1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86ISelLowering.h"
16#include "Utils/X86ShuffleDecode.h"
17#include "X86CallingConv.h"
18#include "X86FrameLowering.h"
19#include "X86InstrBuilder.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86TargetMachine.h"
22#include "X86TargetObjectFile.h"
23#include "llvm/ADT/SmallBitVector.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/ADT/StringSwitch.h"
28#include "llvm/CodeGen/IntrinsicLowering.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/WinEHFuncInfo.h"
36#include "llvm/IR/CallSite.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalAlias.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/MC/MCAsmInfo.h"
46#include "llvm/MC/MCContext.h"
47#include "llvm/MC/MCExpr.h"
48#include "llvm/MC/MCSymbol.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Target/TargetOptions.h"
54#include "X86IntrinsicsInfo.h"
55#include <bitset>
56#include <numeric>
57#include <cctype>
58using namespace llvm;
59
60#define DEBUG_TYPE "x86-isel"
61
62STATISTIC(NumTailCalls, "Number of tail calls");
63
64static cl::opt<bool> ExperimentalVectorWideningLegalization(
65    "x86-experimental-vector-widening-legalization", cl::init(false),
66    cl::desc("Enable an experimental vector type legalization through widening "
67             "rather than promotion."),
68    cl::Hidden);
69
70static cl::opt<int> ReciprocalEstimateRefinementSteps(
71    "x86-recip-refinement-steps", cl::init(1),
72    cl::desc("Specify the number of Newton-Raphson iterations applied to the "
73             "result of the hardware reciprocal estimate instruction."),
74    cl::NotHidden);
75
76// Forward declarations.
77static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
78                       SDValue V2);
79
80X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
81                                     const X86Subtarget &STI)
82    : TargetLowering(TM), Subtarget(&STI) {
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  TD = getDataLayout();
86
87  // Set up the TargetLowering object.
88  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
89
90  // X86 is weird. It always uses i8 for shift amounts and setcc results.
91  setBooleanContents(ZeroOrOneBooleanContent);
92  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
93  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
94
95  // For 64-bit, since we have so many registers, use the ILP scheduler.
96  // For 32-bit, use the register pressure specific scheduling.
97  // For Atom, always use ILP scheduling.
98  if (Subtarget->isAtom())
99    setSchedulingPreference(Sched::ILP);
100  else if (Subtarget->is64Bit())
101    setSchedulingPreference(Sched::ILP);
102  else
103    setSchedulingPreference(Sched::RegPressure);
104  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
105  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
106
107  // Bypass expensive divides on Atom when compiling with O2.
108  if (TM.getOptLevel() >= CodeGenOpt::Default) {
109    if (Subtarget->hasSlowDivide32())
110      addBypassSlowDiv(32, 8);
111    if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit())
112      addBypassSlowDiv(64, 16);
113  }
114
115  if (Subtarget->isTargetKnownWindowsMSVC()) {
116    // Setup Windows compiler runtime calls.
117    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
118    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
119    setLibcallName(RTLIB::SREM_I64, "_allrem");
120    setLibcallName(RTLIB::UREM_I64, "_aullrem");
121    setLibcallName(RTLIB::MUL_I64, "_allmul");
122    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
123    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
124    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
125    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
126    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
127
128    // The _ftol2 runtime function has an unusual calling conv, which
129    // is modeled by a special pseudo-instruction.
130    setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr);
131    setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr);
132    setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr);
133    setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr);
134  }
135
136  if (Subtarget->isTargetDarwin()) {
137    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
138    setUseUnderscoreSetJmp(false);
139    setUseUnderscoreLongJmp(false);
140  } else if (Subtarget->isTargetWindowsGNU()) {
141    // MS runtime is weird: it exports _setjmp, but longjmp!
142    setUseUnderscoreSetJmp(true);
143    setUseUnderscoreLongJmp(false);
144  } else {
145    setUseUnderscoreSetJmp(true);
146    setUseUnderscoreLongJmp(true);
147  }
148
149  // Set up the register classes.
150  addRegisterClass(MVT::i8, &X86::GR8RegClass);
151  addRegisterClass(MVT::i16, &X86::GR16RegClass);
152  addRegisterClass(MVT::i32, &X86::GR32RegClass);
153  if (Subtarget->is64Bit())
154    addRegisterClass(MVT::i64, &X86::GR64RegClass);
155
156  for (MVT VT : MVT::integer_valuetypes())
157    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
158
159  // We don't accept any truncstore of integer registers.
160  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
161  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
162  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
163  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
164  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
165  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
166
167  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
168
169  // SETOEQ and SETUNE require checking two conditions.
170  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
171  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
172  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
173  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
174  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
175  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
176
177  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
178  // operation.
179  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
180  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
181  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
182
183  if (Subtarget->is64Bit()) {
184    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
185    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
186  } else if (!TM.Options.UseSoftFloat) {
187    // We have an algorithm for SSE2->double, and we turn this into a
188    // 64-bit FILD followed by conditional FADD for other targets.
189    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
190    // We have an algorithm for SSE2, and we turn this into a 64-bit
191    // FILD for other targets.
192    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
193  }
194
195  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
196  // this operation.
197  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
198  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
199
200  if (!TM.Options.UseSoftFloat) {
201    // SSE has no i16 to fp conversion, only i32
202    if (X86ScalarSSEf32) {
203      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
204      // f32 and f64 cases are Legal, f80 case is not
205      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
206    } else {
207      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
208      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
209    }
210  } else {
211    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
212    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
213  }
214
215  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
216  // are Legal, f80 is custom lowered.
217  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
218  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
219
220  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
221  // this operation.
222  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
223  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
224
225  if (X86ScalarSSEf32) {
226    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
227    // f32 and f64 cases are Legal, f80 case is not
228    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
229  } else {
230    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
231    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
232  }
233
234  // Handle FP_TO_UINT by promoting the destination to a larger signed
235  // conversion.
236  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
237  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
238  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
239
240  if (Subtarget->is64Bit()) {
241    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
242    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
243  } else if (!TM.Options.UseSoftFloat) {
244    // Since AVX is a superset of SSE3, only check for SSE here.
245    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
246      // Expand FP_TO_UINT into a select.
247      // FIXME: We would like to use a Custom expander here eventually to do
248      // the optimal thing for SSE vs. the default expansion in the legalizer.
249      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
250    else
251      // With SSE3 we can use fisttpll to convert to a signed i64; without
252      // SSE, we're stuck with a fistpll.
253      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
254  }
255
256  if (isTargetFTOL()) {
257    // Use the _ftol2 runtime function, which has a pseudo-instruction
258    // to handle its weird calling convention.
259    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
260  }
261
262  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
263  if (!X86ScalarSSEf64) {
264    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
265    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
266    if (Subtarget->is64Bit()) {
267      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
268      // Without SSE, i64->f64 goes through memory.
269      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
270    }
271  }
272
273  // Scalar integer divide and remainder are lowered to use operations that
274  // produce two results, to match the available instructions. This exposes
275  // the two-result form to trivial CSE, which is able to combine x/y and x%y
276  // into a single instruction.
277  //
278  // Scalar integer multiply-high is also lowered to use two-result
279  // operations, to match the available instructions. However, plain multiply
280  // (low) operations are left as Legal, as there are single-result
281  // instructions for this in x86. Using the two-result multiply instructions
282  // when both high and low results are needed must be arranged by dagcombine.
283  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
284    MVT VT = IntVTs[i];
285    setOperationAction(ISD::MULHS, VT, Expand);
286    setOperationAction(ISD::MULHU, VT, Expand);
287    setOperationAction(ISD::SDIV, VT, Expand);
288    setOperationAction(ISD::UDIV, VT, Expand);
289    setOperationAction(ISD::SREM, VT, Expand);
290    setOperationAction(ISD::UREM, VT, Expand);
291
292    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
293    setOperationAction(ISD::ADDC, VT, Custom);
294    setOperationAction(ISD::ADDE, VT, Custom);
295    setOperationAction(ISD::SUBC, VT, Custom);
296    setOperationAction(ISD::SUBE, VT, Custom);
297  }
298
299  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
300  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
301  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
302  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
303  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
304  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
305  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
306  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
307  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
308  setOperationAction(ISD::SELECT_CC        , MVT::f32,   Expand);
309  setOperationAction(ISD::SELECT_CC        , MVT::f64,   Expand);
310  setOperationAction(ISD::SELECT_CC        , MVT::f80,   Expand);
311  setOperationAction(ISD::SELECT_CC        , MVT::i8,    Expand);
312  setOperationAction(ISD::SELECT_CC        , MVT::i16,   Expand);
313  setOperationAction(ISD::SELECT_CC        , MVT::i32,   Expand);
314  setOperationAction(ISD::SELECT_CC        , MVT::i64,   Expand);
315  if (Subtarget->is64Bit())
316    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
317  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
318  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
319  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
320  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
321  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
322  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
323  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
324  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
325
326  // Promote the i8 variants and force them on up to i32 which has a shorter
327  // encoding.
328  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
329  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
330  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
331  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
332  if (Subtarget->hasBMI()) {
333    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
334    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
335    if (Subtarget->is64Bit())
336      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
337  } else {
338    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
339    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
340    if (Subtarget->is64Bit())
341      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
342  }
343
344  if (Subtarget->hasLZCNT()) {
345    // When promoting the i8 variants, force them to i32 for a shorter
346    // encoding.
347    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
348    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
349    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
350    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
351    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
352    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
353    if (Subtarget->is64Bit())
354      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
355  } else {
356    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
357    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
358    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
359    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
360    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
361    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
362    if (Subtarget->is64Bit()) {
363      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
364      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
365    }
366  }
367
368  // Special handling for half-precision floating point conversions.
369  // If we don't have F16C support, then lower half float conversions
370  // into library calls.
371  if (TM.Options.UseSoftFloat || !Subtarget->hasF16C()) {
372    setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
373    setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
374  }
375
376  // There's never any support for operations beyond MVT::f32.
377  setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
378  setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
379  setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
380  setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
381
382  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
383  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
384  setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
385  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
386  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
387  setTruncStoreAction(MVT::f80, MVT::f16, Expand);
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400
401  if (!Subtarget->hasMOVBE())
402    setOperationAction(ISD::BSWAP          , MVT::i16  , Expand);
403
404  // These should be promoted to a larger select which is supported.
405  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
406  // X86 wants to expand cmov itself.
407  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
408  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
411  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
412  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
414  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
417  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
418  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
419  if (Subtarget->is64Bit()) {
420    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
421    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
422  }
423  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
424  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
425  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
426  // support continuation, user-level threading, and etc.. As a result, no
427  // other SjLj exception interfaces are implemented and please don't build
428  // your own exception handling based on them.
429  // LLVM/Clang supports zero-cost DWARF exception handling.
430  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
431  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
432
433  // Darwin ABI issue.
434  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
435  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
436  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
437  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
438  if (Subtarget->is64Bit())
439    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
440  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
441  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
442  if (Subtarget->is64Bit()) {
443    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
444    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
445    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
446    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
447    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
448  }
449  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
450  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
451  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
452  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
453  if (Subtarget->is64Bit()) {
454    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
455    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
456    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
457  }
458
459  if (Subtarget->hasSSE1())
460    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
461
462  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
463
464  // Expand certain atomics
465  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
466    MVT VT = IntVTs[i];
467    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
468    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
469    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
470  }
471
472  if (Subtarget->hasCmpxchg16b()) {
473    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
474  }
475
476  // FIXME - use subtarget debug flags
477  if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() &&
478      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) {
479    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
480  }
481
482  if (Subtarget->is64Bit()) {
483    setExceptionPointerRegister(X86::RAX);
484    setExceptionSelectorRegister(X86::RDX);
485  } else {
486    setExceptionPointerRegister(X86::EAX);
487    setExceptionSelectorRegister(X86::EDX);
488  }
489  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
490  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
491
492  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
493  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
494
495  setOperationAction(ISD::TRAP, MVT::Other, Legal);
496  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
497
498  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
499  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
500  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
501  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
502    // TargetInfo::X86_64ABIBuiltinVaList
503    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
504    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
505  } else {
506    // TargetInfo::CharPtrBuiltinVaList
507    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
508    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
509  }
510
511  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
512  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
513
514  setOperationAction(ISD::DYNAMIC_STACKALLOC, getPointerTy(), Custom);
515
516  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
517    // f32 and f64 use SSE.
518    // Set up the FP register classes.
519    addRegisterClass(MVT::f32, &X86::FR32RegClass);
520    addRegisterClass(MVT::f64, &X86::FR64RegClass);
521
522    // Use ANDPD to simulate FABS.
523    setOperationAction(ISD::FABS , MVT::f64, Custom);
524    setOperationAction(ISD::FABS , MVT::f32, Custom);
525
526    // Use XORP to simulate FNEG.
527    setOperationAction(ISD::FNEG , MVT::f64, Custom);
528    setOperationAction(ISD::FNEG , MVT::f32, Custom);
529
530    // Use ANDPD and ORPD to simulate FCOPYSIGN.
531    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
532    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
533
534    // Lower this to FGETSIGNx86 plus an AND.
535    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
536    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
537
538    // We don't support sin/cos/fmod
539    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
540    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
541    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
542    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
543    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
544    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
545
546    // Expand FP immediates into loads from the stack, except for the special
547    // cases we handle.
548    addLegalFPImmediate(APFloat(+0.0)); // xorpd
549    addLegalFPImmediate(APFloat(+0.0f)); // xorps
550  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
551    // Use SSE for f32, x87 for f64.
552    // Set up the FP register classes.
553    addRegisterClass(MVT::f32, &X86::FR32RegClass);
554    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
555
556    // Use ANDPS to simulate FABS.
557    setOperationAction(ISD::FABS , MVT::f32, Custom);
558
559    // Use XORP to simulate FNEG.
560    setOperationAction(ISD::FNEG , MVT::f32, Custom);
561
562    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
563
564    // Use ANDPS and ORPS to simulate FCOPYSIGN.
565    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
566    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
567
568    // We don't support sin/cos/fmod
569    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
570    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
571    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
572
573    // Special cases we handle for FP constants.
574    addLegalFPImmediate(APFloat(+0.0f)); // xorps
575    addLegalFPImmediate(APFloat(+0.0)); // FLD0
576    addLegalFPImmediate(APFloat(+1.0)); // FLD1
577    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
578    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
579
580    if (!TM.Options.UnsafeFPMath) {
581      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
582      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
583      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
584    }
585  } else if (!TM.Options.UseSoftFloat) {
586    // f32 and f64 in x87.
587    // Set up the FP register classes.
588    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
589    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
590
591    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
592    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
593    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
594    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
595
596    if (!TM.Options.UnsafeFPMath) {
597      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
598      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
599      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
600      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
601      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
602      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
603    }
604    addLegalFPImmediate(APFloat(+0.0)); // FLD0
605    addLegalFPImmediate(APFloat(+1.0)); // FLD1
606    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
607    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
608    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
609    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
610    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
611    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
612  }
613
614  // We don't support FMA.
615  setOperationAction(ISD::FMA, MVT::f64, Expand);
616  setOperationAction(ISD::FMA, MVT::f32, Expand);
617
618  // Long double always uses X87.
619  if (!TM.Options.UseSoftFloat) {
620    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
621    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
622    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
623    {
624      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
625      addLegalFPImmediate(TmpFlt);  // FLD0
626      TmpFlt.changeSign();
627      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
628
629      bool ignored;
630      APFloat TmpFlt2(+1.0);
631      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
632                      &ignored);
633      addLegalFPImmediate(TmpFlt2);  // FLD1
634      TmpFlt2.changeSign();
635      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
636    }
637
638    if (!TM.Options.UnsafeFPMath) {
639      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
640      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
641      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
642    }
643
644    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
645    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
646    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
647    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
648    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
649    setOperationAction(ISD::FMA, MVT::f80, Expand);
650  }
651
652  // Always use a library call for pow.
653  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
654  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
655  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
656
657  setOperationAction(ISD::FLOG, MVT::f80, Expand);
658  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
659  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
660  setOperationAction(ISD::FEXP, MVT::f80, Expand);
661  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
662  setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
663  setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
664
665  // First set operation action for all vector types to either promote
666  // (for widening) or expand (for scalarization). Then we will selectively
667  // turn on ones that can be effectively codegen'd.
668  for (MVT VT : MVT::vector_valuetypes()) {
669    setOperationAction(ISD::ADD , VT, Expand);
670    setOperationAction(ISD::SUB , VT, Expand);
671    setOperationAction(ISD::FADD, VT, Expand);
672    setOperationAction(ISD::FNEG, VT, Expand);
673    setOperationAction(ISD::FSUB, VT, Expand);
674    setOperationAction(ISD::MUL , VT, Expand);
675    setOperationAction(ISD::FMUL, VT, Expand);
676    setOperationAction(ISD::SDIV, VT, Expand);
677    setOperationAction(ISD::UDIV, VT, Expand);
678    setOperationAction(ISD::FDIV, VT, Expand);
679    setOperationAction(ISD::SREM, VT, Expand);
680    setOperationAction(ISD::UREM, VT, Expand);
681    setOperationAction(ISD::LOAD, VT, Expand);
682    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
683    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
684    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
685    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
686    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
687    setOperationAction(ISD::FABS, VT, Expand);
688    setOperationAction(ISD::FSIN, VT, Expand);
689    setOperationAction(ISD::FSINCOS, VT, Expand);
690    setOperationAction(ISD::FCOS, VT, Expand);
691    setOperationAction(ISD::FSINCOS, VT, Expand);
692    setOperationAction(ISD::FREM, VT, Expand);
693    setOperationAction(ISD::FMA,  VT, Expand);
694    setOperationAction(ISD::FPOWI, VT, Expand);
695    setOperationAction(ISD::FSQRT, VT, Expand);
696    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
697    setOperationAction(ISD::FFLOOR, VT, Expand);
698    setOperationAction(ISD::FCEIL, VT, Expand);
699    setOperationAction(ISD::FTRUNC, VT, Expand);
700    setOperationAction(ISD::FRINT, VT, Expand);
701    setOperationAction(ISD::FNEARBYINT, VT, Expand);
702    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
703    setOperationAction(ISD::MULHS, VT, Expand);
704    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
705    setOperationAction(ISD::MULHU, VT, Expand);
706    setOperationAction(ISD::SDIVREM, VT, Expand);
707    setOperationAction(ISD::UDIVREM, VT, Expand);
708    setOperationAction(ISD::FPOW, VT, Expand);
709    setOperationAction(ISD::CTPOP, VT, Expand);
710    setOperationAction(ISD::CTTZ, VT, Expand);
711    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
712    setOperationAction(ISD::CTLZ, VT, Expand);
713    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
714    setOperationAction(ISD::SHL, VT, Expand);
715    setOperationAction(ISD::SRA, VT, Expand);
716    setOperationAction(ISD::SRL, VT, Expand);
717    setOperationAction(ISD::ROTL, VT, Expand);
718    setOperationAction(ISD::ROTR, VT, Expand);
719    setOperationAction(ISD::BSWAP, VT, Expand);
720    setOperationAction(ISD::SETCC, VT, Expand);
721    setOperationAction(ISD::FLOG, VT, Expand);
722    setOperationAction(ISD::FLOG2, VT, Expand);
723    setOperationAction(ISD::FLOG10, VT, Expand);
724    setOperationAction(ISD::FEXP, VT, Expand);
725    setOperationAction(ISD::FEXP2, VT, Expand);
726    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
727    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
728    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
729    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
730    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
731    setOperationAction(ISD::TRUNCATE, VT, Expand);
732    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
733    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
734    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
735    setOperationAction(ISD::VSELECT, VT, Expand);
736    setOperationAction(ISD::SELECT_CC, VT, Expand);
737    for (MVT InnerVT : MVT::vector_valuetypes()) {
738      setTruncStoreAction(InnerVT, VT, Expand);
739
740      setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
741      setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
742
743      // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
744      // types, we have to deal with them whether we ask for Expansion or not.
745      // Setting Expand causes its own optimisation problems though, so leave
746      // them legal.
747      if (VT.getVectorElementType() == MVT::i1)
748        setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
749
750      // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
751      // split/scalarized right now.
752      if (VT.getVectorElementType() == MVT::f16)
753        setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
754    }
755  }
756
757  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
758  // with -msoft-float, disable use of MMX as well.
759  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
760    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
761    // No operations on x86mmx supported, everything uses intrinsics.
762  }
763
764  // MMX-sized vectors (other than x86mmx) are expected to be expanded
765  // into smaller operations.
766  for (MVT MMXTy : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v1i64}) {
767    setOperationAction(ISD::MULHS,              MMXTy,      Expand);
768    setOperationAction(ISD::AND,                MMXTy,      Expand);
769    setOperationAction(ISD::OR,                 MMXTy,      Expand);
770    setOperationAction(ISD::XOR,                MMXTy,      Expand);
771    setOperationAction(ISD::SCALAR_TO_VECTOR,   MMXTy,      Expand);
772    setOperationAction(ISD::SELECT,             MMXTy,      Expand);
773    setOperationAction(ISD::BITCAST,            MMXTy,      Expand);
774  }
775  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
776
777  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
778    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
779
780    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
781    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
782    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
783    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
784    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
785    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
786    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
787    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
788    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
789    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
790    setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
791    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
792    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
793    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Custom);
794  }
795
796  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
797    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
798
799    // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
800    // registers cannot be used even for integer operations.
801    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
802    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
803    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
804    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
805
806    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
807    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
808    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
809    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
810    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
811    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
812    setOperationAction(ISD::UMUL_LOHI,          MVT::v4i32, Custom);
813    setOperationAction(ISD::SMUL_LOHI,          MVT::v4i32, Custom);
814    setOperationAction(ISD::MULHU,              MVT::v8i16, Legal);
815    setOperationAction(ISD::MULHS,              MVT::v8i16, Legal);
816    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
817    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
818    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
819    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
820    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
821    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
822    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
823    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
824    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
825    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
826    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
827    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
828
829    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
830    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
831    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
832    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
833
834    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
835    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
836    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
837    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
838    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
839
840    // Only provide customized ctpop vector bit twiddling for vector types we
841    // know to perform better than using the popcnt instructions on each vector
842    // element. If popcnt isn't supported, always provide the custom version.
843    if (!Subtarget->hasPOPCNT()) {
844      setOperationAction(ISD::CTPOP,            MVT::v4i32, Custom);
845      setOperationAction(ISD::CTPOP,            MVT::v2i64, Custom);
846    }
847
848    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
849    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
850      MVT VT = (MVT::SimpleValueType)i;
851      // Do not attempt to custom lower non-power-of-2 vectors
852      if (!isPowerOf2_32(VT.getVectorNumElements()))
853        continue;
854      // Do not attempt to custom lower non-128-bit vectors
855      if (!VT.is128BitVector())
856        continue;
857      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
858      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
859      setOperationAction(ISD::VSELECT,            VT, Custom);
860      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
861    }
862
863    // We support custom legalizing of sext and anyext loads for specific
864    // memory vector types which we can load as a scalar (or sequence of
865    // scalars) and extend in-register to a legal 128-bit vector type. For sext
866    // loads these must work with a single scalar load.
867    for (MVT VT : MVT::integer_vector_valuetypes()) {
868      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
869      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
870      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
871      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
872      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
873      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
874      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
875      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
876      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
877    }
878
879    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
880    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
881    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
882    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
883    setOperationAction(ISD::VSELECT,            MVT::v2f64, Custom);
884    setOperationAction(ISD::VSELECT,            MVT::v2i64, Custom);
885    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
886    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
887
888    if (Subtarget->is64Bit()) {
889      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
890      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
891    }
892
893    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
894    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
895      MVT VT = (MVT::SimpleValueType)i;
896
897      // Do not attempt to promote non-128-bit vectors
898      if (!VT.is128BitVector())
899        continue;
900
901      setOperationAction(ISD::AND,    VT, Promote);
902      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
903      setOperationAction(ISD::OR,     VT, Promote);
904      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
905      setOperationAction(ISD::XOR,    VT, Promote);
906      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
907      setOperationAction(ISD::LOAD,   VT, Promote);
908      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
909      setOperationAction(ISD::SELECT, VT, Promote);
910      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
911    }
912
913    // Custom lower v2i64 and v2f64 selects.
