(Op);
6026  SDValue N0 = Op.getOperand(0);
6027  SDValue N1 = Op.getOperand(1);
6028  SDValue N2, N3;
6029
6030  if (VT == MVT::v8i8) {
6031    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
6032    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
6033
6034    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6035                     DAG.getIntPtrConstant(4));
6036    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6037                     DAG.getIntPtrConstant(4));
6038    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6039                     DAG.getIntPtrConstant(0));
6040    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6041                     DAG.getIntPtrConstant(0));
6042
6043    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
6044    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
6045
6046    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6047    N0 = LowerCONCAT_VECTORS(N0, DAG);
6048
6049    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
6050    return N0;
6051  }
6052  return LowerSDIV_v4i16(N0, N1, dl, DAG);
6053}
6054
6055static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
6056  EVT VT = Op.getValueType();
6057  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6058         "unexpected type for custom-lowering ISD::UDIV");
6059
6060  SDLoc dl(Op);
6061  SDValue N0 = Op.getOperand(0);
6062  SDValue N1 = Op.getOperand(1);
6063  SDValue N2, N3;
6064
6065  if (VT == MVT::v8i8) {
6066    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
6067    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
6068
6069    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6070                     DAG.getIntPtrConstant(4));
6071    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6072                     DAG.getIntPtrConstant(4));
6073    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6074                     DAG.getIntPtrConstant(0));
6075    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6076                     DAG.getIntPtrConstant(0));
6077
6078    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
6079    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
6080
6081    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6082    N0 = LowerCONCAT_VECTORS(N0, DAG);
6083
6084    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
6085                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
6086                     N0);
6087    return N0;
6088  }
6089
6090  // v4i16 sdiv ... Convert to float.
6091  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
6092  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
6093  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
6094  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
6095  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6096  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6097
6098  // Use reciprocal estimate and two refinement steps.
6099  // float4 recip = vrecpeq_f32(yf);
6100  // recip *= vrecpsq_f32(yf, recip);
6101  // recip *= vrecpsq_f32(yf, recip);
6102  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6103                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
6104  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6105                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
6106                   BN1, N2);
6107  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6108  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6109                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
6110                   BN1, N2);
6111  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6112  // Simply multiplying by the reciprocal estimate can leave us a few ulps
6113  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
6114  // and that it will never cause us to return an answer too large).
6115  // float4 result = as_float4(as_int4(xf*recip) + 2);
6116  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6117  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6118  N1 = DAG.getConstant(2, MVT::i32);
6119  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
6120  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6121  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6122  // Convert back to integer and return.
6123  // return vmovn_u32(vcvt_s32_f32(result));
6124  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6125  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6126  return N0;
6127}
6128
6129static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
6130  EVT VT = Op.getNode()->getValueType(0);
6131  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
6132
6133  unsigned Opc;
6134  bool ExtraOp = false;
6135  switch (Op.getOpcode()) {
6136  default: llvm_unreachable("Invalid code");
6137  case ISD::ADDC: Opc = ARMISD::ADDC; break;
6138  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
6139  case ISD::SUBC: Opc = ARMISD::SUBC; break;
6140  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
6141  }
6142
6143  if (!ExtraOp)
6144    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6145                       Op.getOperand(1));
6146  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6147                     Op.getOperand(1), Op.getOperand(2));
6148}
6149
6150SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
6151  assert(Subtarget->isTargetDarwin());
6152
6153  // For iOS, we want to call an alternative entry point: __sincos_stret,
6154  // return values are passed via sret.
6155  SDLoc dl(Op);
6156  SDValue Arg = Op.getOperand(0);
6157  EVT ArgVT = Arg.getValueType();
6158  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
6159
6160  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6161  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6162
6163  // Pair of floats / doubles used to pass the result.
6164  StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
6165
6166  // Create stack object for sret.
6167  const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy);
6168  const unsigned StackAlign = TLI.getDataLayout()->getPrefTypeAlignment(RetTy);
6169  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
6170  SDValue SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
6171
6172  ArgListTy Args;
6173  ArgListEntry Entry;
6174
6175  Entry.Node = SRet;
6176  Entry.Ty = RetTy->getPointerTo();
6177  Entry.isSExt = false;
6178  Entry.isZExt = false;
6179  Entry.isSRet = true;
6180  Args.push_back(Entry);
6181
6182  Entry.Node = Arg;
6183  Entry.Ty = ArgTy;
6184  Entry.isSExt = false;
6185  Entry.isZExt = false;
6186  Args.push_back(Entry);
6187
6188  const char *LibcallName  = (ArgVT == MVT::f64)
6189  ? "__sincos_stret" : "__sincosf_stret";
6190  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
6191
6192  TargetLowering::CallLoweringInfo CLI(DAG);
6193  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
6194    .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), Callee,
6195               std::move(Args), 0)
6196    .setDiscardResult();
6197
6198  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6199
6200  SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
6201                                MachinePointerInfo(), false, false, false, 0);
6202
6203  // Address of cos field.
6204  SDValue Add = DAG.getNode(ISD::ADD, dl, getPointerTy(), SRet,
6205                            DAG.getIntPtrConstant(ArgVT.getStoreSize()));
6206  SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
6207                                MachinePointerInfo(), false, false, false, 0);
6208
6209  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
6210  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
6211                     LoadSin.getValue(0), LoadCos.getValue(0));
6212}
6213
6214static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
6215  // Monotonic load/store is legal for all targets
6216  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
6217    return Op;
6218
6219  // Acquire/Release load/store is not legal for targets without a
6220  // dmb or equivalent available.
6221  return SDValue();
6222}
6223
6224static void ReplaceREADCYCLECOUNTER(SDNode *N,
6225                                    SmallVectorImpl<SDValue> &Results,
6226                                    SelectionDAG &DAG,
6227                                    const ARMSubtarget *Subtarget) {
6228  SDLoc DL(N);
6229  SDValue Cycles32, OutChain;
6230
6231  if (Subtarget->hasPerfMon()) {
6232    // Under Power Management extensions, the cycle-count is:
6233    //    mrc p15, #0, <Rt>, c9, c13, #0
6234    SDValue Ops[] = { N->getOperand(0), // Chain
6235                      DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
6236                      DAG.getConstant(15, MVT::i32),
6237                      DAG.getConstant(0, MVT::i32),
6238                      DAG.getConstant(9, MVT::i32),
6239                      DAG.getConstant(13, MVT::i32),
6240                      DAG.getConstant(0, MVT::i32)
6241    };
6242
6243    Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
6244                           DAG.getVTList(MVT::i32, MVT::Other), Ops);
6245    OutChain = Cycles32.getValue(1);
6246  } else {
6247    // Intrinsic is defined to return 0 on unsupported platforms. Technically
6248    // there are older ARM CPUs that have implementation-specific ways of
6249    // obtaining this information (FIXME!).
6250    Cycles32 = DAG.getConstant(0, MVT::i32);
6251    OutChain = DAG.getEntryNode();
6252  }
6253
6254
6255  SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
6256                                 Cycles32, DAG.getConstant(0, MVT::i32));
6257  Results.push_back(Cycles64);
6258  Results.push_back(OutChain);
6259}
6260
6261SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6262  switch (Op.getOpcode()) {
6263  default: llvm_unreachable("Don't know how to custom lower this!");
6264  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
6265  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
6266  case ISD::GlobalAddress:
6267    switch (Subtarget->getTargetTriple().getObjectFormat()) {
6268    default: llvm_unreachable("unknown object format");
6269    case Triple::COFF:
6270      return LowerGlobalAddressWindows(Op, DAG);
6271    case Triple::ELF:
6272      return LowerGlobalAddressELF(Op, DAG);
6273    case Triple::MachO:
6274      return LowerGlobalAddressDarwin(Op, DAG);
6275    }
6276  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6277  case ISD::SELECT:        return LowerSELECT(Op, DAG);
6278  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
6279  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
6280  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
6281  case ISD::VASTART:       return LowerVASTART(Op, DAG);
6282  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
6283  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
6284  case ISD::SINT_TO_FP:
6285  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
6286  case ISD::FP_TO_SINT:
6287  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
6288  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
6289  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
6290  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
6291  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
6292  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
6293  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
6294  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
6295                                                               Subtarget);
6296  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
6297  case ISD::SHL:
6298  case ISD::SRL:
6299  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
6300  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
6301  case ISD::SRL_PARTS:
6302  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
6303  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
6304  case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
6305  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
6306  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
6307  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
6308  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6309  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
6310  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6311  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
6312  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
6313  case ISD::MUL:           return LowerMUL(Op, DAG);
6314  case ISD::SDIV:          return LowerSDIV(Op, DAG);
6315  case ISD::UDIV:          return LowerUDIV(Op, DAG);
6316  case ISD::ADDC:
6317  case ISD::ADDE:
6318  case ISD::SUBC:
6319  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
6320  case ISD::SADDO:
6321  case ISD::UADDO:
6322  case ISD::SSUBO:
6323  case ISD::USUBO:
6324    return LowerXALUO(Op, DAG);
6325  case ISD::ATOMIC_LOAD:
6326  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
6327  case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
6328  case ISD::SDIVREM:
6329  case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
6330  case ISD::DYNAMIC_STACKALLOC:
6331    if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
6332      return LowerDYNAMIC_STACKALLOC(Op, DAG);
6333    llvm_unreachable("Don't know how to custom lower this!");
6334  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
6335  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
6336  }
6337}
6338
6339/// ReplaceNodeResults - Replace the results of node with an illegal result
6340/// type with new values built out of custom code.
6341void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
6342                                           SmallVectorImpl<SDValue>&Results,
6343                                           SelectionDAG &DAG) const {
6344  SDValue Res;
6345  switch (N->getOpcode()) {
6346  default:
6347    llvm_unreachable("Don't know how to custom expand this!");
6348  case ISD::BITCAST:
6349    Res = ExpandBITCAST(N, DAG);
6350    break;
6351  case ISD::SRL:
6352  case ISD::SRA:
6353    Res = Expand64BitShift(N, DAG, Subtarget);
6354    break;
6355  case ISD::READCYCLECOUNTER:
6356    ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
6357    return;
6358  }
6359  if (Res.getNode())
6360    Results.push_back(Res);
6361}
6362
6363//===----------------------------------------------------------------------===//
6364//                           ARM Scheduler Hooks
6365//===----------------------------------------------------------------------===//
6366
6367/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
6368/// registers the function context.
6369void ARMTargetLowering::
6370SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
6371                       MachineBasicBlock *DispatchBB, int FI) const {
6372  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
6373  DebugLoc dl = MI->getDebugLoc();
6374  MachineFunction *MF = MBB->getParent();
6375  MachineRegisterInfo *MRI = &MF->getRegInfo();
6376  MachineConstantPool *MCP = MF->getConstantPool();
6377  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6378  const Function *F = MF->getFunction();
6379
6380  bool isThumb = Subtarget->isThumb();
6381  bool isThumb2 = Subtarget->isThumb2();
6382
6383  unsigned PCLabelId = AFI->createPICLabelUId();
6384  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
6385  ARMConstantPoolValue *CPV =
6386    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
6387  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
6388
6389  const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
6390                                           : &ARM::GPRRegClass;
6391
6392  // Grab constant pool and fixed stack memory operands.
6393  MachineMemOperand *CPMMO =
6394    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
6395                             MachineMemOperand::MOLoad, 4, 4);
6396
6397  MachineMemOperand *FIMMOSt =
6398    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6399                             MachineMemOperand::MOStore, 4, 4);
6400
6401  // Load the address of the dispatch MBB into the jump buffer.
6402  if (isThumb2) {
6403    // Incoming value: jbuf
6404    //   ldr.n  r5, LCPI1_1
6405    //   orr    r5, r5, #1
6406    //   add    r5, pc
6407    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
6408    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6409    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6410                   .addConstantPoolIndex(CPI)
6411                   .addMemOperand(CPMMO));
6412    // Set the low bit because of thumb mode.
6413    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6414    AddDefaultCC(
6415      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6416                     .addReg(NewVReg1, RegState::Kill)
6417                     .addImm(0x01)));
6418    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6419    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6420      .addReg(NewVReg2, RegState::Kill)
6421      .addImm(PCLabelId);
6422    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6423                   .addReg(NewVReg3, RegState::Kill)
6424                   .addFrameIndex(FI)
6425                   .addImm(36)  // &jbuf[1] :: pc
6426                   .addMemOperand(FIMMOSt));
6427  } else if (isThumb) {
6428    // Incoming value: jbuf
6429    //   ldr.n  r1, LCPI1_4
6430    //   add    r1, pc
6431    //   mov    r2, #1
6432    //   orrs   r1, r2
6433    //   add    r2, $jbuf, #+4 ; &jbuf[1]
6434    //   str    r1, [r2]
6435    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6436    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6437                   .addConstantPoolIndex(CPI)
6438                   .addMemOperand(CPMMO));
6439    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6440    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6441      .addReg(NewVReg1, RegState::Kill)
6442      .addImm(PCLabelId);
6443    // Set the low bit because of thumb mode.
6444    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6445    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6446                   .addReg(ARM::CPSR, RegState::Define)
6447                   .addImm(1));
6448    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6449    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6450                   .addReg(ARM::CPSR, RegState::Define)
6451                   .addReg(NewVReg2, RegState::Kill)
6452                   .addReg(NewVReg3, RegState::Kill));
6453    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6454    BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
6455            .addFrameIndex(FI)
6456            .addImm(36); // &jbuf[1] :: pc
6457    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6458                   .addReg(NewVReg4, RegState::Kill)
6459                   .addReg(NewVReg5, RegState::Kill)
6460                   .addImm(0)
6461                   .addMemOperand(FIMMOSt));
6462  } else {
6463    // Incoming value: jbuf
6464    //   ldr  r1, LCPI1_1
6465    //   add  r1, pc, r1
6466    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
6467    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6468    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
6469                   .addConstantPoolIndex(CPI)
6470                   .addImm(0)
6471                   .addMemOperand(CPMMO));
6472    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6473    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6474                   .addReg(NewVReg1, RegState::Kill)
6475                   .addImm(PCLabelId));
6476    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6477                   .addReg(NewVReg2, RegState::Kill)
6478                   .addFrameIndex(FI)
6479                   .addImm(36)  // &jbuf[1] :: pc
6480                   .addMemOperand(FIMMOSt));
6481  }
6482}
6483
6484MachineBasicBlock *ARMTargetLowering::
6485EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6486  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
6487  DebugLoc dl = MI->getDebugLoc();
6488  MachineFunction *MF = MBB->getParent();
6489  MachineRegisterInfo *MRI = &MF->getRegInfo();
6490  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6491  MachineFrameInfo *MFI = MF->getFrameInfo();
6492  int FI = MFI->getFunctionContextIndex();
6493
6494  const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
6495                                                        : &ARM::GPRnopcRegClass;
6496
6497  // Get a mapping of the call site numbers to all of the landing pads they're
6498  // associated with.
6499  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
6500  unsigned MaxCSNum = 0;
6501  MachineModuleInfo &MMI = MF->getMMI();
6502  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6503       ++BB) {
6504    if (!BB->isLandingPad()) continue;
6505
6506    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6507    // pad.
6508    for (MachineBasicBlock::iterator
6509           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6510      if (!II->isEHLabel()) continue;
6511
6512      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6513      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6514
6515      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6516      for (SmallVectorImpl<unsigned>::iterator
6517             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6518           CSI != CSE; ++CSI) {
6519        CallSiteNumToLPad[*CSI].push_back(BB);
6520        MaxCSNum = std::max(MaxCSNum, *CSI);
6521      }
6522      break;
6523    }
6524  }
6525
6526  // Get an ordered list of the machine basic blocks for the jump table.
6527  std::vector<MachineBasicBlock*> LPadList;
6528  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
6529  LPadList.reserve(CallSiteNumToLPad.size());
6530  for (unsigned I = 1; I <= MaxCSNum; ++I) {
6531    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6532    for (SmallVectorImpl<MachineBasicBlock*>::iterator
6533           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6534      LPadList.push_back(*II);
6535      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6536    }
6537  }
6538
6539  assert(!LPadList.empty() &&
6540         "No landing pad destinations for the dispatch jump table!");
6541
6542  // Create the jump table and associated information.
6543  MachineJumpTableInfo *JTI =
6544    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6545  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6546  unsigned UId = AFI->createJumpTableUId();
6547  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
6548
6549  // Create the MBBs for the dispatch code.
6550
6551  // Shove the dispatch's address into the return slot in the function context.
6552  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6553  DispatchBB->setIsLandingPad();
6554
6555  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6556  unsigned trap_opcode;
6557  if (Subtarget->isThumb())
6558    trap_opcode = ARM::tTRAP;
6559  else
6560    trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
6561
6562  BuildMI(TrapBB, dl, TII->get(trap_opcode));
6563  DispatchBB->addSuccessor(TrapBB);
6564
6565  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6566  DispatchBB->addSuccessor(DispContBB);
6567
6568  // Insert and MBBs.
6569  MF->insert(MF->end(), DispatchBB);
6570  MF->insert(MF->end(), DispContBB);
6571  MF->insert(MF->end(), TrapBB);
6572
6573  // Insert code into the entry block that creates and registers the function
6574  // context.
6575  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6576
6577  MachineMemOperand *FIMMOLd =
6578    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6579                             MachineMemOperand::MOLoad |
6580                             MachineMemOperand::MOVolatile, 4, 4);
6581
6582  MachineInstrBuilder MIB;
6583  MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6584
6585  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6586  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6587
6588  // Add a register mask with no preserved registers.  This results in all
6589  // registers being marked as clobbered.
6590  MIB.addRegMask(RI.getNoPreservedMask());
6591
6592  unsigned NumLPads = LPadList.size();
6593  if (Subtarget->isThumb2()) {
6594    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6595    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6596                   .addFrameIndex(FI)
6597                   .addImm(4)
6598                   .addMemOperand(FIMMOLd));
6599
6600    if (NumLPads < 256) {
6601      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6602                     .addReg(NewVReg1)
6603                     .addImm(LPadList.size()));
6604    } else {
6605      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6606      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6607                     .addImm(NumLPads & 0xFFFF));
6608
6609      unsigned VReg2 = VReg1;
6610      if ((NumLPads & 0xFFFF0000) != 0) {
6611        VReg2 = MRI->createVirtualRegister(TRC);
6612        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6613                       .addReg(VReg1)
6614                       .addImm(NumLPads >> 16));
6615      }
6616
6617      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6618                     .addReg(NewVReg1)
6619                     .addReg(VReg2));
6620    }
6621
6622    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6623      .addMBB(TrapBB)
6624      .addImm(ARMCC::HI)
6625      .addReg(ARM::CPSR);
6626
6627    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6628    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6629                   .addJumpTableIndex(MJTI)
6630                   .addImm(UId));
6631
6632    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6633    AddDefaultCC(
6634      AddDefaultPred(
6635        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6636        .addReg(NewVReg3, RegState::Kill)
6637        .addReg(NewVReg1)
6638        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6639
6640    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6641      .addReg(NewVReg4, RegState::Kill)
6642      .addReg(NewVReg1)
6643      .addJumpTableIndex(MJTI)
6644      .addImm(UId);
6645  } else if (Subtarget->isThumb()) {
6646    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6647    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6648                   .addFrameIndex(FI)
6649                   .addImm(1)
6650                   .addMemOperand(FIMMOLd));
6651
6652    if (NumLPads < 256) {
6653      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6654                     .addReg(NewVReg1)
6655                     .addImm(NumLPads));
6656    } else {
6657      MachineConstantPool *ConstantPool = MF->getConstantPool();
6658      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6659      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6660
6661      // MachineConstantPool wants an explicit alignment.
6662      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6663      if (Align == 0)
6664        Align = getDataLayout()->getTypeAllocSize(C->getType());
6665      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6666
6667      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6668      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6669                     .addReg(VReg1, RegState::Define)
6670                     .addConstantPoolIndex(Idx));
6671      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6672                     .addReg(NewVReg1)
6673                     .addReg(VReg1));
6674    }
6675
6676    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6677      .addMBB(TrapBB)
6678      .addImm(ARMCC::HI)
6679      .addReg(ARM::CPSR);
6680
6681    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6682    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6683                   .addReg(ARM::CPSR, RegState::Define)
6684                   .addReg(NewVReg1)
6685                   .addImm(2));
6686
6687    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6688    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6689                   .addJumpTableIndex(MJTI)
6690                   .addImm(UId));
6691
6692    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6693    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6694                   .addReg(ARM::CPSR, RegState::Define)
6695                   .addReg(NewVReg2, RegState::Kill)
6696                   .addReg(NewVReg3));
6697
6698    MachineMemOperand *JTMMOLd =
6699      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6700                               MachineMemOperand::MOLoad, 4, 4);
6701
6702    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6703    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6704                   .addReg(NewVReg4, RegState::Kill)
6705                   .addImm(0)
6706                   .addMemOperand(JTMMOLd));
6707
6708    unsigned NewVReg6 = NewVReg5;
6709    if (RelocM == Reloc::PIC_) {
6710      NewVReg6 = MRI->createVirtualRegister(TRC);
6711      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6712                     .addReg(ARM::CPSR, RegState::Define)
6713                     .addReg(NewVReg5, RegState::Kill)
6714                     .addReg(NewVReg3));
6715    }
6716
6717    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6718      .addReg(NewVReg6, RegState::Kill)
6719      .addJumpTableIndex(MJTI)
6720      .addImm(UId);
6721  } else {
6722    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6723    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6724                   .addFrameIndex(FI)
6725                   .addImm(4)
6726                   .addMemOperand(FIMMOLd));
6727
6728    if (NumLPads < 256) {
6729      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6730                     .addReg(NewVReg1)
6731                     .addImm(NumLPads));
6732    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6733      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6734      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6735                     .addImm(NumLPads & 0xFFFF));
6736
6737      unsigned VReg2 = VReg1;
6738      if ((NumLPads & 0xFFFF0000) != 0) {
6739        VReg2 = MRI->createVirtualRegister(TRC);
6740        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6741                       .addReg(VReg1)
6742                       .addImm(NumLPads >> 16));
6743      }
6744
6745      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6746                     .addReg(NewVReg1)
6747                     .addReg(VReg2));
6748    } else {
6749      MachineConstantPool *ConstantPool = MF->getConstantPool();
6750      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6751      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6752
6753      // MachineConstantPool wants an explicit alignment.