914    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
915    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
916    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
917    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
918
919    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
920    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
921
922    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
923    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
924    // As there is no 64-bit GPR available, we need build a special custom
925    // sequence to convert from v2i32 to v2f32.
926    if (!Subtarget->is64Bit())
927      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
928
929    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
930    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
931
932    for (MVT VT : MVT::fp_vector_valuetypes())
933      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
934
935    setOperationAction(ISD::BITCAST,            MVT::v2i32, Custom);
936    setOperationAction(ISD::BITCAST,            MVT::v4i16, Custom);
937    setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom);
938  }
939
940  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
941    for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
942      setOperationAction(ISD::FFLOOR,           RoundedTy,  Legal);
943      setOperationAction(ISD::FCEIL,            RoundedTy,  Legal);
944      setOperationAction(ISD::FTRUNC,           RoundedTy,  Legal);
945      setOperationAction(ISD::FRINT,            RoundedTy,  Legal);
946      setOperationAction(ISD::FNEARBYINT,       RoundedTy,  Legal);
947    }
948
949    // FIXME: Do we need to handle scalar-to-vector here?
950    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
951
952    // We directly match byte blends in the backend as they match the VSELECT
953    // condition form.
954    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
955
956    // SSE41 brings specific instructions for doing vector sign extend even in
957    // cases where we don't have SRA.
958    for (MVT VT : MVT::integer_vector_valuetypes()) {
959      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
960      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
961      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
962    }
963
964    // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
965    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal);
966    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
967    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
968    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
969    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
970    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
971
972    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal);
973    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
974    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
975    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
976    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
977    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
978
979    // i8 and i16 vectors are custom because the source register and source
980    // source memory operand types are not the same width.  f32 vectors are
981    // custom since the immediate controlling the insert encodes additional
982    // information.
983    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
984    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
985    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
986    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
987
988    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
989    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
990    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
991    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
992
993    // FIXME: these should be Legal, but that's only for the case where
994    // the index is constant.  For now custom expand to deal with that.
995    if (Subtarget->is64Bit()) {
996      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
997      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
998    }
999  }
1000
1001  if (Subtarget->hasSSE2()) {
1002    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1003    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1004
1005    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1006    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1007
1008    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1009    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1010
1011    // In the customized shift lowering, the legal cases in AVX2 will be
1012    // recognized.
1013    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1014    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1015
1016    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1017    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1018
1019    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1020  }
1021
1022  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1023    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1024    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1025    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1026    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1027    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1028    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1029
1030    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1032    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1033
1034    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1035    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1036    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1037    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1038    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1039    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1040    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1041    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1042    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1043    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1044    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1045    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1046
1047    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1048    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1049    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1050    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1051    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1052    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1053    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1054    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1055    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1056    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1057    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1058    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1059
1060    // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
1061    // even though v8i16 is a legal type.
1062    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Promote);
1063    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i16, Promote);
1064    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1065
1066    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1067    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1068    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1069
1070    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1071    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1072
1073    for (MVT VT : MVT::fp_vector_valuetypes())
1074      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
1075
1076    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1077    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1078
1079    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1080    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1081
1082    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1083    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1084
1085    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1086    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1087    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1088    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1089
1090    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1091    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1092    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1093
1094    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1095    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1096    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
1097    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1098    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1099    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
1100    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1101    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1102    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
1103    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1104    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1105    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1106
1107    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1108      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1109      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1110      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1111      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1112      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1113      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1114    }
1115
1116    if (Subtarget->hasInt256()) {
1117      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1118      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1119      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1120      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1121
1122      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1123      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1124      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1125      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1126
1127      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1128      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1129      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1130      // Don't lower v32i8 because there is no 128-bit byte mul
1131
1132      setOperationAction(ISD::UMUL_LOHI,       MVT::v8i32, Custom);
1133      setOperationAction(ISD::SMUL_LOHI,       MVT::v8i32, Custom);
1134      setOperationAction(ISD::MULHU,           MVT::v16i16, Legal);
1135      setOperationAction(ISD::MULHS,           MVT::v16i16, Legal);
1136
1137      // The custom lowering for UINT_TO_FP for v8i32 becomes interesting
1138      // when we have a 256bit-wide blend with immediate.
1139      setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
1140
1141      // Only provide customized ctpop vector bit twiddling for vector types we
1142      // know to perform better than using the popcnt instructions on each
1143      // vector element. If popcnt isn't supported, always provide the custom
1144      // version.
1145      if (!Subtarget->hasPOPCNT())
1146        setOperationAction(ISD::CTPOP,           MVT::v4i64, Custom);
1147
1148      // Custom CTPOP always performs better on natively supported v8i32
1149      setOperationAction(ISD::CTPOP,             MVT::v8i32, Custom);
1150
1151      // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
1152      setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
1153      setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
1154      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal);
1155      setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal);
1156      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal);
1157      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal);
1158
1159      setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
1160      setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
1161      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal);
1162      setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal);
1163      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal);
1164      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal);
1165    } else {
1166      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1167      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1168      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1169      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1170
1171      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1172      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1173      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1174      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1175
1176      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1177      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1178      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1179      // Don't lower v32i8 because there is no 128-bit byte mul
1180    }
1181
1182    // In the customized shift lowering, the legal cases in AVX2 will be
1183    // recognized.
1184    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1185    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1186
1187    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1188    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1189
1190    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1191
1192    // Custom lower several nodes for 256-bit types.
1193    for (MVT VT : MVT::vector_valuetypes()) {
1194      if (VT.getScalarSizeInBits() >= 32) {
1195        setOperationAction(ISD::MLOAD,  VT, Legal);
1196        setOperationAction(ISD::MSTORE, VT, Legal);
1197      }
1198      // Extract subvector is special because the value type
1199      // (result) is 128-bit but the source is 256-bit wide.
1200      if (VT.is128BitVector()) {
1201        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1202      }
1203      // Do not attempt to custom lower other non-256-bit vectors
1204      if (!VT.is256BitVector())
1205        continue;
1206
1207      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1208      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1209      setOperationAction(ISD::VSELECT,            VT, Custom);
1210      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1211      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1212      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1213      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1214      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1215    }
1216
1217    if (Subtarget->hasInt256())
1218      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1219
1220
1221    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1222    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1223      MVT VT = (MVT::SimpleValueType)i;
1224
1225      // Do not attempt to promote non-256-bit vectors
1226      if (!VT.is256BitVector())
1227        continue;
1228
1229      setOperationAction(ISD::AND,    VT, Promote);
1230      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1231      setOperationAction(ISD::OR,     VT, Promote);
1232      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1233      setOperationAction(ISD::XOR,    VT, Promote);
1234      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1235      setOperationAction(ISD::LOAD,   VT, Promote);
1236      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1237      setOperationAction(ISD::SELECT, VT, Promote);
1238      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1239    }
1240  }
1241
1242  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1243    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1244    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1245    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1246    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1247
1248    addRegisterClass(MVT::i1,     &X86::VK1RegClass);
1249    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1250    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1251
1252    for (MVT VT : MVT::fp_vector_valuetypes())
1253      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
1254
1255    setOperationAction(ISD::BR_CC,              MVT::i1,    Expand);
1256    setOperationAction(ISD::SETCC,              MVT::i1,    Custom);
1257    setOperationAction(ISD::XOR,                MVT::i1,    Legal);
1258    setOperationAction(ISD::OR,                 MVT::i1,    Legal);
1259    setOperationAction(ISD::AND,                MVT::i1,    Legal);
1260    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1261    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1262    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1263    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1264    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1265
1266    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1267    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1268    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1269    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1270    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1271    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1272
1273    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1274    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1275    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1276    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1277    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1278    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1279    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1280    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1281
1282    setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal);
1283    setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal);
1284    setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal);
1285    setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal);
1286    if (Subtarget->is64Bit()) {
1287      setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal);
1288      setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal);
1289      setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal);
1290      setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal);
1291    }
1292    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1293    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1294    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1295    setOperationAction(ISD::FP_TO_UINT,         MVT::v4i32, Legal);
1296    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1297    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i1,   Custom);
1298    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i1,  Custom);
1299    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i8,  Promote);
1300    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i16, Promote);
1301    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1302    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1303    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Legal);
1304    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1305    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1306
1307    setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom);
1308    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1309    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1310    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1311    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1312    setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom);
1313    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1314    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1315    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1316    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1317    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1318    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1319    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1320
1321    setOperationAction(ISD::FFLOOR,             MVT::v16f32, Legal);
1322    setOperationAction(ISD::FFLOOR,             MVT::v8f64, Legal);
1323    setOperationAction(ISD::FCEIL,              MVT::v16f32, Legal);
1324    setOperationAction(ISD::FCEIL,              MVT::v8f64, Legal);
1325    setOperationAction(ISD::FTRUNC,             MVT::v16f32, Legal);
1326    setOperationAction(ISD::FTRUNC,             MVT::v8f64, Legal);
1327    setOperationAction(ISD::FRINT,              MVT::v16f32, Legal);
1328    setOperationAction(ISD::FRINT,              MVT::v8f64, Legal);
1329    setOperationAction(ISD::FNEARBYINT,         MVT::v16f32, Legal);
1330    setOperationAction(ISD::FNEARBYINT,         MVT::v8f64, Legal);
1331
1332    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1333    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1334    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1335    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1336    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1, Legal);
1337
1338    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1339    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1340
1341    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1342
1343    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1,  Custom);
1344    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
1345    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i1, Custom);
1346    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i1, Custom);
1347    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1348    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1349    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1350    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1351    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1352
1353    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1354    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1355
1356    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1357    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1358
1359    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1360
1361    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1362    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1363
1364    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1365    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1366
1367    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1368    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1369
1370    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1371    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1372    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1373    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1374    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1375    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1376
1377    if (Subtarget->hasCDI()) {
1378      setOperationAction(ISD::CTLZ,             MVT::v8i64, Legal);
1379      setOperationAction(ISD::CTLZ,             MVT::v16i32, Legal);
1380    }
1381
1382    // Custom lower several nodes.
1383    for (MVT VT : MVT::vector_valuetypes()) {
1384      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1385      // Extract subvector is special because the value type
1386      // (result) is 256/128-bit but the source is 512-bit wide.
1387      if (VT.is128BitVector() || VT.is256BitVector()) {
1388        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1389      }
1390      if (VT.getVectorElementType() == MVT::i1)
1391        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1392
1393      // Do not attempt to custom lower other non-512-bit vectors
1394      if (!VT.is512BitVector())
1395        continue;
1396
1397      if ( EltSize >= 32) {
1398        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1399        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1400        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1401        setOperationAction(ISD::VSELECT,             VT, Legal);
1402        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1403        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1404        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1405        setOperationAction(ISD::MLOAD,               VT, Legal);
1406        setOperationAction(ISD::MSTORE,              VT, Legal);
1407      }
1408    }
1409    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1410      MVT VT = (MVT::SimpleValueType)i;
1411
1412      // Do not attempt to promote non-512-bit vectors.
1413      if (!VT.is512BitVector())
1414        continue;
1415
1416      setOperationAction(ISD::SELECT, VT, Promote);
1417      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1418    }
1419  }// has  AVX-512
1420
1421  if (!TM.Options.UseSoftFloat && Subtarget->hasBWI()) {
1422    addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
1423    addRegisterClass(MVT::v64i8,  &X86::VR512RegClass);
1424
1425    addRegisterClass(MVT::v32i1,  &X86::VK32RegClass);
1426    addRegisterClass(MVT::v64i1,  &X86::VK64RegClass);
1427
1428    setOperationAction(ISD::LOAD,               MVT::v32i16, Legal);
1429    setOperationAction(ISD::LOAD,               MVT::v64i8, Legal);
1430    setOperationAction(ISD::SETCC,              MVT::v32i1, Custom);
1431    setOperationAction(ISD::SETCC,              MVT::v64i1, Custom);
1432    setOperationAction(ISD::ADD,                MVT::v32i16, Legal);
1433    setOperationAction(ISD::ADD,                MVT::v64i8, Legal);
1434    setOperationAction(ISD::SUB,                MVT::v32i16, Legal);
1435    setOperationAction(ISD::SUB,                MVT::v64i8, Legal);
1436    setOperationAction(ISD::MUL,                MVT::v32i16, Legal);
1437    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i1, Custom);
1438    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i1, Custom);
1439    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i1, Custom);
1440    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i1, Custom);
1441
1442    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1443      const MVT VT = (MVT::SimpleValueType)i;
1444
1445      const unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1446
1447      // Do not attempt to promote non-512-bit vectors.
1448      if (!VT.is512BitVector())
1449        continue;
1450
1451      if (EltSize < 32) {
1452        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1453        setOperationAction(ISD::VSELECT,             VT, Legal);
1454      }
1455    }
1456  }
1457
1458  if (!TM.Options.UseSoftFloat && Subtarget->hasVLX()) {
1459    addRegisterClass(MVT::v4i1,   &X86::VK4RegClass);
1460    addRegisterClass(MVT::v2i1,   &X86::VK2RegClass);
1461
1462    setOperationAction(ISD::SETCC,              MVT::v4i1, Custom);
1463    setOperationAction(ISD::SETCC,              MVT::v2i1, Custom);
1464    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i1, Custom);
1465    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1, Custom);
1466    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v8i1, Custom);
1467    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v4i1, Custom);
1468
1469    setOperationAction(ISD::AND,                MVT::v8i32, Legal);
1470    setOperationAction(ISD::OR,                 MVT::v8i32, Legal);
1471    setOperationAction(ISD::XOR,                MVT::v8i32, Legal);
1472    setOperationAction(ISD::AND,                MVT::v4i32, Legal);
1473    setOperationAction(ISD::OR,                 MVT::v4i32, Legal);
1474    setOperationAction(ISD::XOR,                MVT::v4i32, Legal);
1475  }
1476
1477  // We want to custom lower some of our intrinsics.
1478  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1479  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1480  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1481  if (!Subtarget->is64Bit())
1482    setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
1483
1484  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1485  // handle type legalization for these operations here.
1486  //
1487  // FIXME: We really should do custom legalization for addition and
1488  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1489  // than generic legalization for 64-bit multiplication-with-overflow, though.
1490  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1491    // Add/Sub/Mul with overflow operations are custom lowered.
1492    MVT VT = IntVTs[i];
1493    setOperationAction(ISD::SADDO, VT, Custom);
1494    setOperationAction(ISD::UADDO, VT, Custom);
1495    setOperationAction(ISD::SSUBO, VT, Custom);
1496    setOperationAction(ISD::USUBO, VT, Custom);
1497    setOperationAction(ISD::SMULO, VT, Custom);
1498    setOperationAction(ISD::UMULO, VT, Custom);
1499  }
1500
1501
1502  if (!Subtarget->is64Bit()) {
1503    // These libcalls are not available in 32-bit.
1504    setLibcallName(RTLIB::SHL_I128, nullptr);
1505    setLibcallName(RTLIB::SRL_I128, nullptr);
1506    setLibcallName(RTLIB::SRA_I128, nullptr);
1507  }
1508
1509  // Combine sin / cos into one node or libcall if possible.
1510  if (Subtarget->hasSinCos()) {
1511    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1512    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1513    if (Subtarget->isTargetDarwin()) {
1514      // For MacOSX, we don't want the normal expansion of a libcall to sincos.
1515      // We want to issue a libcall to __sincos_stret to avoid memory traffic.
1516      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1517      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1518    }
1519  }
1520
1521  if (Subtarget->isTargetWin64()) {
1522    setOperationAction(ISD::SDIV, MVT::i128, Custom);
1523    setOperationAction(ISD::UDIV, MVT::i128, Custom);
1524    setOperationAction(ISD::SREM, MVT::i128, Custom);
1525    setOperationAction(ISD::UREM, MVT::i128, Custom);
1526    setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
1527    setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
1528  }
1529
1530  // We have target-specific dag combine patterns for the following nodes:
1531  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1532  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1533  setTargetDAGCombine(ISD::BITCAST);
1534  setTargetDAGCombine(ISD::VSELECT);
1535  setTargetDAGCombine(ISD::SELECT);
1536  setTargetDAGCombine(ISD::SHL);
1537  setTargetDAGCombine(ISD::SRA);
1538  setTargetDAGCombine(ISD::SRL);
1539  setTargetDAGCombine(ISD::OR);
1540  setTargetDAGCombine(ISD::AND);
1541  setTargetDAGCombine(ISD::ADD);
1542  setTargetDAGCombine(ISD::FADD);
1543  setTargetDAGCombine(ISD::FSUB);
1544  setTargetDAGCombine(ISD::FMA);
1545  setTargetDAGCombine(ISD::SUB);
1546  setTargetDAGCombine(ISD::LOAD);
1547  setTargetDAGCombine(ISD::MLOAD);
1548  setTargetDAGCombine(ISD::STORE);
1549  setTargetDAGCombine(ISD::MSTORE);
1550  setTargetDAGCombine(ISD::ZERO_EXTEND);
1551  setTargetDAGCombine(ISD::ANY_EXTEND);
1552  setTargetDAGCombine(ISD::SIGN_EXTEND);
1553  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1554  setTargetDAGCombine(ISD::TRUNCATE);
1555  setTargetDAGCombine(ISD::SINT_TO_FP);
1556  setTargetDAGCombine(ISD::SETCC);
1557  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1558  setTargetDAGCombine(ISD::BUILD_VECTOR);
1559  setTargetDAGCombine(ISD::MUL);
1560  setTargetDAGCombine(ISD::XOR);
1561
1562  computeRegisterProperties(Subtarget->getRegisterInfo());
1563
1564  // On Darwin, -Os means optimize for size without hurting performance,
1565  // do not reduce the limit.
1566  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1567  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1568  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1569  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1570  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1571  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1572  setPrefLoopAlignment(4); // 2^4 bytes.
1573
1574  // Predictable cmov don't hurt on atom because it's in-order.
1575  PredictableSelectIsExpensive = !Subtarget->isAtom();
1576  EnableExtLdPromotion = true;
1577  setPrefFunctionAlignment(4); // 2^4 bytes.
1578
1579  verifyIntrinsicTables();
1580}
1581
1582// This has so far only been implemented for 64-bit MachO.
1583bool X86TargetLowering::useLoadStackGuardNode() const {
1584  return Subtarget->isTargetMachO() && Subtarget->is64Bit();
1585}
1586
1587TargetLoweringBase::LegalizeTypeAction
1588X86TargetLowering::getPreferredVectorAction(EVT VT) const {
1589  if (ExperimentalVectorWideningLegalization &&
1590      VT.getVectorNumElements() != 1 &&
1591      VT.getVectorElementType().getSimpleVT() != MVT::i1)
1592    return TypeWidenVector;
1593
1594  return TargetLoweringBase::getPreferredVectorAction(VT);
1595}
1596
1597EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1598  if (!VT.isVector())
1599    return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
1600
1601  const unsigned NumElts = VT.getVectorNumElements();
1602  const EVT EltVT = VT.getVectorElementType();
1603  if (VT.is512BitVector()) {
1604    if (Subtarget->hasAVX512())
1605      if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
1606          EltVT == MVT::f32 || EltVT == MVT::f64)
1607        switch(NumElts) {
1608        case  8: return MVT::v8i1;
1609        case 16: return MVT::v16i1;
1610      }
1611    if (Subtarget->hasBWI())
1612      if (EltVT == MVT::i8 || EltVT == MVT::i16)
1613        switch(NumElts) {
1614        case 32: return MVT::v32i1;
1615        case 64: return MVT::v64i1;
1616      }
1617  }
1618
1619  if (VT.is256BitVector() || VT.is128BitVector()) {
1620    if (Subtarget->hasVLX())
1621      if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
1622          EltVT == MVT::f32 || EltVT == MVT::f64)
1623        switch(NumElts) {
1624        case 2: return MVT::v2i1;
1625        case 4: return MVT::v4i1;
1626        case 8: return MVT::v8i1;
1627      }
1628    if (Subtarget->hasBWI() && Subtarget->hasVLX())
1629      if (EltVT == MVT::i8 || EltVT == MVT::i16)
1630        switch(NumElts) {
1631        case  8: return MVT::v8i1;
1632        case 16: return MVT::v16i1;
1633        case 32: return MVT::v32i1;
1634      }
1635  }
1636
1637  return VT.changeVectorElementTypeToInteger();
1638}
1639
1640/// Helper for getByValTypeAlignment to determine
1641/// the desired ByVal argument alignment.
1642static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1643  if (MaxAlign == 16)
1644    return;
1645  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1646    if (VTy->getBitWidth() == 128)
1647      MaxAlign = 16;
1648  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1649    unsigned EltAlign = 0;
1650    getMaxByValAlign(ATy->getElementType(), EltAlign);
1651    if (EltAlign > MaxAlign)
1652      MaxAlign = EltAlign;
1653  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1654    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1655      unsigned EltAlign = 0;
1656      getMaxByValAlign(STy->getElementType(i), EltAlign);
1657      if (EltAlign > MaxAlign)
1658        MaxAlign = EltAlign;
1659      if (MaxAlign == 16)
1660        break;
1661    }
1662  }
1663}
1664
1665/// Return the desired alignment for ByVal aggregate
1666/// function arguments in the caller parameter area. For X86, aggregates
1667/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1668/// are at 4-byte boundaries.
1669unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1670  if (Subtarget->is64Bit()) {
1671    // Max of 8 and alignment of type.
1672    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1673    if (TyAlign > 8)
1674      return TyAlign;
1675    return 8;
1676  }
1677
1678  unsigned Align = 4;
1679  if (Subtarget->hasSSE1())
1680    getMaxByValAlign(Ty, Align);
1681  return Align;
1682}
1683
1684/// Returns the target specific optimal type for load
1685/// and store operations as a result of memset, memcpy, and memmove
1686/// lowering. If DstAlign is zero that means it's safe to destination
1687/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1688/// means there isn't a need to check it against alignment requirement,
1689/// probably because the source does not need to be loaded. If 'IsMemset' is
1690/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1691/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1692/// source is constant so it does not need to be loaded.
1693/// It returns EVT::Other if the type should be determined using generic
1694/// target-independent logic.
1695EVT
1696X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1697                                       unsigned DstAlign, unsigned SrcAlign,
1698                                       bool IsMemset, bool ZeroMemset,
1699                                       bool MemcpyStrSrc,
1700                                       MachineFunction &MF) const {
1701  const Function *F = MF.getFunction();
1702  if ((!IsMemset || ZeroMemset) &&
1703      !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1704    if (Size >= 16 &&
1705        (Subtarget->isUnalignedMemAccessFast() ||
1706         ((DstAlign == 0 || DstAlign >= 16) &&
1707          (SrcAlign == 0 || SrcAlign >= 16)))) {
1708      if (Size >= 32) {
1709        if (Subtarget->hasInt256())
1710          return MVT::v8i32;
1711        if (Subtarget->hasFp256())
1712          return MVT::v8f32;
1713      }
1714      if (Subtarget->hasSSE2())
1715        return MVT::v4i32;
1716      if (Subtarget->hasSSE1())
1717        return MVT::v4f32;
1718    } else if (!MemcpyStrSrc && Size >= 8 &&
1719               !Subtarget->is64Bit() &&
1720               Subtarget->hasSSE2()) {
1721      // Do not use f64 to lower memcpy if source is string constant. It's
1722      // better to use i32 to avoid the loads.
1723      return MVT::f64;
1724    }
1725  }
1726  if (Subtarget->is64Bit() && Size >= 8)
1727    return MVT::i64;
1728  return MVT::i32;
1729}
1730
1731bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1732  if (VT == MVT::f32)
1733    return X86ScalarSSEf32;
1734  else if (VT == MVT::f64)
1735    return X86ScalarSSEf64;
1736  return true;
1737}
1738
1739bool
1740X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1741                                                  unsigned,
1742                                                  unsigned,
1743                                                  bool *Fast) const {
1744  if (Fast)
1745    *Fast = Subtarget->isUnalignedMemAccessFast();
1746  return true;
1747}
1748
1749/// Return the entry encoding for a jump table in the
1750/// current function.  The returned value is a member of the
1751/// MachineJumpTableInfo::JTEntryKind enum.
1752unsigned X86TargetLowering::getJumpTableEncoding() const {
1753  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1754  // symbol.
1755  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1756      Subtarget->isPICStyleGOT())
1757    return MachineJumpTableInfo::EK_Custom32;
1758
1759  // Otherwise, use the normal jump table encoding heuristics.
1760  return TargetLowering::getJumpTableEncoding();
1761}
1762
1763const MCExpr *
1764X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1765                                             const MachineBasicBlock *MBB,
1766                                             unsigned uid,MCContext &Ctx) const{
1767  assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
1768         Subtarget->isPICStyleGOT());
1769  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1770  // entries.
1771  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1772                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1773}
1774
1775/// Returns relocation base for the given PIC jumptable.
1776SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1777                                                    SelectionDAG &DAG) const {
1778  if (!Subtarget->is64Bit())
1779    // This doesn't have SDLoc associated with it, but is not really the
1780    // same as a Register.
1781    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1782  return Table;
1783}
1784
1785/// This returns the relocation base for the given PIC jumptable,
1786/// the same as getPICJumpTableRelocBase, but as an MCExpr.
1787const MCExpr *X86TargetLowering::
1788getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1789                             MCContext &Ctx) const {
1790  // X86-64 uses RIP relative addressing based on the jump table label.
1791  if (Subtarget->isPICStyleRIPRel())
1792    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1793
1794  // Otherwise, the reference is relative to the PIC base.
1795  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1796}
1797
1798std::pair<const TargetRegisterClass *, uint8_t>
1799X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1800                                           MVT VT) const {
1801  const TargetRegisterClass *RRC = nullptr;
1802  uint8_t Cost = 1;
1803  switch (VT.SimpleTy) {
1804  default:
1805    return TargetLowering::findRepresentativeClass(TRI, VT);
1806  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1807    RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
1808    break;
1809  case MVT::x86mmx:
1810    RRC = &X86::VR64RegClass;
1811    break;
1812  case MVT::f32: case MVT::f64:
1813  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1814  case MVT::v4f32: case MVT::v2f64:
1815  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1816  case MVT::v4f64:
1817    RRC = &X86::VR128RegClass;
1818    break;
1819  }
1820  return std::make_pair(RRC, Cost);
1821}
1822
1823bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1824                                               unsigned &Offset) const {
1825  if (!Subtarget->isTargetLinux())
1826    return false;
1827
1828  if (Subtarget->is64Bit()) {
1829    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1830    Offset = 0x28;
1831    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1832      AddressSpace = 256;
1833    else
1834      AddressSpace = 257;
1835  } else {
1836    // %gs:0x14 on i386
1837    Offset = 0x14;
1838    AddressSpace = 256;
1839  }
1840  return true;
1841}
1842
1843bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1844                                            unsigned DestAS) const {
1845  assert(SrcAS != DestAS && "Expected different address spaces!");
1846
1847  return SrcAS < 256 && DestAS < 256;
1848}
1849
1850//===----------------------------------------------------------------------===//
1851//               Return Value Calling Convention Implementation
1852//===----------------------------------------------------------------------===//
1853
1854#include "X86GenCallingConv.inc"
1855
1856bool
1857X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1858                                  MachineFunction &MF, bool isVarArg,
1859                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1860                        LLVMContext &Context) const {
1861  SmallVector<CCValAssign, 16> RVLocs;
1862  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1863  return CCInfo.CheckReturn(Outs, RetCC_X86);
1864}
1865
1866const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
1867  static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
1868  return ScratchRegs;
1869}
1870
1871SDValue
1872X86TargetLowering::LowerReturn(SDValue Chain,
1873                               CallingConv::ID CallConv, bool isVarArg,
1874                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1875                               const SmallVectorImpl<SDValue> &OutVals,
1876                               SDLoc dl, SelectionDAG &DAG) const {
1877  MachineFunction &MF = DAG.getMachineFunction();
1878  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1879
1880  SmallVector<CCValAssign, 16> RVLocs;
1881  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
1882  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1883
1884  SDValue Flag;
1885  SmallVector<SDValue, 6> RetOps;
1886  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1887  // Operand #1 = Bytes To Pop
1888  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1889                   MVT::i16));
1890
1891  // Copy the result values into the output registers.
1892  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1893    CCValAssign &VA = RVLocs[i];
1894    assert(VA.isRegLoc() && "Can only return in registers!");
1895    SDValue ValToCopy = OutVals[i];
1896    EVT ValVT = ValToCopy.getValueType();
1897
1898    // Promote values to the appropriate types.
1899    if (VA.getLocInfo() == CCValAssign::SExt)
1900      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1901    else if (VA.getLocInfo() == CCValAssign::ZExt)
1902      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1903    else if (VA.getLocInfo() == CCValAssign::AExt)
1904      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1905    else if (VA.getLocInfo() == CCValAssign::BCvt)
1906      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1907
1908    assert(VA.getLocInfo() != CCValAssign::FPExt &&
1909           "Unexpected FP-extend for return value.");
1910
1911    // If this is x86-64, and we disabled SSE, we can't return FP values,
1912    // or SSE or MMX vectors.
1913    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1914         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1915          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1916      report_fatal_error("SSE register return with SSE disabled");
1917    }
1918    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1919    // llvm-gcc has never done it right and no one has noticed, so this
1920    // should be OK for now.
1921    if (ValVT == MVT::f64 &&
1922        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1923      report_fatal_error("SSE2 register return with SSE2 disabled");
1924
1925    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1926    // the RET instruction and handled by the FP Stackifier.
1927    if (VA.getLocReg() == X86::FP0 ||
1928        VA.getLocReg() == X86::FP1) {
1929      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1930      // change the value to the FP stack register class.
1931      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1932        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1933      RetOps.push_back(ValToCopy);
1934      // Don't emit a copytoreg.
1935      continue;
1936    }
1937
1938    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1939    // which is returned in RAX / RDX.
1940    if (Subtarget->is64Bit()) {
1941      if (ValVT == MVT::x86mmx) {
1942        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1943          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1944          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1945                                  ValToCopy);
1946          // If we don't have SSE2 available, convert to v4f32 so the generated
1947          // register is legal.
1948          if (!Subtarget->hasSSE2())
1949            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1950        }
1951      }
1952    }
1953
1954    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1955    Flag = Chain.getValue(1);
1956    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1957  }
1958
1959  // The x86-64 ABIs require that for returning structs by value we copy
1960  // the sret argument into %rax/%eax (depending on ABI) for the return.
1961  // Win32 requires us to put the sret argument to %eax as well.
1962  // We saved the argument into a virtual register in the entry block,
1963  // so now we copy the value out and into %rax/%eax.
1964  //
1965  // Checking Function.hasStructRetAttr() here is insufficient because the IR
1966  // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
1967  // false, then an sret argument may be implicitly inserted in the SelDAG. In
1968  // either case FuncInfo->setSRetReturnReg() will have been called.
1969  if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
1970    assert((Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) &&
1971           "No need for an sret register");
1972    SDValue Val = DAG.getCopyFromReg(Chain, dl, SRetReg, getPointerTy());
1973
1974    unsigned RetValReg
1975        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1976          X86::RAX : X86::EAX;
1977    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1978    Flag = Chain.getValue(1);
1979
1980    // RAX/EAX now acts like a return value.
1981    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1982  }
1983
1984  RetOps[0] = Chain;  // Update chain.
1985
1986  // Add the flag if we have it.
1987  if (Flag.getNode())
1988    RetOps.push_back(Flag);
1989
1990  return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps);
1991}
1992
1993bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1994  if (N->getNumValues() != 1)
1995    return false;
1996  if (!N->hasNUsesOfValue(1, 0))
1997    return false;
1998
1999  SDValue TCChain = Chain;
2000  SDNode *Copy = *N->use_begin();
2001  if (Copy->getOpcode() == ISD::CopyToReg) {
2002    // If the copy has a glue operand, we conservatively assume it isn't safe to
2003    // perform a tail call.
2004    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2005      return false;
2006    TCChain = Copy->getOperand(0);
2007  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
2008    return false;
2009
2010  bool HasRet = false;
2011  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2012       UI != UE; ++UI) {
2013    if (UI->getOpcode() != X86ISD::RET_FLAG)
2014      return false;
2015    // If we are returning more than one value, we can definitely
2016    // not make a tail call see PR19530
2017    if (UI->getNumOperands() > 4)
2018      return false;
2019    if (UI->getNumOperands() == 4 &&
2020        UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
2021      return false;
2022    HasRet = true;
2023  }
2024
2025  if (!HasRet)
2026    return false;
2027
2028  Chain = TCChain;
2029  return true;
2030}
2031
2032EVT
2033X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
2034                                            ISD::NodeType ExtendKind) const {
2035  MVT ReturnMVT;
2036  // TODO: Is this also valid on 32-bit?
2037  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
2038    ReturnMVT = MVT::i8;
2039  else
2040    ReturnMVT = MVT::i32;
2041
2042  EVT MinVT = getRegisterType(Context, ReturnMVT);
2043  return VT.bitsLT(MinVT) ? MinVT : VT;
2044}
2045
2046/// Lower the result values of a call into the
2047/// appropriate copies out of appropriate physical registers.
2048///
2049SDValue
2050X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2051                                   CallingConv::ID CallConv, bool isVarArg,
2052                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2053                                   SDLoc dl, SelectionDAG &DAG,
2054                                   SmallVectorImpl<SDValue> &InVals) const {
2055
2056  // Assign locations to each value returned by this call.
2057  SmallVector<CCValAssign, 16> RVLocs;
2058  bool Is64Bit = Subtarget->is64Bit();
2059  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2060                 *DAG.getContext());
2061  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2062
2063  // Copy all of the result registers out of their specified physreg.
2064  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2065    CCValAssign &VA = RVLocs[i];
2066    EVT CopyVT = VA.getValVT();
2067
2068    // If this is x86-64, and we disabled SSE, we can't return FP values
2069    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
2070        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
2071      report_fatal_error("SSE register return with SSE disabled");
2072    }
2073
2074    // If we prefer to use the value in xmm registers, copy it out as f80 and
2075    // use a truncate to move it from fp stack reg to xmm reg.
2076    if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
2077        isScalarFPTypeInSSEReg(VA.getValVT()))
2078      CopyVT = MVT::f80;
2079
2080    Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2081                               CopyVT, InFlag).getValue(1);
2082    SDValue Val = Chain.getValue(0);
2083
2084    if (CopyVT != VA.getValVT())
2085      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2086                        // This truncation won't change the value.
2087                        DAG.getIntPtrConstant(1));
2088
2089    InFlag = Chain.getValue(2);
2090    InVals.push_back(Val);
2091  }
2092
2093  return Chain;
2094}
2095
2096//===----------------------------------------------------------------------===//
2097//                C & StdCall & Fast Calling Convention implementation
2098//===----------------------------------------------------------------------===//
2099//  StdCall calling convention seems to be standard for many Windows' API
2100//  routines and around. It differs from C calling convention just a little:
2101//  callee should clean up the stack, not caller. Symbols should be also
2102//  decorated in some fancy way :) It doesn't support any vector arguments.
2103//  For info on fast calling convention see Fast Calling Convention (tail call)
2104//  implementation LowerX86_32FastCCCallTo.
2105
2106/// CallIsStructReturn - Determines whether a call uses struct return
2107/// semantics.
2108enum StructReturnType {
2109  NotStructReturn,
2110  RegStructReturn,
2111  StackStructReturn
2112};
2113static StructReturnType
2114callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2115  if (Outs.empty())
2116    return NotStructReturn;
2117
2118  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2119  if (!Flags.isSRet())
2120    return NotStructReturn;
2121  if (Flags.isInReg())
2122    return RegStructReturn;
2123  return StackStructReturn;
2124}
2125
2126/// Determines whether a function uses struct return semantics.
2127static StructReturnType
2128argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2129  if (Ins.empty())
2130    return NotStructReturn;
2131
2132  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2133  if (!Flags.isSRet())
2134    return NotStructReturn;
2135  if (Flags.isInReg())
2136    return RegStructReturn;
2137  return StackStructReturn;
2138}
2139
2140/// Make a copy of an aggregate at address specified by "Src" to address
2141/// "Dst" with size and alignment information specified by the specific
2142/// parameter attribute. The copy will be passed as a byval function parameter.
2143static SDValue
2144CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2145                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2146                          SDLoc dl) {
2147  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2148
2149  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2150                       /*isVolatile*/false, /*AlwaysInline=*/true,
2151                       /*isTailCall*/false,
2152                       MachinePointerInfo(), MachinePointerInfo());
2153}
2154
2155/// Return true if the calling convention is one that
2156/// supports tail call optimization.
2157static bool IsTailCallConvention(CallingConv::ID CC) {
2158  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2159          CC == CallingConv::HiPE);
2160}
2161
2162/// \brief Return true if the calling convention is a C calling convention.
2163static bool IsCCallConvention(CallingConv::ID CC) {
2164  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2165          CC == CallingConv::X86_64_SysV);
2166}
2167
2168bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2169  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2170    return false;
2171
2172  CallSite CS(CI);
2173  CallingConv::ID CalleeCC = CS.getCallingConv();
2174  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2175    return false;
2176
2177  return true;
2178}
2179
2180/// Return true if the function is being made into
2181/// a tailcall target by changing its ABI.
2182static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2183                                   bool GuaranteedTailCallOpt) {
2184  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2185}
2186
2187SDValue
2188X86TargetLowering::LowerMemArgument(SDValue Chain,
2189                                    CallingConv::ID CallConv,
2190                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2191                                    SDLoc dl, SelectionDAG &DAG,
2192                                    const CCValAssign &VA,
2193                                    MachineFrameInfo *MFI,
2194                                    unsigned i) const {
2195  // Create the nodes corresponding to a load from this parameter slot.
2196  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2197  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(
2198      CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
2199  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2200  EVT ValVT;
2201
2202  // If value is passed by pointer we have address passed instead of the value
2203  // itself.
2204  if (VA.getLocInfo() == CCValAssign::Indirect)
2205    ValVT = VA.getLocVT();
2206  else
2207    ValVT = VA.getValVT();
2208
2209  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2210  // changed with more analysis.
2211  // In case of tail call optimization mark all arguments mutable. Since they
2212  // could be overwritten by lowering of arguments in case of a tail call.
2213  if (Flags.isByVal()) {
2214    unsigned Bytes = Flags.getByValSize();
2215    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2216    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2217    return DAG.getFrameIndex(FI, getPointerTy());
2218  } else {
2219    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2220                                    VA.getLocMemOffset(), isImmutable);
2221    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2222    return DAG.getLoad(ValVT, dl, Chain, FIN,
2223                       MachinePointerInfo::getFixedStack(FI),
2224                       false, false, false, 0);
2225  }
2226}
2227
2228// FIXME: Get this from tablegen.
2229static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
2230                                                const X86Subtarget *Subtarget) {
2231  assert(Subtarget->is64Bit());
2232
2233  if (Subtarget->isCallingConvWin64(CallConv)) {
2234    static const MCPhysReg GPR64ArgRegsWin64[] = {
2235      X86::RCX, X86::RDX, X86::R8,  X86::R9
2236    };
2237    return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
2238  }
2239
2240  static const MCPhysReg GPR64ArgRegs64Bit[] = {
2241    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2242  };
2243  return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
2244}
2245
2246// FIXME: Get this from tablegen.
2247static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
2248                                                CallingConv::ID CallConv,
2249                                                const X86Subtarget *Subtarget) {
2250  assert(Subtarget->is64Bit());
2251  if (Subtarget->isCallingConvWin64(CallConv)) {
2252    // The XMM registers which might contain var arg parameters are shadowed
2253    // in their paired GPR.  So we only need to save the GPR to their home
2254    // slots.
2255    // TODO: __vectorcall will change this.
2256    return None;
2257  }
2258
2259  const Function *Fn = MF.getFunction();
2260  bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat);
2261  assert(!(MF.getTarget().Options.UseSoftFloat && NoImplicitFloatOps) &&
2262         "SSE register cannot be used when SSE is disabled!");
2263  if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2264      !Subtarget->hasSSE1())
2265    // Kernel mode asks for SSE to be disabled, so there are no XMM argument
2266    // registers.
2267    return None;
2268
2269  static const MCPhysReg XMMArgRegs64Bit[] = {
2270    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2271    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2272  };
2273  return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
2274}
2275
2276SDValue
2277X86TargetLowering::LowerFormalArguments(SDValue Chain,
2278                                        CallingConv::ID CallConv,
2279                                        bool isVarArg,
2280                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2281                                        SDLoc dl,
2282                                        SelectionDAG &DAG,
2283                                        SmallVectorImpl<SDValue> &InVals)
2284                                          const {
2285  MachineFunction &MF = DAG.getMachineFunction();
2286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2287  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
2288
2289  const Function* Fn = MF.getFunction();
2290  if (Fn->hasExternalLinkage() &&
2291      Subtarget->isTargetCygMing() &&
2292      Fn->getName() == "main")
2293    FuncInfo->setForceFramePointer(true);
2294
2295  MachineFrameInfo *MFI = MF.getFrameInfo();
2296  bool Is64Bit = Subtarget->is64Bit();
2297  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2298
2299  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2300         "Var args not supported with calling convention fastcc, ghc or hipe");
2301
2302  // Assign locations to all of the incoming arguments.
2303  SmallVector<CCValAssign, 16> ArgLocs;
2304  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
2305
2306  // Allocate shadow area for Win64
2307  if (IsWin64)
2308    CCInfo.AllocateStack(32, 8);
2309
2310  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2311
2312  unsigned LastVal = ~0U;
2313  SDValue ArgValue;
2314  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2315    CCValAssign &VA = ArgLocs[i];
2316    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2317    // places.
2318    assert(VA.getValNo() != LastVal &&
2319           "Don't support value assigned to multiple locs yet");
2320    (void)LastVal;
2321    LastVal = VA.getValNo();
2322
2323    if (VA.isRegLoc()) {
2324      EVT RegVT = VA.getLocVT();
2325      const TargetRegisterClass *RC;
2326      if (RegVT == MVT::i32)
2327        RC = &X86::GR32RegClass;
2328      else if (Is64Bit && RegVT == MVT::i64)
2329        RC = &X86::GR64RegClass;
2330      else if (RegVT == MVT::f32)
2331        RC = &X86::FR32RegClass;
2332      else if (RegVT == MVT::f64)
2333        RC = &X86::FR64RegClass;
2334      else if (RegVT.is512BitVector())
2335        RC = &X86::VR512RegClass;
2336      else if (RegVT.is256BitVector())
2337        RC = &X86::VR256RegClass;
2338      else if (RegVT.is128BitVector())
2339        RC = &X86::VR128RegClass;
2340      else if (RegVT == MVT::x86mmx)
2341        RC = &X86::VR64RegClass;
2342      else if (RegVT == MVT::i1)
2343        RC = &X86::VK1RegClass;
2344      else if (RegVT == MVT::v8i1)
2345        RC = &X86::VK8RegClass;
2346      else if (RegVT == MVT::v16i1)
2347        RC = &X86::VK16RegClass;
2348      else if (RegVT == MVT::v32i1)
2349        RC = &X86::VK32RegClass;
2350      else if (RegVT == MVT::v64i1)
2351        RC = &X86::VK64RegClass;
2352      else
2353        llvm_unreachable("Unknown argument type!");
2354
2355      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2356      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2357
2358      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2359      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2360      // right size.
2361      if (VA.getLocInfo() == CCValAssign::SExt)
2362        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2363                               DAG.getValueType(VA.getValVT()));
2364      else if (VA.getLocInfo() == CCValAssign::ZExt)
2365        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2366                               DAG.getValueType(VA.getValVT()));
2367      else if (VA.getLocInfo() == CCValAssign::BCvt)
2368        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2369
2370      if (VA.isExtInLoc()) {
2371        // Handle MMX values passed in XMM regs.
2372        if (RegVT.isVector())
2373          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2374        else
2375          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2376      }
2377    } else {
2378      assert(VA.isMemLoc());
2379      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2380    }
2381
2382    // If value is passed via pointer - do a load.
2383    if (VA.getLocInfo() == CCValAssign::Indirect)
2384      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2385                             MachinePointerInfo(), false, false, false, 0);
2386
2387    InVals.push_back(ArgValue);
2388  }
2389
2390  if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) {
2391    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2392      // The x86-64 ABIs require that for returning structs by value we copy
2393      // the sret argument into %rax/%eax (depending on ABI) for the return.
2394      // Win32 requires us to put the sret argument to %eax as well.
2395      // Save the argument into a virtual register so that we can access it
2396      // from the return points.
2397      if (Ins[i].Flags.isSRet()) {
2398        unsigned Reg = FuncInfo->getSRetReturnReg();
2399        if (!Reg) {
2400          MVT PtrTy = getPointerTy();
2401          Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2402          FuncInfo->setSRetReturnReg(Reg);
2403        }
2404        SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
2405        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2406        break;
2407      }
2408    }
2409  }
2410
2411  unsigned StackSize = CCInfo.getNextStackOffset();
2412  // Align stack specially for tail calls.
2413  if (FuncIsMadeTailCallSafe(CallConv,
2414                             MF.getTarget().Options.GuaranteedTailCallOpt))
2415    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2416
2417  // If the function takes variable number of arguments, make a frame index for
2418  // the start of the first vararg value... for expansion of llvm.va_start. We
2419  // can skip this if there are no va_start calls.
2420  if (MFI->hasVAStart() &&
2421      (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2422                   CallConv != CallingConv::X86_ThisCall))) {
2423    FuncInfo->setVarArgsFrameIndex(
2424        MFI->CreateFixedObject(1, StackSize, true));
2425  }
2426
2427  MachineModuleInfo &MMI = MF.getMMI();
2428  const Function *WinEHParent = nullptr;
2429  if (IsWin64 && MMI.hasWinEHFuncInfo(Fn))
2430    WinEHParent = MMI.getWinEHParent(Fn);
2431  bool IsWinEHOutlined = WinEHParent && WinEHParent != Fn;
2432  bool IsWinEHParent = WinEHParent && WinEHParent == Fn;
2433
2434  // Figure out if XMM registers are in use.
2435  assert(!(MF.getTarget().Options.UseSoftFloat &&
2436           Fn->hasFnAttribute(Attribute::NoImplicitFloat)) &&
2437         "SSE register cannot be used when SSE is disabled!");
2438
2439  // 64-bit calling conventions support varargs and register parameters, so we
2440  // have to do extra work to spill them in the prologue.
2441  if (Is64Bit && isVarArg && MFI->hasVAStart()) {
2442    // Find the first unallocated argument registers.
2443    ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
2444    ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
2445    unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
2446    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
2447    assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2448           "SSE register cannot be used when SSE is disabled!");
2449
2450    // Gather all the live in physical registers.
2451    SmallVector<SDValue, 6> LiveGPRs;
2452    SmallVector<SDValue, 8> LiveXMMRegs;
2453    SDValue ALVal;
2454    for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
2455      unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
2456      LiveGPRs.push_back(
2457          DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
2458    }
2459    if (!ArgXMMs.empty()) {
2460      unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2461      ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
2462      for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
2463        unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
2464        LiveXMMRegs.push_back(
2465            DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
2466      }
2467    }
2468
2469    if (IsWin64) {
2470      // Get to the caller-allocated home save location.  Add 8 to account
2471      // for the return address.
2472      int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2473      FuncInfo->setRegSaveFrameIndex(
2474          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2475      // Fixup to set vararg frame on shadow area (4 x i64).
2476      if (NumIntRegs < 4)
2477        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2478    } else {
2479      // For X86-64, if there are vararg parameters that are passed via
2480      // registers, then we must store them to their spots on the stack so
2481      // they may be loaded by deferencing the result of va_next.
2482      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2483      FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
2484      FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject(
2485          ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
2486    }
2487
2488    // Store the integer parameter registers.
2489    SmallVector<SDValue, 8> MemOps;
2490    SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2491                                      getPointerTy());
2492    unsigned Offset = FuncInfo->getVarArgsGPOffset();
2493    for (SDValue Val : LiveGPRs) {
2494      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2495                                DAG.getIntPtrConstant(Offset));
2496      SDValue Store =
2497        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2498                     MachinePointerInfo::getFixedStack(
2499                       FuncInfo->getRegSaveFrameIndex(), Offset),
2500                     false, false, 0);
2501      MemOps.push_back(Store);
2502      Offset += 8;
2503    }
2504
2505    if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
2506      // Now store the XMM (fp + vector) parameter registers.