6754      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6755      if (Align == 0)
6756        Align = getDataLayout()->getTypeAllocSize(C->getType());
6757      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6758
6759      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6760      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6761                     .addReg(VReg1, RegState::Define)
6762                     .addConstantPoolIndex(Idx)
6763                     .addImm(0));
6764      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6765                     .addReg(NewVReg1)
6766                     .addReg(VReg1, RegState::Kill));
6767    }
6768
6769    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6770      .addMBB(TrapBB)
6771      .addImm(ARMCC::HI)
6772      .addReg(ARM::CPSR);
6773
6774    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6775    AddDefaultCC(
6776      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6777                     .addReg(NewVReg1)
6778                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6779    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6780    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6781                   .addJumpTableIndex(MJTI)
6782                   .addImm(UId));
6783
6784    MachineMemOperand *JTMMOLd =
6785      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6786                               MachineMemOperand::MOLoad, 4, 4);
6787    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6788    AddDefaultPred(
6789      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6790      .addReg(NewVReg3, RegState::Kill)
6791      .addReg(NewVReg4)
6792      .addImm(0)
6793      .addMemOperand(JTMMOLd));
6794
6795    if (RelocM == Reloc::PIC_) {
6796      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6797        .addReg(NewVReg5, RegState::Kill)
6798        .addReg(NewVReg4)
6799        .addJumpTableIndex(MJTI)
6800        .addImm(UId);
6801    } else {
6802      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
6803        .addReg(NewVReg5, RegState::Kill)
6804        .addJumpTableIndex(MJTI)
6805        .addImm(UId);
6806    }
6807  }
6808
6809  // Add the jump table entries as successors to the MBB.
6810  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6811  for (std::vector<MachineBasicBlock*>::iterator
6812         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6813    MachineBasicBlock *CurMBB = *I;
6814    if (SeenMBBs.insert(CurMBB).second)
6815      DispContBB->addSuccessor(CurMBB);
6816  }
6817
6818  // N.B. the order the invoke BBs are processed in doesn't matter here.
6819  const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
6820  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6821  for (MachineBasicBlock *BB : InvokeBBs) {
6822
6823    // Remove the landing pad successor from the invoke block and replace it
6824    // with the new dispatch block.
6825    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6826                                                  BB->succ_end());
6827    while (!Successors.empty()) {
6828      MachineBasicBlock *SMBB = Successors.pop_back_val();
6829      if (SMBB->isLandingPad()) {
6830        BB->removeSuccessor(SMBB);
6831        MBBLPads.push_back(SMBB);
6832      }
6833    }
6834
6835    BB->addSuccessor(DispatchBB);
6836
6837    // Find the invoke call and mark all of the callee-saved registers as
6838    // 'implicit defined' so that they're spilled. This prevents code from
6839    // moving instructions to before the EH block, where they will never be
6840    // executed.
6841    for (MachineBasicBlock::reverse_iterator
6842           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6843      if (!II->isCall()) continue;
6844
6845      DenseMap<unsigned, bool> DefRegs;
6846      for (MachineInstr::mop_iterator
6847             OI = II->operands_begin(), OE = II->operands_end();
6848           OI != OE; ++OI) {
6849        if (!OI->isReg()) continue;
6850        DefRegs[OI->getReg()] = true;
6851      }
6852
6853      MachineInstrBuilder MIB(*MF, &*II);
6854
6855      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6856        unsigned Reg = SavedRegs[i];
6857        if (Subtarget->isThumb2() &&
6858            !ARM::tGPRRegClass.contains(Reg) &&
6859            !ARM::hGPRRegClass.contains(Reg))
6860          continue;
6861        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6862          continue;
6863        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6864          continue;
6865        if (!DefRegs[Reg])
6866          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6867      }
6868
6869      break;
6870    }
6871  }
6872
6873  // Mark all former landing pads as non-landing pads. The dispatch is the only
6874  // landing pad now.
6875  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6876         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6877    (*I)->setIsLandingPad(false);
6878
6879  // The instruction is gone now.
6880  MI->eraseFromParent();
6881
6882  return MBB;
6883}
6884
6885static
6886MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6887  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6888       E = MBB->succ_end(); I != E; ++I)
6889    if (*I != Succ)
6890      return *I;
6891  llvm_unreachable("Expecting a BB with two successors!");
6892}
6893
6894/// Return the load opcode for a given load size. If load size >= 8,
6895/// neon opcode will be returned.
6896static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
6897  if (LdSize >= 8)
6898    return LdSize == 16 ? ARM::VLD1q32wb_fixed
6899                        : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
6900  if (IsThumb1)
6901    return LdSize == 4 ? ARM::tLDRi
6902                       : LdSize == 2 ? ARM::tLDRHi
6903                                     : LdSize == 1 ? ARM::tLDRBi : 0;
6904  if (IsThumb2)
6905    return LdSize == 4 ? ARM::t2LDR_POST
6906                       : LdSize == 2 ? ARM::t2LDRH_POST
6907                                     : LdSize == 1 ? ARM::t2LDRB_POST : 0;
6908  return LdSize == 4 ? ARM::LDR_POST_IMM
6909                     : LdSize == 2 ? ARM::LDRH_POST
6910                                   : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
6911}
6912
6913/// Return the store opcode for a given store size. If store size >= 8,
6914/// neon opcode will be returned.
6915static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
6916  if (StSize >= 8)
6917    return StSize == 16 ? ARM::VST1q32wb_fixed
6918                        : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
6919  if (IsThumb1)
6920    return StSize == 4 ? ARM::tSTRi
6921                       : StSize == 2 ? ARM::tSTRHi
6922                                     : StSize == 1 ? ARM::tSTRBi : 0;
6923  if (IsThumb2)
6924    return StSize == 4 ? ARM::t2STR_POST
6925                       : StSize == 2 ? ARM::t2STRH_POST
6926                                     : StSize == 1 ? ARM::t2STRB_POST : 0;
6927  return StSize == 4 ? ARM::STR_POST_IMM
6928                     : StSize == 2 ? ARM::STRH_POST
6929                                   : StSize == 1 ? ARM::STRB_POST_IMM : 0;
6930}
6931
6932/// Emit a post-increment load operation with given size. The instructions
6933/// will be added to BB at Pos.
6934static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
6935                       const TargetInstrInfo *TII, DebugLoc dl,
6936                       unsigned LdSize, unsigned Data, unsigned AddrIn,
6937                       unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
6938  unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
6939  assert(LdOpc != 0 && "Should have a load opcode");
6940  if (LdSize >= 8) {
6941    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
6942                       .addReg(AddrOut, RegState::Define).addReg(AddrIn)
6943                       .addImm(0));
6944  } else if (IsThumb1) {
6945    // load + update AddrIn
6946    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
6947                       .addReg(AddrIn).addImm(0));
6948    MachineInstrBuilder MIB =
6949        BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
6950    MIB = AddDefaultT1CC(MIB);
6951    MIB.addReg(AddrIn).addImm(LdSize);
6952    AddDefaultPred(MIB);
6953  } else if (IsThumb2) {
6954    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
6955                       .addReg(AddrOut, RegState::Define).addReg(AddrIn)
6956                       .addImm(LdSize));
6957  } else { // arm
6958    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
6959                       .addReg(AddrOut, RegState::Define).addReg(AddrIn)
6960                       .addReg(0).addImm(LdSize));
6961  }
6962}
6963
6964/// Emit a post-increment store operation with given size. The instructions
6965/// will be added to BB at Pos.
6966static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
6967                       const TargetInstrInfo *TII, DebugLoc dl,
6968                       unsigned StSize, unsigned Data, unsigned AddrIn,
6969                       unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
6970  unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
6971  assert(StOpc != 0 && "Should have a store opcode");
6972  if (StSize >= 8) {
6973    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
6974                       .addReg(AddrIn).addImm(0).addReg(Data));
6975  } else if (IsThumb1) {
6976    // store + update AddrIn
6977    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
6978                       .addReg(AddrIn).addImm(0));
6979    MachineInstrBuilder MIB =
6980        BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
6981    MIB = AddDefaultT1CC(MIB);
6982    MIB.addReg(AddrIn).addImm(StSize);
6983    AddDefaultPred(MIB);
6984  } else if (IsThumb2) {
6985    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
6986                       .addReg(Data).addReg(AddrIn).addImm(StSize));
6987  } else { // arm
6988    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
6989                       .addReg(Data).addReg(AddrIn).addReg(0)
6990                       .addImm(StSize));
6991  }
6992}
6993
6994MachineBasicBlock *
6995ARMTargetLowering::EmitStructByval(MachineInstr *MI,
6996                                   MachineBasicBlock *BB) const {
6997  // This pseudo instruction has 3 operands: dst, src, size
6998  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6999  // Otherwise, we will generate unrolled scalar copies.
7000  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7001  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7002  MachineFunction::iterator It = BB;
7003  ++It;
7004
7005  unsigned dest = MI->getOperand(0).getReg();
7006  unsigned src = MI->getOperand(1).getReg();
7007  unsigned SizeVal = MI->getOperand(2).getImm();
7008  unsigned Align = MI->getOperand(3).getImm();
7009  DebugLoc dl = MI->getDebugLoc();
7010
7011  MachineFunction *MF = BB->getParent();
7012  MachineRegisterInfo &MRI = MF->getRegInfo();
7013  unsigned UnitSize = 0;
7014  const TargetRegisterClass *TRC = nullptr;
7015  const TargetRegisterClass *VecTRC = nullptr;
7016
7017  bool IsThumb1 = Subtarget->isThumb1Only();
7018  bool IsThumb2 = Subtarget->isThumb2();
7019
7020  if (Align & 1) {
7021    UnitSize = 1;
7022  } else if (Align & 2) {
7023    UnitSize = 2;
7024  } else {
7025    // Check whether we can use NEON instructions.
7026    if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
7027        Subtarget->hasNEON()) {
7028      if ((Align % 16 == 0) && SizeVal >= 16)
7029        UnitSize = 16;
7030      else if ((Align % 8 == 0) && SizeVal >= 8)
7031        UnitSize = 8;
7032    }
7033    // Can't use NEON instructions.
7034    if (UnitSize == 0)
7035      UnitSize = 4;
7036  }
7037
7038  // Select the correct opcode and register class for unit size load/store
7039  bool IsNeon = UnitSize >= 8;
7040  TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
7041  if (IsNeon)
7042    VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
7043                            : UnitSize == 8 ? &ARM::DPRRegClass
7044                                            : nullptr;
7045
7046  unsigned BytesLeft = SizeVal % UnitSize;
7047  unsigned LoopSize = SizeVal - BytesLeft;
7048
7049  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
7050    // Use LDR and STR to copy.
7051    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
7052    // [destOut] = STR_POST(scratch, destIn, UnitSize)
7053    unsigned srcIn = src;
7054    unsigned destIn = dest;
7055    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
7056      unsigned srcOut = MRI.createVirtualRegister(TRC);
7057      unsigned destOut = MRI.createVirtualRegister(TRC);
7058      unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7059      emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
7060                 IsThumb1, IsThumb2);
7061      emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
7062                 IsThumb1, IsThumb2);
7063      srcIn = srcOut;
7064      destIn = destOut;
7065    }
7066
7067    // Handle the leftover bytes with LDRB and STRB.
7068    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
7069    // [destOut] = STRB_POST(scratch, destIn, 1)
7070    for (unsigned i = 0; i < BytesLeft; i++) {
7071      unsigned srcOut = MRI.createVirtualRegister(TRC);
7072      unsigned destOut = MRI.createVirtualRegister(TRC);
7073      unsigned scratch = MRI.createVirtualRegister(TRC);
7074      emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
7075                 IsThumb1, IsThumb2);
7076      emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
7077                 IsThumb1, IsThumb2);
7078      srcIn = srcOut;
7079      destIn = destOut;
7080    }
7081    MI->eraseFromParent();   // The instruction is gone now.
7082    return BB;
7083  }
7084
7085  // Expand the pseudo op to a loop.
7086  // thisMBB:
7087  //   ...
7088  //   movw varEnd, # --> with thumb2
7089  //   movt varEnd, #
7090  //   ldrcp varEnd, idx --> without thumb2
7091  //   fallthrough --> loopMBB
7092  // loopMBB:
7093  //   PHI varPhi, varEnd, varLoop
7094  //   PHI srcPhi, src, srcLoop
7095  //   PHI destPhi, dst, destLoop
7096  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7097  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
7098  //   subs varLoop, varPhi, #UnitSize
7099  //   bne loopMBB
7100  //   fallthrough --> exitMBB
7101  // exitMBB:
7102  //   epilogue to handle left-over bytes
7103  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7104  //   [destOut] = STRB_POST(scratch, destLoop, 1)
7105  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7106  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7107  MF->insert(It, loopMBB);
7108  MF->insert(It, exitMBB);
7109
7110  // Transfer the remainder of BB and its successor edges to exitMBB.
7111  exitMBB->splice(exitMBB->begin(), BB,
7112                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
7113  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7114
7115  // Load an immediate to varEnd.
7116  unsigned varEnd = MRI.createVirtualRegister(TRC);
7117  if (Subtarget->useMovt(*MF)) {
7118    unsigned Vtmp = varEnd;
7119    if ((LoopSize & 0xFFFF0000) != 0)
7120      Vtmp = MRI.createVirtualRegister(TRC);
7121    AddDefaultPred(BuildMI(BB, dl,
7122                           TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16),
7123                           Vtmp).addImm(LoopSize & 0xFFFF));
7124
7125    if ((LoopSize & 0xFFFF0000) != 0)
7126      AddDefaultPred(BuildMI(BB, dl,
7127                             TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16),
7128                             varEnd)
7129                         .addReg(Vtmp)
7130                         .addImm(LoopSize >> 16));
7131  } else {
7132    MachineConstantPool *ConstantPool = MF->getConstantPool();
7133    Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7134    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
7135
7136    // MachineConstantPool wants an explicit alignment.
7137    unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
7138    if (Align == 0)
7139      Align = getDataLayout()->getTypeAllocSize(C->getType());
7140    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7141
7142    if (IsThumb1)
7143      AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
7144          varEnd, RegState::Define).addConstantPoolIndex(Idx));
7145    else
7146      AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
7147          varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
7148  }
7149  BB->addSuccessor(loopMBB);
7150
7151  // Generate the loop body:
7152  //   varPhi = PHI(varLoop, varEnd)
7153  //   srcPhi = PHI(srcLoop, src)
7154  //   destPhi = PHI(destLoop, dst)
7155  MachineBasicBlock *entryBB = BB;
7156  BB = loopMBB;
7157  unsigned varLoop = MRI.createVirtualRegister(TRC);
7158  unsigned varPhi = MRI.createVirtualRegister(TRC);
7159  unsigned srcLoop = MRI.createVirtualRegister(TRC);
7160  unsigned srcPhi = MRI.createVirtualRegister(TRC);
7161  unsigned destLoop = MRI.createVirtualRegister(TRC);
7162  unsigned destPhi = MRI.createVirtualRegister(TRC);
7163
7164  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
7165    .addReg(varLoop).addMBB(loopMBB)
7166    .addReg(varEnd).addMBB(entryBB);
7167  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
7168    .addReg(srcLoop).addMBB(loopMBB)
7169    .addReg(src).addMBB(entryBB);
7170  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
7171    .addReg(destLoop).addMBB(loopMBB)
7172    .addReg(dest).addMBB(entryBB);
7173
7174  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7175  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
7176  unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7177  emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
7178             IsThumb1, IsThumb2);
7179  emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
7180             IsThumb1, IsThumb2);
7181
7182  // Decrement loop variable by UnitSize.
7183  if (IsThumb1) {
7184    MachineInstrBuilder MIB =
7185        BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
7186    MIB = AddDefaultT1CC(MIB);
7187    MIB.addReg(varPhi).addImm(UnitSize);
7188    AddDefaultPred(MIB);
7189  } else {
7190    MachineInstrBuilder MIB =
7191        BuildMI(*BB, BB->end(), dl,
7192                TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
7193    AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
7194    MIB->getOperand(5).setReg(ARM::CPSR);
7195    MIB->getOperand(5).setIsDef(true);
7196  }
7197  BuildMI(*BB, BB->end(), dl,
7198          TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
7199      .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
7200
7201  // loopMBB can loop back to loopMBB or fall through to exitMBB.
7202  BB->addSuccessor(loopMBB);
7203  BB->addSuccessor(exitMBB);
7204
7205  // Add epilogue to handle BytesLeft.
7206  BB = exitMBB;
7207  MachineInstr *StartOfExit = exitMBB->begin();
7208
7209  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7210  //   [destOut] = STRB_POST(scratch, destLoop, 1)
7211  unsigned srcIn = srcLoop;
7212  unsigned destIn = destLoop;
7213  for (unsigned i = 0; i < BytesLeft; i++) {
7214    unsigned srcOut = MRI.createVirtualRegister(TRC);
7215    unsigned destOut = MRI.createVirtualRegister(TRC);
7216    unsigned scratch = MRI.createVirtualRegister(TRC);
7217    emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
7218               IsThumb1, IsThumb2);
7219    emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
7220               IsThumb1, IsThumb2);
7221    srcIn = srcOut;
7222    destIn = destOut;
7223  }
7224
7225  MI->eraseFromParent();   // The instruction is gone now.
7226  return BB;
7227}
7228
7229MachineBasicBlock *
7230ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
7231                                       MachineBasicBlock *MBB) const {
7232  const TargetMachine &TM = getTargetMachine();
7233  const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
7234  DebugLoc DL = MI->getDebugLoc();
7235
7236  assert(Subtarget->isTargetWindows() &&
7237         "__chkstk is only supported on Windows");
7238  assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
7239
7240  // __chkstk takes the number of words to allocate on the stack in R4, and
7241  // returns the stack adjustment in number of bytes in R4.  This will not
7242  // clober any other registers (other than the obvious lr).
7243  //
7244  // Although, technically, IP should be considered a register which may be
7245  // clobbered, the call itself will not touch it.  Windows on ARM is a pure
7246  // thumb-2 environment, so there is no interworking required.  As a result, we
7247  // do not expect a veneer to be emitted by the linker, clobbering IP.
7248  //
7249  // Each module receives its own copy of __chkstk, so no import thunk is
7250  // required, again, ensuring that IP is not clobbered.
7251  //
7252  // Finally, although some linkers may theoretically provide a trampoline for
7253  // out of range calls (which is quite common due to a 32M range limitation of
7254  // branches for Thumb), we can generate the long-call version via
7255  // -mcmodel=large, alleviating the need for the trampoline which may clobber
7256  // IP.
7257
7258  switch (TM.getCodeModel()) {
7259  case CodeModel::Small:
7260  case CodeModel::Medium:
7261  case CodeModel::Default:
7262  case CodeModel::Kernel:
7263    BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
7264      .addImm((unsigned)ARMCC::AL).addReg(0)
7265      .addExternalSymbol("__chkstk")
7266      .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
7267      .addReg(ARM::R4, RegState::Implicit | RegState::Define)
7268      .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
7269    break;
7270  case CodeModel::Large:
7271  case CodeModel::JITDefault: {
7272    MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
7273    unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
7274
7275    BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
7276      .addExternalSymbol("__chkstk");
7277    BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
7278      .addImm((unsigned)ARMCC::AL).addReg(0)
7279      .addReg(Reg, RegState::Kill)
7280      .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
7281      .addReg(ARM::R4, RegState::Implicit | RegState::Define)
7282      .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
7283    break;
7284  }
7285  }
7286
7287  AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
7288                                      ARM::SP)
7289                              .addReg(ARM::SP).addReg(ARM::R4)));
7290
7291  MI->eraseFromParent();
7292  return MBB;
7293}
7294
7295MachineBasicBlock *
7296ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7297                                               MachineBasicBlock *BB) const {
7298  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7299  DebugLoc dl = MI->getDebugLoc();
7300  bool isThumb2 = Subtarget->isThumb2();
7301  switch (MI->getOpcode()) {
7302  default: {
7303    MI->dump();
7304    llvm_unreachable("Unexpected instr type to insert");
7305  }
7306  // The Thumb2 pre-indexed stores have the same MI operands, they just
7307  // define them differently in the .td files from the isel patterns, so
7308  // they need pseudos.
7309  case ARM::t2STR_preidx:
7310    MI->setDesc(TII->get(ARM::t2STR_PRE));
7311    return BB;
7312  case ARM::t2STRB_preidx:
7313    MI->setDesc(TII->get(ARM::t2STRB_PRE));
7314    return BB;
7315  case ARM::t2STRH_preidx:
7316    MI->setDesc(TII->get(ARM::t2STRH_PRE));
7317    return BB;
7318
7319  case ARM::STRi_preidx:
7320  case ARM::STRBi_preidx: {
7321    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
7322      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
7323    // Decode the offset.