2507      SmallVector<SDValue, 12> SaveXMMOps;
2508      SaveXMMOps.push_back(Chain);
2509      SaveXMMOps.push_back(ALVal);
2510      SaveXMMOps.push_back(DAG.getIntPtrConstant(
2511                             FuncInfo->getRegSaveFrameIndex()));
2512      SaveXMMOps.push_back(DAG.getIntPtrConstant(
2513                             FuncInfo->getVarArgsFPOffset()));
2514      SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
2515                        LiveXMMRegs.end());
2516      MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2517                                   MVT::Other, SaveXMMOps));
2518    }
2519
2520    if (!MemOps.empty())
2521      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2522  } else if (IsWinEHOutlined) {
2523    // Get to the caller-allocated home save location.  Add 8 to account
2524    // for the return address.
2525    int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2526    FuncInfo->setRegSaveFrameIndex(MFI->CreateFixedObject(
2527        /*Size=*/1, /*SPOffset=*/HomeOffset + 8, /*Immutable=*/false));
2528
2529    MMI.getWinEHFuncInfo(Fn)
2530        .CatchHandlerParentFrameObjIdx[const_cast<Function *>(Fn)] =
2531        FuncInfo->getRegSaveFrameIndex();
2532
2533    // Store the second integer parameter (rdx) into rsp+16 relative to the
2534    // stack pointer at the entry of the function.
2535    SDValue RSFIN =
2536        DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), getPointerTy());
2537    unsigned GPR = MF.addLiveIn(X86::RDX, &X86::GR64RegClass);
2538    SDValue Val = DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64);
2539    Chain = DAG.getStore(
2540        Val.getValue(1), dl, Val, RSFIN,
2541        MachinePointerInfo::getFixedStack(FuncInfo->getRegSaveFrameIndex()),
2542        /*isVolatile=*/true, /*isNonTemporal=*/false, /*Alignment=*/0);
2543  }
2544
2545  if (isVarArg && MFI->hasMustTailInVarArgFunc()) {
2546    // Find the largest legal vector type.
2547    MVT VecVT = MVT::Other;
2548    // FIXME: Only some x86_32 calling conventions support AVX512.
2549    if (Subtarget->hasAVX512() &&
2550        (Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
2551                     CallConv == CallingConv::Intel_OCL_BI)))
2552      VecVT = MVT::v16f32;
2553    else if (Subtarget->hasAVX())
2554      VecVT = MVT::v8f32;
2555    else if (Subtarget->hasSSE2())
2556      VecVT = MVT::v4f32;
2557
2558    // We forward some GPRs and some vector types.
2559    SmallVector<MVT, 2> RegParmTypes;
2560    MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
2561    RegParmTypes.push_back(IntVT);
2562    if (VecVT != MVT::Other)
2563      RegParmTypes.push_back(VecVT);
2564
2565    // Compute the set of forwarded registers. The rest are scratch.
2566    SmallVectorImpl<ForwardedRegister> &Forwards =
2567        FuncInfo->getForwardedMustTailRegParms();
2568    CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
2569
2570    // Conservatively forward AL on x86_64, since it might be used for varargs.
2571    if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
2572      unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2573      Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
2574    }
2575
2576    // Copy all forwards from physical to virtual registers.
2577    for (ForwardedRegister &F : Forwards) {
2578      // FIXME: Can we use a less constrained schedule?
2579      SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
2580      F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
2581      Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
2582    }
2583  }
2584
2585  // Some CCs need callee pop.
2586  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2587                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2588    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2589  } else {
2590    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2591    // If this is an sret function, the return should pop the hidden pointer.
2592    if (!Is64Bit && !IsTailCallConvention(CallConv) &&
2593        !Subtarget->getTargetTriple().isOSMSVCRT() &&
2594        argsAreStructReturn(Ins) == StackStructReturn)
2595      FuncInfo->setBytesToPopOnReturn(4);
2596  }
2597
2598  if (!Is64Bit) {
2599    // RegSaveFrameIndex is X86-64 only.
2600    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2601    if (CallConv == CallingConv::X86_FastCall ||
2602        CallConv == CallingConv::X86_ThisCall)
2603      // fastcc functions can't have varargs.
2604      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2605  }
2606
2607  FuncInfo->setArgumentStackSize(StackSize);
2608
2609  if (IsWinEHParent) {
2610    int UnwindHelpFI = MFI->CreateStackObject(8, 8, /*isSS=*/false);
2611    SDValue StackSlot = DAG.getFrameIndex(UnwindHelpFI, MVT::i64);
2612    MMI.getWinEHFuncInfo(MF.getFunction()).UnwindHelpFrameIdx = UnwindHelpFI;
2613    SDValue Neg2 = DAG.getConstant(-2, MVT::i64);
2614    Chain = DAG.getStore(Chain, dl, Neg2, StackSlot,
2615                         MachinePointerInfo::getFixedStack(UnwindHelpFI),
2616                         /*isVolatile=*/true,
2617                         /*isNonTemporal=*/false, /*Alignment=*/0);
2618  }
2619
2620  return Chain;
2621}
2622
2623SDValue
2624X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2625                                    SDValue StackPtr, SDValue Arg,
2626                                    SDLoc dl, SelectionDAG &DAG,
2627                                    const CCValAssign &VA,
2628                                    ISD::ArgFlagsTy Flags) const {
2629  unsigned LocMemOffset = VA.getLocMemOffset();
2630  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2631  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2632  if (Flags.isByVal())
2633    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2634
2635  return DAG.getStore(Chain, dl, Arg, PtrOff,
2636                      MachinePointerInfo::getStack(LocMemOffset),
2637                      false, false, 0);
2638}
2639
2640/// Emit a load of return address if tail call
2641/// optimization is performed and it is required.
2642SDValue
2643X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2644                                           SDValue &OutRetAddr, SDValue Chain,
2645                                           bool IsTailCall, bool Is64Bit,
2646                                           int FPDiff, SDLoc dl) const {
2647  // Adjust the Return address stack slot.
2648  EVT VT = getPointerTy();
2649  OutRetAddr = getReturnAddressFrameIndex(DAG);
2650
2651  // Load the "old" Return address.
2652  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2653                           false, false, false, 0);
2654  return SDValue(OutRetAddr.getNode(), 1);
2655}
2656
2657/// Emit a store of the return address if tail call
2658/// optimization is performed and it is required (FPDiff!=0).
2659static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
2660                                        SDValue Chain, SDValue RetAddrFrIdx,
2661                                        EVT PtrVT, unsigned SlotSize,
2662                                        int FPDiff, SDLoc dl) {
2663  // Store the return address to the appropriate stack slot.
2664  if (!FPDiff) return Chain;
2665  // Calculate the new stack slot for the return address.
2666  int NewReturnAddrFI =
2667    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2668                                         false);
2669  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2670  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2671                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2672                       false, false, 0);
2673  return Chain;
2674}
2675
2676SDValue
2677X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2678                             SmallVectorImpl<SDValue> &InVals) const {
2679  SelectionDAG &DAG                     = CLI.DAG;
2680  SDLoc &dl                             = CLI.DL;
2681  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2682  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2683  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2684  SDValue Chain                         = CLI.Chain;
2685  SDValue Callee                        = CLI.Callee;
2686  CallingConv::ID CallConv              = CLI.CallConv;
2687  bool &isTailCall                      = CLI.IsTailCall;
2688  bool isVarArg                         = CLI.IsVarArg;
2689
2690  MachineFunction &MF = DAG.getMachineFunction();
2691  bool Is64Bit        = Subtarget->is64Bit();
2692  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2693  StructReturnType SR = callIsStructReturn(Outs);
2694  bool IsSibcall      = false;
2695  X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2696
2697  if (MF.getTarget().Options.DisableTailCalls)
2698    isTailCall = false;
2699
2700  bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
2701  if (IsMustTail) {
2702    // Force this to be a tail call.  The verifier rules are enough to ensure
2703    // that we can lower this successfully without moving the return address
2704    // around.
2705    isTailCall = true;
2706  } else if (isTailCall) {
2707    // Check if it's really possible to do a tail call.
2708    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2709                    isVarArg, SR != NotStructReturn,
2710                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2711                    Outs, OutVals, Ins, DAG);
2712
2713    // Sibcalls are automatically detected tailcalls which do not require
2714    // ABI changes.
2715    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2716      IsSibcall = true;
2717
2718    if (isTailCall)
2719      ++NumTailCalls;
2720  }
2721
2722  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2723         "Var args not supported with calling convention fastcc, ghc or hipe");
2724
2725  // Analyze operands of the call, assigning locations to each operand.
2726  SmallVector<CCValAssign, 16> ArgLocs;
2727  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
2728
2729  // Allocate shadow area for Win64
2730  if (IsWin64)
2731    CCInfo.AllocateStack(32, 8);
2732
2733  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2734
2735  // Get a count of how many bytes are to be pushed on the stack.
2736  unsigned NumBytes = CCInfo.getNextStackOffset();
2737  if (IsSibcall)
2738    // This is a sibcall. The memory operands are available in caller's
2739    // own caller's stack.
2740    NumBytes = 0;
2741  else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2742           IsTailCallConvention(CallConv))
2743    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2744
2745  int FPDiff = 0;
2746  if (isTailCall && !IsSibcall && !IsMustTail) {
2747    // Lower arguments at fp - stackoffset + fpdiff.
2748    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2749
2750    FPDiff = NumBytesCallerPushed - NumBytes;
2751
2752    // Set the delta of movement of the returnaddr stackslot.
2753    // But only set if delta is greater than previous delta.
2754    if (FPDiff < X86Info->getTCReturnAddrDelta())
2755      X86Info->setTCReturnAddrDelta(FPDiff);
2756  }
2757
2758  unsigned NumBytesToPush = NumBytes;
2759  unsigned NumBytesToPop = NumBytes;
2760
2761  // If we have an inalloca argument, all stack space has already been allocated
2762  // for us and be right at the top of the stack.  We don't support multiple
2763  // arguments passed in memory when using inalloca.
2764  if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
2765    NumBytesToPush = 0;
2766    if (!ArgLocs.back().isMemLoc())
2767      report_fatal_error("cannot use inalloca attribute on a register "
2768                         "parameter");
2769    if (ArgLocs.back().getLocMemOffset() != 0)
2770      report_fatal_error("any parameter with the inalloca attribute must be "
2771                         "the only memory argument");
2772  }
2773
2774  if (!IsSibcall)
2775    Chain = DAG.getCALLSEQ_START(
2776        Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl);
2777
2778  SDValue RetAddrFrIdx;
2779  // Load return address for tail calls.
2780  if (isTailCall && FPDiff)
2781    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2782                                    Is64Bit, FPDiff, dl);
2783
2784  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2785  SmallVector<SDValue, 8> MemOpChains;
2786  SDValue StackPtr;
2787
2788  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2789  // of tail call optimization arguments are handle later.
2790  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2791  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2792    // Skip inalloca arguments, they have already been written.
2793    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2794    if (Flags.isInAlloca())
2795      continue;
2796
2797    CCValAssign &VA = ArgLocs[i];
2798    EVT RegVT = VA.getLocVT();
2799    SDValue Arg = OutVals[i];
2800    bool isByVal = Flags.isByVal();
2801
2802    // Promote the value if needed.
2803    switch (VA.getLocInfo()) {
2804    default: llvm_unreachable("Unknown loc info!");
2805    case CCValAssign::Full: break;
2806    case CCValAssign::SExt:
2807      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2808      break;
2809    case CCValAssign::ZExt:
2810      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2811      break;
2812    case CCValAssign::AExt:
2813      if (RegVT.is128BitVector()) {
2814        // Special case: passing MMX values in XMM registers.
2815        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2816        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2817        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2818      } else
2819        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2820      break;
2821    case CCValAssign::BCvt:
2822      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2823      break;
2824    case CCValAssign::Indirect: {
2825      // Store the argument.
2826      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2827      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2828      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2829                           MachinePointerInfo::getFixedStack(FI),
2830                           false, false, 0);
2831      Arg = SpillSlot;
2832      break;
2833    }
2834    }
2835
2836    if (VA.isRegLoc()) {
2837      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2838      if (isVarArg && IsWin64) {
2839        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2840        // shadow reg if callee is a varargs function.
2841        unsigned ShadowReg = 0;
2842        switch (VA.getLocReg()) {
2843        case X86::XMM0: ShadowReg = X86::RCX; break;
2844        case X86::XMM1: ShadowReg = X86::RDX; break;
2845        case X86::XMM2: ShadowReg = X86::R8; break;
2846        case X86::XMM3: ShadowReg = X86::R9; break;
2847        }
2848        if (ShadowReg)
2849          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2850      }
2851    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2852      assert(VA.isMemLoc());
2853      if (!StackPtr.getNode())
2854        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2855                                      getPointerTy());
2856      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2857                                             dl, DAG, VA, Flags));
2858    }
2859  }
2860
2861  if (!MemOpChains.empty())
2862    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2863
2864  if (Subtarget->isPICStyleGOT()) {
2865    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2866    // GOT pointer.
2867    if (!isTailCall) {
2868      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2869               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2870    } else {
2871      // If we are tail calling and generating PIC/GOT style code load the
2872      // address of the callee into ECX. The value in ecx is used as target of
2873      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2874      // for tail calls on PIC/GOT architectures. Normally we would just put the
2875      // address of GOT into ebx and then call target@PLT. But for tail calls
2876      // ebx would be restored (since ebx is callee saved) before jumping to the
2877      // target@PLT.
2878
2879      // Note: The actual moving to ECX is done further down.
2880      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2881      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2882          !G->getGlobal()->hasProtectedVisibility())
2883        Callee = LowerGlobalAddress(Callee, DAG);
2884      else if (isa<ExternalSymbolSDNode>(Callee))
2885        Callee = LowerExternalSymbol(Callee, DAG);
2886    }
2887  }
2888
2889  if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
2890    // From AMD64 ABI document:
2891    // For calls that may call functions that use varargs or stdargs
2892    // (prototype-less calls or calls to functions containing ellipsis (...) in
2893    // the declaration) %al is used as hidden argument to specify the number
2894    // of SSE registers used. The contents of %al do not need to match exactly
2895    // the number of registers, but must be an ubound on the number of SSE
2896    // registers used and is in the range 0 - 8 inclusive.
2897
2898    // Count the number of XMM registers allocated.
2899    static const MCPhysReg XMMArgRegs[] = {
2900      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2901      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2902    };
2903    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
2904    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2905           && "SSE registers cannot be used when SSE is disabled");
2906
2907    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2908                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2909  }
2910
2911  if (isVarArg && IsMustTail) {
2912    const auto &Forwards = X86Info->getForwardedMustTailRegParms();
2913    for (const auto &F : Forwards) {
2914      SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
2915      RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
2916    }
2917  }
2918
2919  // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
2920  // don't need this because the eligibility check rejects calls that require
2921  // shuffling arguments passed in memory.
2922  if (!IsSibcall && isTailCall) {
2923    // Force all the incoming stack arguments to be loaded from the stack
2924    // before any new outgoing arguments are stored to the stack, because the
2925    // outgoing stack slots may alias the incoming argument stack slots, and
2926    // the alias isn't otherwise explicit. This is slightly more conservative
2927    // than necessary, because it means that each store effectively depends
2928    // on every argument instead of just those arguments it would clobber.
2929    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2930
2931    SmallVector<SDValue, 8> MemOpChains2;
2932    SDValue FIN;
2933    int FI = 0;
2934    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2935      CCValAssign &VA = ArgLocs[i];
2936      if (VA.isRegLoc())
2937        continue;
2938      assert(VA.isMemLoc());
2939      SDValue Arg = OutVals[i];
2940      ISD::ArgFlagsTy Flags = Outs[i].Flags;
2941      // Skip inalloca arguments.  They don't require any work.
2942      if (Flags.isInAlloca())
2943        continue;
2944      // Create frame index.
2945      int32_t Offset = VA.getLocMemOffset()+FPDiff;
2946      uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2947      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2948      FIN = DAG.getFrameIndex(FI, getPointerTy());
2949
2950      if (Flags.isByVal()) {
2951        // Copy relative to framepointer.
2952        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2953        if (!StackPtr.getNode())
2954          StackPtr = DAG.getCopyFromReg(Chain, dl,
2955                                        RegInfo->getStackRegister(),
2956                                        getPointerTy());
2957        Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2958
2959        MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2960                                                         ArgChain,
2961                                                         Flags, DAG, dl));
2962      } else {
2963        // Store relative to framepointer.
2964        MemOpChains2.push_back(
2965          DAG.getStore(ArgChain, dl, Arg, FIN,
2966                       MachinePointerInfo::getFixedStack(FI),
2967                       false, false, 0));
2968      }
2969    }
2970
2971    if (!MemOpChains2.empty())
2972      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
2973
2974    // Store the return address to the appropriate stack slot.
2975    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2976                                     getPointerTy(), RegInfo->getSlotSize(),
2977                                     FPDiff, dl);
2978  }
2979
2980  // Build a sequence of copy-to-reg nodes chained together with token chain
2981  // and flag operands which copy the outgoing args into registers.
2982  SDValue InFlag;
2983  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2984    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2985                             RegsToPass[i].second, InFlag);
2986    InFlag = Chain.getValue(1);
2987  }
2988
2989  if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
2990    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2991    // In the 64-bit large code model, we have to make all calls
2992    // through a register, since the call instruction's 32-bit
2993    // pc-relative offset may not be large enough to hold the whole
2994    // address.
2995  } else if (Callee->getOpcode() == ISD::GlobalAddress) {
2996    // If the callee is a GlobalAddress node (quite common, every direct call
2997    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2998    // it.
2999    GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
3000
3001    // We should use extra load for direct calls to dllimported functions in
3002    // non-JIT mode.
3003    const GlobalValue *GV = G->getGlobal();
3004    if (!GV->hasDLLImportStorageClass()) {
3005      unsigned char OpFlags = 0;
3006      bool ExtraLoad = false;
3007      unsigned WrapperKind = ISD::DELETED_NODE;
3008
3009      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
3010      // external symbols most go through the PLT in PIC mode.  If the symbol
3011      // has hidden or protected visibility, or if it is static or local, then
3012      // we don't need to use the PLT - we can directly call it.
3013      if (Subtarget->isTargetELF() &&
3014          DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
3015          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
3016        OpFlags = X86II::MO_PLT;
3017      } else if (Subtarget->isPICStyleStubAny() &&
3018                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
3019                 (!Subtarget->getTargetTriple().isMacOSX() ||
3020                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3021        // PC-relative references to external symbols should go through $stub,
3022        // unless we're building with the leopard linker or later, which
3023        // automatically synthesizes these stubs.
3024        OpFlags = X86II::MO_DARWIN_STUB;
3025      } else if (Subtarget->isPICStyleRIPRel() && isa<Function>(GV) &&
3026                 cast<Function>(GV)->hasFnAttribute(Attribute::NonLazyBind)) {
3027        // If the function is marked as non-lazy, generate an indirect call
3028        // which loads from the GOT directly. This avoids runtime overhead
3029        // at the cost of eager binding (and one extra byte of encoding).
3030        OpFlags = X86II::MO_GOTPCREL;
3031        WrapperKind = X86ISD::WrapperRIP;
3032        ExtraLoad = true;
3033      }
3034
3035      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
3036                                          G->getOffset(), OpFlags);
3037
3038      // Add a wrapper if needed.
3039      if (WrapperKind != ISD::DELETED_NODE)
3040        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
3041      // Add extra indirection if needed.
3042      if (ExtraLoad)
3043        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
3044                             MachinePointerInfo::getGOT(),
3045                             false, false, false, 0);
3046    }
3047  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3048    unsigned char OpFlags = 0;
3049
3050    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
3051    // external symbols should go through the PLT.
3052    if (Subtarget->isTargetELF() &&
3053        DAG.getTarget().getRelocationModel() == Reloc::PIC_) {
3054      OpFlags = X86II::MO_PLT;
3055    } else if (Subtarget->isPICStyleStubAny() &&
3056               (!Subtarget->getTargetTriple().isMacOSX() ||
3057                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3058      // PC-relative references to external symbols should go through $stub,
3059      // unless we're building with the leopard linker or later, which
3060      // automatically synthesizes these stubs.
3061      OpFlags = X86II::MO_DARWIN_STUB;
3062    }
3063
3064    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3065                                         OpFlags);
3066  } else if (Subtarget->isTarget64BitILP32() &&
3067             Callee->getValueType(0) == MVT::i32) {
3068    // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
3069    Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
3070  }
3071
3072  // Returns a chain & a flag for retval copy to use.
3073  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3074  SmallVector<SDValue, 8> Ops;
3075
3076  if (!IsSibcall && isTailCall) {
3077    Chain = DAG.getCALLSEQ_END(Chain,
3078                               DAG.getIntPtrConstant(NumBytesToPop, true),
3079                               DAG.getIntPtrConstant(0, true), InFlag, dl);
3080    InFlag = Chain.getValue(1);
3081  }
3082
3083  Ops.push_back(Chain);
3084  Ops.push_back(Callee);
3085
3086  if (isTailCall)
3087    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
3088
3089  // Add argument registers to the end of the list so that they are known live
3090  // into the call.
3091  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3092    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3093                                  RegsToPass[i].second.getValueType()));
3094
3095  // Add a register mask operand representing the call-preserved registers.
3096  const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
3097  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3098  assert(Mask && "Missing call preserved mask for calling convention");
3099  Ops.push_back(DAG.getRegisterMask(Mask));
3100
3101  if (InFlag.getNode())
3102    Ops.push_back(InFlag);
3103
3104  if (isTailCall) {
3105    // We used to do:
3106    //// If this is the first return lowered for this function, add the regs
3107    //// to the liveout set for the function.
3108    // This isn't right, although it's probably harmless on x86; liveouts
3109    // should be computed from returns not tail calls.  Consider a void
3110    // function making a tail call to a function returning int.
3111    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
3112  }
3113
3114  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
3115  InFlag = Chain.getValue(1);
3116
3117  // Create the CALLSEQ_END node.
3118  unsigned NumBytesForCalleeToPop;
3119  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
3120                       DAG.getTarget().Options.GuaranteedTailCallOpt))
3121    NumBytesForCalleeToPop = NumBytes;    // Callee pops everything
3122  else if (!Is64Bit && !IsTailCallConvention(CallConv) &&
3123           !Subtarget->getTargetTriple().isOSMSVCRT() &&
3124           SR == StackStructReturn)
3125    // If this is a call to a struct-return function, the callee
3126    // pops the hidden struct pointer, so we have to push it back.
3127    // This is common for Darwin/X86, Linux & Mingw32 targets.
3128    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
3129    NumBytesForCalleeToPop = 4;
3130  else
3131    NumBytesForCalleeToPop = 0;  // Callee pops nothing.
3132
3133  // Returns a flag for retval copy to use.
3134  if (!IsSibcall) {
3135    Chain = DAG.getCALLSEQ_END(Chain,
3136                               DAG.getIntPtrConstant(NumBytesToPop, true),
3137                               DAG.getIntPtrConstant(NumBytesForCalleeToPop,
3138                                                     true),
3139                               InFlag, dl);
3140    InFlag = Chain.getValue(1);
3141  }
3142
3143  // Handle result values, copying them out of physregs into vregs that we
3144  // return.
3145  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3146                         Ins, dl, DAG, InVals);
3147}
3148
3149//===----------------------------------------------------------------------===//
3150//                Fast Calling Convention (tail call) implementation
3151//===----------------------------------------------------------------------===//
3152
3153//  Like std call, callee cleans arguments, convention except that ECX is
3154//  reserved for storing the tail called function address. Only 2 registers are
3155//  free for argument passing (inreg). Tail call optimization is performed
3156//  provided:
3157//                * tailcallopt is enabled
3158//                * caller/callee are fastcc
3159//  On X86_64 architecture with GOT-style position independent code only local
3160//  (within module) calls are supported at the moment.
3161//  To keep the stack aligned according to platform abi the function
3162//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
3163//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
3164//  If a tail called function callee has more arguments than the caller the
3165//  caller needs to make sure that there is room to move the RETADDR to. This is
3166//  achieved by reserving an area the size of the argument delta right after the
3167//  original RETADDR, but before the saved framepointer or the spilled registers
3168//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
3169//  stack layout:
3170//    arg1
3171//    arg2
3172//    RETADDR
3173//    [ new RETADDR
3174//      move area ]
3175//    (possible EBP)
3176//    ESI
3177//    EDI
3178//    local1 ..
3179
3180/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
3181/// for a 16 byte align requirement.
3182unsigned
3183X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
3184                                               SelectionDAG& DAG) const {
3185  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3186  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
3187  unsigned StackAlignment = TFI.getStackAlignment();
3188  uint64_t AlignMask = StackAlignment - 1;
3189  int64_t Offset = StackSize;
3190  unsigned SlotSize = RegInfo->getSlotSize();
3191  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
3192    // Number smaller than 12 so just add the difference.
3193    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
3194  } else {
3195    // Mask out lower bits, add stackalignment once plus the 12 bytes.
3196    Offset = ((~AlignMask) & Offset) + StackAlignment +
3197      (StackAlignment-SlotSize);
3198  }
3199  return Offset;
3200}
3201
3202/// MatchingStackOffset - Return true if the given stack call argument is
3203/// already available in the same position (relatively) of the caller's
3204/// incoming argument stack.
3205static
3206bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
3207                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
3208                         const X86InstrInfo *TII) {
3209  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
3210  int FI = INT_MAX;
3211  if (Arg.getOpcode() == ISD::CopyFromReg) {
3212    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
3213    if (!TargetRegisterInfo::isVirtualRegister(VR))
3214      return false;
3215    MachineInstr *Def = MRI->getVRegDef(VR);
3216    if (!Def)
3217      return false;
3218    if (!Flags.isByVal()) {
3219      if (!TII->isLoadFromStackSlot(Def, FI))
3220        return false;
3221    } else {
3222      unsigned Opcode = Def->getOpcode();
3223      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
3224           Opcode == X86::LEA64_32r) &&
3225          Def->getOperand(1).isFI()) {
3226        FI = Def->getOperand(1).getIndex();
3227        Bytes = Flags.getByValSize();
3228      } else
3229        return false;
3230    }
3231  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3232    if (Flags.isByVal())
3233      // ByVal argument is passed in as a pointer but it's now being
3234      // dereferenced. e.g.
3235      // define @foo(%struct.X* %A) {
3236      //   tail call @bar(%struct.X* byval %A)
3237      // }
3238      return false;
3239    SDValue Ptr = Ld->getBasePtr();
3240    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3241    if (!FINode)
3242      return false;
3243    FI = FINode->getIndex();
3244  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3245    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3246    FI = FINode->getIndex();
3247    Bytes = Flags.getByValSize();
3248  } else
3249    return false;
3250
3251  assert(FI != INT_MAX);
3252  if (!MFI->isFixedObjectIndex(FI))
3253    return false;
3254  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3255}
3256
3257/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3258/// for tail call optimization. Targets which want to do tail call
3259/// optimization should implement this function.
3260bool
3261X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3262                                                     CallingConv::ID CalleeCC,
3263                                                     bool isVarArg,
3264                                                     bool isCalleeStructRet,
3265                                                     bool isCallerStructRet,
3266                                                     Type *RetTy,
3267                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3268                                    const SmallVectorImpl<SDValue> &OutVals,
3269                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3270                                                     SelectionDAG &DAG) const {
3271  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3272    return false;
3273
3274  // If -tailcallopt is specified, make fastcc functions tail-callable.
3275  const MachineFunction &MF = DAG.getMachineFunction();
3276  const Function *CallerF = MF.getFunction();
3277
3278  // If the function return type is x86_fp80 and the callee return type is not,
3279  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3280  // perform a tailcall optimization here.
3281  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3282    return false;
3283
3284  CallingConv::ID CallerCC = CallerF->getCallingConv();
3285  bool CCMatch = CallerCC == CalleeCC;
3286  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3287  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3288
3289  // Win64 functions have extra shadow space for argument homing. Don't do the
3290  // sibcall if the caller and callee have mismatched expectations for this
3291  // space.
3292  if (IsCalleeWin64 != IsCallerWin64)
3293    return false;
3294
3295  if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3296    if (IsTailCallConvention(CalleeCC) && CCMatch)
3297      return true;
3298    return false;
3299  }
3300
3301  // Look for obvious safe cases to perform tail call optimization that do not
3302  // require ABI changes. This is what gcc calls sibcall.
3303
3304  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3305  // emit a special epilogue.
3306  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3307  if (RegInfo->needsStackRealignment(MF))
3308    return false;
3309
3310  // Also avoid sibcall optimization if either caller or callee uses struct
3311  // return semantics.
3312  if (isCalleeStructRet || isCallerStructRet)
3313    return false;
3314
3315  // An stdcall/thiscall caller is expected to clean up its arguments; the
3316  // callee isn't going to do that.
3317  // FIXME: this is more restrictive than needed. We could produce a tailcall
3318  // when the stack adjustment matches. For example, with a thiscall that takes
3319  // only one argument.
3320  if (!CCMatch && (CallerCC == CallingConv::X86_StdCall ||
3321                   CallerCC == CallingConv::X86_ThisCall))
3322    return false;
3323
3324  // Do not sibcall optimize vararg calls unless all arguments are passed via
3325  // registers.
3326  if (isVarArg && !Outs.empty()) {
3327
3328    // Optimizing for varargs on Win64 is unlikely to be safe without
3329    // additional testing.
3330    if (IsCalleeWin64 || IsCallerWin64)
3331      return false;
3332
3333    SmallVector<CCValAssign, 16> ArgLocs;
3334    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
3335                   *DAG.getContext());
3336
3337    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3338    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3339      if (!ArgLocs[i].isRegLoc())
3340        return false;
3341  }
3342
3343  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3344  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3345  // this into a sibcall.
3346  bool Unused = false;
3347  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3348    if (!Ins[i].Used) {
3349      Unused = true;
3350      break;
3351    }
3352  }
3353  if (Unused) {
3354    SmallVector<CCValAssign, 16> RVLocs;
3355    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs,
3356                   *DAG.getContext());
3357    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3358    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3359      CCValAssign &VA = RVLocs[i];
3360      if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
3361        return false;
3362    }
3363  }
3364
3365  // If the calling conventions do not match, then we'd better make sure the
3366  // results are returned in the same way as what the caller expects.
3367  if (!CCMatch) {
3368    SmallVector<CCValAssign, 16> RVLocs1;
3369    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
3370                    *DAG.getContext());
3371    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3372
3373    SmallVector<CCValAssign, 16> RVLocs2;
3374    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
3375                    *DAG.getContext());
3376    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3377
3378    if (RVLocs1.size() != RVLocs2.size())
3379      return false;
3380    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3381      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3382        return false;
3383      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3384        return false;
3385      if (RVLocs1[i].isRegLoc()) {
3386        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3387          return false;
3388      } else {
3389        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3390          return false;
3391      }
3392    }
3393  }
3394
3395  // If the callee takes no arguments then go on to check the results of the
3396  // call.
3397  if (!Outs.empty()) {
3398    // Check if stack adjustment is needed. For now, do not do this if any
3399    // argument is passed on the stack.
3400    SmallVector<CCValAssign, 16> ArgLocs;
3401    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
3402                   *DAG.getContext());
3403
3404    // Allocate shadow area for Win64
3405    if (IsCalleeWin64)
3406      CCInfo.AllocateStack(32, 8);
3407
3408    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3409    if (CCInfo.getNextStackOffset()) {
3410      MachineFunction &MF = DAG.getMachineFunction();
3411      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3412        return false;
3413
3414      // Check if the arguments are already laid out in the right way as
3415      // the caller's fixed stack objects.
3416      MachineFrameInfo *MFI = MF.getFrameInfo();
3417      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3418      const X86InstrInfo *TII = Subtarget->getInstrInfo();
3419      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3420        CCValAssign &VA = ArgLocs[i];
3421        SDValue Arg = OutVals[i];
3422        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3423        if (VA.getLocInfo() == CCValAssign::Indirect)
3424          return false;
3425        if (!VA.isRegLoc()) {
3426          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3427                                   MFI, MRI, TII))
3428            return false;
3429        }
3430      }
3431    }
3432
3433    // If the tailcall address may be in a register, then make sure it's
3434    // possible to register allocate for it. In 32-bit, the call address can
3435    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3436    // callee-saved registers are restored. These happen to be the same
3437    // registers used to pass 'inreg' arguments so watch out for those.
3438    if (!Subtarget->is64Bit() &&
3439        ((!isa<GlobalAddressSDNode>(Callee) &&
3440          !isa<ExternalSymbolSDNode>(Callee)) ||
3441         DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3442      unsigned NumInRegs = 0;
3443      // In PIC we need an extra register to formulate the address computation
3444      // for the callee.
3445      unsigned MaxInRegs =
3446        (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3447
3448      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3449        CCValAssign &VA = ArgLocs[i];
3450        if (!VA.isRegLoc())
3451          continue;
3452        unsigned Reg = VA.getLocReg();
3453        switch (Reg) {
3454        default: break;
3455        case X86::EAX: case X86::EDX: case X86::ECX:
3456          if (++NumInRegs == MaxInRegs)
3457            return false;
3458          break;
3459        }
3460      }
3461    }
3462  }
3463
3464  return true;
3465}
3466
3467FastISel *
3468X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3469                                  const TargetLibraryInfo *libInfo) const {
3470  return X86::createFastISel(funcInfo, libInfo);
3471}
3472
3473//===----------------------------------------------------------------------===//
3474//                           Other Lowering Hooks
3475//===----------------------------------------------------------------------===//
3476
3477static bool MayFoldLoad(SDValue Op) {
3478  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3479}
3480
3481static bool MayFoldIntoStore(SDValue Op) {
3482  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3483}
3484
3485static bool isTargetShuffle(unsigned Opcode) {
3486  switch(Opcode) {
3487  default: return false;
3488  case X86ISD::BLENDI:
3489  case X86ISD::PSHUFB:
3490  case X86ISD::PSHUFD:
3491  case X86ISD::PSHUFHW:
3492  case X86ISD::PSHUFLW:
3493  case X86ISD::SHUFP:
3494  case X86ISD::PALIGNR:
3495  case X86ISD::MOVLHPS:
3496  case X86ISD::MOVLHPD:
3497  case X86ISD::MOVHLPS:
3498  case X86ISD::MOVLPS:
3499  case X86ISD::MOVLPD:
3500  case X86ISD::MOVSHDUP:
3501  case X86ISD::MOVSLDUP:
3502  case X86ISD::MOVDDUP:
3503  case X86ISD::MOVSS:
3504  case X86ISD::MOVSD:
3505  case X86ISD::UNPCKL:
3506  case X86ISD::UNPCKH:
3507  case X86ISD::VPERMILPI:
3508  case X86ISD::VPERM2X128:
3509  case X86ISD::VPERMI:
3510    return true;
3511  }
3512}
3513
3514static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3515                                    SDValue V1, unsigned TargetMask,
3516                                    SelectionDAG &DAG) {
3517  switch(Opc) {
3518  default: llvm_unreachable("Unknown x86 shuffle node");
3519  case X86ISD::PSHUFD:
3520  case X86ISD::PSHUFHW:
3521  case X86ISD::PSHUFLW:
3522  case X86ISD::VPERMILPI:
3523  case X86ISD::VPERMI:
3524    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3525  }
3526}
3527
3528static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3529                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3530  switch(Opc) {
3531  default: llvm_unreachable("Unknown x86 shuffle node");
3532  case X86ISD::MOVLHPS:
3533  case X86ISD::MOVLHPD:
3534  case X86ISD::MOVHLPS:
3535  case X86ISD::MOVLPS:
3536  case X86ISD::MOVLPD:
3537  case X86ISD::MOVSS:
3538  case X86ISD::MOVSD:
3539  case X86ISD::UNPCKL:
3540  case X86ISD::UNPCKH:
3541    return DAG.getNode(Opc, dl, VT, V1, V2);
3542  }
3543}
3544
3545SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3546  MachineFunction &MF = DAG.getMachineFunction();
3547  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3548  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3549  int ReturnAddrIndex = FuncInfo->getRAIndex();
3550
3551  if (ReturnAddrIndex == 0) {
3552    // Set up a frame object for the return address.
3553    unsigned SlotSize = RegInfo->getSlotSize();
3554    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3555                                                           -(int64_t)SlotSize,
3556                                                           false);
3557    FuncInfo->setRAIndex(ReturnAddrIndex);
3558  }
3559
3560  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3561}
3562
3563bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3564                                       bool hasSymbolicDisplacement) {
3565  // Offset should fit into 32 bit immediate field.
3566  if (!isInt<32>(Offset))
3567    return false;
3568
3569  // If we don't have a symbolic displacement - we don't have any extra
3570  // restrictions.
3571  if (!hasSymbolicDisplacement)
3572    return true;
3573
3574  // FIXME: Some tweaks might be needed for medium code model.
3575  if (M != CodeModel::Small && M != CodeModel::Kernel)
3576    return false;
3577
3578  // For small code model we assume that latest object is 16MB before end of 31
3579  // bits boundary. We may also accept pretty large negative constants knowing
3580  // that all objects are in the positive half of address space.
3581  if (M == CodeModel::Small && Offset < 16*1024*1024)
3582    return true;
3583
3584  // For kernel code model we know that all object resist in the negative half
3585  // of 32bits address space. We may not accept negative offsets, since they may
3586  // be just off and we may accept pretty large positive ones.
3587  if (M == CodeModel::Kernel && Offset >= 0)
3588    return true;
3589
3590  return false;
3591}
3592
3593/// isCalleePop - Determines whether the callee is required to pop its
3594/// own arguments. Callee pop is necessary to support tail calls.
3595bool X86::isCalleePop(CallingConv::ID CallingConv,
3596                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3597  switch (CallingConv) {
3598  default:
3599    return false;
3600  case CallingConv::X86_StdCall:
3601  case CallingConv::X86_FastCall:
3602  case CallingConv::X86_ThisCall:
3603    return !is64Bit;
3604  case CallingConv::Fast:
3605  case CallingConv::GHC:
3606  case CallingConv::HiPE:
3607    if (IsVarArg)
3608      return false;
3609    return TailCallOpt;
3610  }
3611}
3612
3613/// \brief Return true if the condition is an unsigned comparison operation.
3614static bool isX86CCUnsigned(unsigned X86CC) {
3615  switch (X86CC) {
3616  default: llvm_unreachable("Invalid integer condition!");
3617  case X86::COND_E:     return true;
3618  case X86::COND_G:     return false;
3619  case X86::COND_GE:    return false;
3620  case X86::COND_L:     return false;
3621  case X86::COND_LE:    return false;
3622  case X86::COND_NE:    return true;
3623  case X86::COND_B:     return true;
3624  case X86::COND_A:     return true;
3625  case X86::COND_BE:    return true;
3626  case X86::COND_AE:    return true;
3627  }
3628  llvm_unreachable("covered switch fell through?!");
3629}
3630
3631/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3632/// specific condition code, returning the condition code and the LHS/RHS of the
3633/// comparison to make.
3634static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3635                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3636  if (!isFP) {
3637    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3638      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3639        // X > -1   -> X == 0, jump !sign.
3640        RHS = DAG.getConstant(0, RHS.getValueType());
3641        return X86::COND_NS;
3642      }
3643      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3644        // X < 0   -> X == 0, jump on sign.
3645        return X86::COND_S;
3646      }
3647      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3648        // X < 1   -> X <= 0
3649        RHS = DAG.getConstant(0, RHS.getValueType());
3650        return X86::COND_LE;
3651      }
3652    }
3653
3654    switch (SetCCOpcode) {
3655    default: llvm_unreachable("Invalid integer condition!");
3656    case ISD::SETEQ:  return X86::COND_E;
3657    case ISD::SETGT:  return X86::COND_G;
3658    case ISD::SETGE:  return X86::COND_GE;
3659    case ISD::SETLT:  return X86::COND_L;
3660    case ISD::SETLE:  return X86::COND_LE;
3661    case ISD::SETNE:  return X86::COND_NE;
3662    case ISD::SETULT: return X86::COND_B;
3663    case ISD::SETUGT: return X86::COND_A;
3664    case ISD::SETULE: return X86::COND_BE;
3665    case ISD::SETUGE: return X86::COND_AE;
3666    }
3667  }
3668
3669  // First determine if it is required or is profitable to flip the operands.
3670
3671  // If LHS is a foldable load, but RHS is not, flip the condition.
3672  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3673      !ISD::isNON_EXTLoad(RHS.getNode())) {
3674    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3675    std::swap(LHS, RHS);
3676  }
3677
3678  switch (SetCCOpcode) {
3679  default: break;
3680  case ISD::SETOLT:
3681  case ISD::SETOLE:
3682  case ISD::SETUGT:
3683  case ISD::SETUGE:
3684    std::swap(LHS, RHS);
3685    break;
3686  }
3687
3688  // On a floating point condition, the flags are set as follows:
3689  // ZF  PF  CF   op
3690  //  0 | 0 | 0 | X > Y
3691  //  0 | 0 | 1 | X < Y
3692  //  1 | 0 | 0 | X == Y
3693  //  1 | 1 | 1 | unordered
3694  switch (SetCCOpcode) {
3695  default: llvm_unreachable("Condcode should be pre-legalized away");
3696  case ISD::SETUEQ:
3697  case ISD::SETEQ:   return X86::COND_E;
3698  case ISD::SETOLT:              // flipped
3699  case ISD::SETOGT:
3700  case ISD::SETGT:   return X86::COND_A;
3701  case ISD::SETOLE:              // flipped
3702  case ISD::SETOGE:
3703  case ISD::SETGE:   return X86::COND_AE;
3704  case ISD::SETUGT:              // flipped
3705  case ISD::SETULT:
3706  case ISD::SETLT:   return X86::COND_B;
3707  case ISD::SETUGE:              // flipped
3708  case ISD::SETULE:
3709  case ISD::SETLE:   return X86::COND_BE;
3710  case ISD::SETONE:
3711  case ISD::SETNE:   return X86::COND_NE;
3712  case ISD::SETUO:   return X86::COND_P;
3713  case ISD::SETO:    return X86::COND_NP;
3714  case ISD::SETOEQ:
3715  case ISD::SETUNE:  return X86::COND_INVALID;
3716  }
3717}
3718
3719/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3720/// code. Current x86 isa includes the following FP cmov instructions:
3721/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3722static bool hasFPCMov(unsigned X86CC) {
3723  switch (X86CC) {
3724  default:
3725    return false;
3726  case X86::COND_B:
3727  case X86::COND_BE:
3728  case X86::COND_E:
3729  case X86::COND_P:
3730  case X86::COND_A:
3731  case X86::COND_AE:
3732  case X86::COND_NE:
3733  case X86::COND_NP:
3734    return true;
3735  }
3736}
3737
3738/// isFPImmLegal - Returns true if the target can instruction select the
3739/// specified FP immediate natively. If false, the legalizer will
3740/// materialize the FP immediate as a load from a constant pool.
3741bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3742  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3743    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3744      return true;
3745  }
3746  return false;
3747}
3748
3749bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
3750                                              ISD::LoadExtType ExtTy,
3751                                              EVT NewVT) const {
3752  // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
3753  // relocation target a movq or addq instruction: don't let the load shrink.
3754  SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
3755  if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
3756    if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
3757      return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
3758  return true;
3759}
3760
3761/// \brief Returns true if it is beneficial to convert a load of a constant
3762/// to just the constant itself.
3763bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
3764                                                          Type *Ty) const {
3765  assert(Ty->isIntegerTy());
3766
3767  unsigned BitSize = Ty->getPrimitiveSizeInBits();
3768  if (BitSize == 0 || BitSize > 64)
3769    return false;
3770  return true;
3771}
3772
3773bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT,
3774                                                unsigned Index) const {
3775  if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
3776    return false;
3777
3778  return (Index == 0 || Index == ResVT.getVectorNumElements());
3779}
3780
3781bool X86TargetLowering::isCheapToSpeculateCttz() const {
3782  // Speculate cttz only if we can directly use TZCNT.
3783  return Subtarget->hasBMI();
3784}
3785
3786bool X86TargetLowering::isCheapToSpeculateCtlz() const {
3787  // Speculate ctlz only if we can directly use LZCNT.
3788  return Subtarget->hasLZCNT();
3789}
3790
3791/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3792/// the specified range (L, H].
3793static bool isUndefOrInRange(int Val, int Low, int Hi) {
3794  return (Val < 0) || (Val >= Low && Val < Hi);
3795}
3796
3797/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3798/// specified value.
3799static bool isUndefOrEqual(int Val, int CmpVal) {
3800  return (Val < 0 || Val == CmpVal);
3801}
3802
3803/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3804/// from position Pos and ending in Pos+Size, falls within the specified
3805/// sequential range (Low, Low+Size]. or is undef.
3806static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3807                                       unsigned Pos, unsigned Size, int Low) {
3808  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3809    if (!isUndefOrEqual(Mask[i], Low))
3810      return false;
3811  return true;
3812}
3813
3814/// isVEXTRACTIndex - Return true if the specified
3815/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3816/// suitable for instruction that extract 128 or 256 bit vectors
3817static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
3818  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
3819  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3820    return false;
3821
3822  // The index should be aligned on a vecWidth-bit boundary.
3823  uint64_t Index =
3824    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3825
3826  MVT VT = N->getSimpleValueType(0);
3827  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
3828  bool Result = (Index * ElSize) % vecWidth == 0;
3829
3830  return Result;
3831}
3832
3833/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
3834/// operand specifies a subvector insert that is suitable for input to
3835/// insertion of 128 or 256-bit subvectors
3836static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
3837  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
3838  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3839    return false;
3840  // The index should be aligned on a vecWidth-bit boundary.
3841  uint64_t Index =
3842    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3843
3844  MVT VT = N->getSimpleValueType(0);
3845  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
3846  bool Result = (Index * ElSize) % vecWidth == 0;
3847
3848  return Result;
3849}
3850
3851bool X86::isVINSERT128Index(SDNode *N) {
3852  return isVINSERTIndex(N, 128);
3853}
3854
3855bool X86::isVINSERT256Index(SDNode *N) {
3856  return isVINSERTIndex(N, 256);
3857}
3858
3859bool X86::isVEXTRACT128Index(SDNode *N) {
3860  return isVEXTRACTIndex(N, 128);
3861}
3862
3863bool X86::isVEXTRACT256Index(SDNode *N) {
3864  return isVEXTRACTIndex(N, 256);
3865}
3866
3867static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
3868  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
3869  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3870    llvm_unreachable("Illegal extract subvector for VEXTRACT");
3871
3872  uint64_t Index =
3873    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3874
3875  MVT VecVT = N->getOperand(0).getSimpleValueType();
3876  MVT ElVT = VecVT.getVectorElementType();
3877
3878  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
3879  return Index / NumElemsPerChunk;
3880}
3881
3882static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
3883  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
3884  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3885    llvm_unreachable("Illegal insert subvector for VINSERT");
3886
3887  uint64_t Index =
3888    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3889
3890  MVT VecVT = N->getSimpleValueType(0);
3891  MVT ElVT = VecVT.getVectorElementType();
3892
3893  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
3894  return Index / NumElemsPerChunk;
3895}
3896
3897/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
3898/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3899/// and VINSERTI128 instructions.
3900unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
3901  return getExtractVEXTRACTImmediate(N, 128);
3902}
3903
3904/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
3905/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
3906/// and VINSERTI64x4 instructions.
3907unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
3908  return getExtractVEXTRACTImmediate(N, 256);
3909}
3910
3911/// getInsertVINSERT128Immediate - Return the appropriate immediate
3912/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3913/// and VINSERTI128 instructions.
3914unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
3915  return getInsertVINSERTImmediate(N, 128);
3916}
3917
3918/// getInsertVINSERT256Immediate - Return the appropriate immediate
3919/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
3920/// and VINSERTI64x4 instructions.
3921unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
3922  return getInsertVINSERTImmediate(N, 256);
3923}
3924
3925/// isZero - Returns true if Elt is a constant integer zero
3926static bool isZero(SDValue V) {
3927  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
3928  return C && C->isNullValue();
3929}
3930
3931/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3932/// constant +0.0.
3933bool X86::isZeroNode(SDValue Elt) {
3934  if (isZero(Elt))
3935    return true;
3936  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
3937    return CFP->getValueAPF().isPosZero();
3938  return false;
3939}
3940
3941/// getZeroVector - Returns a vector of specified type with all zero elements.
3942///
3943static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
3944                             SelectionDAG &DAG, SDLoc dl) {
3945  assert(VT.isVector() && "Expected a vector type");
3946
3947  // Always build SSE zero vectors as <4 x i32> bitcasted
3948  // to their dest type. This ensures they get CSE'd.