7324    unsigned Offset = MI->getOperand(4).getImm();
7325    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
7326    Offset = ARM_AM::getAM2Offset(Offset);
7327    if (isSub)
7328      Offset = -Offset;
7329
7330    MachineMemOperand *MMO = *MI->memoperands_begin();
7331    BuildMI(*BB, MI, dl, TII->get(NewOpc))
7332      .addOperand(MI->getOperand(0))  // Rn_wb
7333      .addOperand(MI->getOperand(1))  // Rt
7334      .addOperand(MI->getOperand(2))  // Rn
7335      .addImm(Offset)                 // offset (skip GPR==zero_reg)
7336      .addOperand(MI->getOperand(5))  // pred
7337      .addOperand(MI->getOperand(6))
7338      .addMemOperand(MMO);
7339    MI->eraseFromParent();
7340    return BB;
7341  }
7342  case ARM::STRr_preidx:
7343  case ARM::STRBr_preidx:
7344  case ARM::STRH_preidx: {
7345    unsigned NewOpc;
7346    switch (MI->getOpcode()) {
7347    default: llvm_unreachable("unexpected opcode!");
7348    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
7349    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
7350    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
7351    }
7352    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
7353    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
7354      MIB.addOperand(MI->getOperand(i));
7355    MI->eraseFromParent();
7356    return BB;
7357  }
7358
7359  case ARM::tMOVCCr_pseudo: {
7360    // To "insert" a SELECT_CC instruction, we actually have to insert the
7361    // diamond control-flow pattern.  The incoming instruction knows the
7362    // destination vreg to set, the condition code register to branch on, the
7363    // true/false values to select between, and a branch opcode to use.
7364    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7365    MachineFunction::iterator It = BB;
7366    ++It;
7367
7368    //  thisMBB:
7369    //  ...
7370    //   TrueVal = ...
7371    //   cmpTY ccX, r1, r2
7372    //   bCC copy1MBB
7373    //   fallthrough --> copy0MBB
7374    MachineBasicBlock *thisMBB  = BB;
7375    MachineFunction *F = BB->getParent();
7376    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7377    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
7378    F->insert(It, copy0MBB);
7379    F->insert(It, sinkMBB);
7380
7381    // Transfer the remainder of BB and its successor edges to sinkMBB.
7382    sinkMBB->splice(sinkMBB->begin(), BB,
7383                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
7384    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
7385
7386    BB->addSuccessor(copy0MBB);
7387    BB->addSuccessor(sinkMBB);
7388
7389    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
7390      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
7391
7392    //  copy0MBB:
7393    //   %FalseValue = ...
7394    //   # fallthrough to sinkMBB
7395    BB = copy0MBB;
7396
7397    // Update machine-CFG edges
7398    BB->addSuccessor(sinkMBB);
7399
7400    //  sinkMBB:
7401    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7402    //  ...
7403    BB = sinkMBB;
7404    BuildMI(*BB, BB->begin(), dl,
7405            TII->get(ARM::PHI), MI->getOperand(0).getReg())
7406      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7407      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7408
7409    MI->eraseFromParent();   // The pseudo instruction is gone now.
7410    return BB;
7411  }
7412
7413  case ARM::BCCi64:
7414  case ARM::BCCZi64: {
7415    // If there is an unconditional branch to the other successor, remove it.
7416    BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
7417
7418    // Compare both parts that make up the double comparison separately for
7419    // equality.
7420    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7421
7422    unsigned LHS1 = MI->getOperand(1).getReg();
7423    unsigned LHS2 = MI->getOperand(2).getReg();
7424    if (RHSisZero) {
7425      AddDefaultPred(BuildMI(BB, dl,
7426                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7427                     .addReg(LHS1).addImm(0));
7428      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7429        .addReg(LHS2).addImm(0)
7430        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7431    } else {
7432      unsigned RHS1 = MI->getOperand(3).getReg();
7433      unsigned RHS2 = MI->getOperand(4).getReg();
7434      AddDefaultPred(BuildMI(BB, dl,
7435                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7436                     .addReg(LHS1).addReg(RHS1));
7437      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7438        .addReg(LHS2).addReg(RHS2)
7439        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7440    }
7441
7442    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7443    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7444    if (MI->getOperand(0).getImm() == ARMCC::NE)
7445      std::swap(destMBB, exitMBB);
7446
7447    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7448      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7449    if (isThumb2)
7450      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7451    else
7452      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7453
7454    MI->eraseFromParent();   // The pseudo instruction is gone now.
7455    return BB;
7456  }
7457
7458  case ARM::Int_eh_sjlj_setjmp:
7459  case ARM::Int_eh_sjlj_setjmp_nofp:
7460  case ARM::tInt_eh_sjlj_setjmp:
7461  case ARM::t2Int_eh_sjlj_setjmp:
7462  case ARM::t2Int_eh_sjlj_setjmp_nofp:
7463    EmitSjLjDispatchBlock(MI, BB);
7464    return BB;
7465
7466  case ARM::ABS:
7467  case ARM::t2ABS: {
7468    // To insert an ABS instruction, we have to insert the
7469    // diamond control-flow pattern.  The incoming instruction knows the
7470    // source vreg to test against 0, the destination vreg to set,
7471    // the condition code register to branch on, the
7472    // true/false values to select between, and a branch opcode to use.
7473    // It transforms
7474    //     V1 = ABS V0
7475    // into
7476    //     V2 = MOVS V0
7477    //     BCC                      (branch to SinkBB if V0 >= 0)
7478    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
7479    //     SinkBB: V1 = PHI(V2, V3)
7480    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7481    MachineFunction::iterator BBI = BB;
7482    ++BBI;
7483    MachineFunction *Fn = BB->getParent();
7484    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7485    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
7486    Fn->insert(BBI, RSBBB);
7487    Fn->insert(BBI, SinkBB);
7488
7489    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7490    unsigned int ABSDstReg = MI->getOperand(0).getReg();
7491    bool isThumb2 = Subtarget->isThumb2();
7492    MachineRegisterInfo &MRI = Fn->getRegInfo();
7493    // In Thumb mode S must not be specified if source register is the SP or
7494    // PC and if destination register is the SP, so restrict register class
7495    unsigned NewRsbDstReg =
7496      MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
7497
7498    // Transfer the remainder of BB and its successor edges to sinkMBB.
7499    SinkBB->splice(SinkBB->begin(), BB,
7500                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7501    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7502
7503    BB->addSuccessor(RSBBB);
7504    BB->addSuccessor(SinkBB);
7505
7506    // fall through to SinkMBB
7507    RSBBB->addSuccessor(SinkBB);
7508
7509    // insert a cmp at the end of BB
7510    AddDefaultPred(BuildMI(BB, dl,
7511                           TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7512                   .addReg(ABSSrcReg).addImm(0));
7513
7514    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7515    BuildMI(BB, dl,
7516      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7517      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
7518
7519    // insert rsbri in RSBBB
7520    // Note: BCC and rsbri will be converted into predicated rsbmi
7521    // by if-conversion pass
7522    BuildMI(*RSBBB, RSBBB->begin(), dl,
7523      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7524      .addReg(ABSSrcReg, RegState::Kill)
7525      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7526
7527    // insert PHI in SinkBB,
7528    // reuse ABSDstReg to not change uses of ABS instruction
7529    BuildMI(*SinkBB, SinkBB->begin(), dl,
7530      TII->get(ARM::PHI), ABSDstReg)
7531      .addReg(NewRsbDstReg).addMBB(RSBBB)
7532      .addReg(ABSSrcReg).addMBB(BB);
7533
7534    // remove ABS instruction
7535    MI->eraseFromParent();
7536
7537    // return last added BB
7538    return SinkBB;
7539  }
7540  case ARM::COPY_STRUCT_BYVAL_I32:
7541    ++NumLoopByVals;
7542    return EmitStructByval(MI, BB);
7543  case ARM::WIN__CHKSTK:
7544    return EmitLowered__chkstk(MI, BB);
7545  }
7546}
7547
7548void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
7549                                                      SDNode *Node) const {
7550  const MCInstrDesc *MCID = &MI->getDesc();
7551  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7552  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7553  // operand is still set to noreg. If needed, set the optional operand's
7554  // register to CPSR, and remove the redundant implicit def.
7555  //
7556  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7557
7558  // Rename pseudo opcodes.
7559  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7560  if (NewOpc) {
7561    const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
7562    MCID = &TII->get(NewOpc);
7563
7564    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7565           "converted opcode should be the same except for cc_out");
7566
7567    MI->setDesc(*MCID);
7568
7569    // Add the optional cc_out operand
7570    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7571  }
7572  unsigned ccOutIdx = MCID->getNumOperands() - 1;
7573
7574  // Any ARM instruction that sets the 's' bit should specify an optional
7575  // "cc_out" operand in the last operand position.
7576  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7577    assert(!NewOpc && "Optional cc_out operand required");
7578    return;
7579  }
7580  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7581  // since we already have an optional CPSR def.
7582  bool definesCPSR = false;
7583  bool deadCPSR = false;
7584  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7585       i != e; ++i) {
7586    const MachineOperand &MO = MI->getOperand(i);
7587    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7588      definesCPSR = true;
7589      if (MO.isDead())
7590        deadCPSR = true;
7591      MI->RemoveOperand(i);
7592      break;
7593    }
7594  }
7595  if (!definesCPSR) {
7596    assert(!NewOpc && "Optional cc_out operand required");
7597    return;
7598  }
7599  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7600  if (deadCPSR) {
7601    assert(!MI->getOperand(ccOutIdx).getReg() &&
7602           "expect uninitialized optional cc_out operand");
7603    return;
7604  }
7605
7606  // If this instruction was defined with an optional CPSR def and its dag node
7607  // had a live implicit CPSR def, then activate the optional CPSR def.
7608  MachineOperand &MO = MI->getOperand(ccOutIdx);
7609  MO.setReg(ARM::CPSR);
7610  MO.setIsDef(true);
7611}
7612
7613//===----------------------------------------------------------------------===//
7614//                           ARM Optimization Hooks
7615//===----------------------------------------------------------------------===//
7616
7617// Helper function that checks if N is a null or all ones constant.
7618static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7619  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7620  if (!C)
7621    return false;
7622  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7623}
7624
7625// Return true if N is conditionally 0 or all ones.
7626// Detects these expressions where cc is an i1 value:
7627//
7628//   (select cc 0, y)   [AllOnes=0]
7629//   (select cc y, 0)   [AllOnes=0]
7630//   (zext cc)          [AllOnes=0]
7631//   (sext cc)          [AllOnes=0/1]
7632//   (select cc -1, y)  [AllOnes=1]
7633//   (select cc y, -1)  [AllOnes=1]
7634//
7635// Invert is set when N is the null/all ones constant when CC is false.
7636// OtherOp is set to the alternative value of N.
7637static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7638                                       SDValue &CC, bool &Invert,
7639                                       SDValue &OtherOp,
7640                                       SelectionDAG &DAG) {
7641  switch (N->getOpcode()) {
7642  default: return false;
7643  case ISD::SELECT: {
7644    CC = N->getOperand(0);
7645    SDValue N1 = N->getOperand(1);
7646    SDValue N2 = N->getOperand(2);
7647    if (isZeroOrAllOnes(N1, AllOnes)) {
7648      Invert = false;
7649      OtherOp = N2;
7650      return true;
7651    }
7652    if (isZeroOrAllOnes(N2, AllOnes)) {
7653      Invert = true;
7654      OtherOp = N1;
7655      return true;
7656    }
7657    return false;
7658  }
7659  case ISD::ZERO_EXTEND:
7660    // (zext cc) can never be the all ones value.
7661    if (AllOnes)
7662      return false;
7663    // Fall through.
7664  case ISD::SIGN_EXTEND: {
7665    EVT VT = N->getValueType(0);
7666    CC = N->getOperand(0);
7667    if (CC.getValueType() != MVT::i1)
7668      return false;
7669    Invert = !AllOnes;
7670    if (AllOnes)
7671      // When looking for an AllOnes constant, N is an sext, and the 'other'
7672      // value is 0.
7673      OtherOp = DAG.getConstant(0, VT);
7674    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7675      // When looking for a 0 constant, N can be zext or sext.
7676      OtherOp = DAG.getConstant(1, VT);
7677    else
7678      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7679    return true;
7680  }
7681  }
7682}
7683
7684// Combine a constant select operand into its use:
7685//
7686//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
7687//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
7688//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
7689//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
7690//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
7691//
7692// The transform is rejected if the select doesn't have a constant operand that
7693// is null, or all ones when AllOnes is set.
7694//
7695// Also recognize sext/zext from i1:
7696//
7697//   (add (zext cc), x) -> (select cc (add x, 1), x)
7698//   (add (sext cc), x) -> (select cc (add x, -1), x)
7699//
7700// These transformations eventually create predicated instructions.
7701//
7702// @param N       The node to transform.
7703// @param Slct    The N operand that is a select.
7704// @param OtherOp The other N operand (x above).
7705// @param DCI     Context.
7706// @param AllOnes Require the select constant to be all ones instead of null.
7707// @returns The new node, or SDValue() on failure.
7708static
7709SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7710                            TargetLowering::DAGCombinerInfo &DCI,
7711                            bool AllOnes = false) {
7712  SelectionDAG &DAG = DCI.DAG;
7713  EVT VT = N->getValueType(0);
7714  SDValue NonConstantVal;
7715  SDValue CCOp;
7716  bool SwapSelectOps;
7717  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7718                                  NonConstantVal, DAG))
7719    return SDValue();
7720
7721  // Slct is now know to be the desired identity constant when CC is true.
7722  SDValue TrueVal = OtherOp;
7723  SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
7724                                 OtherOp, NonConstantVal);
7725  // Unless SwapSelectOps says CC should be false.
7726  if (SwapSelectOps)
7727    std::swap(TrueVal, FalseVal);
7728
7729  return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7730                     CCOp, TrueVal, FalseVal);
7731}
7732
7733// Attempt combineSelectAndUse on each operand of a commutative operator N.
7734static
7735SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7736                                       TargetLowering::DAGCombinerInfo &DCI) {
7737  SDValue N0 = N->getOperand(0);
7738  SDValue N1 = N->getOperand(1);
7739  if (N0.getNode()->hasOneUse()) {
7740    SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7741    if (Result.getNode())
7742      return Result;
7743  }
7744  if (N1.getNode()->hasOneUse()) {
7745    SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7746    if (Result.getNode())
7747      return Result;
7748  }
7749  return SDValue();
7750}
7751
7752// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7753// (only after legalization).
7754static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7755                                 TargetLowering::DAGCombinerInfo &DCI,
7756                                 const ARMSubtarget *Subtarget) {
7757
7758  // Only perform optimization if after legalize, and if NEON is available. We
7759  // also expected both operands to be BUILD_VECTORs.
7760  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7761      || N0.getOpcode() != ISD::BUILD_VECTOR
7762      || N1.getOpcode() != ISD::BUILD_VECTOR)
7763    return SDValue();
7764
7765  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7766  EVT VT = N->getValueType(0);
7767  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7768    return SDValue();
7769
7770  // Check that the vector operands are of the right form.
7771  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7772  // operands, where N is the size of the formed vector.
7773  // Each EXTRACT_VECTOR should have the same input vector and odd or even
7774  // index such that we have a pair wise add pattern.
7775
7776  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7777  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7778    return SDValue();
7779  SDValue Vec = N0->getOperand(0)->getOperand(0);
7780  SDNode *V = Vec.getNode();
7781  unsigned nextIndex = 0;
7782
7783  // For each operands to the ADD which are BUILD_VECTORs,
7784  // check to see if each of their operands are an EXTRACT_VECTOR with
7785  // the same vector and appropriate index.
7786  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7787    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7788        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7789
7790      SDValue ExtVec0 = N0->getOperand(i);
7791      SDValue ExtVec1 = N1->getOperand(i);
7792
7793      // First operand is the vector, verify its the same.
7794      if (V != ExtVec0->getOperand(0).getNode() ||
7795          V != ExtVec1->getOperand(0).getNode())
7796        return SDValue();
7797
7798      // Second is the constant, verify its correct.
7799      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7800      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7801
7802      // For the constant, we want to see all the even or all the odd.
7803      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7804          || C1->getZExtValue() != nextIndex+1)
7805        return SDValue();
7806
7807      // Increment index.
7808      nextIndex+=2;
7809    } else
7810      return SDValue();
7811  }
7812
7813  // Create VPADDL node.
7814  SelectionDAG &DAG = DCI.DAG;
7815  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7816
7817  // Build operand list.
7818  SmallVector<SDValue, 8> Ops;
7819  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7820                                TLI.getPointerTy()));
7821
7822  // Input is the vector.
7823  Ops.push_back(Vec);
7824
7825  // Get widened type and narrowed type.
7826  MVT widenType;
7827  unsigned numElem = VT.getVectorNumElements();
7828
7829  EVT inputLaneType = Vec.getValueType().getVectorElementType();
7830  switch (inputLaneType.getSimpleVT().SimpleTy) {
7831    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7832    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7833    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7834    default:
7835      llvm_unreachable("Invalid vector element type for padd optimization.");
7836  }
7837
7838  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), widenType, Ops);
7839  unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
7840  return DAG.getNode(ExtOp, SDLoc(N), VT, tmp);
7841}
7842
7843static SDValue findMUL_LOHI(SDValue V) {
7844  if (V->getOpcode() == ISD::UMUL_LOHI ||
7845      V->getOpcode() == ISD::SMUL_LOHI)
7846    return V;
7847  return SDValue();
7848}
7849
7850static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7851                                     TargetLowering::DAGCombinerInfo &DCI,
7852                                     const ARMSubtarget *Subtarget) {
7853
7854  if (Subtarget->isThumb1Only()) return SDValue();
7855
7856  // Only perform the checks after legalize when the pattern is available.
7857  if (DCI.isBeforeLegalize()) return SDValue();
7858
7859  // Look for multiply add opportunities.
7860  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7861  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7862  // a glue link from the first add to the second add.
7863  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7864  // a S/UMLAL instruction.
7865  //          loAdd   UMUL_LOHI
7866  //            \    / :lo    \ :hi
7867  //             \  /          \          [no multiline comment]
7868  //              ADDC         |  hiAdd
7869  //                 \ :glue  /  /
7870  //                  \      /  /
7871  //                    ADDE
7872  //
7873  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7874  SDValue AddcOp0 = AddcNode->getOperand(0);
7875  SDValue AddcOp1 = AddcNode->getOperand(1);
7876
7877  // Check if the two operands are from the same mul_lohi node.
7878  if (AddcOp0.getNode() == AddcOp1.getNode())
7879    return SDValue();
7880
7881  assert(AddcNode->getNumValues() == 2 &&
7882         AddcNode->getValueType(0) == MVT::i32 &&
7883         "Expect ADDC with two result values. First: i32");
7884
7885  // Check that we have a glued ADDC node.
7886  if (AddcNode->getValueType(1) != MVT::Glue)
7887    return SDValue();
7888
7889  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7890  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7891      AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7892      AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7893      AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7894    return SDValue();
7895
7896  // Look for the glued ADDE.
7897  SDNode* AddeNode = AddcNode->getGluedUser();
7898  if (!AddeNode)
7899    return SDValue();
7900
7901  // Make sure it is really an ADDE.
7902  if (AddeNode->getOpcode() != ISD::ADDE)
7903    return SDValue();
7904
7905  assert(AddeNode->getNumOperands() == 3 &&
7906         AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7907         "ADDE node has the wrong inputs");
7908
7909  // Check for the triangle shape.
7910  SDValue AddeOp0 = AddeNode->getOperand(0);
7911  SDValue AddeOp1 = AddeNode->getOperand(1);
7912
7913  // Make sure that the ADDE operands are not coming from the same node.
7914  if (AddeOp0.getNode() == AddeOp1.getNode())
7915    return SDValue();
7916
7917  // Find the MUL_LOHI node walking up ADDE's operands.
7918  bool IsLeftOperandMUL = false;
7919  SDValue MULOp = findMUL_LOHI(AddeOp0);
7920  if (MULOp == SDValue())
7921   MULOp = findMUL_LOHI(AddeOp1);
7922  else
7923    IsLeftOperandMUL = true;
7924  if (MULOp == SDValue())
7925    return SDValue();
7926
7927  // Figure out the right opcode.
7928  unsigned Opc = MULOp->getOpcode();
7929  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
7930
7931  // Figure out the high and low input values to the MLAL node.
7932  SDValue* HiAdd = nullptr;
7933  SDValue* LoMul = nullptr;
7934  SDValue* LowAdd = nullptr;
7935
7936  // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
7937  if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
7938    return SDValue();
7939
7940  if (IsLeftOperandMUL)
7941    HiAdd = &AddeOp1;
7942  else
7943    HiAdd = &AddeOp0;
7944
7945
7946  // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
7947  // whose low result is fed to the ADDC we are checking.
7948
7949  if (AddcOp0 == MULOp.getValue(0)) {
7950    LoMul = &AddcOp0;
7951    LowAdd = &AddcOp1;
7952  }
7953  if (AddcOp1 == MULOp.getValue(0)) {
7954    LoMul = &AddcOp1;
7955    LowAdd = &AddcOp0;
7956  }
7957
7958  if (!LoMul)
7959    return SDValue();
7960
7961  // Create the merged node.
7962  SelectionDAG &DAG = DCI.DAG;
7963
7964  // Build operand list.
7965  SmallVector<SDValue, 8> Ops;
7966  Ops.push_back(LoMul->getOperand(0));
7967  Ops.push_back(LoMul->getOperand(1));
7968  Ops.push_back(*LowAdd);
7969  Ops.push_back(*HiAdd);
7970
7971  SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
7972                                 DAG.getVTList(MVT::i32, MVT::i32), Ops);
7973
7974  // Replace the ADDs' nodes uses by the MLA node's values.
7975  SDValue HiMLALResult(MLALNode.getNode(), 1);
7976  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
7977
7978  SDValue LoMLALResult(MLALNode.getNode(), 0);
7979  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
7980
7981  // Return original node to notify the driver to stop replacing.