3949  SDValue Vec;
3950  if (VT.is128BitVector()) {  // SSE
3951    if (Subtarget->hasSSE2()) {  // SSE2
3952      SDValue Cst = DAG.getConstant(0, MVT::i32);
3953      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3954    } else { // SSE1
3955      SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
3956      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3957    }
3958  } else if (VT.is256BitVector()) { // AVX
3959    if (Subtarget->hasInt256()) { // AVX2
3960      SDValue Cst = DAG.getConstant(0, MVT::i32);
3961      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3962      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
3963    } else {
3964      // 256-bit logic and arithmetic instructions in AVX are all
3965      // floating-point, no support for integer ops. Emit fp zeroed vectors.
3966      SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
3967      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3968      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
3969    }
3970  } else if (VT.is512BitVector()) { // AVX-512
3971      SDValue Cst = DAG.getConstant(0, MVT::i32);
3972      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
3973                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3974      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
3975  } else if (VT.getScalarType() == MVT::i1) {
3976
3977    assert((Subtarget->hasBWI() || VT.getVectorNumElements() <= 16)
3978            && "Unexpected vector type");
3979    assert((Subtarget->hasVLX() || VT.getVectorNumElements() >= 8)
3980            && "Unexpected vector type");
3981    SDValue Cst = DAG.getConstant(0, MVT::i1);
3982    SmallVector<SDValue, 64> Ops(VT.getVectorNumElements(), Cst);
3983    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3984  } else
3985    llvm_unreachable("Unexpected vector type");
3986
3987  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3988}
3989
3990static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
3991                                SelectionDAG &DAG, SDLoc dl,
3992                                unsigned vectorWidth) {
3993  assert((vectorWidth == 128 || vectorWidth == 256) &&
3994         "Unsupported vector width");
3995  EVT VT = Vec.getValueType();
3996  EVT ElVT = VT.getVectorElementType();
3997  unsigned Factor = VT.getSizeInBits()/vectorWidth;
3998  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
3999                                  VT.getVectorNumElements()/Factor);
4000
4001  // Extract from UNDEF is UNDEF.
4002  if (Vec.getOpcode() == ISD::UNDEF)
4003    return DAG.getUNDEF(ResultVT);
4004
4005  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
4006  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
4007
4008  // This is the index of the first element of the vectorWidth-bit chunk
4009  // we want.
4010  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
4011                               * ElemsPerChunk);
4012
4013  // If the input is a buildvector just emit a smaller one.
4014  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
4015    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
4016                       makeArrayRef(Vec->op_begin() + NormalizedIdxVal,
4017                                    ElemsPerChunk));
4018
4019  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
4020  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
4021}
4022
4023/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
4024/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
4025/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
4026/// instructions or a simple subregister reference. Idx is an index in the
4027/// 128 bits we want.  It need not be aligned to a 128-bit boundary.  That makes
4028/// lowering EXTRACT_VECTOR_ELT operations easier.
4029static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
4030                                   SelectionDAG &DAG, SDLoc dl) {
4031  assert((Vec.getValueType().is256BitVector() ||
4032          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
4033  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
4034}
4035
4036/// Generate a DAG to grab 256-bits from a 512-bit vector.
4037static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
4038                                   SelectionDAG &DAG, SDLoc dl) {
4039  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
4040  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
4041}
4042
4043static SDValue InsertSubVector(SDValue Result, SDValue Vec,
4044                               unsigned IdxVal, SelectionDAG &DAG,
4045                               SDLoc dl, unsigned vectorWidth) {
4046  assert((vectorWidth == 128 || vectorWidth == 256) &&
4047         "Unsupported vector width");
4048  // Inserting UNDEF is Result
4049  if (Vec.getOpcode() == ISD::UNDEF)
4050    return Result;
4051  EVT VT = Vec.getValueType();
4052  EVT ElVT = VT.getVectorElementType();
4053  EVT ResultVT = Result.getValueType();
4054
4055  // Insert the relevant vectorWidth bits.
4056  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
4057
4058  // This is the index of the first element of the vectorWidth-bit chunk
4059  // we want.
4060  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
4061                               * ElemsPerChunk);
4062
4063  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
4064  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
4065}
4066
4067/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
4068/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
4069/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
4070/// simple superregister reference.  Idx is an index in the 128 bits
4071/// we want.  It need not be aligned to a 128-bit boundary.  That makes
4072/// lowering INSERT_VECTOR_ELT operations easier.
4073static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
4074                                  SelectionDAG &DAG, SDLoc dl) {
4075  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
4076
4077  // For insertion into the zero index (low half) of a 256-bit vector, it is
4078  // more efficient to generate a blend with immediate instead of an insert*128.
4079  // We are still creating an INSERT_SUBVECTOR below with an undef node to
4080  // extend the subvector to the size of the result vector. Make sure that
4081  // we are not recursing on that node by checking for undef here.
4082  if (IdxVal == 0 && Result.getValueType().is256BitVector() &&
4083      Result.getOpcode() != ISD::UNDEF) {
4084    EVT ResultVT = Result.getValueType();
4085    SDValue ZeroIndex = DAG.getIntPtrConstant(0);
4086    SDValue Undef = DAG.getUNDEF(ResultVT);
4087    SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef,
4088                                 Vec, ZeroIndex);
4089
4090    // The blend instruction, and therefore its mask, depend on the data type.
4091    MVT ScalarType = ResultVT.getScalarType().getSimpleVT();
4092    if (ScalarType.isFloatingPoint()) {
4093      // Choose either vblendps (float) or vblendpd (double).
4094      unsigned ScalarSize = ScalarType.getSizeInBits();
4095      assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type");
4096      unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f;
4097      SDValue Mask = DAG.getConstant(MaskVal, MVT::i8);
4098      return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask);
4099    }
4100
4101    const X86Subtarget &Subtarget =
4102    static_cast<const X86Subtarget &>(DAG.getSubtarget());
4103
4104    // AVX2 is needed for 256-bit integer blend support.
4105    // Integers must be cast to 32-bit because there is only vpblendd;
4106    // vpblendw can't be used for this because it has a handicapped mask.
4107
4108    // If we don't have AVX2, then cast to float. Using a wrong domain blend
4109    // is still more efficient than using the wrong domain vinsertf128 that
4110    // will be created by InsertSubVector().
4111    MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32;
4112
4113    SDValue Mask = DAG.getConstant(0x0f, MVT::i8);
4114    Vec256 = DAG.getNode(ISD::BITCAST, dl, CastVT, Vec256);
4115    Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask);
4116    return DAG.getNode(ISD::BITCAST, dl, ResultVT, Vec256);
4117  }
4118
4119  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
4120}
4121
4122static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
4123                                  SelectionDAG &DAG, SDLoc dl) {
4124  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
4125  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
4126}
4127
4128/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
4129/// instructions. This is used because creating CONCAT_VECTOR nodes of
4130/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
4131/// large BUILD_VECTORS.
4132static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
4133                                   unsigned NumElems, SelectionDAG &DAG,
4134                                   SDLoc dl) {
4135  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
4136  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
4137}
4138
4139static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
4140                                   unsigned NumElems, SelectionDAG &DAG,
4141                                   SDLoc dl) {
4142  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
4143  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
4144}
4145
4146/// getOnesVector - Returns a vector of specified type with all bits set.
4147/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4148/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4149/// Then bitcast to their original type, ensuring they get CSE'd.
4150static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4151                             SDLoc dl) {
4152  assert(VT.isVector() && "Expected a vector type");
4153
4154  SDValue Cst = DAG.getConstant(~0U, MVT::i32);
4155  SDValue Vec;
4156  if (VT.is256BitVector()) {
4157    if (HasInt256) { // AVX2
4158      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4159      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
4160    } else { // AVX
4161      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4162      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4163    }
4164  } else if (VT.is128BitVector()) {
4165    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4166  } else
4167    llvm_unreachable("Unexpected vector type");
4168
4169  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4170}
4171
4172/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4173/// operation of specified width.
4174static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4175                       SDValue V2) {
4176  unsigned NumElems = VT.getVectorNumElements();
4177  SmallVector<int, 8> Mask;
4178  Mask.push_back(NumElems);
4179  for (unsigned i = 1; i != NumElems; ++i)
4180    Mask.push_back(i);
4181  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4182}
4183
4184/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4185static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4186                          SDValue V2) {
4187  unsigned NumElems = VT.getVectorNumElements();
4188  SmallVector<int, 8> Mask;
4189  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4190    Mask.push_back(i);
4191    Mask.push_back(i + NumElems);
4192  }
4193  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4194}
4195
4196/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4197static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4198                          SDValue V2) {
4199  unsigned NumElems = VT.getVectorNumElements();
4200  SmallVector<int, 8> Mask;
4201  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4202    Mask.push_back(i + Half);
4203    Mask.push_back(i + NumElems + Half);
4204  }
4205  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4206}
4207
4208/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4209/// vector of zero or undef vector.  This produces a shuffle where the low
4210/// element of V2 is swizzled into the zero/undef vector, landing at element
4211/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4212static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4213                                           bool IsZero,
4214                                           const X86Subtarget *Subtarget,
4215                                           SelectionDAG &DAG) {
4216  MVT VT = V2.getSimpleValueType();
4217  SDValue V1 = IsZero
4218    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4219  unsigned NumElems = VT.getVectorNumElements();
4220  SmallVector<int, 16> MaskVec;
4221  for (unsigned i = 0; i != NumElems; ++i)
4222    // If this is the insertion idx, put the low elt of V2 here.
4223    MaskVec.push_back(i == Idx ? NumElems : i);
4224  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4225}
4226
4227/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4228/// target specific opcode. Returns true if the Mask could be calculated. Sets
4229/// IsUnary to true if only uses one source. Note that this will set IsUnary for
4230/// shuffles which use a single input multiple times, and in those cases it will
4231/// adjust the mask to only have indices within that single input.
4232static bool getTargetShuffleMask(SDNode *N, MVT VT,
4233                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4234  unsigned NumElems = VT.getVectorNumElements();
4235  SDValue ImmN;
4236
4237  IsUnary = false;
4238  bool IsFakeUnary = false;
4239  switch(N->getOpcode()) {
4240  case X86ISD::BLENDI:
4241    ImmN = N->getOperand(N->getNumOperands()-1);
4242    DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4243    break;
4244  case X86ISD::SHUFP:
4245    ImmN = N->getOperand(N->getNumOperands()-1);
4246    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4247    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4248    break;
4249  case X86ISD::UNPCKH:
4250    DecodeUNPCKHMask(VT, Mask);
4251    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4252    break;
4253  case X86ISD::UNPCKL:
4254    DecodeUNPCKLMask(VT, Mask);
4255    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4256    break;
4257  case X86ISD::MOVHLPS:
4258    DecodeMOVHLPSMask(NumElems, Mask);
4259    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4260    break;
4261  case X86ISD::MOVLHPS:
4262    DecodeMOVLHPSMask(NumElems, Mask);
4263    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4264    break;
4265  case X86ISD::PALIGNR:
4266    ImmN = N->getOperand(N->getNumOperands()-1);
4267    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4268    break;
4269  case X86ISD::PSHUFD:
4270  case X86ISD::VPERMILPI:
4271    ImmN = N->getOperand(N->getNumOperands()-1);
4272    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4273    IsUnary = true;
4274    break;
4275  case X86ISD::PSHUFHW:
4276    ImmN = N->getOperand(N->getNumOperands()-1);
4277    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4278    IsUnary = true;
4279    break;
4280  case X86ISD::PSHUFLW:
4281    ImmN = N->getOperand(N->getNumOperands()-1);
4282    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4283    IsUnary = true;
4284    break;
4285  case X86ISD::PSHUFB: {
4286    IsUnary = true;
4287    SDValue MaskNode = N->getOperand(1);
4288    while (MaskNode->getOpcode() == ISD::BITCAST)
4289      MaskNode = MaskNode->getOperand(0);
4290
4291    if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
4292      // If we have a build-vector, then things are easy.
4293      EVT VT = MaskNode.getValueType();
4294      assert(VT.isVector() &&
4295             "Can't produce a non-vector with a build_vector!");
4296      if (!VT.isInteger())
4297        return false;
4298
4299      int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8;
4300
4301      SmallVector<uint64_t, 32> RawMask;
4302      for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) {
4303        SDValue Op = MaskNode->getOperand(i);
4304        if (Op->getOpcode() == ISD::UNDEF) {
4305          RawMask.push_back((uint64_t)SM_SentinelUndef);
4306          continue;
4307        }
4308        auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
4309        if (!CN)
4310          return false;
4311        APInt MaskElement = CN->getAPIntValue();
4312
4313        // We now have to decode the element which could be any integer size and
4314        // extract each byte of it.
4315        for (int j = 0; j < NumBytesPerElement; ++j) {
4316          // Note that this is x86 and so always little endian: the low byte is
4317          // the first byte of the mask.
4318          RawMask.push_back(MaskElement.getLoBits(8).getZExtValue());
4319          MaskElement = MaskElement.lshr(8);
4320        }
4321      }
4322      DecodePSHUFBMask(RawMask, Mask);
4323      break;
4324    }
4325
4326    auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
4327    if (!MaskLoad)
4328      return false;
4329
4330    SDValue Ptr = MaskLoad->getBasePtr();
4331    if (Ptr->getOpcode() == X86ISD::Wrapper)
4332      Ptr = Ptr->getOperand(0);
4333
4334    auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
4335    if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
4336      return false;
4337
4338    if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
4339      DecodePSHUFBMask(C, Mask);
4340      if (Mask.empty())
4341        return false;
4342      break;
4343    }
4344
4345    return false;
4346  }
4347  case X86ISD::VPERMI:
4348    ImmN = N->getOperand(N->getNumOperands()-1);
4349    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4350    IsUnary = true;
4351    break;
4352  case X86ISD::MOVSS:
4353  case X86ISD::MOVSD:
4354    DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask);
4355    break;
4356  case X86ISD::VPERM2X128:
4357    ImmN = N->getOperand(N->getNumOperands()-1);
4358    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4359    if (Mask.empty()) return false;
4360    break;
4361  case X86ISD::MOVSLDUP:
4362    DecodeMOVSLDUPMask(VT, Mask);
4363    IsUnary = true;
4364    break;
4365  case X86ISD::MOVSHDUP:
4366    DecodeMOVSHDUPMask(VT, Mask);
4367    IsUnary = true;
4368    break;
4369  case X86ISD::MOVDDUP:
4370    DecodeMOVDDUPMask(VT, Mask);
4371    IsUnary = true;
4372    break;
4373  case X86ISD::MOVLHPD:
4374  case X86ISD::MOVLPD:
4375  case X86ISD::MOVLPS:
4376    // Not yet implemented
4377    return false;
4378  default: llvm_unreachable("unknown target shuffle node");
4379  }
4380
4381  // If we have a fake unary shuffle, the shuffle mask is spread across two
4382  // inputs that are actually the same node. Re-map the mask to always point
4383  // into the first input.
4384  if (IsFakeUnary)
4385    for (int &M : Mask)
4386      if (M >= (int)Mask.size())
4387        M -= Mask.size();
4388
4389  return true;
4390}
4391
4392/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4393/// element of the result of the vector shuffle.
4394static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4395                                   unsigned Depth) {
4396  if (Depth == 6)
4397    return SDValue();  // Limit search depth.
4398
4399  SDValue V = SDValue(N, 0);
4400  EVT VT = V.getValueType();
4401  unsigned Opcode = V.getOpcode();
4402
4403  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4404  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4405    int Elt = SV->getMaskElt(Index);
4406
4407    if (Elt < 0)
4408      return DAG.getUNDEF(VT.getVectorElementType());
4409
4410    unsigned NumElems = VT.getVectorNumElements();
4411    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4412                                         : SV->getOperand(1);
4413    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4414  }
4415
4416  // Recurse into target specific vector shuffles to find scalars.
4417  if (isTargetShuffle(Opcode)) {
4418    MVT ShufVT = V.getSimpleValueType();
4419    unsigned NumElems = ShufVT.getVectorNumElements();
4420    SmallVector<int, 16> ShuffleMask;
4421    bool IsUnary;
4422
4423    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4424      return SDValue();
4425
4426    int Elt = ShuffleMask[Index];
4427    if (Elt < 0)
4428      return DAG.getUNDEF(ShufVT.getVectorElementType());
4429
4430    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4431                                         : N->getOperand(1);
4432    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4433                               Depth+1);
4434  }
4435
4436  // Actual nodes that may contain scalar elements
4437  if (Opcode == ISD::BITCAST) {
4438    V = V.getOperand(0);
4439    EVT SrcVT = V.getValueType();
4440    unsigned NumElems = VT.getVectorNumElements();
4441
4442    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4443      return SDValue();
4444  }
4445
4446  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4447    return (Index == 0) ? V.getOperand(0)
4448                        : DAG.getUNDEF(VT.getVectorElementType());
4449
4450  if (V.getOpcode() == ISD::BUILD_VECTOR)
4451    return V.getOperand(Index);
4452
4453  return SDValue();
4454}
4455
4456/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4457///
4458static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4459                                       unsigned NumNonZero, unsigned NumZero,
4460                                       SelectionDAG &DAG,
4461                                       const X86Subtarget* Subtarget,
4462                                       const TargetLowering &TLI) {
4463  if (NumNonZero > 8)
4464    return SDValue();
4465
4466  SDLoc dl(Op);
4467  SDValue V;
4468  bool First = true;
4469
4470  // SSE4.1 - use PINSRB to insert each byte directly.
4471  if (Subtarget->hasSSE41()) {
4472    for (unsigned i = 0; i < 16; ++i) {
4473      bool isNonZero = (NonZeros & (1 << i)) != 0;
4474      if (isNonZero) {
4475        if (First) {
4476          if (NumZero)
4477            V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl);
4478          else
4479            V = DAG.getUNDEF(MVT::v16i8);
4480          First = false;
4481        }
4482        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4483                        MVT::v16i8, V, Op.getOperand(i),
4484                        DAG.getIntPtrConstant(i));
4485      }
4486    }
4487
4488    return V;
4489  }
4490
4491  // Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
4492  for (unsigned i = 0; i < 16; ++i) {
4493    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4494    if (ThisIsNonZero && First) {
4495      if (NumZero)
4496        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4497      else
4498        V = DAG.getUNDEF(MVT::v8i16);
4499      First = false;
4500    }
4501
4502    if ((i & 1) != 0) {
4503      SDValue ThisElt, LastElt;
4504      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4505      if (LastIsNonZero) {
4506        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4507                              MVT::i16, Op.getOperand(i-1));
4508      }
4509      if (ThisIsNonZero) {
4510        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4511        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4512                              ThisElt, DAG.getConstant(8, MVT::i8));
4513        if (LastIsNonZero)
4514          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4515      } else
4516        ThisElt = LastElt;
4517
4518      if (ThisElt.getNode())
4519        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4520                        DAG.getIntPtrConstant(i/2));
4521    }
4522  }
4523
4524  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4525}
4526
4527/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4528///
4529static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4530                                     unsigned NumNonZero, unsigned NumZero,
4531                                     SelectionDAG &DAG,
4532                                     const X86Subtarget* Subtarget,
4533                                     const TargetLowering &TLI) {
4534  if (NumNonZero > 4)
4535    return SDValue();
4536
4537  SDLoc dl(Op);
4538  SDValue V;
4539  bool First = true;
4540  for (unsigned i = 0; i < 8; ++i) {
4541    bool isNonZero = (NonZeros & (1 << i)) != 0;
4542    if (isNonZero) {
4543      if (First) {
4544        if (NumZero)
4545          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4546        else
4547          V = DAG.getUNDEF(MVT::v8i16);
4548        First = false;
4549      }
4550      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4551                      MVT::v8i16, V, Op.getOperand(i),
4552                      DAG.getIntPtrConstant(i));
4553    }
4554  }
4555
4556  return V;
4557}
4558
4559/// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
4560static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
4561                                     const X86Subtarget *Subtarget,
4562                                     const TargetLowering &TLI) {
4563  // Find all zeroable elements.
4564  std::bitset<4> Zeroable;
4565  for (int i=0; i < 4; ++i) {
4566    SDValue Elt = Op->getOperand(i);
4567    Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt));
4568  }
4569  assert(Zeroable.size() - Zeroable.count() > 1 &&
4570         "We expect at least two non-zero elements!");
4571
4572  // We only know how to deal with build_vector nodes where elements are either
4573  // zeroable or extract_vector_elt with constant index.
4574  SDValue FirstNonZero;
4575  unsigned FirstNonZeroIdx;
4576  for (unsigned i=0; i < 4; ++i) {
4577    if (Zeroable[i])
4578      continue;
4579    SDValue Elt = Op->getOperand(i);
4580    if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4581        !isa<ConstantSDNode>(Elt.getOperand(1)))
4582      return SDValue();
4583    // Make sure that this node is extracting from a 128-bit vector.
4584    MVT VT = Elt.getOperand(0).getSimpleValueType();
4585    if (!VT.is128BitVector())
4586      return SDValue();
4587    if (!FirstNonZero.getNode()) {
4588      FirstNonZero = Elt;
4589      FirstNonZeroIdx = i;
4590    }
4591  }
4592
4593  assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
4594  SDValue V1 = FirstNonZero.getOperand(0);
4595  MVT VT = V1.getSimpleValueType();
4596
4597  // See if this build_vector can be lowered as a blend with zero.
4598  SDValue Elt;
4599  unsigned EltMaskIdx, EltIdx;
4600  int Mask[4];
4601  for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
4602    if (Zeroable[EltIdx]) {
4603      // The zero vector will be on the right hand side.
4604      Mask[EltIdx] = EltIdx+4;
4605      continue;
4606    }
4607
4608    Elt = Op->getOperand(EltIdx);
4609    // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
4610    EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue();
4611    if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
4612      break;
4613    Mask[EltIdx] = EltIdx;
4614  }
4615
4616  if (EltIdx == 4) {
4617    // Let the shuffle legalizer deal with blend operations.
4618    SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
4619    if (V1.getSimpleValueType() != VT)
4620      V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1);
4621    return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]);
4622  }
4623
4624  // See if we can lower this build_vector to a INSERTPS.
4625  if (!Subtarget->hasSSE41())
4626    return SDValue();
4627
4628  SDValue V2 = Elt.getOperand(0);
4629  if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
4630    V1 = SDValue();
4631
4632  bool CanFold = true;
4633  for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
4634    if (Zeroable[i])
4635      continue;
4636
4637    SDValue Current = Op->getOperand(i);
4638    SDValue SrcVector = Current->getOperand(0);
4639    if (!V1.getNode())
4640      V1 = SrcVector;
4641    CanFold = SrcVector == V1 &&
4642      cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i;
4643  }
4644
4645  if (!CanFold)
4646    return SDValue();
4647
4648  assert(V1.getNode() && "Expected at least two non-zero elements!");
4649  if (V1.getSimpleValueType() != MVT::v4f32)
4650    V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1);
4651  if (V2.getSimpleValueType() != MVT::v4f32)
4652    V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2);
4653
4654  // Ok, we can emit an INSERTPS instruction.
4655  unsigned ZMask = Zeroable.to_ulong();
4656
4657  unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
4658  assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
4659  SDValue Result = DAG.getNode(X86ISD::INSERTPS, SDLoc(Op), MVT::v4f32, V1, V2,
4660                               DAG.getIntPtrConstant(InsertPSMask));
4661  return DAG.getNode(ISD::BITCAST, SDLoc(Op), VT, Result);
4662}
4663
4664/// Return a vector logical shift node.
4665static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4666                         unsigned NumBits, SelectionDAG &DAG,
4667                         const TargetLowering &TLI, SDLoc dl) {
4668  assert(VT.is128BitVector() && "Unknown type for VShift");
4669  MVT ShVT = MVT::v2i64;
4670  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4671  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4672  MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(SrcOp.getValueType());
4673  assert(NumBits % 8 == 0 && "Only support byte sized shifts");
4674  SDValue ShiftVal = DAG.getConstant(NumBits/8, ScalarShiftTy);
4675  return DAG.getNode(ISD::BITCAST, dl, VT,
4676                     DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
4677}
4678
4679static SDValue
4680LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
4681
4682  // Check if the scalar load can be widened into a vector load. And if
4683  // the address is "base + cst" see if the cst can be "absorbed" into
4684  // the shuffle mask.
4685  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4686    SDValue Ptr = LD->getBasePtr();
4687    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4688      return SDValue();
4689    EVT PVT = LD->getValueType(0);
4690    if (PVT != MVT::i32 && PVT != MVT::f32)
4691      return SDValue();
4692
4693    int FI = -1;
4694    int64_t Offset = 0;
4695    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4696      FI = FINode->getIndex();
4697      Offset = 0;
4698    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4699               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4700      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4701      Offset = Ptr.getConstantOperandVal(1);
4702      Ptr = Ptr.getOperand(0);
4703    } else {
4704      return SDValue();
4705    }
4706
4707    // FIXME: 256-bit vector instructions don't require a strict alignment,
4708    // improve this code to support it better.
4709    unsigned RequiredAlign = VT.getSizeInBits()/8;
4710    SDValue Chain = LD->getChain();
4711    // Make sure the stack object alignment is at least 16 or 32.
4712    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4713    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4714      if (MFI->isFixedObjectIndex(FI)) {
4715        // Can't change the alignment. FIXME: It's possible to compute
4716        // the exact stack offset and reference FI + adjust offset instead.
4717        // If someone *really* cares about this. That's the way to implement it.
4718        return SDValue();
4719      } else {
4720        MFI->setObjectAlignment(FI, RequiredAlign);
4721      }
4722    }
4723
4724    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4725    // Ptr + (Offset & ~15).
4726    if (Offset < 0)
4727      return SDValue();
4728    if ((Offset % RequiredAlign) & 3)
4729      return SDValue();
4730    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4731    if (StartOffset)
4732      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
4733                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4734
4735    int EltNo = (Offset - StartOffset) >> 2;
4736    unsigned NumElems = VT.getVectorNumElements();
4737
4738    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4739    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4740                             LD->getPointerInfo().getWithOffset(StartOffset),
4741                             false, false, false, 0);
4742
4743    SmallVector<int, 8> Mask(NumElems, EltNo);
4744
4745    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4746  }
4747
4748  return SDValue();
4749}
4750
4751/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
4752/// elements can be replaced by a single large load which has the same value as
4753/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
4754///
4755/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4756///
4757/// FIXME: we'd also like to handle the case where the last elements are zero
4758/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4759/// There's even a handy isZeroNode for that purpose.
4760static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
4761                                        SDLoc &DL, SelectionDAG &DAG,
4762                                        bool isAfterLegalize) {
4763  unsigned NumElems = Elts.size();
4764
4765  LoadSDNode *LDBase = nullptr;
4766  unsigned LastLoadedElt = -1U;
4767
4768  // For each element in the initializer, see if we've found a load or an undef.
4769  // If we don't find an initial load element, or later load elements are
4770  // non-consecutive, bail out.
4771  for (unsigned i = 0; i < NumElems; ++i) {
4772    SDValue Elt = Elts[i];
4773    // Look through a bitcast.
4774    if (Elt.getNode() && Elt.getOpcode() == ISD::BITCAST)
4775      Elt = Elt.getOperand(0);
4776    if (!Elt.getNode() ||
4777        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4778      return SDValue();
4779    if (!LDBase) {
4780      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4781        return SDValue();
4782      LDBase = cast<LoadSDNode>(Elt.getNode());
4783      LastLoadedElt = i;
4784      continue;
4785    }
4786    if (Elt.getOpcode() == ISD::UNDEF)
4787      continue;
4788
4789    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4790    EVT LdVT = Elt.getValueType();
4791    // Each loaded element must be the correct fractional portion of the
4792    // requested vector load.
4793    if (LdVT.getSizeInBits() != VT.getSizeInBits() / NumElems)
4794      return SDValue();
4795    if (!DAG.isConsecutiveLoad(LD, LDBase, LdVT.getSizeInBits() / 8, i))
4796      return SDValue();
4797    LastLoadedElt = i;
4798  }
4799
4800  // If we have found an entire vector of loads and undefs, then return a large
4801  // load of the entire vector width starting at the base pointer.  If we found
4802  // consecutive loads for the low half, generate a vzext_load node.
4803  if (LastLoadedElt == NumElems - 1) {
4804    assert(LDBase && "Did not find base load for merging consecutive loads");
4805    EVT EltVT = LDBase->getValueType(0);
4806    // Ensure that the input vector size for the merged loads matches the
4807    // cumulative size of the input elements.
4808    if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems)
4809      return SDValue();
4810
4811    if (isAfterLegalize &&
4812        !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
4813      return SDValue();
4814
4815    SDValue NewLd = SDValue();
4816
4817    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4818                        LDBase->getPointerInfo(), LDBase->isVolatile(),
4819                        LDBase->isNonTemporal(), LDBase->isInvariant(),
4820                        LDBase->getAlignment());
4821
4822    if (LDBase->hasAnyUseOfValue(1)) {
4823      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
4824                                     SDValue(LDBase, 1),
4825                                     SDValue(NewLd.getNode(), 1));
4826      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
4827      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
4828                             SDValue(NewLd.getNode(), 1));
4829    }
4830
4831    return NewLd;
4832  }
4833
4834  //TODO: The code below fires only for for loading the low v2i32 / v2f32
4835  //of a v4i32 / v4f32. It's probably worth generalizing.
4836  EVT EltVT = VT.getVectorElementType();
4837  if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) &&
4838      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4839    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4840    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4841    SDValue ResNode =
4842        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
4843                                LDBase->getPointerInfo(),
4844                                LDBase->getAlignment(),
4845                                false/*isVolatile*/, true/*ReadMem*/,
4846                                false/*WriteMem*/);
4847
4848    // Make sure the newly-created LOAD is in the same position as LDBase in
4849    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
4850    // update uses of LDBase's output chain to use the TokenFactor.
4851    if (LDBase->hasAnyUseOfValue(1)) {
4852      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
4853                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
4854      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
4855      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
4856                             SDValue(ResNode.getNode(), 1));
4857    }
4858
4859    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4860  }
4861  return SDValue();
4862}
4863
4864/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4865/// to generate a splat value for the following cases:
4866/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4867/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4868/// a scalar load, or a constant.
4869/// The VBROADCAST node is returned when a pattern is found,
4870/// or SDValue() otherwise.
4871static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
4872                                    SelectionDAG &DAG) {
4873  // VBROADCAST requires AVX.
4874  // TODO: Splats could be generated for non-AVX CPUs using SSE
4875  // instructions, but there's less potential gain for only 128-bit vectors.
4876  if (!Subtarget->hasAVX())
4877    return SDValue();
4878
4879  MVT VT = Op.getSimpleValueType();
4880  SDLoc dl(Op);
4881
4882  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
4883         "Unsupported vector type for broadcast.");
4884
4885  SDValue Ld;
4886  bool ConstSplatVal;
4887
4888  switch (Op.getOpcode()) {
4889    default:
4890      // Unknown pattern found.
4891      return SDValue();
4892
4893    case ISD::BUILD_VECTOR: {
4894      auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
4895      BitVector UndefElements;
4896      SDValue Splat = BVOp->getSplatValue(&UndefElements);
4897
4898      // We need a splat of a single value to use broadcast, and it doesn't
4899      // make any sense if the value is only in one element of the vector.
4900      if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
4901        return SDValue();
4902
4903      Ld = Splat;
4904      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4905                       Ld.getOpcode() == ISD::ConstantFP);
4906
4907      // Make sure that all of the users of a non-constant load are from the
4908      // BUILD_VECTOR node.
4909      if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
4910        return SDValue();
4911      break;
4912    }
4913
4914    case ISD::VECTOR_SHUFFLE: {
4915      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4916
4917      // Shuffles must have a splat mask where the first element is
4918      // broadcasted.
4919      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4920        return SDValue();
4921
4922      SDValue Sc = Op.getOperand(0);
4923      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
4924          Sc.getOpcode() != ISD::BUILD_VECTOR) {
4925
4926        if (!Subtarget->hasInt256())
4927          return SDValue();
4928
4929        // Use the register form of the broadcast instruction available on AVX2.
4930        if (VT.getSizeInBits() >= 256)
4931          Sc = Extract128BitVector(Sc, 0, DAG, dl);
4932        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
4933      }
4934
4935      Ld = Sc.getOperand(0);
4936      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4937                       Ld.getOpcode() == ISD::ConstantFP);
4938
4939      // The scalar_to_vector node and the suspected
4940      // load node must have exactly one user.
4941      // Constants may have multiple users.
4942
4943      // AVX-512 has register version of the broadcast
4944      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
4945        Ld.getValueType().getSizeInBits() >= 32;
4946      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
4947          !hasRegVer))
4948        return SDValue();
4949      break;
4950    }
4951  }
4952
4953  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4954  bool IsGE256 = (VT.getSizeInBits() >= 256);
4955
4956  // When optimizing for size, generate up to 5 extra bytes for a broadcast
4957  // instruction to save 8 or more bytes of constant pool data.
4958  // TODO: If multiple splats are generated to load the same constant,
4959  // it may be detrimental to overall size. There needs to be a way to detect
4960  // that condition to know if this is truly a size win.
4961  const Function *F = DAG.getMachineFunction().getFunction();
4962  bool OptForSize = F->hasFnAttribute(Attribute::OptimizeForSize);
4963
4964  // Handle broadcasting a single constant scalar from the constant pool
4965  // into a vector.
4966  // On Sandybridge (no AVX2), it is still better to load a constant vector
4967  // from the constant pool and not to broadcast it from a scalar.
4968  // But override that restriction when optimizing for size.
4969  // TODO: Check if splatting is recommended for other AVX-capable CPUs.
4970  if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) {
4971    EVT CVT = Ld.getValueType();
4972    assert(!CVT.isVector() && "Must not broadcast a vector type");
4973
4974    // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
4975    // For size optimization, also splat v2f64 and v2i64, and for size opt
4976    // with AVX2, also splat i8 and i16.
4977    // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
4978    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
4979        (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) {
4980      const Constant *C = nullptr;
4981      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4982        C = CI->getConstantIntValue();
4983      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4984        C = CF->getConstantFPValue();
4985
4986      assert(C && "Invalid constant type");
4987
4988      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4989      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
4990      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4991      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4992                       MachinePointerInfo::getConstantPool(),
4993                       false, false, false, Alignment);
4994
4995      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4996    }
4997  }
4998
4999  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5000
5001  // Handle AVX2 in-register broadcasts.
5002  if (!IsLoad && Subtarget->hasInt256() &&
5003      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5004    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5005
5006  // The scalar source must be a normal load.
5007  if (!IsLoad)
5008    return SDValue();
5009
5010  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
5011      (Subtarget->hasVLX() && ScalarSize == 64))
5012    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5013
5014  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5015  // double since there is no vbroadcastsd xmm
5016  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5017    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5018      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5019  }
5020
5021  // Unsupported broadcast.
5022  return SDValue();
5023}
5024
5025/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
5026/// underlying vector and index.
5027///
5028/// Modifies \p ExtractedFromVec to the real vector and returns the real
5029/// index.
5030static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
5031                                         SDValue ExtIdx) {
5032  int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5033  if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
5034    return Idx;
5035
5036  // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
5037  // lowered this:
5038  //   (extract_vector_elt (v8f32 %vreg1), Constant<6>)
5039  // to:
5040  //   (extract_vector_elt (vector_shuffle<2,u,u,u>
5041  //                           (extract_subvector (v8f32 %vreg0), Constant<4>),
5042  //                           undef)
5043  //                       Constant<0>)
5044  // In this case the vector is the extract_subvector expression and the index
5045  // is 2, as specified by the shuffle.
5046  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
5047  SDValue ShuffleVec = SVOp->getOperand(0);
5048  MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
5049  assert(ShuffleVecVT.getVectorElementType() ==
5050         ExtractedFromVec.getSimpleValueType().getVectorElementType());
5051
5052  int ShuffleIdx = SVOp->getMaskElt(Idx);
5053  if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
5054    ExtractedFromVec = ShuffleVec;
5055    return ShuffleIdx;
5056  }
5057  return Idx;
5058}
5059
5060static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5061  MVT VT = Op.getSimpleValueType();
5062
5063  // Skip if insert_vec_elt is not supported.
5064  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5065  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5066    return SDValue();
5067
5068  SDLoc DL(Op);
5069  unsigned NumElems = Op.getNumOperands();
5070
5071  SDValue VecIn1;
5072  SDValue VecIn2;
5073  SmallVector<unsigned, 4> InsertIndices;
5074  SmallVector<int, 8> Mask(NumElems, -1);
5075
5076  for (unsigned i = 0; i != NumElems; ++i) {
5077    unsigned Opc = Op.getOperand(i).getOpcode();
5078
5079    if (Opc == ISD::UNDEF)
5080      continue;
5081
5082    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5083      // Quit if more than 1 elements need inserting.
5084      if (InsertIndices.size() > 1)
5085        return SDValue();
5086
5087      InsertIndices.push_back(i);
5088      continue;
5089    }
5090
5091    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5092    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5093    // Quit if non-constant index.
5094    if (!isa<ConstantSDNode>(ExtIdx))
5095      return SDValue();
5096    int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
5097
5098    // Quit if extracted from vector of different type.
5099    if (ExtractedFromVec.getValueType() != VT)
5100      return SDValue();
5101
5102    if (!VecIn1.getNode())
5103      VecIn1 = ExtractedFromVec;
5104    else if (VecIn1 != ExtractedFromVec) {
5105      if (!VecIn2.getNode())
5106        VecIn2 = ExtractedFromVec;
5107      else if (VecIn2 != ExtractedFromVec)
5108        // Quit if more than 2 vectors to shuffle
5109        return SDValue();
5110    }
5111
5112    if (ExtractedFromVec == VecIn1)
5113      Mask[i] = Idx;
5114    else if (ExtractedFromVec == VecIn2)
5115      Mask[i] = Idx + NumElems;
5116  }
5117
5118  if (!VecIn1.getNode())
5119    return SDValue();
5120
5121  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5122  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5123  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5124    unsigned Idx = InsertIndices[i];
5125    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5126                     DAG.getIntPtrConstant(Idx));
5127  }
5128
5129  return NV;
5130}
5131
5132// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5133SDValue
5134X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5135
5136  MVT VT = Op.getSimpleValueType();
5137  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5138         "Unexpected type in LowerBUILD_VECTORvXi1!");
5139
5140  SDLoc dl(Op);
5141  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5142    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5143    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5144    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5145  }
5146
5147  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5148    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
5149    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5150    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5151  }
5152
5153  bool AllContants = true;
5154  uint64_t Immediate = 0;
5155  int NonConstIdx = -1;
5156  bool IsSplat = true;
5157  unsigned NumNonConsts = 0;
5158  unsigned NumConsts = 0;
5159  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5160    SDValue In = Op.getOperand(idx);
5161    if (In.getOpcode() == ISD::UNDEF)
5162      continue;
5163    if (!isa<ConstantSDNode>(In)) {
5164      AllContants = false;
5165      NonConstIdx = idx;
5166      NumNonConsts++;
5167    } else {
5168      NumConsts++;
5169      if (cast<ConstantSDNode>(In)->getZExtValue())
5170      Immediate |= (1ULL << idx);
5171    }
5172    if (In != Op.getOperand(0))
5173      IsSplat = false;
5174  }
5175
5176  if (AllContants) {
5177    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
5178      DAG.getConstant(Immediate, MVT::i16));
5179    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
5180                       DAG.getIntPtrConstant(0));
5181  }
5182
5183  if (NumNonConsts == 1 && NonConstIdx != 0) {
5184    SDValue DstVec;
5185    if (NumConsts) {
5186      SDValue VecAsImm = DAG.getConstant(Immediate,
5187                                         MVT::getIntegerVT(VT.getSizeInBits()));
5188      DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
5189    }
5190    else
5191      DstVec = DAG.getUNDEF(VT);
5192    return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5193                       Op.getOperand(NonConstIdx),
5194                       DAG.getIntPtrConstant(NonConstIdx));
5195  }
5196  if (!IsSplat && (NonConstIdx != 0))
5197    llvm_unreachable("Unsupported BUILD_VECTOR operation");
5198  MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8;
5199  SDValue Select;
5200  if (IsSplat)
5201    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
5202                          DAG.getConstant(-1, SelectVT),
5203                          DAG.getConstant(0, SelectVT));
5204  else
5205    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
5206                         DAG.getConstant((Immediate | 1), SelectVT),
5207                         DAG.getConstant(Immediate, SelectVT));
5208  return DAG.getNode(ISD::BITCAST, dl, VT, Select);
5209}
5210
5211/// \brief Return true if \p N implements a horizontal binop and return the
5212/// operands for the horizontal binop into V0 and V1.
5213///
5214/// This is a helper function of PerformBUILD_VECTORCombine.
5215/// This function checks that the build_vector \p N in input implements a
5216/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
5217/// operation to match.
5218/// For example, if \p Opcode is equal to ISD::ADD, then this function
5219/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
5220/// is equal to ISD::SUB, then this function checks if this is a horizontal
5221/// arithmetic sub.
5222///
5223/// This function only analyzes elements of \p N whose indices are
5224/// in range [BaseIdx, LastIdx).
5225static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
5226                              SelectionDAG &DAG,
5227                              unsigned BaseIdx, unsigned LastIdx,
5228                              SDValue &V0, SDValue &V1) {
5229  EVT VT = N->getValueType(0);
5230
5231  assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
5232  assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
5233         "Invalid Vector in input!");
5234
5235  bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
5236  bool CanFold = true;
5237  unsigned ExpectedVExtractIdx = BaseIdx;
5238  unsigned NumElts = LastIdx - BaseIdx;
5239  V0 = DAG.getUNDEF(VT);
5240  V1 = DAG.getUNDEF(VT);
5241
5242  // Check if N implements a horizontal binop.
5243  for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
5244    SDValue Op = N->getOperand(i + BaseIdx);
5245
5246    // Skip UNDEFs.
5247    if (Op->getOpcode() == ISD::UNDEF) {
5248      // Update the expected vector extract index.
5249      if (i * 2 == NumElts)
5250        ExpectedVExtractIdx = BaseIdx;
5251      ExpectedVExtractIdx += 2;
5252      continue;
5253    }
5254
5255    CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
5256
5257    if (!CanFold)
5258      break;
5259
5260    SDValue Op0 = Op.getOperand(0);
5261    SDValue Op1 = Op.getOperand(1);
5262
5263    // Try to match the following pattern:
5264    // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
5265    CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5266        Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5267        Op0.getOperand(0) == Op1.getOperand(0) &&
5268        isa<ConstantSDNode>(Op0.getOperand(1)) &&
5269        isa<ConstantSDNode>(Op1.getOperand(1)));
5270    if (!CanFold)
5271      break;
5272
5273    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
5274    unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
5275
5276    if (i * 2 < NumElts) {
5277      if (V0.getOpcode() == ISD::UNDEF)
5278        V0 = Op0.getOperand(0);
5279    } else {
5280      if (V1.getOpcode() == ISD::UNDEF)
5281        V1 = Op0.getOperand(0);
5282      if (i * 2 == NumElts)
5283        ExpectedVExtractIdx = BaseIdx;
5284    }
5285
5286    SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
5287    if (I0 == ExpectedVExtractIdx)
5288      CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
5289    else if (IsCommutable && I1 == ExpectedVExtractIdx) {
5290      // Try to match the following dag sequence:
5291      // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
5292      CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
5293    } else
5294      CanFold = false;
5295
5296    ExpectedVExtractIdx += 2;
5297  }
5298
5299  return CanFold;
5300}
5301
5302/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
5303/// a concat_vector.
5304///
5305/// This is a helper function of PerformBUILD_VECTORCombine.
5306/// This function expects two 256-bit vectors called V0 and V1.
5307/// At first, each vector is split into two separate 128-bit vectors.
5308/// Then, the resulting 128-bit vectors are used to implement two
5309/// horizontal binary operations.
5310///
5311/// The kind of horizontal binary operation is defined by \p X86Opcode.
5312///
5313/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
5314/// the two new horizontal binop.
5315/// When Mode is set, the first horizontal binop dag node would take as input
5316/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
5317/// horizontal binop dag node would take as input the lower 128-bit of V1
5318/// and the upper 128-bit of V1.
5319///   Example:
5320///     HADD V0_LO, V0_HI
5321///     HADD V1_LO, V1_HI
5322///
5323/// Otherwise, the first horizontal binop dag node takes as input the lower
5324/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
5325/// dag node takes the the upper 128-bit of V0 and the upper 128-bit of V1.
5326///   Example:
5327///     HADD V0_LO, V1_LO
5328///     HADD V0_HI, V1_HI
5329///
5330/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
5331/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
5332/// the upper 128-bits of the result.
5333static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
5334                                     SDLoc DL, SelectionDAG &DAG,
5335                                     unsigned X86Opcode, bool Mode,
5336                                     bool isUndefLO, bool isUndefHI) {
5337  EVT VT = V0.getValueType();
5338  assert(VT.is256BitVector() && VT == V1.getValueType() &&
5339         "Invalid nodes in input!");
5340
5341  unsigned NumElts = VT.getVectorNumElements();
5342  SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL);
5343  SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL);
5344  SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL);
5345  SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL);
5346  EVT NewVT = V0_LO.getValueType();
5347
5348  SDValue LO = DAG.getUNDEF(NewVT);
5349  SDValue HI = DAG.getUNDEF(NewVT);
5350
5351  if (Mode) {
5352    // Don't emit a horizontal binop if the result is expected to be UNDEF.
5353    if (!isUndefLO && V0->getOpcode() != ISD::UNDEF)
5354      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
5355    if (!isUndefHI && V1->getOpcode() != ISD::UNDEF)
5356      HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
5357  } else {
5358    // Don't emit a horizontal binop if the result is expected to be UNDEF.
5359    if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF ||
5360                       V1_LO->getOpcode() != ISD::UNDEF))
5361      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
5362
5363    if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF ||
5364                       V1_HI->getOpcode() != ISD::UNDEF))
5365      HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
5366  }
5367
5368  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
5369}
5370
5371/// \brief Try to fold a build_vector that performs an 'addsub' into the
5372/// sequence of 'vadd + vsub + blendi'.
5373static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
5374                           const X86Subtarget *Subtarget) {
5375  SDLoc DL(BV);
5376  EVT VT = BV->getValueType(0);
5377  unsigned NumElts = VT.getVectorNumElements();
5378  SDValue InVec0 = DAG.getUNDEF(VT);
5379  SDValue InVec1 = DAG.getUNDEF(VT);
5380
5381  assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
5382          VT == MVT::v2f64) && "build_vector with an invalid type found!");
5383
5384  // Odd-numbered elements in the input build vector are obtained from
5385  // adding two integer/float elements.
5386  // Even-numbered elements in the input build vector are obtained from
5387  // subtracting two integer/float elements.
5388  unsigned ExpectedOpcode = ISD::FSUB;
5389  unsigned NextExpectedOpcode = ISD::FADD;
5390  bool AddFound = false;
5391  bool SubFound = false;
5392
5393  for (unsigned i = 0, e = NumElts; i != e; ++i) {
5394    SDValue Op = BV->getOperand(i);
5395
5396    // Skip 'undef' values.
5397    unsigned Opcode = Op.getOpcode();
5398    if (Opcode == ISD::UNDEF) {
5399      std::swap(ExpectedOpcode, NextExpectedOpcode);
5400      continue;
5401    }
5402
5403    // Early exit if we found an unexpected opcode.
5404    if (Opcode != ExpectedOpcode)
5405      return SDValue();
5406
5407    SDValue Op0 = Op.getOperand(0);
5408    SDValue Op1 = Op.getOperand(1);
5409
5410    // Try to match the following pattern:
5411    // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
5412    // Early exit if we cannot match that sequence.
5413    if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5414        Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5415        !isa<ConstantSDNode>(Op0.getOperand(1)) ||
5416        !isa<ConstantSDNode>(Op1.getOperand(1)) ||
5417        Op0.getOperand(1) != Op1.getOperand(1))
5418      return SDValue();
5419
5420    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
5421    if (I0 != i)
5422      return SDValue();
5423
5424    // We found a valid add/sub node. Update the information accordingly.
5425    if (i & 1)
5426      AddFound = true;
5427    else
5428      SubFound = true;
5429
5430    // Update InVec0 and InVec1.