7982  SDValue resNode(AddcNode, 0);
7983  return resNode;
7984}
7985
7986/// PerformADDCCombine - Target-specific dag combine transform from
7987/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
7988static SDValue PerformADDCCombine(SDNode *N,
7989                                 TargetLowering::DAGCombinerInfo &DCI,
7990                                 const ARMSubtarget *Subtarget) {
7991
7992  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
7993
7994}
7995
7996/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
7997/// operands N0 and N1.  This is a helper for PerformADDCombine that is
7998/// called with the default operands, and if that fails, with commuted
7999/// operands.
8000static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
8001                                          TargetLowering::DAGCombinerInfo &DCI,
8002                                          const ARMSubtarget *Subtarget){
8003
8004  // Attempt to create vpaddl for this add.
8005  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
8006  if (Result.getNode())
8007    return Result;
8008
8009  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
8010  if (N0.getNode()->hasOneUse()) {
8011    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
8012    if (Result.getNode()) return Result;
8013  }
8014  return SDValue();
8015}
8016
8017/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
8018///
8019static SDValue PerformADDCombine(SDNode *N,
8020                                 TargetLowering::DAGCombinerInfo &DCI,
8021                                 const ARMSubtarget *Subtarget) {
8022  SDValue N0 = N->getOperand(0);
8023  SDValue N1 = N->getOperand(1);
8024
8025  // First try with the default operand order.
8026  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
8027  if (Result.getNode())
8028    return Result;
8029
8030  // If that didn't work, try again with the operands commuted.
8031  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
8032}
8033
8034/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
8035///
8036static SDValue PerformSUBCombine(SDNode *N,
8037                                 TargetLowering::DAGCombinerInfo &DCI) {
8038  SDValue N0 = N->getOperand(0);
8039  SDValue N1 = N->getOperand(1);
8040
8041  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
8042  if (N1.getNode()->hasOneUse()) {
8043    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
8044    if (Result.getNode()) return Result;
8045  }
8046
8047  return SDValue();
8048}
8049
8050/// PerformVMULCombine
8051/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
8052/// special multiplier accumulator forwarding.
8053///   vmul d3, d0, d2
8054///   vmla d3, d1, d2
8055/// is faster than
8056///   vadd d3, d0, d1
8057///   vmul d3, d3, d2
8058//  However, for (A + B) * (A + B),
8059//    vadd d2, d0, d1
8060//    vmul d3, d0, d2
8061//    vmla d3, d1, d2
8062//  is slower than
8063//    vadd d2, d0, d1
8064//    vmul d3, d2, d2
8065static SDValue PerformVMULCombine(SDNode *N,
8066                                  TargetLowering::DAGCombinerInfo &DCI,
8067                                  const ARMSubtarget *Subtarget) {
8068  if (!Subtarget->hasVMLxForwarding())
8069    return SDValue();
8070
8071  SelectionDAG &DAG = DCI.DAG;
8072  SDValue N0 = N->getOperand(0);
8073  SDValue N1 = N->getOperand(1);
8074  unsigned Opcode = N0.getOpcode();
8075  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8076      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
8077    Opcode = N1.getOpcode();
8078    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8079        Opcode != ISD::FADD && Opcode != ISD::FSUB)
8080      return SDValue();
8081    std::swap(N0, N1);
8082  }
8083
8084  if (N0 == N1)
8085    return SDValue();
8086
8087  EVT VT = N->getValueType(0);
8088  SDLoc DL(N);
8089  SDValue N00 = N0->getOperand(0);
8090  SDValue N01 = N0->getOperand(1);
8091  return DAG.getNode(Opcode, DL, VT,
8092                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
8093                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
8094}
8095
8096static SDValue PerformMULCombine(SDNode *N,
8097                                 TargetLowering::DAGCombinerInfo &DCI,
8098                                 const ARMSubtarget *Subtarget) {
8099  SelectionDAG &DAG = DCI.DAG;
8100
8101  if (Subtarget->isThumb1Only())
8102    return SDValue();
8103
8104  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8105    return SDValue();
8106
8107  EVT VT = N->getValueType(0);
8108  if (VT.is64BitVector() || VT.is128BitVector())
8109    return PerformVMULCombine(N, DCI, Subtarget);
8110  if (VT != MVT::i32)
8111    return SDValue();
8112
8113  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8114  if (!C)
8115    return SDValue();
8116
8117  int64_t MulAmt = C->getSExtValue();
8118  unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
8119
8120  ShiftAmt = ShiftAmt & (32 - 1);
8121  SDValue V = N->getOperand(0);
8122  SDLoc DL(N);
8123
8124  SDValue Res;
8125  MulAmt >>= ShiftAmt;
8126
8127  if (MulAmt >= 0) {
8128    if (isPowerOf2_32(MulAmt - 1)) {
8129      // (mul x, 2^N + 1) => (add (shl x, N), x)
8130      Res = DAG.getNode(ISD::ADD, DL, VT,
8131                        V,
8132                        DAG.getNode(ISD::SHL, DL, VT,
8133                                    V,
8134                                    DAG.getConstant(Log2_32(MulAmt - 1),
8135                                                    MVT::i32)));
8136    } else if (isPowerOf2_32(MulAmt + 1)) {
8137      // (mul x, 2^N - 1) => (sub (shl x, N), x)
8138      Res = DAG.getNode(ISD::SUB, DL, VT,
8139                        DAG.getNode(ISD::SHL, DL, VT,
8140                                    V,
8141                                    DAG.getConstant(Log2_32(MulAmt + 1),
8142                                                    MVT::i32)),
8143                        V);
8144    } else
8145      return SDValue();
8146  } else {
8147    uint64_t MulAmtAbs = -MulAmt;
8148    if (isPowerOf2_32(MulAmtAbs + 1)) {
8149      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8150      Res = DAG.getNode(ISD::SUB, DL, VT,
8151                        V,
8152                        DAG.getNode(ISD::SHL, DL, VT,
8153                                    V,
8154                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
8155                                                    MVT::i32)));
8156    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
8157      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8158      Res = DAG.getNode(ISD::ADD, DL, VT,
8159                        V,
8160                        DAG.getNode(ISD::SHL, DL, VT,
8161                                    V,
8162                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
8163                                                    MVT::i32)));
8164      Res = DAG.getNode(ISD::SUB, DL, VT,
8165                        DAG.getConstant(0, MVT::i32),Res);
8166
8167    } else
8168      return SDValue();
8169  }
8170
8171  if (ShiftAmt != 0)
8172    Res = DAG.getNode(ISD::SHL, DL, VT,
8173                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
8174
8175  // Do not add new nodes to DAG combiner worklist.
8176  DCI.CombineTo(N, Res, false);
8177  return SDValue();
8178}
8179
8180static SDValue PerformANDCombine(SDNode *N,
8181                                 TargetLowering::DAGCombinerInfo &DCI,
8182                                 const ARMSubtarget *Subtarget) {
8183
8184  // Attempt to use immediate-form VBIC
8185  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8186  SDLoc dl(N);
8187  EVT VT = N->getValueType(0);
8188  SelectionDAG &DAG = DCI.DAG;
8189
8190  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8191    return SDValue();
8192
8193  APInt SplatBits, SplatUndef;
8194  unsigned SplatBitSize;
8195  bool HasAnyUndefs;
8196  if (BVN &&
8197      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8198    if (SplatBitSize <= 64) {
8199      EVT VbicVT;
8200      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
8201                                      SplatUndef.getZExtValue(), SplatBitSize,
8202                                      DAG, VbicVT, VT.is128BitVector(),
8203                                      OtherModImm);
8204      if (Val.getNode()) {
8205        SDValue Input =
8206          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
8207        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
8208        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
8209      }
8210    }
8211  }
8212
8213  if (!Subtarget->isThumb1Only()) {
8214    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
8215    SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
8216    if (Result.getNode())
8217      return Result;
8218  }
8219
8220  return SDValue();
8221}
8222
8223/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
8224static SDValue PerformORCombine(SDNode *N,
8225                                TargetLowering::DAGCombinerInfo &DCI,
8226                                const ARMSubtarget *Subtarget) {
8227  // Attempt to use immediate-form VORR
8228  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8229  SDLoc dl(N);
8230  EVT VT = N->getValueType(0);
8231  SelectionDAG &DAG = DCI.DAG;
8232
8233  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8234    return SDValue();
8235
8236  APInt SplatBits, SplatUndef;
8237  unsigned SplatBitSize;
8238  bool HasAnyUndefs;
8239  if (BVN && Subtarget->hasNEON() &&
8240      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8241    if (SplatBitSize <= 64) {
8242      EVT VorrVT;
8243      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
8244                                      SplatUndef.getZExtValue(), SplatBitSize,
8245                                      DAG, VorrVT, VT.is128BitVector(),
8246                                      OtherModImm);
8247      if (Val.getNode()) {
8248        SDValue Input =
8249          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
8250        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
8251        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
8252      }
8253    }
8254  }
8255
8256  if (!Subtarget->isThumb1Only()) {
8257    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8258    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8259    if (Result.getNode())
8260      return Result;
8261  }
8262
8263  // The code below optimizes (or (and X, Y), Z).
8264  // The AND operand needs to have a single user to make these optimizations
8265  // profitable.
8266  SDValue N0 = N->getOperand(0);
8267  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
8268    return SDValue();
8269  SDValue N1 = N->getOperand(1);
8270
8271  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
8272  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
8273      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
8274    APInt SplatUndef;
8275    unsigned SplatBitSize;
8276    bool HasAnyUndefs;
8277
8278    APInt SplatBits0, SplatBits1;
8279    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
8280    BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
8281    // Ensure that the second operand of both ands are constants
8282    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
8283                                      HasAnyUndefs) && !HasAnyUndefs) {
8284        if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
8285                                          HasAnyUndefs) && !HasAnyUndefs) {
8286            // Ensure that the bit width of the constants are the same and that
8287            // the splat arguments are logical inverses as per the pattern we
8288            // are trying to simplify.
8289            if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
8290                SplatBits0 == ~SplatBits1) {
8291                // Canonicalize the vector type to make instruction selection
8292                // simpler.
8293                EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
8294                SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
8295                                             N0->getOperand(1),
8296                                             N0->getOperand(0),
8297                                             N1->getOperand(0));
8298                return DAG.getNode(ISD::BITCAST, dl, VT, Result);
8299            }
8300        }
8301    }
8302  }
8303
8304  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
8305  // reasonable.
8306
8307  // BFI is only available on V6T2+
8308  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
8309    return SDValue();
8310
8311  SDLoc DL(N);
8312  // 1) or (and A, mask), val => ARMbfi A, val, mask
8313  //      iff (val & mask) == val
8314  //
8315  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8316  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
8317  //          && mask == ~mask2
8318  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
8319  //          && ~mask == mask2
8320  //  (i.e., copy a bitfield value into another bitfield of the same width)
8321
8322  if (VT != MVT::i32)
8323    return SDValue();
8324
8325  SDValue N00 = N0.getOperand(0);
8326
8327  // The value and the mask need to be constants so we can verify this is
8328  // actually a bitfield set. If the mask is 0xffff, we can do better
8329  // via a movt instruction, so don't use BFI in that case.
8330  SDValue MaskOp = N0.getOperand(1);
8331  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
8332  if (!MaskC)
8333    return SDValue();
8334  unsigned Mask = MaskC->getZExtValue();
8335  if (Mask == 0xffff)
8336    return SDValue();
8337  SDValue Res;
8338  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
8339  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8340  if (N1C) {
8341    unsigned Val = N1C->getZExtValue();
8342    if ((Val & ~Mask) != Val)
8343      return SDValue();
8344
8345    if (ARM::isBitFieldInvertedMask(Mask)) {
8346      Val >>= countTrailingZeros(~Mask);
8347
8348      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
8349                        DAG.getConstant(Val, MVT::i32),
8350                        DAG.getConstant(Mask, MVT::i32));
8351
8352      // Do not add new nodes to DAG combiner worklist.
8353      DCI.CombineTo(N, Res, false);
8354      return SDValue();
8355    }
8356  } else if (N1.getOpcode() == ISD::AND) {
8357    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8358    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8359    if (!N11C)
8360      return SDValue();
8361    unsigned Mask2 = N11C->getZExtValue();
8362
8363    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
8364    // as is to match.
8365    if (ARM::isBitFieldInvertedMask(Mask) &&
8366        (Mask == ~Mask2)) {
8367      // The pack halfword instruction works better for masks that fit it,
8368      // so use that when it's available.
8369      if (Subtarget->hasT2ExtractPack() &&
8370          (Mask == 0xffff || Mask == 0xffff0000))
8371        return SDValue();
8372      // 2a
8373      unsigned amt = countTrailingZeros(Mask2);
8374      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
8375                        DAG.getConstant(amt, MVT::i32));
8376      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
8377                        DAG.getConstant(Mask, MVT::i32));
8378      // Do not add new nodes to DAG combiner worklist.
8379      DCI.CombineTo(N, Res, false);
8380      return SDValue();
8381    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
8382               (~Mask == Mask2)) {
8383      // The pack halfword instruction works better for masks that fit it,
8384      // so use that when it's available.
8385      if (Subtarget->hasT2ExtractPack() &&
8386          (Mask2 == 0xffff || Mask2 == 0xffff0000))
8387        return SDValue();
8388      // 2b
8389      unsigned lsb = countTrailingZeros(Mask);
8390      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
8391                        DAG.getConstant(lsb, MVT::i32));
8392      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
8393                        DAG.getConstant(Mask2, MVT::i32));
8394      // Do not add new nodes to DAG combiner worklist.
8395      DCI.CombineTo(N, Res, false);
8396      return SDValue();
8397    }
8398  }
8399
8400  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
8401      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
8402      ARM::isBitFieldInvertedMask(~Mask)) {
8403    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
8404    // where lsb(mask) == #shamt and masked bits of B are known zero.
8405    SDValue ShAmt = N00.getOperand(1);
8406    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
8407    unsigned LSB = countTrailingZeros(Mask);
8408    if (ShAmtC != LSB)
8409      return SDValue();
8410
8411    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
8412                      DAG.getConstant(~Mask, MVT::i32));
8413
8414    // Do not add new nodes to DAG combiner worklist.
8415    DCI.CombineTo(N, Res, false);
8416  }
8417
8418  return SDValue();
8419}
8420
8421static SDValue PerformXORCombine(SDNode *N,
8422                                 TargetLowering::DAGCombinerInfo &DCI,
8423                                 const ARMSubtarget *Subtarget) {
8424  EVT VT = N->getValueType(0);
8425  SelectionDAG &DAG = DCI.DAG;
8426
8427  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8428    return SDValue();
8429
8430  if (!Subtarget->isThumb1Only()) {
8431    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8432    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8433    if (Result.getNode())
8434      return Result;
8435  }
8436
8437  return SDValue();
8438}
8439
8440/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8441/// the bits being cleared by the AND are not demanded by the BFI.
8442static SDValue PerformBFICombine(SDNode *N,
8443                                 TargetLowering::DAGCombinerInfo &DCI) {
8444  SDValue N1 = N->getOperand(1);
8445  if (N1.getOpcode() == ISD::AND) {
8446    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8447    if (!N11C)
8448      return SDValue();
8449    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8450    unsigned LSB = countTrailingZeros(~InvMask);
8451    unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
8452    assert(Width <
8453               static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
8454           "undefined behavior");
8455    unsigned Mask = (1u << Width) - 1;
8456    unsigned Mask2 = N11C->getZExtValue();
8457    if ((Mask & (~Mask2)) == 0)
8458      return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
8459                             N->getOperand(0), N1.getOperand(0),
8460                             N->getOperand(2));
8461  }
8462  return SDValue();
8463}
8464
8465/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8466/// ARMISD::VMOVRRD.
8467static SDValue PerformVMOVRRDCombine(SDNode *N,
8468                                     TargetLowering::DAGCombinerInfo &DCI,
8469                                     const ARMSubtarget *Subtarget) {
8470  // vmovrrd(vmovdrr x, y) -> x,y
8471  SDValue InDouble = N->getOperand(0);
8472  if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
8473    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8474
8475  // vmovrrd(load f64) -> (load i32), (load i32)
8476  SDNode *InNode = InDouble.getNode();
8477  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8478      InNode->getValueType(0) == MVT::f64 &&
8479      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8480      !cast<LoadSDNode>(InNode)->isVolatile()) {
8481    // TODO: Should this be done for non-FrameIndex operands?
8482    LoadSDNode *LD = cast<LoadSDNode>(InNode);
8483
8484    SelectionDAG &DAG = DCI.DAG;
8485    SDLoc DL(LD);
8486    SDValue BasePtr = LD->getBasePtr();
8487    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8488                                 LD->getPointerInfo(), LD->isVolatile(),
8489                                 LD->isNonTemporal(), LD->isInvariant(),
8490                                 LD->getAlignment());
8491
8492    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8493                                    DAG.getConstant(4, MVT::i32));
8494    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8495                                 LD->getPointerInfo(), LD->isVolatile(),
8496                                 LD->isNonTemporal(), LD->isInvariant(),
8497                                 std::min(4U, LD->getAlignment() / 2));
8498
8499    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8500    if (DCI.DAG.getTargetLoweringInfo().isBigEndian())
8501      std::swap (NewLD1, NewLD2);
8502    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8503    return Result;
8504  }
8505
8506  return SDValue();
8507}
8508
8509/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8510/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
8511static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
8512  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8513  SDValue Op0 = N->getOperand(0);
8514  SDValue Op1 = N->getOperand(1);
8515  if (Op0.getOpcode() == ISD::BITCAST)
8516    Op0 = Op0.getOperand(0);
8517  if (Op1.getOpcode() == ISD::BITCAST)
8518    Op1 = Op1.getOperand(0);
8519  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8520      Op0.getNode() == Op1.getNode() &&
8521      Op0.getResNo() == 0 && Op1.getResNo() == 1)
8522    return DAG.getNode(ISD::BITCAST, SDLoc(N),
8523                       N->getValueType(0), Op0.getOperand(0));
8524  return SDValue();
8525}
8526
8527/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8528/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
8529/// i64 vector to have f64 elements, since the value can then be loaded
8530/// directly into a VFP register.
8531static bool hasNormalLoadOperand(SDNode *N) {
8532  unsigned NumElts = N->getValueType(0).getVectorNumElements();
8533  for (unsigned i = 0; i < NumElts; ++i) {
8534    SDNode *Elt = N->getOperand(i).getNode();
8535    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8536      return true;
8537  }
8538  return false;
8539}
8540
8541/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8542/// ISD::BUILD_VECTOR.
8543static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8544                                          TargetLowering::DAGCombinerInfo &DCI,
8545                                          const ARMSubtarget *Subtarget) {
8546  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8547  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
8548  // into a pair of GPRs, which is fine when the value is used as a scalar,
8549  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8550  SelectionDAG &DAG = DCI.DAG;
8551  if (N->getNumOperands() == 2) {
8552    SDValue RV = PerformVMOVDRRCombine(N, DAG);
8553    if (RV.getNode())
8554      return RV;
8555  }
8556
8557  // Load i64 elements as f64 values so that type legalization does not split
8558  // them up into i32 values.
8559  EVT VT = N->getValueType(0);
8560  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8561    return SDValue();
8562  SDLoc dl(N);
8563  SmallVector<SDValue, 8> Ops;
8564  unsigned NumElts = VT.getVectorNumElements();
8565  for (unsigned i = 0; i < NumElts; ++i) {
8566    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8567    Ops.push_back(V);
8568    // Make the DAGCombiner fold the bitcast.
8569    DCI.AddToWorklist(V.getNode());
8570  }
8571  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8572  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
8573  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8574}
8575
8576/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
8577static SDValue
8578PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8579  // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
8580  // At that time, we may have inserted bitcasts from integer to float.
8581  // If these bitcasts have survived DAGCombine, change the lowering of this
8582  // BUILD_VECTOR in something more vector friendly, i.e., that does not
8583  // force to use floating point types.
8584
8585  // Make sure we can change the type of the vector.
8586  // This is possible iff:
8587  // 1. The vector is only used in a bitcast to a integer type. I.e.,
8588  //    1.1. Vector is used only once.
8589  //    1.2. Use is a bit convert to an integer type.
8590  // 2. The size of its operands are 32-bits (64-bits are not legal).
8591  EVT VT = N->getValueType(0);
8592  EVT EltVT = VT.getVectorElementType();
8593
8594  // Check 1.1. and 2.
8595  if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
8596    return SDValue();
8597
8598  // By construction, the input type must be float.
8599  assert(EltVT == MVT::f32 && "Unexpected type!");
8600
8601  // Check 1.2.
8602  SDNode *Use = *N->use_begin();
8603  if (Use->getOpcode() != ISD::BITCAST ||
8604      Use->getValueType(0).isFloatingPoint())
8605    return SDValue();
8606
8607  // Check profitability.
8608  // Model is, if more than half of the relevant operands are bitcast from
8609  // i32, turn the build_vector into a sequence of insert_vector_elt.
8610  // Relevant operands are everything that is not statically
8611  // (i.e., at compile time) bitcasted.
8612  unsigned NumOfBitCastedElts = 0;
8613  unsigned NumElts = VT.getVectorNumElements();
8614  unsigned NumOfRelevantElts = NumElts;
8615  for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
8616    SDValue Elt = N->getOperand(Idx);
8617    if (Elt->getOpcode() == ISD::BITCAST) {
8618      // Assume only bit cast to i32 will go away.
8619      if (Elt->getOperand(0).getValueType() == MVT::i32)
8620        ++NumOfBitCastedElts;
8621    } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
8622      // Constants are statically casted, thus do not count them as
8623      // relevant operands.
8624      --NumOfRelevantElts;
8625  }
8626
8627  // Check if more than half of the elements require a non-free bitcast.
8628  if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
8629    return SDValue();
8630
8631  SelectionDAG &DAG = DCI.DAG;
8632  // Create the new vector type.
8633  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
8634  // Check if the type is legal.
8635  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8636  if (!TLI.isTypeLegal(VecVT))
8637    return SDValue();
8638
8639  // Combine:
8640  // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
8641  // => BITCAST INSERT_VECTOR_ELT
8642  //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
8643  //                      (BITCAST EN), N.
8644  SDValue Vec = DAG.getUNDEF(VecVT);
8645  SDLoc dl(N);
8646  for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
8647    SDValue V = N->getOperand(Idx);
8648    if (V.getOpcode() == ISD::UNDEF)
8649      continue;
8650    if (V.getOpcode() == ISD::BITCAST &&
8651        V->getOperand(0).getValueType() == MVT::i32)
8652      // Fold obvious case.
8653      V = V.getOperand(0);
8654    else {
8655      V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
8656      // Make the DAGCombiner fold the bitcasts.
8657      DCI.AddToWorklist(V.getNode());
8658    }
8659    SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
8660    Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
8661  }
8662  Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
8663  // Make the DAGCombiner fold the bitcasts.
8664  DCI.AddToWorklist(Vec.getNode());
8665  return Vec;
8666}
8667
8668/// PerformInsertEltCombine - Target-specific dag combine xforms for
8669/// ISD::INSERT_VECTOR_ELT.
8670static SDValue PerformInsertEltCombine(SDNode *N,
8671                                       TargetLowering::DAGCombinerInfo &DCI) {
8672  // Bitcast an i64 load inserted into a vector to f64.
8673  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8674  EVT VT = N->getValueType(0);
8675  SDNode *Elt = N->getOperand(1).getNode();
8676  if (VT.getVectorElementType() != MVT::i64 ||
8677      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8678    return SDValue();
8679
8680  SelectionDAG &DAG = DCI.DAG;
8681  SDLoc dl(N);
8682  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8683                                 VT.getVectorNumElements());
8684  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8685  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8686  // Make the DAGCombiner fold the bitcasts.
8687  DCI.AddToWorklist(Vec.getNode());
8688  DCI.AddToWorklist(V.getNode());
8689  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8690                               Vec, V, N->getOperand(2));
8691  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8692}
8693
8694/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8695/// ISD::VECTOR_SHUFFLE.
8696static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8697  // The LLVM shufflevector instruction does not require the shuffle mask
8698  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8699  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
8700  // operands do not match the mask length, they are extended by concatenating
8701  // them with undef vectors.  That is probably the right thing for other
8702  // targets, but for NEON it is better to concatenate two double-register
8703  // size vector operands into a single quad-register size vector.  Do that
8704  // transformation here:
8705  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
8706  //   shuffle(concat(v1, v2), undef)
8707  SDValue Op0 = N->getOperand(0);
8708  SDValue Op1 = N->getOperand(1);
8709  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8710      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8711      Op0.getNumOperands() != 2 ||
8712      Op1.getNumOperands() != 2)
8713    return SDValue();
8714  SDValue Concat0Op1 = Op0.getOperand(1);
8715  SDValue Concat1Op1 = Op1.getOperand(1);
8716  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8717      Concat1Op1.getOpcode() != ISD::UNDEF)
8718    return SDValue();
8719  // Skip the transformation if any of the types are illegal.
8720  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8721  EVT VT = N->getValueType(0);
8722  if (!TLI.isTypeLegal(VT) ||
8723      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8724      !TLI.isTypeLegal(Concat1Op1.getValueType()))
8725    return SDValue();
8726
8727  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
8728                                  Op0.getOperand(0), Op1.getOperand(0));
8729  // Translate the shuffle mask.
8730  SmallVector<int, 16> NewMask;
8731  unsigned NumElts = VT.getVectorNumElements();
8732  unsigned HalfElts = NumElts/2;
8733  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8734  for (unsigned n = 0; n < NumElts; ++n) {
8735    int MaskElt = SVN->getMaskElt(n);
8736    int NewElt = -1;
8737    if (MaskElt < (int)HalfElts)
8738      NewElt = MaskElt;
8739    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8740      NewElt = HalfElts + MaskElt - NumElts;
8741    NewMask.push_back(NewElt);
8742  }
8743  return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
8744                              DAG.getUNDEF(VT), NewMask.data());
8745}
8746
8747/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
8748/// NEON load/store intrinsics, and generic vector load/stores, to merge
8749/// base address updates.
8750/// For generic load/stores, the memory type is assumed to be a vector.
8751/// The caller is assumed to have checked legality.
8752static SDValue CombineBaseUpdate(SDNode *N,
8753                                 TargetLowering::DAGCombinerInfo &DCI) {
8754  SelectionDAG &DAG = DCI.DAG;
8755  const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8756                            N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8757  const bool isStore = N->getOpcode() == ISD::STORE;
8758  const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
8759  SDValue Addr = N->getOperand(AddrOpIdx);
8760  MemSDNode *MemN = cast<MemSDNode>(N);
8761
8762  // Search for a use of the address operand that is an increment.
8763  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8764         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8765    SDNode *User = *UI;
8766    if (User->getOpcode() != ISD::ADD ||
8767        UI.getUse().getResNo() != Addr.getResNo())
8768      continue;
8769
8770    // Check that the add is independent of the load/store.  Otherwise, folding
8771    // it would create a cycle.
8772    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8773      continue;
8774
8775    // Find the new opcode for the updating load/store.
8776    bool isLoadOp = true;
8777    bool isLaneOp = false;
8778    unsigned NewOpc = 0;
8779    unsigned NumVecs = 0;
8780    if (isIntrinsic) {
8781      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8782      switch (IntNo) {
8783      default: llvm_unreachable("unexpected intrinsic for Neon base update");
8784      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
8785        NumVecs = 1; break;
8786      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
8787        NumVecs = 2; break;
8788      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
8789        NumVecs = 3; break;
8790      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
8791        NumVecs = 4; break;
8792      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8793        NumVecs = 2; isLaneOp = true; break;
8794      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8795        NumVecs = 3; isLaneOp = true; break;
8796      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8797        NumVecs = 4; isLaneOp = true; break;
8798      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
8799        NumVecs = 1; isLoadOp = false; break;
8800      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
8801        NumVecs = 2; isLoadOp = false; break;
8802      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
8803        NumVecs = 3; isLoadOp = false; break;
8804      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
8805        NumVecs = 4; isLoadOp = false; break;
8806      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8807        NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
8808      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8809        NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
8810      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8811        NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
8812      }
8813    } else {
8814      isLaneOp = true;
8815      switch (N->getOpcode()) {
8816      default: llvm_unreachable("unexpected opcode for Neon base update");
8817      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8818      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8819      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8820      case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
8821        NumVecs = 1; isLaneOp = false; break;
8822      case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
8823        NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
8824      }
8825    }
8826
8827    // Find the size of memory referenced by the load/store.
8828    EVT VecTy;
8829    if (isLoadOp) {
8830      VecTy = N->getValueType(0);
8831    } else if (isIntrinsic) {
8832      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8833    } else {
8834      assert(isStore && "Node has to be a load, a store, or an intrinsic!");
8835      VecTy = N->getOperand(1).getValueType();
8836    }
8837
8838    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8839    if (isLaneOp)
8840      NumBytes /= VecTy.getVectorNumElements();
8841
8842    // If the increment is a constant, it must match the memory ref size.
8843    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8844    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8845      uint64_t IncVal = CInc->getZExtValue();
8846      if (IncVal != NumBytes)
8847        continue;
8848    } else if (NumBytes >= 3 * 16) {
8849      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8850      // separate instructions that make it harder to use a non-constant update.
8851      continue;
8852    }
8853
8854    // OK, we found an ADD we can fold into the base update.
8855    // Now, create a _UPD node, taking care of not breaking alignment.
8856
8857    EVT AlignedVecTy = VecTy;
8858    unsigned Alignment = MemN->getAlignment();
8859
8860    // If this is a less-than-standard-aligned load/store, change the type to
8861    // match the standard alignment.
8862    // The alignment is overlooked when selecting _UPD variants; and it's
8863    // easier to introduce bitcasts here than fix that.
8864    // There are 3 ways to get to this base-update combine:
8865    // - intrinsics: they are assumed to be properly aligned (to the standard
8866    //   alignment of the memory type), so we don't need to do anything.
8867    // - ARMISD::VLDx nodes: they are only generated from the aforementioned
8868    //   intrinsics, so, likewise, there's nothing to do.
8869    // - generic load/store instructions: the alignment is specified as an
8870    //   explicit operand, rather than implicitly as the standard alignment
8871    //   of the memory type (like the intrisics).  We need to change the
8872    //   memory type to match the explicit alignment.  That way, we don't
8873    //   generate non-standard-aligned ARMISD::VLDx nodes.
8874    if (isa<LSBaseSDNode>(N)) {
8875      if (Alignment == 0)
8876        Alignment = 1;
8877      if (Alignment < VecTy.getScalarSizeInBits() / 8) {
8878        MVT EltTy = MVT::getIntegerVT(Alignment * 8);
8879        assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
8880        assert(!isLaneOp && "Unexpected generic load/store lane.");
8881        unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
8882        AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
8883      }
8884      // Don't set an explicit alignment on regular load/stores that we want
8885      // to transform to VLD/VST 1_UPD nodes.
8886      // This matches the behavior of regular load/stores, which only get an
8887      // explicit alignment if the MMO alignment is larger than the standard
8888      // alignment of the memory type.
8889      // Intrinsics, however, always get an explicit alignment, set to the
8890      // alignment of the MMO.
8891      Alignment = 1;
8892    }
8893
8894    // Create the new updating load/store node.
8895    // First, create an SDVTList for the new updating node's results.
8896    EVT Tys[6];
8897    unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
8898    unsigned n;
8899    for (n = 0; n < NumResultVecs; ++n)
8900      Tys[n] = AlignedVecTy;
8901    Tys[n++] = MVT::i32;
8902    Tys[n] = MVT::Other;
8903    SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
8904
8905    // Then, gather the new node's operands.
8906    SmallVector<SDValue, 8> Ops;
8907    Ops.push_back(N->getOperand(0)); // incoming chain
8908    Ops.push_back(N->getOperand(AddrOpIdx));
8909    Ops.push_back(Inc);
8910
8911    if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
8912      // Try to match the intrinsic's signature
8913      Ops.push_back(StN->getValue());
8914    } else {
8915      // Loads (and of course intrinsics) match the intrinsics' signature,
8916      // so just add all but the alignment operand.
8917      for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
8918        Ops.push_back(N->getOperand(i));
8919    }
8920
8921    // For all node types, the alignment operand is always the last one.
8922    Ops.push_back(DAG.getConstant(Alignment, MVT::i32));
8923
8924    // If this is a non-standard-aligned STORE, the penultimate operand is the
8925    // stored value.  Bitcast it to the aligned type.
8926    if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
8927      SDValue &StVal = Ops[Ops.size()-2];
8928      StVal = DAG.getNode(ISD::BITCAST, SDLoc(N), AlignedVecTy, StVal);
8929    }
8930
8931    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
8932                                           Ops, AlignedVecTy,
8933                                           MemN->getMemOperand());
8934
8935    // Update the uses.
8936    SmallVector<SDValue, 5> NewResults;
8937    for (unsigned i = 0; i < NumResultVecs; ++i)
8938      NewResults.push_back(SDValue(UpdN.getNode(), i));
8939
8940    // If this is an non-standard-aligned LOAD, the first result is the loaded
8941    // value.  Bitcast it to the expected result type.
8942    if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
8943      SDValue &LdVal = NewResults[0];
8944      LdVal = DAG.getNode(ISD::BITCAST, SDLoc(N), VecTy, LdVal);
8945    }
8946
8947    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
8948    DCI.CombineTo(N, NewResults);
8949    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8950
8951    break;
8952  }
8953  return SDValue();
8954}
8955
8956static SDValue PerformVLDCombine(SDNode *N,
8957                                 TargetLowering::DAGCombinerInfo &DCI) {
8958  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8959    return SDValue();
8960
8961  return CombineBaseUpdate(N, DCI);
8962}
8963
8964/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
8965/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
8966/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
8967/// return true.
8968static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8969  SelectionDAG &DAG = DCI.DAG;
8970  EVT VT = N->getValueType(0);
8971  // vldN-dup instructions only support 64-bit vectors for N > 1.
8972  if (!VT.is64BitVector())
8973    return false;
8974
8975  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
8976  SDNode *VLD = N->getOperand(0).getNode();
8977  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
8978    return false;
8979  unsigned NumVecs = 0;
8980  unsigned NewOpc = 0;
8981  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
8982  if (IntNo == Intrinsic::arm_neon_vld2lane) {
8983    NumVecs = 2;
8984    NewOpc = ARMISD::VLD2DUP;
8985  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
8986    NumVecs = 3;
8987    NewOpc = ARMISD::VLD3DUP;
8988  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
8989    NumVecs = 4;
8990    NewOpc = ARMISD::VLD4DUP;
8991  } else {
8992    return false;
8993  }
8994
8995  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
8996  // numbers match the load.
8997  unsigned VLDLaneNo =
8998    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
8999  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9000       UI != UE; ++UI) {
9001    // Ignore uses of the chain result.
9002    if (UI.getUse().getResNo() == NumVecs)
9003      continue;
9004    SDNode *User = *UI;
9005    if (User->getOpcode() != ARMISD::VDUPLANE ||
9006        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
9007      return false;
9008  }
9009
9010  // Create the vldN-dup node.
9011  EVT Tys[5];
9012  unsigned n;
9013  for (n = 0; n < NumVecs; ++n)
9014    Tys[n] = VT;
9015  Tys[n] = MVT::Other;
9016  SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
9017  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
9018  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
9019  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
9020                                           Ops, VLDMemInt->getMemoryVT(),
9021                                           VLDMemInt->getMemOperand());
9022
9023  // Update the uses.
9024  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9025       UI != UE; ++UI) {
9026    unsigned ResNo = UI.getUse().getResNo();
9027    // Ignore uses of the chain result.
9028    if (ResNo == NumVecs)
9029      continue;
9030    SDNode *User = *UI;
9031    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
9032  }
9033
9034  // Now the vldN-lane intrinsic is dead except for its chain result.
9035  // Update uses of the chain.
9036  std::vector<SDValue> VLDDupResults;
9037  for (unsigned n = 0; n < NumVecs; ++n)
9038    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
9039  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
9040  DCI.CombineTo(VLD, VLDDupResults);
9041
9042  return true;
9043}
9044
9045/// PerformVDUPLANECombine - Target-specific dag combine xforms for
9046/// ARMISD::VDUPLANE.
9047static SDValue PerformVDUPLANECombine(SDNode *N,
9048                                      TargetLowering::DAGCombinerInfo &DCI) {
9049  SDValue Op = N->getOperand(0);
9050
9051  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
9052  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
9053  if (CombineVLDDUP(N, DCI))
9054    return SDValue(N, 0);
9055
9056  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
9057  // redundant.  Ignore bit_converts for now; element sizes are checked below.
9058  while (Op.getOpcode() == ISD::BITCAST)
9059    Op = Op.getOperand(0);
9060  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
9061    return SDValue();
9062
9063  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
9064  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
9065  // The canonical VMOV for a zero vector uses a 32-bit element size.
9066  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9067  unsigned EltBits;
9068  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
9069    EltSize = 8;
9070  EVT VT = N->getValueType(0);
9071  if (EltSize > VT.getVectorElementType().getSizeInBits())
9072    return SDValue();
9073
9074  return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
9075}
9076
9077static SDValue PerformLOADCombine(SDNode *N,
9078                                  TargetLowering::DAGCombinerInfo &DCI) {
9079  EVT VT = N->getValueType(0);
9080
9081  // If this is a legal vector load, try to combine it into a VLD1_UPD.
9082  if (ISD::isNormalLoad(N) && VT.isVector() &&
9083      DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
9084    return CombineBaseUpdate(N, DCI);
9085
9086  return SDValue();
9087}
9088
9089/// PerformSTORECombine - Target-specific dag combine xforms for
9090/// ISD::STORE.
9091static SDValue PerformSTORECombine(SDNode *N,
9092                                   TargetLowering::DAGCombinerInfo &DCI) {
9093  StoreSDNode *St = cast<StoreSDNode>(N);
9094  if (St->isVolatile())
9095    return SDValue();
9096
9097  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
9098  // pack all of the elements in one place.  Next, store to memory in fewer
9099  // chunks.
9100  SDValue StVal = St->getValue();
9101  EVT VT = StVal.getValueType();
9102  if (St->isTruncatingStore() && VT.isVector()) {
9103    SelectionDAG &DAG = DCI.DAG;
9104    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9105    EVT StVT = St->getMemoryVT();
9106    unsigned NumElems = VT.getVectorNumElements();
9107    assert(StVT != VT && "Cannot truncate to the same type");
9108    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
9109    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
9110
9111    // From, To sizes and ElemCount must be pow of two
9112    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
9113
9114    // We are going to use the original vector elt for storing.
9115    // Accumulated smaller vector elements must be a multiple of the store size.
9116    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
9117
9118    unsigned SizeRatio  = FromEltSz / ToEltSz;
9119    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
9120
9121    // Create a type on which we perform the shuffle.
9122    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
9123                                     NumElems*SizeRatio);
9124    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
9125
9126    SDLoc DL(St);
9127    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
9128    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
9129    for (unsigned i = 0; i < NumElems; ++i)
9130      ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio;
9131
9132    // Can't shuffle using an illegal type.
9133    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
9134
9135    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
9136                                DAG.getUNDEF(WideVec.getValueType()),
9137                                ShuffleVec.data());
9138    // At this point all of the data is stored at the bottom of the
9139    // register. We now need to save it to mem.
9140
9141    // Find the largest store unit
9142    MVT StoreType = MVT::i8;
9143    for (MVT Tp : MVT::integer_valuetypes()) {
9144      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
9145        StoreType = Tp;
9146    }
9147    // Didn't find a legal store type.
9148    if (!TLI.isTypeLegal(StoreType))
9149      return SDValue();
9150
9151    // Bitcast the original vector into a vector of store-size units
9152    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
9153            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
9154    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
9155    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
9156    SmallVector<SDValue, 8> Chains;
9157    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
9158                                        TLI.getPointerTy());
9159    SDValue BasePtr = St->getBasePtr();
9160
9161    // Perform one or more big stores into memory.
9162    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
9163    for (unsigned I = 0; I < E; I++) {
9164      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
9165                                   StoreType, ShuffWide,
9166                                   DAG.getIntPtrConstant(I));
9167      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
9168                                St->getPointerInfo(), St->isVolatile(),
9169                                St->isNonTemporal(), St->getAlignment());
9170      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
9171                            Increment);
9172      Chains.push_back(Ch);
9173    }
9174    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
9175  }
9176
9177  if (!ISD::isNormalStore(St))
9178    return SDValue();
9179
9180  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
9181  // ARM stores of arguments in the same cache line.
9182  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
9183      StVal.getNode()->hasOneUse()) {
9184    SelectionDAG  &DAG = DCI.DAG;
9185    bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
9186    SDLoc DL(St);
9187    SDValue BasePtr = St->getBasePtr();
9188    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
9189                                  StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
9190                                  BasePtr, St->getPointerInfo(), St->isVolatile(),
9191                                  St->isNonTemporal(), St->getAlignment());
9192
9193    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
9194                                    DAG.getConstant(4, MVT::i32));
9195    return DAG.getStore(NewST1.getValue(0), DL,
9196                        StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
9197                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
9198                        St->isNonTemporal(),
9199                        std::min(4U, St->getAlignment() / 2));
9200  }
9201
9202  if (StVal.getValueType() == MVT::i64 &&
9203      StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9204
9205    // Bitcast an i64 store extracted from a vector to f64.
9206    // Otherwise, the i64 value will be legalized to a pair of i32 values.
9207    SelectionDAG &DAG = DCI.DAG;
9208    SDLoc dl(StVal);
9209    SDValue IntVec = StVal.getOperand(0);
9210    EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
9211                                   IntVec.getValueType().getVectorNumElements());
9212    SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
9213    SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
9214                                 Vec, StVal.getOperand(1));
9215    dl = SDLoc(N);
9216    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
9217    // Make the DAGCombiner fold the bitcasts.
9218    DCI.AddToWorklist(Vec.getNode());
9219    DCI.AddToWorklist(ExtElt.getNode());
9220    DCI.AddToWorklist(V.getNode());
9221    return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
9222                        St->getPointerInfo(), St->isVolatile(),
9223                        St->isNonTemporal(), St->getAlignment(),
9224                        St->getAAInfo());
9225  }
9226
9227  // If this is a legal vector store, try to combine it into a VST1_UPD.
9228  if (ISD::isNormalStore(N) && VT.isVector() &&
9229      DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
9230    return CombineBaseUpdate(N, DCI);
9231
9232  return SDValue();
9233}
9234
9235// isConstVecPow2 - Return true if each vector element is a power of 2, all
9236// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
9237static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
9238{
9239  integerPart cN;
9240  integerPart c0 = 0;
9241  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
9242       I != E; I++) {
9243    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
9244    if (!C)
9245      return false;
9246
9247    bool isExact;
9248    APFloat APF = C->getValueAPF();
9249    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
9250        != APFloat::opOK || !isExact)
9251      return false;
9252
9253    c0 = (I == 0) ? cN : c0;
9254    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
9255      return false;
9256  }
9257  C = c0;
9258  return true;
9259}
9260
9261/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
9262/// can replace combinations of VMUL and VCVT (floating-point to integer)
9263/// when the VMUL has a constant operand that is a power of 2.
9264///
9265/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9266///  vmul.f32        d16, d17, d16
9267///  vcvt.s32.f32    d16, d16
9268/// becomes:
9269///  vcvt.s32.f32    d16, d16, #3
9270static SDValue PerformVCVTCombine(SDNode *N,
9271                                  TargetLowering::DAGCombinerInfo &DCI,
9272                                  const ARMSubtarget *Subtarget) {
9273  SelectionDAG &DAG = DCI.DAG;
9274  SDValue Op = N->getOperand(0);
9275
9276  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
9277      Op.getOpcode() != ISD::FMUL)
9278    return SDValue();
9279
9280  uint64_t C;
9281  SDValue N0 = Op->getOperand(0);
9282  SDValue ConstVec = Op->getOperand(1);
9283  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
9284
9285  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9286      !isConstVecPow2(ConstVec, isSigned, C))
9287    return SDValue();
9288
9289  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9290  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9291  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9292  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32 ||
9293      NumLanes > 4) {
9294    // These instructions only exist converting from f32 to i32. We can handle
9295    // smaller integers by generating an extra truncate, but larger ones would
9296    // be lossy. We also can't handle more then 4 lanes, since these intructions
9297    // only support v2i32/v4i32 types.
9298    return SDValue();
9299  }
9300
9301  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
9302    Intrinsic::arm_neon_vcvtfp2fxu;
9303  SDValue FixConv =  DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9304                                 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9305                                 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
9306                                 DAG.getConstant(Log2_64(C), MVT::i32));
9307
9308  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9309    FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
9310
9311  return FixConv;
9312}
9313
9314/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
9315/// can replace combinations of VCVT (integer to floating-point) and VDIV
9316/// when the VDIV has a constant operand that is a power of 2.
9317///
9318/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9319///  vcvt.f32.s32    d16, d16
9320///  vdiv.f32        d16, d17, d16
9321/// becomes:
9322///  vcvt.f32.s32    d16, d16, #3
9323static SDValue PerformVDIVCombine(SDNode *N,
9324                                  TargetLowering::DAGCombinerInfo &DCI,
9325                                  const ARMSubtarget *Subtarget) {
9326  SelectionDAG &DAG = DCI.DAG;
9327  SDValue Op = N->getOperand(0);
9328  unsigned OpOpcode = Op.getNode()->getOpcode();
9329
9330  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
9331      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
9332    return SDValue();
9333
9334  uint64_t C;
9335  SDValue ConstVec = N->getOperand(1);
9336  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
9337
9338  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9339      !isConstVecPow2(ConstVec, isSigned, C))
9340    return SDValue();
9341
9342  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9343  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9344  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9345    // These instructions only exist converting from i32 to f32. We can handle
9346    // smaller integers by generating an extra extend, but larger ones would
9347    // be lossy.
9348    return SDValue();
9349  }
9350
9351  SDValue ConvInput = Op.getOperand(0);
9352  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9353  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9354    ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9355                            SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9356                            ConvInput);
9357
9358  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
9359    Intrinsic::arm_neon_vcvtfxu2fp;
9360  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9361                     Op.getValueType(),
9362                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
9363                     ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
9364}
9365
9366/// Getvshiftimm - Check if this is a valid build_vector for the immediate
9367/// operand of a vector shift operation, where all the elements of the
9368/// build_vector must have the same constant integer value.
9369static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
9370  // Ignore bit_converts.
9371  while (Op.getOpcode() == ISD::BITCAST)
9372    Op = Op.getOperand(0);
9373  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9374  APInt SplatBits, SplatUndef;
9375  unsigned SplatBitSize;
9376  bool HasAnyUndefs;
9377  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
9378                                      HasAnyUndefs, ElementBits) ||
9379      SplatBitSize > ElementBits)
9380    return false;
9381  Cnt = SplatBits.getSExtValue();
9382  return true;
9383}
9384
9385/// isVShiftLImm - Check if this is a valid build_vector for the immediate
9386/// operand of a vector shift left operation.  That value must be in the range:
9387///   0 <= Value < ElementBits for a left shift; or
9388///   0 <= Value <= ElementBits for a long left shift.
9389static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
9390  assert(VT.isVector() && "vector shift count is not a vector type");
9391  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9392  if (! getVShiftImm(Op, ElementBits, Cnt))
9393    return false;
9394  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
9395}
9396
9397/// isVShiftRImm - Check if this is a valid build_vector for the immediate
9398/// operand of a vector shift right operation.  For a shift opcode, the value
9399/// is positive, but for an intrinsic the value count must be negative. The
9400/// absolute value must be in the range:
9401///   1 <= |Value| <= ElementBits for a right shift; or
9402///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
9403static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
9404                         int64_t &Cnt) {
9405  assert(VT.isVector() && "vector shift count is not a vector type");
9406  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9407  if (! getVShiftImm(Op, ElementBits, Cnt))
9408    return false;
9409  if (isIntrinsic)
9410    Cnt = -Cnt;
9411  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
9412}
9413
9414/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
9415static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
9416  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9417  switch (IntNo) {
9418  default:
9419    // Don't do anything for most intrinsics.
9420    break;
9421
9422  // Vector shifts: check for immediate versions and lower them.
9423  // Note: This is done during DAG combining instead of DAG legalizing because
9424  // the build_vectors for 64-bit vector element shift counts are generally
9425  // not legal, and it is hard to see their values after they get legalized to
9426  // loads from a constant pool.
9427  case Intrinsic::arm_neon_vshifts:
9428  case Intrinsic::arm_neon_vshiftu:
9429  case Intrinsic::arm_neon_vrshifts:
9430  case Intrinsic::arm_neon_vrshiftu:
9431  case Intrinsic::arm_neon_vrshiftn:
9432  case Intrinsic::arm_neon_vqshifts:
9433  case Intrinsic::arm_neon_vqshiftu:
9434  case Intrinsic::arm_neon_vqshiftsu:
9435  case Intrinsic::arm_neon_vqshiftns:
9436  case Intrinsic::arm_neon_vqshiftnu:
9437  case Intrinsic::arm_neon_vqshiftnsu:
9438  case Intrinsic::arm_neon_vqrshiftns:
9439  case Intrinsic::arm_neon_vqrshiftnu:
9440  case Intrinsic::arm_neon_vqrshiftnsu: {
9441    EVT VT = N->getOperand(1).getValueType();
9442    int64_t Cnt;
9443    unsigned VShiftOpc = 0;
9444
9445    switch (IntNo) {
9446    case Intrinsic::arm_neon_vshifts:
9447    case Intrinsic::arm_neon_vshiftu:
9448      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
9449        VShiftOpc = ARMISD::VSHL;
9450        break;
9451      }
9452      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
9453        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
9454                     ARMISD::VSHRs : ARMISD::VSHRu);
9455        break;
9456      }
9457      return SDValue();
9458
9459    case Intrinsic::arm_neon_vrshifts:
9460    case Intrinsic::arm_neon_vrshiftu:
9461      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
9462        break;
9463      return SDValue();
9464
9465    case Intrinsic::arm_neon_vqshifts:
9466    case Intrinsic::arm_neon_vqshiftu:
9467      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9468        break;
9469      return SDValue();
9470
9471    case Intrinsic::arm_neon_vqshiftsu:
9472      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9473        break;
9474      llvm_unreachable("invalid shift count for vqshlu intrinsic");
9475
9476    case Intrinsic::arm_neon_vrshiftn:
9477    case Intrinsic::arm_neon_vqshiftns:
9478    case Intrinsic::arm_neon_vqshiftnu:
9479    case Intrinsic::arm_neon_vqshiftnsu:
9480    case Intrinsic::arm_neon_vqrshiftns:
9481    case Intrinsic::arm_neon_vqrshiftnu:
9482    case Intrinsic::arm_neon_vqrshiftnsu:
9483      // Narrowing shifts require an immediate right shift.
9484      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
9485        break;
9486      llvm_unreachable("invalid shift count for narrowing vector shift "
9487                       "intrinsic");
9488
9489    default:
9490      llvm_unreachable("unhandled vector shift");
9491    }
9492
9493    switch (IntNo) {
9494    case Intrinsic::arm_neon_vshifts:
9495    case Intrinsic::arm_neon_vshiftu:
9496      // Opcode already set above.
9497      break;
9498    case Intrinsic::arm_neon_vrshifts:
9499      VShiftOpc = ARMISD::VRSHRs; break;
9500    case Intrinsic::arm_neon_vrshiftu:
9501      VShiftOpc = ARMISD::VRSHRu; break;
9502    case Intrinsic::arm_neon_vrshiftn:
9503      VShiftOpc = ARMISD::VRSHRN; break;
9504    case Intrinsic::arm_neon_vqshifts:
9505      VShiftOpc = ARMISD::VQSHLs; break;
9506    case Intrinsic::arm_neon_vqshiftu:
9507      VShiftOpc = ARMISD::VQSHLu; break;
9508    case Intrinsic::arm_neon_vqshiftsu:
9509      VShiftOpc = ARMISD::VQSHLsu; break;
9510    case Intrinsic::arm_neon_vqshiftns:
9511      VShiftOpc = ARMISD::VQSHRNs; break;
9512    case Intrinsic::arm_neon_vqshiftnu:
9513      VShiftOpc = ARMISD::VQSHRNu; break;
9514    case Intrinsic::arm_neon_vqshiftnsu:
9515      VShiftOpc = ARMISD::VQSHRNsu; break;
9516    case Intrinsic::arm_neon_vqrshiftns:
9517      VShiftOpc = ARMISD::VQRSHRNs; break;
9518    case Intrinsic::arm_neon_vqrshiftnu:
9519      VShiftOpc = ARMISD::VQRSHRNu; break;
9520    case Intrinsic::arm_neon_vqrshiftnsu:
9521      VShiftOpc = ARMISD::VQRSHRNsu; break;
9522    }
9523
9524    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9525                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
9526  }
9527
9528  case Intrinsic::arm_neon_vshiftins: {
9529    EVT VT = N->getOperand(1).getValueType();
9530    int64_t Cnt;
9531    unsigned VShiftOpc = 0;
9532
9533    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
9534      VShiftOpc = ARMISD::VSLI;
9535    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
9536      VShiftOpc = ARMISD::VSRI;
9537    else {
9538      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
9539    }
9540
9541    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9542                       N->getOperand(1), N->getOperand(2),
9543                       DAG.getConstant(Cnt, MVT::i32));
9544  }
9545
9546  case Intrinsic::arm_neon_vqrshifts:
9547  case Intrinsic::arm_neon_vqrshiftu:
9548    // No immediate versions of these to check for.
9549    break;
9550  }
9551
9552  return SDValue();
9553}
9554
9555/// PerformShiftCombine - Checks for immediate versions of vector shifts and
9556/// lowers them.  As with the vector shift intrinsics, this is done during DAG
9557/// combining instead of DAG legalizing because the build_vectors for 64-bit
9558/// vector element shift counts are generally not legal, and it is hard to see
9559/// their values after they get legalized to loads from a constant pool.
9560static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
9561                                   const ARMSubtarget *ST) {
9562  EVT VT = N->getValueType(0);
9563  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
9564    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
9565    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
9566    SDValue N1 = N->getOperand(1);
9567    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9568      SDValue N0 = N->getOperand(0);
9569      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
9570          DAG.MaskedValueIsZero(N0.getOperand(0),
9571                                APInt::getHighBitsSet(32, 16)))
9572        return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
9573    }
9574  }
9575
9576  // Nothing to be done for scalar shifts.
9577  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9578  if (!VT.isVector() || !TLI.isTypeLegal(VT))
9579    return SDValue();
9580
9581  assert(ST->hasNEON() && "unexpected vector shift");
9582  int64_t Cnt;
9583
9584  switch (N->getOpcode()) {
9585  default: llvm_unreachable("unexpected shift opcode");
9586
9587  case ISD::SHL:
9588    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
9589      return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
9590                         DAG.getConstant(Cnt, MVT::i32));
9591    break;
9592
9593  case ISD::SRA:
9594  case ISD::SRL:
9595    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
9596      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
9597                            ARMISD::VSHRs : ARMISD::VSHRu);
9598      return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
9599                         DAG.getConstant(Cnt, MVT::i32));
9600    }
9601  }
9602  return SDValue();
9603}
9604
9605/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
9606/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
9607static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
9608                                    const ARMSubtarget *ST) {
9609  SDValue N0 = N->getOperand(0);
9610
9611  // Check for sign- and zero-extensions of vector extract operations of 8-
9612  // and 16-bit vector elements.  NEON supports these directly.  They are
9613  // handled during DAG combining because type legalization will promote them
9614  // to 32-bit types and it is messy to recognize the operations after that.
9615  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9616    SDValue Vec = N0.getOperand(0);
9617    SDValue Lane = N0.getOperand(1);
9618    EVT VT = N->getValueType(0);
9619    EVT EltVT = N0.getValueType();
9620    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9621
9622    if (VT == MVT::i32 &&
9623        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
9624        TLI.isTypeLegal(Vec.getValueType()) &&
9625        isa<ConstantSDNode>(Lane)) {
9626
9627      unsigned Opc = 0;
9628      switch (N->getOpcode()) {
9629      default: llvm_unreachable("unexpected opcode");
9630      case ISD::SIGN_EXTEND:
9631        Opc = ARMISD::VGETLANEs;
9632        break;
9633      case ISD::ZERO_EXTEND:
9634      case ISD::ANY_EXTEND:
9635        Opc = ARMISD::VGETLANEu;
9636        break;
9637      }
9638      return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
9639    }
9640  }
9641
9642  return SDValue();
9643}
9644
9645/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9646/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
9647static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
9648                                       const ARMSubtarget *ST) {
9649  // If the target supports NEON, try to use vmax/vmin instructions for f32
9650  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
9651  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
9652  // a NaN; only do the transformation when it matches that behavior.
9653
9654  // For now only do this when using NEON for FP operations; if using VFP, it
9655  // is not obvious that the benefit outweighs the cost of switching to the
9656  // NEON pipeline.
9657  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
9658      N->getValueType(0) != MVT::f32)
9659    return SDValue();
9660
9661  SDValue CondLHS = N->getOperand(0);
9662  SDValue CondRHS = N->getOperand(1);
9663  SDValue LHS = N->getOperand(2);
9664  SDValue RHS = N->getOperand(3);
9665  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9666
9667  unsigned Opcode = 0;
9668  bool IsReversed;
9669  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
9670    IsReversed = false; // x CC y ? x : y
9671  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
9672    IsReversed = true ; // x CC y ? y : x
9673  } else {
9674    return SDValue();
9675  }
9676
9677  bool IsUnordered;
9678  switch (CC) {
9679  default: break;
9680  case ISD::SETOLT:
9681  case ISD::SETOLE:
9682  case ISD::SETLT:
9683  case ISD::SETLE:
9684  case ISD::SETULT:
9685  case ISD::SETULE:
9686    // If LHS is NaN, an ordered comparison will be false and the result will
9687    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
9688    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9689    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
9690    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9691      break;
9692    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
9693    // will return -0, so vmin can only be used for unsafe math or if one of
9694    // the operands is known to be nonzero.
9695    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
9696        !DAG.getTarget().Options.UnsafeFPMath &&
9697        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9698      break;
9699    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
9700    break;
9701
9702  case ISD::SETOGT:
9703  case ISD::SETOGE:
9704  case ISD::SETGT:
9705  case ISD::SETGE:
9706  case ISD::SETUGT:
9707  case ISD::SETUGE:
9708    // If LHS is NaN, an ordered comparison will be false and the result will
9709    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
9710    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9711    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
9712    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9713      break;
9714    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
9715    // will return +0, so vmax can only be used for unsafe math or if one of
9716    // the operands is known to be nonzero.
9717    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
9718        !DAG.getTarget().Options.UnsafeFPMath &&
9719        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9720      break;
9721    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
9722    break;
9723  }
9724
9725  if (!Opcode)
9726    return SDValue();
9727  return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
9728}
9729
9730/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
9731SDValue
9732ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
9733  SDValue Cmp = N->getOperand(4);
9734  if (Cmp.getOpcode() != ARMISD::CMPZ)
9735    // Only looking at EQ and NE cases.
9736    return SDValue();
9737
9738  EVT VT = N->getValueType(0);
9739  SDLoc dl(N);
9740  SDValue LHS = Cmp.getOperand(0);
9741  SDValue RHS = Cmp.getOperand(1);
9742  SDValue FalseVal = N->getOperand(0);
9743  SDValue TrueVal = N->getOperand(1);
9744  SDValue ARMcc = N->getOperand(2);
9745  ARMCC::CondCodes CC =
9746    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
9747
9748  // Simplify
9749  //   mov     r1, r0
9750  //   cmp     r1, x
9751  //   mov     r0, y
9752  //   moveq   r0, x
9753  // to
9754  //   cmp     r0, x
9755  //   movne   r0, y
9756  //
9757  //   mov     r1, r0
9758  //   cmp     r1, x
9759  //   mov     r0, x
9760  //   movne   r0, y
9761  // to
9762  //   cmp     r0, x
9763  //   movne   r0, y
9764  /// FIXME: Turn this into a target neutral optimization?
9765  SDValue Res;
9766  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
9767    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
9768                      N->getOperand(3), Cmp);
9769  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
9770    SDValue ARMcc;
9771    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
9772    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
9773                      N->getOperand(3), NewCmp);
9774  }
9775
9776  if (Res.getNode()) {
9777    APInt KnownZero, KnownOne;
9778    DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
9779    // Capture demanded bits information that would be otherwise lost.
9780    if (KnownZero == 0xfffffffe)
9781      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9782                        DAG.getValueType(MVT::i1));
9783    else if (KnownZero == 0xffffff00)
9784      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9785                        DAG.getValueType(MVT::i8));
9786    else if (KnownZero == 0xffff0000)
9787      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9788                        DAG.getValueType(MVT::i16));
9789  }
9790
9791  return Res;
9792}
9793
9794SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9795                                             DAGCombinerInfo &DCI) const {
9796  switch (N->getOpcode()) {
9797  default: break;
9798  case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
9799  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
9800  case ISD::SUB:        return PerformSUBCombine(N, DCI);
9801  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
9802  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
9803  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
9804  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
9805  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
9806  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
9807  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9808  case ISD::STORE:      return PerformSTORECombine(N, DCI);
9809  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
9810  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9811  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9812  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9813  case ISD::FP_TO_SINT:
9814  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9815  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
9816  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9817  case ISD::SHL:
9818  case ISD::SRA:
9819  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
9820  case ISD::SIGN_EXTEND:
9821  case ISD::ZERO_EXTEND:
9822  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9823  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9824  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9825  case ISD::LOAD:       return PerformLOADCombine(N, DCI);
9826  case ARMISD::VLD2DUP:
9827  case ARMISD::VLD3DUP:
9828  case ARMISD::VLD4DUP:
9829    return PerformVLDCombine(N, DCI);
9830  case ARMISD::BUILD_VECTOR:
9831    return PerformARMBUILD_VECTORCombine(N, DCI);
9832  case ISD::INTRINSIC_VOID:
9833  case ISD::INTRINSIC_W_CHAIN:
9834    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9835    case Intrinsic::arm_neon_vld1:
9836    case Intrinsic::arm_neon_vld2:
9837    case Intrinsic::arm_neon_vld3:
9838    case Intrinsic::arm_neon_vld4:
9839    case Intrinsic::arm_neon_vld2lane:
9840    case Intrinsic::arm_neon_vld3lane:
9841    case Intrinsic::arm_neon_vld4lane:
9842    case Intrinsic::arm_neon_vst1:
9843    case Intrinsic::arm_neon_vst2:
9844    case Intrinsic::arm_neon_vst3:
9845    case Intrinsic::arm_neon_vst4:
9846    case Intrinsic::arm_neon_vst2lane:
9847    case Intrinsic::arm_neon_vst3lane:
9848    case Intrinsic::arm_neon_vst4lane:
9849      return PerformVLDCombine(N, DCI);
9850    default: break;
9851    }
9852    break;
9853  }
9854  return SDValue();
9855}
9856
9857bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9858                                                          EVT VT) const {
9859  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9860}
9861
9862bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
9863                                                       unsigned,
9864                                                       unsigned,
9865                                                       bool *Fast) const {
9866  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9867  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9868
9869  switch (VT.getSimpleVT().SimpleTy) {
9870  default:
9871    return false;
9872  case MVT::i8:
9873  case MVT::i16:
9874  case MVT::i32: {
9875    // Unaligned access can use (for example) LRDB, LRDH, LDR
9876    if (AllowsUnaligned) {
9877      if (Fast)
9878        *Fast = Subtarget->hasV7Ops();
9879      return true;
9880    }
9881    return false;
9882  }
9883  case MVT::f64:
9884  case MVT::v2f64: {
9885    // For any little-endian targets with neon, we can support unaligned ld/st
9886    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9887    // A big-endian target may also explicitly support unaligned accesses
9888    if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
9889      if (Fast)
9890        *Fast = true;
9891      return true;
9892    }
9893    return false;
9894  }
9895  }
9896}
9897
9898static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9899                       unsigned AlignCheck) {
9900  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9901          (DstAlign == 0 || DstAlign % AlignCheck == 0));
9902}
9903
9904EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9905                                           unsigned DstAlign, unsigned SrcAlign,
9906                                           bool IsMemset, bool ZeroMemset,
9907                                           bool MemcpyStrSrc,
9908                                           MachineFunction &MF) const {
9909  const Function *F = MF.getFunction();
9910
9911  // See if we can use NEON instructions for this...
9912  if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
9913      !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9914    bool Fast;
9915    if (Size >= 16 &&
9916        (memOpAlign(SrcAlign, DstAlign, 16) ||
9917         (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
9918      return MVT::v2f64;
9919    } else if (Size >= 8 &&
9920               (memOpAlign(SrcAlign, DstAlign, 8) ||
9921                (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
9922                 Fast))) {
9923      return MVT::f64;
9924    }
9925  }
9926
9927  // Lowering to i32/i16 if the size permits.
9928  if (Size >= 4)
9929    return MVT::i32;
9930  else if (Size >= 2)
9931    return MVT::i16;
9932
9933  // Let the target-independent logic figure it out.
9934  return MVT::Other;
9935}
9936
9937bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
9938  if (Val.getOpcode() != ISD::LOAD)
9939    return false;
9940
9941  EVT VT1 = Val.getValueType();
9942  if (!VT1.isSimple() || !VT1.isInteger() ||
9943      !VT2.isSimple() || !VT2.isInteger())
9944    return false;
9945
9946  switch (VT1.getSimpleVT().SimpleTy) {
9947  default: break;
9948  case MVT::i1:
9949  case MVT::i8:
9950  case MVT::i16:
9951    // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
9952    return true;
9953  }
9954
9955  return false;
9956}
9957
9958bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
9959  EVT VT = ExtVal.getValueType();
9960
9961  if (!isTypeLegal(VT))
9962    return false;
9963
9964  // Don't create a loadext if we can fold the extension into a wide/long
9965  // instruction.
9966  // If there's more than one user instruction, the loadext is desirable no
9967  // matter what.  There can be two uses by the same instruction.
9968  if (ExtVal->use_empty() ||
9969      !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
9970    return true;
9971
9972  SDNode *U = *ExtVal->use_begin();
9973  if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
9974       U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
9975    return false;
9976
9977  return true;
9978}
9979
9980bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
9981  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9982    return false;
9983
9984  if (!isTypeLegal(EVT::getEVT(Ty1)))
9985    return false;
9986
9987  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
9988
9989  // Assuming the caller doesn't have a zeroext or signext return parameter,
9990  // truncation all the way down to i1 is valid.
9991  return true;
9992}
9993
9994
9995static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9996  if (V < 0)
9997    return false;
9998
9999  unsigned Scale = 1;
10000  switch (VT.getSimpleVT().SimpleTy) {
10001  default: return false;
10002  case MVT::i1:
10003  case MVT::i8:
10004    // Scale == 1;
10005    break;
10006  case MVT::i16:
10007    // Scale == 2;
10008    Scale = 2;
10009    break;
10010  case MVT::i32:
10011    // Scale == 4;
10012    Scale = 4;
10013    break;
10014  }
10015
10016  if ((V & (Scale - 1)) != 0)
10017    return false;
10018  V /= Scale;
10019  return V == (V & ((1LL << 5) - 1));
10020}
10021
10022static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
10023                                      const ARMSubtarget *Subtarget) {
10024  bool isNeg = false;
10025  if (V < 0) {
10026    isNeg = true;
10027    V = - V;
10028  }
10029
10030  switch (VT.getSimpleVT().SimpleTy) {
10031  default: return false;
10032  case MVT::i1:
10033  case MVT::i8:
10034  case MVT::i16:
10035  case MVT::i32:
10036    // + imm12 or - imm8
10037    if (isNeg)
10038      return V == (V & ((1LL << 8) - 1));
10039    return V == (V & ((1LL << 12) - 1));
10040  case MVT::f32:
10041  case MVT::f64:
10042    // Same as ARM mode. FIXME: NEON?
10043    if (!Subtarget->hasVFP2())
10044      return false;
10045    if ((V & 3) != 0)
10046      return false;
10047    V >>= 2;
10048    return V == (V & ((1LL << 8) - 1));
10049  }
10050}
10051
10052/// isLegalAddressImmediate - Return true if the integer value can be used
10053/// as the offset of the target addressing mode for load / store of the
10054/// given type.
10055static bool isLegalAddressImmediate(int64_t V, EVT VT,
10056                                    const ARMSubtarget *Subtarget) {
10057  if (V == 0)
10058    return true;
10059
10060  if (!VT.isSimple())
10061    return false;
10062
10063  if (Subtarget->isThumb1Only())
10064    return isLegalT1AddressImmediate(V, VT);
10065  else if (Subtarget->isThumb2())
10066    return isLegalT2AddressImmediate(V, VT, Subtarget);
10067
10068  // ARM mode.
10069  if (V < 0)
10070    V = - V;
10071  switch (VT.getSimpleVT().SimpleTy) {
10072  default: return false;
10073  case MVT::i1:
10074  case MVT::i8:
10075  case MVT::i32:
10076    // +- imm12
10077    return V == (V & ((1LL << 12) - 1));
10078  case MVT::i16:
10079    // +- imm8
10080    return V == (V & ((1LL << 8) - 1));
10081  case MVT::f32:
10082  case MVT::f64:
10083    if (!Subtarget->hasVFP2()) // FIXME: NEON?
10084      return false;
10085    if ((V & 3) != 0)
10086      return false;
10087    V >>= 2;
10088    return V == (V & ((1LL << 8) - 1));
10089  }
10090}
10091
10092bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
10093                                                      EVT VT) const {
10094  int Scale = AM.Scale;
10095  if (Scale < 0)
10096    return false;
10097
10098  switch (VT.getSimpleVT().SimpleTy) {
10099  default: return false;
10100  case MVT::i1:
10101  case MVT::i8:
10102  case MVT::i16:
10103  case MVT::i32:
10104    if (Scale == 1)
10105      return true;
10106    // r + r << imm
10107    Scale = Scale & ~1;
10108    return Scale == 2 || Scale == 4 || Scale == 8;
10109  case MVT::i64:
10110    // r + r
10111    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10112      return true;
10113    return false;
10114  case MVT::isVoid:
10115    // Note, we allow "void" uses (basically, uses that aren't loads or
10116    // stores), because arm allows folding a scale into many arithmetic
10117    // operations.  This should be made more precise and revisited later.
10118
10119    // Allow r << imm, but the imm has to be a multiple of two.
10120    if (Scale & 1) return false;
10121    return isPowerOf2_32(Scale);
10122  }
10123}
10124
10125/// isLegalAddressingMode - Return true if the addressing mode represented
10126/// by AM is legal for this target, for a load/store of the specified type.
10127bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
10128                                              Type *Ty) const {
10129  EVT VT = getValueType(Ty, true);
10130  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
10131    return false;
10132
10133  // Can never fold addr of global into load/store.
10134  if (AM.BaseGV)
10135    return false;
10136
10137  switch (AM.Scale) {
10138  case 0:  // no scale reg, must be "r+i" or "r", or "i".
10139    break;
10140  case 1:
10141    if (Subtarget->isThumb1Only())
10142      return false;
10143    // FALL THROUGH.
10144  default:
10145    // ARM doesn't support any R+R*scale+imm addr modes.
10146    if (AM.BaseOffs)
10147      return false;
10148
10149    if (!VT.isSimple())
10150      return false;
10151
10152    if (Subtarget->isThumb2())
10153      return isLegalT2ScaledAddressingMode(AM, VT);
10154
10155    int Scale = AM.Scale;
10156    switch (VT.getSimpleVT().SimpleTy) {
10157    default: return false;
10158    case MVT::i1:
10159    case MVT::i8:
10160    case MVT::i32:
10161      if (Scale < 0) Scale = -Scale;
10162      if (Scale == 1)
10163        return true;
10164      // r + r << imm
10165      return isPowerOf2_32(Scale & ~1);
10166    case MVT::i16:
10167    case MVT::i64:
10168      // r + r
10169      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10170        return true;
10171      return false;
10172
10173    case MVT::isVoid:
10174      // Note, we allow "void" uses (basically, uses that aren't loads or
10175      // stores), because arm allows folding a scale into many arithmetic
10176      // operations.  This should be made more precise and revisited later.
10177
10178      // Allow r << imm, but the imm has to be a multiple of two.
10179      if (Scale & 1) return false;
10180      return isPowerOf2_32(Scale);
10181    }
10182  }
10183  return true;
10184}
10185
10186/// isLegalICmpImmediate - Return true if the specified immediate is legal
10187/// icmp immediate, that is the target has icmp instructions which can compare
10188/// a register against the immediate without having to materialize the
10189/// immediate into a register.
10190bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
10191  // Thumb2 and ARM modes can use cmn for negative immediates.
10192  if (!Subtarget->isThumb())
10193    return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
10194  if (Subtarget->isThumb2())
10195    return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
10196  // Thumb1 doesn't have cmn, and only 8-bit immediates.
10197  return Imm >= 0 && Imm <= 255;
10198}
10199
10200/// isLegalAddImmediate - Return true if the specified immediate is a legal add
10201/// *or sub* immediate, that is the target has add or sub instructions which can
10202/// add a register with the immediate without having to materialize the
10203/// immediate into a register.
10204bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
10205  // Same encoding for add/sub, just flip the sign.
10206  int64_t AbsImm = std::abs(Imm);
10207  if (!Subtarget->isThumb())
10208    return ARM_AM::getSOImmVal(AbsImm) != -1;
10209  if (Subtarget->isThumb2())
10210    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
10211  // Thumb1 only has 8-bit unsigned immediate.
10212  return AbsImm >= 0 && AbsImm <= 255;
10213}
10214
10215static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
10216                                      bool isSEXTLoad, SDValue &Base,
10217                                      SDValue &Offset, bool &isInc,
10218                                      SelectionDAG &DAG) {
10219  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10220    return false;
10221
10222  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
10223    // AddressingMode 3
10224    Base = Ptr->getOperand(0);
10225    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10226      int RHSC = (int)RHS->getZExtValue();
10227      if (RHSC < 0 && RHSC > -256) {
10228        assert(Ptr->getOpcode() == ISD::ADD);
10229        isInc = false;
10230        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10231        return true;
10232      }
10233    }
10234    isInc = (Ptr->getOpcode() == ISD::ADD);
10235    Offset = Ptr->getOperand(1);
10236    return true;
10237  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
10238    // AddressingMode 2
10239    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10240      int RHSC = (int)RHS->getZExtValue();
10241      if (RHSC < 0 && RHSC > -0x1000) {
10242        assert(Ptr->getOpcode() == ISD::ADD);
10243        isInc = false;
10244        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10245        Base = Ptr->getOperand(0);
10246        return true;
10247      }
10248    }
10249
10250    if (Ptr->getOpcode() == ISD::ADD) {
10251      isInc = true;
10252      ARM_AM::ShiftOpc ShOpcVal=
10253        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
10254      if (ShOpcVal != ARM_AM::no_shift) {
10255        Base = Ptr->getOperand(1);
10256        Offset = Ptr->getOperand(0);
10257      } else {
10258        Base = Ptr->getOperand(0);
10259        Offset = Ptr->getOperand(1);
10260      }
10261      return true;
10262    }
10263
10264    isInc = (Ptr->getOpcode() == ISD::ADD);
10265    Base = Ptr->getOperand(0);
10266    Offset = Ptr->getOperand(1);
10267    return true;
10268  }
10269
10270  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
10271  return false;
10272}
10273
10274static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
10275                                     bool isSEXTLoad, SDValue &Base,
10276                                     SDValue &Offset, bool &isInc,
10277                                     SelectionDAG &DAG) {
10278  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10279    return false;
10280
10281  Base = Ptr->getOperand(0);
10282  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10283    int RHSC = (int)RHS->getZExtValue();
10284    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
10285      assert(Ptr->getOpcode() == ISD::ADD);
10286      isInc = false;
10287      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10288      return true;
10289    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
10290      isInc = Ptr->getOpcode() == ISD::ADD;
10291      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
10292      return true;
10293    }
10294  }
10295
10296  return false;
10297}
10298
10299/// getPreIndexedAddressParts - returns true by value, base pointer and
10300/// offset pointer and addressing mode by reference if the node's address
10301/// can be legally represented as pre-indexed load / store address.
10302bool
10303ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
10304                                             SDValue &Offset,
10305                                             ISD::MemIndexedMode &AM,
10306                                             SelectionDAG &DAG) const {
10307  if (Subtarget->isThumb1Only())
10308    return false;
10309
10310  EVT VT;
10311  SDValue Ptr;
10312  bool isSEXTLoad = false;
10313  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10314    Ptr = LD->getBasePtr();
10315    VT  = LD->getMemoryVT();
10316    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10317  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10318    Ptr = ST->getBasePtr();
10319    VT  = ST->getMemoryVT();
10320  } else
10321    return false;
10322
10323  bool isInc;
10324  bool isLegal = false;
10325  if (Subtarget->isThumb2())
10326    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10327                                       Offset, isInc, DAG);
10328  else
10329    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10330                                        Offset, isInc, DAG);
10331  if (!isLegal)
10332    return false;
10333
10334  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
10335  return true;
10336}
10337
10338/// getPostIndexedAddressParts - returns true by value, base pointer and
10339/// offset pointer and addressing mode by reference if this node can be
10340/// combined with a load / store to form a post-indexed load / store.
10341bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
10342                                                   SDValue &Base,
10343                                                   SDValue &Offset,
10344                                                   ISD::MemIndexedMode &AM,
10345                                                   SelectionDAG &DAG) const {
10346  if (Subtarget->isThumb1Only())
10347    return false;
10348
10349  EVT VT;
10350  SDValue Ptr;
10351  bool isSEXTLoad = false;
10352  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10353    VT  = LD->getMemoryVT();
10354    Ptr = LD->getBasePtr();
10355    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10356  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10357    VT  = ST->getMemoryVT();
10358    Ptr = ST->getBasePtr();
10359  } else
10360    return false;
10361
10362  bool isInc;
10363  bool isLegal = false;
10364  if (Subtarget->isThumb2())
10365    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10366                                       isInc, DAG);
10367  else
10368    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10369                                        isInc, DAG);
10370  if (!isLegal)
10371    return false;
10372
10373  if (Ptr != Base) {
10374    // Swap base ptr and offset to catch more post-index load / store when
10375    // it's legal. In Thumb2 mode, offset must be an immediate.
10376    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
10377        !Subtarget->isThumb2())
10378      std::swap(Base, Offset);
10379
10380    // Post-indexed load / store update the base pointer.
10381    if (Ptr != Base)
10382      return false;
10383  }
10384
10385  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
10386  return true;
10387}
10388
10389void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10390                                                      APInt &KnownZero,
10391                                                      APInt &KnownOne,
10392                                                      const SelectionDAG &DAG,
10393                                                      unsigned Depth) const {
10394  unsigned BitWidth = KnownOne.getBitWidth();
10395  KnownZero = KnownOne = APInt(BitWidth, 0);
10396  switch (Op.getOpcode()) {
10397  default: break;
10398  case ARMISD::ADDC:
10399  case ARMISD::ADDE:
10400  case ARMISD::SUBC:
10401  case ARMISD::SUBE:
10402    // These nodes' second result is a boolean
10403    if (Op.getResNo() == 0)
10404      break;
10405    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
10406    break;
10407  case ARMISD::CMOV: {
10408    // Bits are known zero/one if known on the LHS and RHS.
10409    DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
10410    if (KnownZero == 0 && KnownOne == 0) return;
10411
10412    APInt KnownZeroRHS, KnownOneRHS;
10413    DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
10414    KnownZero &= KnownZeroRHS;
10415    KnownOne  &= KnownOneRHS;
10416    return;
10417  }
10418  case ISD::INTRINSIC_W_CHAIN: {
10419    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
10420    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
10421    switch (IntID) {
10422    default: return;
10423    case Intrinsic::arm_ldaex:
10424    case Intrinsic::arm_ldrex: {
10425      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
10426      unsigned MemBits = VT.getScalarType().getSizeInBits();
10427      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
10428      return;
10429    }
10430    }
10431  }
10432  }
10433}
10434
10435//===----------------------------------------------------------------------===//
10436//                           ARM Inline Assembly Support
10437//===----------------------------------------------------------------------===//
10438
10439bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
10440  // Looking for "rev" which is V6+.
10441  if (!Subtarget->hasV6Ops())
10442    return false;
10443
10444  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10445  std::string AsmStr = IA->getAsmString();
10446  SmallVector<StringRef, 4> AsmPieces;
10447  SplitString(AsmStr, AsmPieces, ";\n");
10448
10449  switch (AsmPieces.size()) {
10450  default: return false;
10451  case 1:
10452    AsmStr = AsmPieces[0];
10453    AsmPieces.clear();
10454    SplitString(AsmStr, AsmPieces, " \t,");
10455
10456    // rev $0, $1
10457    if (AsmPieces.size() == 3 &&
10458        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
10459        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
10460      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10461      if (Ty && Ty->getBitWidth() == 32)
10462        return IntrinsicLowering::LowerToByteSwap(CI);
10463    }
10464    break;
10465  }
10466
10467  return false;
10468}
10469
10470/// getConstraintType - Given a constraint letter, return the type of
10471/// constraint it is for this target.
10472ARMTargetLowering::ConstraintType
10473ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
10474  if (Constraint.size() == 1) {
10475    switch (Constraint[0]) {
10476    default:  break;
10477    case 'l': return C_RegisterClass;
10478    case 'w': return C_RegisterClass;
10479    case 'h': return C_RegisterClass;
10480    case 'x': return C_RegisterClass;
10481    case 't': return C_RegisterClass;
10482    case 'j': return C_Other; // Constant for movw.
10483      // An address with a single base register. Due to the way we
10484      // currently handle addresses it is the same as an 'r' memory constraint.
10485    case 'Q': return C_Memory;
10486    }
10487  } else if (Constraint.size() == 2) {
10488    switch (Constraint[0]) {
10489    default: break;
10490    // All 'U+' constraints are addresses.
10491    case 'U': return C_Memory;
10492    }
10493  }
10494  return TargetLowering::getConstraintType(Constraint);
10495}
10496
10497/// Examine constraint type and operand type and determine a weight value.
10498/// This object must already have been set up with the operand type
10499/// and the current alternative constraint selected.
10500TargetLowering::ConstraintWeight
10501ARMTargetLowering::getSingleConstraintMatchWeight(
10502    AsmOperandInfo &info, const char *constraint) const {
10503  ConstraintWeight weight = CW_Invalid;
10504  Value *CallOperandVal = info.CallOperandVal;
10505    // If we don't have a value, we can't do a match,
10506    // but allow it at the lowest weight.
10507  if (!CallOperandVal)
10508    return CW_Default;
10509  Type *type = CallOperandVal->getType();
10510  // Look at the constraint type.
10511  switch (*constraint) {
10512  default:
10513    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10514    break;
10515  case 'l':
10516    if (type->isIntegerTy()) {
10517      if (Subtarget->isThumb())
10518        weight = CW_SpecificReg;
10519      else
10520        weight = CW_Register;
10521    }
10522    break;
10523  case 'w':
10524    if (type->isFloatingPointTy())
10525      weight = CW_Register;
10526    break;
10527  }
10528  return weight;
10529}
10530
10531typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
10532RCPair
10533ARMTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10534                                                const std::string &Constraint,
10535                                                MVT VT) const {
10536  if (Constraint.size() == 1) {
10537    // GCC ARM Constraint Letters
10538    switch (Constraint[0]) {
10539    case 'l': // Low regs or general regs.
10540      if (Subtarget->isThumb())
10541        return RCPair(0U, &ARM::tGPRRegClass);
10542      return RCPair(0U, &ARM::GPRRegClass);
10543    case 'h': // High regs or no regs.
10544      if (Subtarget->isThumb())
10545        return RCPair(0U, &ARM::hGPRRegClass);
10546      break;
10547    case 'r':
10548      if (Subtarget->isThumb1Only())
10549        return RCPair(0U, &ARM::tGPRRegClass);
10550      return RCPair(0U, &ARM::GPRRegClass);
10551    case 'w':
10552      if (VT == MVT::Other)
10553        break;
10554      if (VT == MVT::f32)
10555        return RCPair(0U, &ARM::SPRRegClass);
10556      if (VT.getSizeInBits() == 64)
10557        return RCPair(0U, &ARM::DPRRegClass);
10558      if (VT.getSizeInBits() == 128)
10559        return RCPair(0U, &ARM::QPRRegClass);
10560      break;
10561    case 'x':
10562      if (VT == MVT::Other)
10563        break;
10564      if (VT == MVT::f32)
10565        return RCPair(0U, &ARM::SPR_8RegClass);
10566      if (VT.getSizeInBits() == 64)
10567        return RCPair(0U, &ARM::DPR_8RegClass);
10568      if (VT.getSizeInBits() == 128)
10569        return RCPair(0U, &ARM::QPR_8RegClass);
10570      break;
10571    case 't':
10572      if (VT == MVT::f32)
10573        return RCPair(0U, &ARM::SPRRegClass);
10574      break;
10575    }
10576  }
10577  if (StringRef("{cc}").equals_lower(Constraint))
10578    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
10579
10580  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10581}
10582
10583/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10584/// vector.  If it is invalid, don't add anything to Ops.
10585void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10586                                                     std::string &Constraint,
10587                                                     std::vector<SDValue>&Ops,
10588                                                     SelectionDAG &DAG) const {
10589  SDValue Result;
10590
10591  // Currently only support length 1 constraints.
10592  if (Constraint.length() != 1) return;
10593
10594  char ConstraintLetter = Constraint[0];
10595  switch (ConstraintLetter) {
10596  default: break;
10597  case 'j':
10598  case 'I': case 'J': case 'K': case 'L':
10599  case 'M': case 'N': case 'O':
10600    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
10601    if (!C)
10602      return;
10603
10604    int64_t CVal64 = C->getSExtValue();
10605    int CVal = (int) CVal64;
10606    // None of these constraints allow values larger than 32 bits.  Check
10607    // that the value fits in an int.
10608    if (CVal != CVal64)
10609      return;
10610
10611    switch (ConstraintLetter) {
10612      case 'j':
10613        // Constant suitable for movw, must be between 0 and
10614        // 65535.
10615        if (Subtarget->hasV6T2Ops())
10616          if (CVal >= 0 && CVal <= 65535)
10617            break;
10618        return;
10619      case 'I':
10620        if (Subtarget->isThumb1Only()) {
10621          // This must be a constant between 0 and 255, for ADD
10622          // immediates.
10623          if (CVal >= 0 && CVal <= 255)
10624            break;
10625        } else if (Subtarget->isThumb2()) {
10626          // A constant that can be used as an immediate value in a
10627          // data-processing instruction.
10628          if (ARM_AM::getT2SOImmVal(CVal) != -1)
10629            break;
10630        } else {
10631          // A constant that can be used as an immediate value in a
10632          // data-processing instruction.
10633          if (ARM_AM::getSOImmVal(CVal) != -1)
10634            break;
10635        }
10636        return;
10637
10638      case 'J':
10639        if (Subtarget->isThumb()) {  // FIXME thumb2
10640          // This must be a constant between -255 and -1, for negated ADD
10641          // immediates. This can be used in GCC with an "n" modifier that
10642          // prints the negated value, for use with SUB instructions. It is
10643          // not useful otherwise but is implemented for compatibility.
10644          if (CVal >= -255 && CVal <= -1)
10645            break;
10646        } else {
10647          // This must be a constant between -4095 and 4095. It is not clear
10648          // what this constraint is intended for. Implemented for
10649          // compatibility with GCC.
10650          if (CVal >= -4095 && CVal <= 4095)
10651            break;
10652        }
10653        return;
10654
10655      case 'K':
10656        if (Subtarget->isThumb1Only()) {
10657          // A 32-bit value where only one byte has a nonzero value. Exclude
10658          // zero to match GCC. This constraint is used by GCC internally for
10659          // constants that can be loaded with a move/shift combination.
10660          // It is not useful otherwise but is implemented for compatibility.
10661          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
10662            break;
10663        } else if (Subtarget->isThumb2()) {
10664          // A constant whose bitwise inverse can be used as an immediate
10665          // value in a data-processing instruction. This can be used in GCC
10666          // with a "B" modifier that prints the inverted value, for use with
10667          // BIC and MVN instructions. It is not useful otherwise but is
10668          // implemented for compatibility.
10669          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
10670            break;
10671        } else {
10672          // A constant whose bitwise inverse can be used as an immediate
10673          // value in a data-processing instruction. This can be used in GCC
10674          // with a "B" modifier that prints the inverted value, for use with
10675          // BIC and MVN instructions. It is not useful otherwise but is
10676          // implemented for compatibility.
10677          if (ARM_AM::getSOImmVal(~CVal) != -1)
10678            break;
10679        }
10680        return;
10681
10682      case 'L':
10683        if (Subtarget->isThumb1Only()) {
10684          // This must be a constant between -7 and 7,
10685          // for 3-operand ADD/SUB immediate instructions.
10686          if (CVal >= -7 && CVal < 7)
10687            break;
10688        } else if (Subtarget->isThumb2()) {
10689          // A constant whose negation can be used as an immediate value in a
10690          // data-processing instruction. This can be used in GCC with an "n"
10691          // modifier that prints the negated value, for use with SUB
10692          // instructions. It is not useful otherwise but is implemented for
10693          // compatibility.
10694          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
10695            break;
10696        } else {
10697          // A constant whose negation can be used as an immediate value in a
10698          // data-processing instruction. This can be used in GCC with an "n"
10699          // modifier that prints the negated value, for use with SUB
10700          // instructions. It is not useful otherwise but is implemented for
10701          // compatibility.
10702          if (ARM_AM::getSOImmVal(-CVal) != -1)
10703            break;
10704        }
10705        return;
10706
10707      case 'M':
10708        if (Subtarget->isThumb()) { // FIXME thumb2
10709          // This must be a multiple of 4 between 0 and 1020, for
10710          // ADD sp + immediate.
10711          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
10712            break;
10713        } else {
10714          // A power of two or a constant between 0 and 32.  This is used in
10715          // GCC for the shift amount on shifted register operands, but it is
10716          // useful in general for any shift amounts.
10717          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
10718            break;
10719        }
10720        return;
10721
10722      case 'N':
10723        if (Subtarget->isThumb()) {  // FIXME thumb2
10724          // This must be a constant between 0 and 31, for shift amounts.
10725          if (CVal >= 0 && CVal <= 31)
10726            break;
10727        }
10728        return;
10729
10730      case 'O':
10731        if (Subtarget->isThumb()) {  // FIXME thumb2
10732          // This must be a multiple of 4 between -508 and 508, for
10733          // ADD/SUB sp = sp + immediate.
10734          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
10735            break;
10736        }
10737        return;
10738    }
10739    Result = DAG.getTargetConstant(CVal, Op.getValueType());
10740    break;
10741  }
10742
10743  if (Result.getNode()) {
10744    Ops.push_back(Result);
10745    return;
10746  }
10747  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10748}
10749
10750SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
10751  assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
10752  unsigned Opcode = Op->getOpcode();
10753  assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
10754         "Invalid opcode for Div/Rem lowering");
10755  bool isSigned = (Opcode == ISD::SDIVREM);
10756  EVT VT = Op->getValueType(0);
10757  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
10758
10759  RTLIB::Libcall LC;
10760  switch (VT.getSimpleVT().SimpleTy) {
10761  default: llvm_unreachable("Unexpected request for libcall!");
10762  case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
10763  case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
10764  case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
10765  case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
10766  }
10767
10768  SDValue InChain = DAG.getEntryNode();
10769
10770  TargetLowering::ArgListTy Args;
10771  TargetLowering::ArgListEntry Entry;
10772  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
10773    EVT ArgVT = Op->getOperand(i).getValueType();
10774    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10775    Entry.Node = Op->getOperand(i);
10776    Entry.Ty = ArgTy;
10777    Entry.isSExt = isSigned;
10778    Entry.isZExt = !isSigned;
10779    Args.push_back(Entry);
10780  }
10781
10782  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
10783                                         getPointerTy());
10784
10785  Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
10786
10787  SDLoc dl(Op);
10788  TargetLowering::CallLoweringInfo CLI(DAG);
10789  CLI.setDebugLoc(dl).setChain(InChain)
10790    .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
10791    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
10792
10793  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
10794  return CallInfo.first;
10795}
10796
10797SDValue
10798ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
10799  assert(Subtarget->isTargetWindows() && "unsupported target platform");
10800  SDLoc DL(Op);
10801
10802  // Get the inputs.
10803  SDValue Chain = Op.getOperand(0);
10804  SDValue Size  = Op.getOperand(1);
10805
10806  SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
10807                              DAG.getConstant(2, MVT::i32));
10808
10809  SDValue Flag;
10810  Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
10811  Flag = Chain.getValue(1);
10812
10813  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10814  Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
10815
10816  SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
10817  Chain = NewSP.getValue(1);
10818
10819  SDValue Ops[2] = { NewSP, Chain };
10820  return DAG.getMergeValues(Ops, DL);
10821}
10822
10823SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10824  assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
10825         "Unexpected type for custom-lowering FP_EXTEND");
10826
10827  RTLIB::Libcall LC;
10828  LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
10829
10830  SDValue SrcVal = Op.getOperand(0);
10831  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
10832                     /*isSigned*/ false, SDLoc(Op)).first;
10833}
10834
10835SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10836  assert(Op.getOperand(0).getValueType() == MVT::f64 &&
10837         Subtarget->isFPOnlySP() &&
10838         "Unexpected type for custom-lowering FP_ROUND");
10839
10840  RTLIB::Libcall LC;
10841  LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
10842
10843  SDValue SrcVal = Op.getOperand(0);
10844  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
10845                     /*isSigned*/ false, SDLoc(Op)).first;
10846}
10847
10848bool
10849ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10850  // The ARM target isn't yet aware of offsets.
10851  return false;
10852}
10853
10854bool ARM::isBitFieldInvertedMask(unsigned v) {
10855  if (v == 0xffffffff)
10856    return false;
10857
10858  // there can be 1's on either or both "outsides", all the "inside"
10859  // bits must be 0's
10860  return isShiftedMask_32(~v);
10861}
10862
10863/// isFPImmLegal - Returns true if the target can instruction select the
10864/// specified FP immediate natively. If false, the legalizer will
10865/// materialize the FP immediate as a load from a constant pool.
10866bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
10867  if (!Subtarget->hasVFP3())
10868    return false;
10869  if (VT == MVT::f32)
10870    return ARM_AM::getFP32Imm(Imm) != -1;
10871  if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
10872    return ARM_AM::getFP64Imm(Imm) != -1;
10873  return false;
10874}
10875
10876/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10877/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
10878/// specified in the intrinsic calls.
10879bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10880                                           const CallInst &I,
10881                                           unsigned Intrinsic) const {
10882  switch (Intrinsic) {
10883  case Intrinsic::arm_neon_vld1:
10884  case Intrinsic::arm_neon_vld2:
10885  case Intrinsic::arm_neon_vld3:
10886  case Intrinsic::arm_neon_vld4:
10887  case Intrinsic::arm_neon_vld2lane:
10888  case Intrinsic::arm_neon_vld3lane:
10889  case Intrinsic::arm_neon_vld4lane: {
10890    Info.opc = ISD::INTRINSIC_W_CHAIN;
10891    // Conservatively set memVT to the entire set of vectors loaded.
10892    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
10893    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10894    Info.ptrVal = I.getArgOperand(0);
10895    Info.offset = 0;
10896    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10897    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10898    Info.vol = false; // volatile loads with NEON intrinsics not supported
10899    Info.readMem = true;
10900    Info.writeMem = false;
10901    return true;
10902  }
10903  case Intrinsic::arm_neon_vst1:
10904  case Intrinsic::arm_neon_vst2:
10905  case Intrinsic::arm_neon_vst3:
10906  case Intrinsic::arm_neon_vst4:
10907  case Intrinsic::arm_neon_vst2lane:
10908  case Intrinsic::arm_neon_vst3lane:
10909  case Intrinsic::arm_neon_vst4lane: {
10910    Info.opc = ISD::INTRINSIC_VOID;
10911    // Conservatively set memVT to the entire set of vectors stored.
10912    unsigned NumElts = 0;
10913    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10914      Type *ArgTy = I.getArgOperand(ArgI)->getType();
10915      if (!ArgTy->isVectorTy())
10916        break;
10917      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
10918    }
10919    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10920    Info.ptrVal = I.getArgOperand(0);
10921    Info.offset = 0;
10922    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10923    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10924    Info.vol = false; // volatile stores with NEON intrinsics not supported
10925    Info.readMem = false;
10926    Info.writeMem = true;
10927    return true;
10928  }
10929  case Intrinsic::arm_ldaex:
10930  case Intrinsic::arm_ldrex: {
10931    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
10932    Info.opc = ISD::INTRINSIC_W_CHAIN;
10933    Info.memVT = MVT::getVT(PtrTy->getElementType());
10934    Info.ptrVal = I.getArgOperand(0);
10935    Info.offset = 0;
10936    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
10937    Info.vol = true;
10938    Info.readMem = true;
10939    Info.writeMem = false;
10940    return true;
10941  }
10942  case Intrinsic::arm_stlex:
10943  case Intrinsic::arm_strex: {
10944    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
10945    Info.opc = ISD::INTRINSIC_W_CHAIN;
10946    Info.memVT = MVT::getVT(PtrTy->getElementType());
10947    Info.ptrVal = I.getArgOperand(1);
10948    Info.offset = 0;
10949    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
10950    Info.vol = true;
10951    Info.readMem = false;
10952    Info.writeMem = true;
10953    return true;
10954  }
10955  case Intrinsic::arm_stlexd:
10956  case Intrinsic::arm_strexd: {
10957    Info.opc = ISD::INTRINSIC_W_CHAIN;
10958    Info.memVT = MVT::i64;
10959    Info.ptrVal = I.getArgOperand(2);
10960    Info.offset = 0;
10961    Info.align = 8;
10962    Info.vol = true;
10963    Info.readMem = false;
10964    Info.writeMem = true;
10965    return true;
10966  }
10967  case Intrinsic::arm_ldaexd:
10968  case Intrinsic::arm_ldrexd: {
10969    Info.opc = ISD::INTRINSIC_W_CHAIN;
10970    Info.memVT = MVT::i64;
10971    Info.ptrVal = I.getArgOperand(0);
10972    Info.offset = 0;
10973    Info.align = 8;
10974    Info.vol = true;
10975    Info.readMem = true;
10976    Info.writeMem = false;
10977    return true;
10978  }
10979  default:
10980    break;
10981  }
10982
10983  return false;
10984}
10985
10986/// \brief Returns true if it is beneficial to convert a load of a constant
10987/// to just the constant itself.
10988bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
10989                                                          Type *Ty) const {
10990  assert(Ty->isIntegerTy());
10991
10992  unsigned Bits = Ty->getPrimitiveSizeInBits();
10993  if (Bits == 0 || Bits > 32)
10994    return false;
10995  return true;
10996}
10997
10998bool ARMTargetLowering::hasLoadLinkedStoreConditional() const { return true; }
10999
11000Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
11001                                        ARM_MB::MemBOpt Domain) const {
11002  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11003
11004  // First, if the target has no DMB, see what fallback we can use.
11005  if (!Subtarget->hasDataBarrier()) {
11006    // Some ARMv6 cpus can support data barriers with an mcr instruction.
11007    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
11008    // here.
11009    if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
11010      Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
11011      Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
11012                        Builder.getInt32(0), Builder.getInt32(7),
11013                        Builder.getInt32(10), Builder.getInt32(5)};
11014      return Builder.CreateCall(MCR, args);
11015    } else {
11016      // Instead of using barriers, atomic accesses on these subtargets use
11017      // libcalls.
11018      llvm_unreachable("makeDMB on a target so old that it has no barriers");
11019    }
11020  } else {
11021    Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
11022    // Only a full system barrier exists in the M-class architectures.
11023    Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
11024    Constant *CDomain = Builder.getInt32(Domain);
11025    return Builder.CreateCall(DMB, CDomain);
11026  }
11027}
11028
11029// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11030Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
11031                                         AtomicOrdering Ord, bool IsStore,
11032                                         bool IsLoad) const {
11033  if (!getInsertFencesForAtomic())
11034    return nullptr;
11035
11036  switch (Ord) {
11037  case NotAtomic:
11038  case Unordered:
11039    llvm_unreachable("Invalid fence: unordered/non-atomic");
11040  case Monotonic:
11041  case Acquire:
11042    return nullptr; // Nothing to do
11043  case SequentiallyConsistent:
11044    if (!IsStore)
11045      return nullptr; // Nothing to do
11046    /*FALLTHROUGH*/
11047  case Release:
11048  case AcquireRelease:
11049    if (Subtarget->isSwift())
11050      return makeDMB(Builder, ARM_MB::ISHST);
11051    // FIXME: add a comment with a link to documentation justifying this.
11052    else
11053      return makeDMB(Builder, ARM_MB::ISH);
11054  }
11055  llvm_unreachable("Unknown fence ordering in emitLeadingFence");
11056}
11057
11058Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11059                                          AtomicOrdering Ord, bool IsStore,
11060                                          bool IsLoad) const {
11061  if (!getInsertFencesForAtomic())
11062    return nullptr;
11063
11064  switch (Ord) {
11065  case NotAtomic:
11066  case Unordered:
11067    llvm_unreachable("Invalid fence: unordered/not-atomic");
11068  case Monotonic:
11069  case Release:
11070    return nullptr; // Nothing to do
11071  case Acquire:
11072  case AcquireRelease:
11073  case SequentiallyConsistent:
11074    return makeDMB(Builder, ARM_MB::ISH);
11075  }
11076  llvm_unreachable("Unknown fence ordering in emitTrailingFence");
11077}
11078
11079// Loads and stores less than 64-bits are already atomic; ones above that
11080// are doomed anyway, so defer to the default libcall and blame the OS when
11081// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
11082// anything for those.
11083bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
11084  unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
11085  return (Size == 64) && !Subtarget->isMClass();
11086}
11087
11088// Loads and stores less than 64-bits are already atomic; ones above that
11089// are doomed anyway, so defer to the default libcall and blame the OS when
11090// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
11091// anything for those.
11092// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
11093// guarantee, see DDI0406C ARM architecture reference manual,
11094// sections A8.8.72-74 LDRD)
11095bool ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
11096  unsigned Size = LI->getType()->getPrimitiveSizeInBits();
11097  return (Size == 64) && !Subtarget->isMClass();
11098}
11099
11100// For the real atomic operations, we have ldrex/strex up to 32 bits,
11101// and up to 64 bits on the non-M profiles
11102TargetLoweringBase::AtomicRMWExpansionKind
11103ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11104  unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11105  return (Size <= (Subtarget->isMClass() ? 32U : 64U))
11106             ? AtomicRMWExpansionKind::LLSC
11107             : AtomicRMWExpansionKind::None;
11108}
11109
11110// This has so far only been implemented for MachO.
11111bool ARMTargetLowering::useLoadStackGuardNode() const {
11112  return Subtarget->isTargetMachO();
11113}
11114
11115bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
11116                                                  unsigned &Cost) const {
11117  // If we do not have NEON, vector types are not natively supported.
11118  if (!Subtarget->hasNEON())
11119    return false;
11120
11121  // Floating point values and vector values map to the same register file.
11122  // Therefore, althought we could do a store extract of a vector type, this is
11123  // better to leave at float as we have more freedom in the addressing mode for
11124  // those.
11125  if (VectorTy->isFPOrFPVectorTy())
11126    return false;
11127
11128  // If the index is unknown at compile time, this is very expensive to lower
11129  // and it is not possible to combine the store with the extract.
11130  if (!isa<ConstantInt>(Idx))
11131    return false;
11132
11133  assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
11134  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
11135  // We can do a store + vector extract on any vector that fits perfectly in a D
11136  // or Q register.
11137  if (BitWidth == 64 || BitWidth == 128) {
11138    Cost = 0;
11139    return true;
11140  }
11141  return false;
11142}
11143
11144Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
11145                                         AtomicOrdering Ord) const {
11146  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11147  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
11148  bool IsAcquire = isAtLeastAcquire(Ord);
11149
11150  // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
11151  // intrinsic must return {i32, i32} and we have to recombine them into a
11152  // single i64 here.
11153  if (ValTy->getPrimitiveSizeInBits() == 64) {
11154    Intrinsic::ID Int =
11155        IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
11156    Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
11157
11158    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11159    Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
11160
11161    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
11162    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
11163    if (!Subtarget->isLittle())
11164      std::swap (Lo, Hi);
11165    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
11166    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
11167    return Builder.CreateOr(
11168        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
11169  }
11170
11171  Type *Tys[] = { Addr->getType() };
11172  Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
11173  Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
11174
11175  return Builder.CreateTruncOrBitCast(
11176      Builder.CreateCall(Ldrex, Addr),
11177      cast<PointerType>(Addr->getType())->getElementType());
11178}
11179
11180Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
11181                                               Value *Addr,
11182                                               AtomicOrdering Ord) const {
11183  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11184  bool IsRelease = isAtLeastRelease(Ord);
11185
11186  // Since the intrinsics must have legal type, the i64 intrinsics take two
11187  // parameters: "i32, i32". We must marshal Val into the appropriate form
11188  // before the call.
11189  if (Val->getType()->getPrimitiveSizeInBits() == 64) {
11190    Intrinsic::ID Int =
11191        IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
11192    Function *Strex = Intrinsic::getDeclaration(M, Int);
11193    Type *Int32Ty = Type::getInt32Ty(M->getContext());
11194
11195    Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
11196    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
11197    if (!Subtarget->isLittle())
11198      std::swap (Lo, Hi);
11199    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11200    return Builder.CreateCall3(Strex, Lo, Hi, Addr);
11201  }
11202
11203  Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
11204  Type *Tys[] = { Addr->getType() };
11205  Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
11206
11207  return Builder.CreateCall2(
11208      Strex, Builder.CreateZExtOrBitCast(
11209                 Val, Strex->getFunctionType()->getParamType(0)),
11210      Addr);
11211}
11212
11213enum HABaseType {
11214  HA_UNKNOWN = 0,
11215  HA_FLOAT,
11216  HA_DOUBLE,
11217  HA_VECT64,
11218  HA_VECT128
11219};
11220
11221static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
11222                                   uint64_t &Members) {
11223  if (const StructType *ST = dyn_cast<StructType>(Ty)) {
11224    for (unsigned i = 0; i < ST->getNumElements(); ++i) {
11225      uint64_t SubMembers = 0;
11226      if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
11227        return false;
11228      Members += SubMembers;
11229    }
11230  } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
11231    uint64_t SubMembers = 0;
11232    if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
11233      return false;
11234    Members += SubMembers * AT->getNumElements();
11235  } else if (Ty->isFloatTy()) {
11236    if (Base != HA_UNKNOWN && Base != HA_FLOAT)
11237      return false;
11238    Members = 1;
11239    Base = HA_FLOAT;
11240  } else if (Ty->isDoubleTy()) {
11241    if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
11242      return false;
11243    Members = 1;
11244    Base = HA_DOUBLE;
11245  } else if (const VectorType *VT = dyn_cast<VectorType>(Ty)) {
11246    Members = 1;
11247    switch (Base) {
11248    case HA_FLOAT:
11249    case HA_DOUBLE:
11250      return false;
11251    case HA_VECT64:
11252      return VT->getBitWidth() == 64;
11253    case HA_VECT128:
11254      return VT->getBitWidth() == 128;
11255    case HA_UNKNOWN:
11256      switch (VT->getBitWidth()) {
11257      case 64:
11258        Base = HA_VECT64;
11259        return true;
11260      case 128:
11261        Base = HA_VECT128;
11262        return true;
11263      default:
11264        return false;
11265      }
11266    }
11267  }
11268
11269  return (Members > 0 && Members <= 4);
11270}
11271
11272/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
11273/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
11274/// passing according to AAPCS rules.
11275bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
11276    Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
11277  if (getEffectiveCallingConv(CallConv, isVarArg) !=
11278      CallingConv::ARM_AAPCS_VFP)
11279    return false;
11280
11281  HABaseType Base = HA_UNKNOWN;
11282  uint64_t Members = 0;
11283  bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
11284  DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
11285
11286  bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
11287  return IsHA || IsIntArray;
11288}
11289