5431    if (InVec0.getOpcode() == ISD::UNDEF)
5432      InVec0 = Op0.getOperand(0);
5433    if (InVec1.getOpcode() == ISD::UNDEF)
5434      InVec1 = Op1.getOperand(0);
5435
5436    // Make sure that operands in input to each add/sub node always
5437    // come from a same pair of vectors.
5438    if (InVec0 != Op0.getOperand(0)) {
5439      if (ExpectedOpcode == ISD::FSUB)
5440        return SDValue();
5441
5442      // FADD is commutable. Try to commute the operands
5443      // and then test again.
5444      std::swap(Op0, Op1);
5445      if (InVec0 != Op0.getOperand(0))
5446        return SDValue();
5447    }
5448
5449    if (InVec1 != Op1.getOperand(0))
5450      return SDValue();
5451
5452    // Update the pair of expected opcodes.
5453    std::swap(ExpectedOpcode, NextExpectedOpcode);
5454  }
5455
5456  // Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
5457  if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
5458      InVec1.getOpcode() != ISD::UNDEF)
5459    return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1);
5460
5461  return SDValue();
5462}
5463
5464static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
5465                                          const X86Subtarget *Subtarget) {
5466  SDLoc DL(N);
5467  EVT VT = N->getValueType(0);
5468  unsigned NumElts = VT.getVectorNumElements();
5469  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
5470  SDValue InVec0, InVec1;
5471
5472  // Try to match an ADDSUB.
5473  if ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
5474      (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) {
5475    SDValue Value = matchAddSub(BV, DAG, Subtarget);
5476    if (Value.getNode())
5477      return Value;
5478  }
5479
5480  // Try to match horizontal ADD/SUB.
5481  unsigned NumUndefsLO = 0;
5482  unsigned NumUndefsHI = 0;
5483  unsigned Half = NumElts/2;
5484
5485  // Count the number of UNDEF operands in the build_vector in input.
5486  for (unsigned i = 0, e = Half; i != e; ++i)
5487    if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
5488      NumUndefsLO++;
5489
5490  for (unsigned i = Half, e = NumElts; i != e; ++i)
5491    if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
5492      NumUndefsHI++;
5493
5494  // Early exit if this is either a build_vector of all UNDEFs or all the
5495  // operands but one are UNDEF.
5496  if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
5497    return SDValue();
5498
5499  if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
5500    // Try to match an SSE3 float HADD/HSUB.
5501    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
5502      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
5503
5504    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
5505      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
5506  } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
5507    // Try to match an SSSE3 integer HADD/HSUB.
5508    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
5509      return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
5510
5511    if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
5512      return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
5513  }
5514
5515  if (!Subtarget->hasAVX())
5516    return SDValue();
5517
5518  if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
5519    // Try to match an AVX horizontal add/sub of packed single/double
5520    // precision floating point values from 256-bit vectors.
5521    SDValue InVec2, InVec3;
5522    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
5523        isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
5524        ((InVec0.getOpcode() == ISD::UNDEF ||
5525          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
5526        ((InVec1.getOpcode() == ISD::UNDEF ||
5527          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
5528      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
5529
5530    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
5531        isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
5532        ((InVec0.getOpcode() == ISD::UNDEF ||
5533          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
5534        ((InVec1.getOpcode() == ISD::UNDEF ||
5535          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
5536      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
5537  } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
5538    // Try to match an AVX2 horizontal add/sub of signed integers.
5539    SDValue InVec2, InVec3;
5540    unsigned X86Opcode;
5541    bool CanFold = true;
5542
5543    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
5544        isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
5545        ((InVec0.getOpcode() == ISD::UNDEF ||
5546          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
5547        ((InVec1.getOpcode() == ISD::UNDEF ||
5548          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
5549      X86Opcode = X86ISD::HADD;
5550    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
5551        isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
5552        ((InVec0.getOpcode() == ISD::UNDEF ||
5553          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
5554        ((InVec1.getOpcode() == ISD::UNDEF ||
5555          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
5556      X86Opcode = X86ISD::HSUB;
5557    else
5558      CanFold = false;
5559
5560    if (CanFold) {
5561      // Fold this build_vector into a single horizontal add/sub.
5562      // Do this only if the target has AVX2.
5563      if (Subtarget->hasAVX2())
5564        return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
5565
5566      // Do not try to expand this build_vector into a pair of horizontal
5567      // add/sub if we can emit a pair of scalar add/sub.
5568      if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
5569        return SDValue();
5570
5571      // Convert this build_vector into a pair of horizontal binop followed by
5572      // a concat vector.
5573      bool isUndefLO = NumUndefsLO == Half;
5574      bool isUndefHI = NumUndefsHI == Half;
5575      return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
5576                                   isUndefLO, isUndefHI);
5577    }
5578  }
5579
5580  if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
5581       VT == MVT::v16i16) && Subtarget->hasAVX()) {
5582    unsigned X86Opcode;
5583    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
5584      X86Opcode = X86ISD::HADD;
5585    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
5586      X86Opcode = X86ISD::HSUB;
5587    else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
5588      X86Opcode = X86ISD::FHADD;
5589    else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
5590      X86Opcode = X86ISD::FHSUB;
5591    else
5592      return SDValue();
5593
5594    // Don't try to expand this build_vector into a pair of horizontal add/sub
5595    // if we can simply emit a pair of scalar add/sub.
5596    if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
5597      return SDValue();
5598
5599    // Convert this build_vector into two horizontal add/sub followed by
5600    // a concat vector.
5601    bool isUndefLO = NumUndefsLO == Half;
5602    bool isUndefHI = NumUndefsHI == Half;
5603    return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
5604                                 isUndefLO, isUndefHI);
5605  }
5606
5607  return SDValue();
5608}
5609
5610SDValue
5611X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5612  SDLoc dl(Op);
5613
5614  MVT VT = Op.getSimpleValueType();
5615  MVT ExtVT = VT.getVectorElementType();
5616  unsigned NumElems = Op.getNumOperands();
5617
5618  // Generate vectors for predicate vectors.
5619  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
5620    return LowerBUILD_VECTORvXi1(Op, DAG);
5621
5622  // Vectors containing all zeros can be matched by pxor and xorps later
5623  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5624    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5625    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5626    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
5627      return Op;
5628
5629    return getZeroVector(VT, Subtarget, DAG, dl);
5630  }
5631
5632  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5633  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5634  // vpcmpeqd on 256-bit vectors.
5635  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5636    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5637      return Op;
5638
5639    if (!VT.is512BitVector())
5640      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5641  }
5642
5643  if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG))
5644    return Broadcast;
5645
5646  unsigned EVTBits = ExtVT.getSizeInBits();
5647
5648  unsigned NumZero  = 0;
5649  unsigned NumNonZero = 0;
5650  unsigned NonZeros = 0;
5651  bool IsAllConstants = true;
5652  SmallSet<SDValue, 8> Values;
5653  for (unsigned i = 0; i < NumElems; ++i) {
5654    SDValue Elt = Op.getOperand(i);
5655    if (Elt.getOpcode() == ISD::UNDEF)
5656      continue;
5657    Values.insert(Elt);
5658    if (Elt.getOpcode() != ISD::Constant &&
5659        Elt.getOpcode() != ISD::ConstantFP)
5660      IsAllConstants = false;
5661    if (X86::isZeroNode(Elt))
5662      NumZero++;
5663    else {
5664      NonZeros |= (1 << i);
5665      NumNonZero++;
5666    }
5667  }
5668
5669  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5670  if (NumNonZero == 0)
5671    return DAG.getUNDEF(VT);
5672
5673  // Special case for single non-zero, non-undef, element.
5674  if (NumNonZero == 1) {
5675    unsigned Idx = countTrailingZeros(NonZeros);
5676    SDValue Item = Op.getOperand(Idx);
5677
5678    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5679    // the value are obviously zero, truncate the value to i32 and do the
5680    // insertion that way.  Only do this if the value is non-constant or if the
5681    // value is a constant being inserted into element 0.  It is cheaper to do
5682    // a constant pool load than it is to do a movd + shuffle.
5683    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5684        (!IsAllConstants || Idx == 0)) {
5685      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5686        // Handle SSE only.
5687        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5688        EVT VecVT = MVT::v4i32;
5689
5690        // Truncate the value (which may itself be a constant) to i32, and
5691        // convert it to a vector with movd (S2V+shuffle to zero extend).
5692        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5693        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5694        return DAG.getNode(
5695            ISD::BITCAST, dl, VT,
5696            getShuffleVectorZeroOrUndef(Item, Idx * 2, true, Subtarget, DAG));
5697      }
5698    }
5699
5700    // If we have a constant or non-constant insertion into the low element of
5701    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5702    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5703    // depending on what the source datatype is.
5704    if (Idx == 0) {
5705      if (NumZero == 0)
5706        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5707
5708      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5709          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5710        if (VT.is512BitVector()) {
5711          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5712          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5713                             Item, DAG.getIntPtrConstant(0));
5714        }
5715        assert((VT.is128BitVector() || VT.is256BitVector()) &&
5716               "Expected an SSE value type!");
5717        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5718        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5719        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5720      }
5721
5722      // We can't directly insert an i8 or i16 into a vector, so zero extend
5723      // it to i32 first.
5724      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5725        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5726        if (VT.is256BitVector()) {
5727          if (Subtarget->hasAVX()) {
5728            Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v8i32, Item);
5729            Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5730          } else {
5731            // Without AVX, we need to extend to a 128-bit vector and then
5732            // insert into the 256-bit vector.
5733            Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5734            SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5735            Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5736          }
5737        } else {
5738          assert(VT.is128BitVector() && "Expected an SSE value type!");
5739          Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5740          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5741        }
5742        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5743      }
5744    }
5745
5746    // Is it a vector logical left shift?
5747    if (NumElems == 2 && Idx == 1 &&
5748        X86::isZeroNode(Op.getOperand(0)) &&
5749        !X86::isZeroNode(Op.getOperand(1))) {
5750      unsigned NumBits = VT.getSizeInBits();
5751      return getVShift(true, VT,
5752                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5753                                   VT, Op.getOperand(1)),
5754                       NumBits/2, DAG, *this, dl);
5755    }
5756
5757    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5758      return SDValue();
5759
5760    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5761    // is a non-constant being inserted into an element other than the low one,
5762    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5763    // movd/movss) to move this into the low element, then shuffle it into
5764    // place.
5765    if (EVTBits == 32) {
5766      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5767      return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
5768    }
5769  }
5770
5771  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5772  if (Values.size() == 1) {
5773    if (EVTBits == 32) {
5774      // Instead of a shuffle like this:
5775      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5776      // Check if it's possible to issue this instead.
5777      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5778      unsigned Idx = countTrailingZeros(NonZeros);
5779      SDValue Item = Op.getOperand(Idx);
5780      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5781        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5782    }
5783    return SDValue();
5784  }
5785
5786  // A vector full of immediates; various special cases are already
5787  // handled, so this is best done with a single constant-pool load.
5788  if (IsAllConstants)
5789    return SDValue();
5790
5791  // For AVX-length vectors, see if we can use a vector load to get all of the
5792  // elements, otherwise build the individual 128-bit pieces and use
5793  // shuffles to put them in place.
5794  if (VT.is256BitVector() || VT.is512BitVector()) {
5795    SmallVector<SDValue, 64> V(Op->op_begin(), Op->op_begin() + NumElems);
5796
5797    // Check for a build vector of consecutive loads.
5798    if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
5799      return LD;
5800
5801    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5802
5803    // Build both the lower and upper subvector.
5804    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
5805                                makeArrayRef(&V[0], NumElems/2));
5806    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
5807                                makeArrayRef(&V[NumElems / 2], NumElems/2));
5808
5809    // Recreate the wider vector with the lower and upper part.
5810    if (VT.is256BitVector())
5811      return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5812    return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5813  }
5814
5815  // Let legalizer expand 2-wide build_vectors.
5816  if (EVTBits == 64) {
5817    if (NumNonZero == 1) {
5818      // One half is zero or undef.
5819      unsigned Idx = countTrailingZeros(NonZeros);
5820      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5821                                 Op.getOperand(Idx));
5822      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5823    }
5824    return SDValue();
5825  }
5826
5827  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5828  if (EVTBits == 8 && NumElems == 16)
5829    if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5830                                        Subtarget, *this))
5831      return V;
5832
5833  if (EVTBits == 16 && NumElems == 8)
5834    if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5835                                      Subtarget, *this))
5836      return V;
5837
5838  // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
5839  if (EVTBits == 32 && NumElems == 4)
5840    if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this))
5841      return V;
5842
5843  // If element VT is == 32 bits, turn it into a number of shuffles.
5844  SmallVector<SDValue, 8> V(NumElems);
5845  if (NumElems == 4 && NumZero > 0) {
5846    for (unsigned i = 0; i < 4; ++i) {
5847      bool isZero = !(NonZeros & (1 << i));
5848      if (isZero)
5849        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5850      else
5851        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5852    }
5853
5854    for (unsigned i = 0; i < 2; ++i) {
5855      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5856        default: break;
5857        case 0:
5858          V[i] = V[i*2];  // Must be a zero vector.
5859          break;
5860        case 1:
5861          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5862          break;
5863        case 2:
5864          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5865          break;
5866        case 3:
5867          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5868          break;
5869      }
5870    }
5871
5872    bool Reverse1 = (NonZeros & 0x3) == 2;
5873    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5874    int MaskVec[] = {
5875      Reverse1 ? 1 : 0,
5876      Reverse1 ? 0 : 1,
5877      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5878      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5879    };
5880    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5881  }
5882
5883  if (Values.size() > 1 && VT.is128BitVector()) {
5884    // Check for a build vector of consecutive loads.
5885    for (unsigned i = 0; i < NumElems; ++i)
5886      V[i] = Op.getOperand(i);
5887
5888    // Check for elements which are consecutive loads.
5889    if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
5890      return LD;
5891
5892    // Check for a build vector from mostly shuffle plus few inserting.
5893    if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
5894      return Sh;
5895
5896    // For SSE 4.1, use insertps to put the high elements into the low element.
5897    if (Subtarget->hasSSE41()) {
5898      SDValue Result;
5899      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5900        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5901      else
5902        Result = DAG.getUNDEF(VT);
5903
5904      for (unsigned i = 1; i < NumElems; ++i) {
5905        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5906        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5907                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5908      }
5909      return Result;
5910    }
5911
5912    // Otherwise, expand into a number of unpckl*, start by extending each of
5913    // our (non-undef) elements to the full vector width with the element in the
5914    // bottom slot of the vector (which generates no code for SSE).
5915    for (unsigned i = 0; i < NumElems; ++i) {
5916      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5917        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5918      else
5919        V[i] = DAG.getUNDEF(VT);
5920    }
5921
5922    // Next, we iteratively mix elements, e.g. for v4f32:
5923    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5924    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5925    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5926    unsigned EltStride = NumElems >> 1;
5927    while (EltStride != 0) {
5928      for (unsigned i = 0; i < EltStride; ++i) {
5929        // If V[i+EltStride] is undef and this is the first round of mixing,
5930        // then it is safe to just drop this shuffle: V[i] is already in the
5931        // right place, the one element (since it's the first round) being
5932        // inserted as undef can be dropped.  This isn't safe for successive
5933        // rounds because they will permute elements within both vectors.
5934        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5935            EltStride == NumElems/2)
5936          continue;
5937
5938        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5939      }
5940      EltStride >>= 1;
5941    }
5942    return V[0];
5943  }
5944  return SDValue();
5945}
5946
5947// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5948// to create 256-bit vectors from two other 128-bit ones.
5949static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5950  SDLoc dl(Op);
5951  MVT ResVT = Op.getSimpleValueType();
5952
5953  assert((ResVT.is256BitVector() ||
5954          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
5955
5956  SDValue V1 = Op.getOperand(0);
5957  SDValue V2 = Op.getOperand(1);
5958  unsigned NumElems = ResVT.getVectorNumElements();
5959  if (ResVT.is256BitVector())
5960    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5961
5962  if (Op.getNumOperands() == 4) {
5963    MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
5964                                ResVT.getVectorNumElements()/2);
5965    SDValue V3 = Op.getOperand(2);
5966    SDValue V4 = Op.getOperand(3);
5967    return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
5968      Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
5969  }
5970  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5971}
5972
5973static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
5974                                       const X86Subtarget *Subtarget,
5975                                       SelectionDAG & DAG) {
5976  SDLoc dl(Op);
5977  MVT ResVT = Op.getSimpleValueType();
5978  unsigned NumOfOperands = Op.getNumOperands();
5979
5980  assert(isPowerOf2_32(NumOfOperands) &&
5981         "Unexpected number of operands in CONCAT_VECTORS");
5982
5983  if (NumOfOperands > 2) {
5984    MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
5985                                  ResVT.getVectorNumElements()/2);
5986    SmallVector<SDValue, 2> Ops;
5987    for (unsigned i = 0; i < NumOfOperands/2; i++)
5988      Ops.push_back(Op.getOperand(i));
5989    SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
5990    Ops.clear();
5991    for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++)
5992      Ops.push_back(Op.getOperand(i));
5993    SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
5994    return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
5995  }
5996
5997  SDValue V1 = Op.getOperand(0);
5998  SDValue V2 = Op.getOperand(1);
5999  bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode());
6000  bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode());
6001
6002  if (IsZeroV1 && IsZeroV2)
6003    return getZeroVector(ResVT, Subtarget, DAG, dl);
6004
6005  SDValue ZeroIdx = DAG.getIntPtrConstant(0);
6006  SDValue Undef = DAG.getUNDEF(ResVT);
6007  unsigned NumElems = ResVT.getVectorNumElements();
6008  SDValue ShiftBits = DAG.getConstant(NumElems/2, MVT::i8);
6009
6010  V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, ZeroIdx);
6011  V2 = DAG.getNode(X86ISD::VSHLI, dl, ResVT, V2, ShiftBits);
6012  if (IsZeroV1)
6013    return V2;
6014
6015  V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
6016  // Zero the upper bits of V1
6017  V1 = DAG.getNode(X86ISD::VSHLI, dl, ResVT, V1, ShiftBits);
6018  V1 = DAG.getNode(X86ISD::VSRLI, dl, ResVT, V1, ShiftBits);
6019  if (IsZeroV2)
6020    return V1;
6021  return DAG.getNode(ISD::OR, dl, ResVT, V1, V2);
6022}
6023
6024static SDValue LowerCONCAT_VECTORS(SDValue Op,
6025                                   const X86Subtarget *Subtarget,
6026                                   SelectionDAG &DAG) {
6027  MVT VT = Op.getSimpleValueType();
6028  if (VT.getVectorElementType() == MVT::i1)
6029    return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
6030
6031  assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
6032         (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
6033          Op.getNumOperands() == 4)));
6034
6035  // AVX can use the vinsertf128 instruction to create 256-bit vectors
6036  // from two other 128-bit ones.
6037
6038  // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
6039  return LowerAVXCONCAT_VECTORS(Op, DAG);
6040}
6041
6042
6043//===----------------------------------------------------------------------===//
6044// Vector shuffle lowering
6045//
6046// This is an experimental code path for lowering vector shuffles on x86. It is
6047// designed to handle arbitrary vector shuffles and blends, gracefully
6048// degrading performance as necessary. It works hard to recognize idiomatic
6049// shuffles and lower them to optimal instruction patterns without leaving
6050// a framework that allows reasonably efficient handling of all vector shuffle
6051// patterns.
6052//===----------------------------------------------------------------------===//
6053
6054/// \brief Tiny helper function to identify a no-op mask.
6055///
6056/// This is a somewhat boring predicate function. It checks whether the mask
6057/// array input, which is assumed to be a single-input shuffle mask of the kind
6058/// used by the X86 shuffle instructions (not a fully general
6059/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
6060/// in-place shuffle are 'no-op's.
6061static bool isNoopShuffleMask(ArrayRef<int> Mask) {
6062  for (int i = 0, Size = Mask.size(); i < Size; ++i)
6063    if (Mask[i] != -1 && Mask[i] != i)
6064      return false;
6065  return true;
6066}
6067
6068/// \brief Helper function to classify a mask as a single-input mask.
6069///
6070/// This isn't a generic single-input test because in the vector shuffle
6071/// lowering we canonicalize single inputs to be the first input operand. This
6072/// means we can more quickly test for a single input by only checking whether
6073/// an input from the second operand exists. We also assume that the size of
6074/// mask corresponds to the size of the input vectors which isn't true in the
6075/// fully general case.
6076static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
6077  for (int M : Mask)
6078    if (M >= (int)Mask.size())
6079      return false;
6080  return true;
6081}
6082
6083/// \brief Test whether there are elements crossing 128-bit lanes in this
6084/// shuffle mask.
6085///
6086/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
6087/// and we routinely test for these.
6088static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
6089  int LaneSize = 128 / VT.getScalarSizeInBits();
6090  int Size = Mask.size();
6091  for (int i = 0; i < Size; ++i)
6092    if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
6093      return true;
6094  return false;
6095}
6096
6097/// \brief Test whether a shuffle mask is equivalent within each 128-bit lane.
6098///
6099/// This checks a shuffle mask to see if it is performing the same
6100/// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies
6101/// that it is also not lane-crossing. It may however involve a blend from the
6102/// same lane of a second vector.
6103///
6104/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
6105/// non-trivial to compute in the face of undef lanes. The representation is
6106/// *not* suitable for use with existing 128-bit shuffles as it will contain
6107/// entries from both V1 and V2 inputs to the wider mask.
6108static bool
6109is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
6110                                SmallVectorImpl<int> &RepeatedMask) {
6111  int LaneSize = 128 / VT.getScalarSizeInBits();
6112  RepeatedMask.resize(LaneSize, -1);
6113  int Size = Mask.size();
6114  for (int i = 0; i < Size; ++i) {
6115    if (Mask[i] < 0)
6116      continue;
6117    if ((Mask[i] % Size) / LaneSize != i / LaneSize)
6118      // This entry crosses lanes, so there is no way to model this shuffle.
6119      return false;
6120
6121    // Ok, handle the in-lane shuffles by detecting if and when they repeat.
6122    if (RepeatedMask[i % LaneSize] == -1)
6123      // This is the first non-undef entry in this slot of a 128-bit lane.
6124      RepeatedMask[i % LaneSize] =
6125          Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
6126    else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
6127      // Found a mismatch with the repeated mask.
6128      return false;
6129  }
6130  return true;
6131}
6132
6133/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
6134/// arguments.
6135///
6136/// This is a fast way to test a shuffle mask against a fixed pattern:
6137///
6138///   if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
6139///
6140/// It returns true if the mask is exactly as wide as the argument list, and
6141/// each element of the mask is either -1 (signifying undef) or the value given
6142/// in the argument.
6143static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
6144                                ArrayRef<int> ExpectedMask) {
6145  if (Mask.size() != ExpectedMask.size())
6146    return false;
6147
6148  int Size = Mask.size();
6149
6150  // If the values are build vectors, we can look through them to find
6151  // equivalent inputs that make the shuffles equivalent.
6152  auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
6153  auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
6154
6155  for (int i = 0; i < Size; ++i)
6156    if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) {
6157      auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
6158      auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
6159      if (!MaskBV || !ExpectedBV ||
6160          MaskBV->getOperand(Mask[i] % Size) !=
6161              ExpectedBV->getOperand(ExpectedMask[i] % Size))
6162        return false;
6163    }
6164
6165  return true;
6166}
6167
6168/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
6169///
6170/// This helper function produces an 8-bit shuffle immediate corresponding to
6171/// the ubiquitous shuffle encoding scheme used in x86 instructions for
6172/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
6173/// example.
6174///
6175/// NB: We rely heavily on "undef" masks preserving the input lane.
6176static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
6177                                          SelectionDAG &DAG) {
6178  assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
6179  assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
6180  assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
6181  assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
6182  assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
6183
6184  unsigned Imm = 0;
6185  Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
6186  Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
6187  Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
6188  Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
6189  return DAG.getConstant(Imm, MVT::i8);
6190}
6191
6192/// \brief Try to emit a blend instruction for a shuffle using bit math.
6193///
6194/// This is used as a fallback approach when first class blend instructions are
6195/// unavailable. Currently it is only suitable for integer vectors, but could
6196/// be generalized for floating point vectors if desirable.
6197static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1,
6198                                            SDValue V2, ArrayRef<int> Mask,
6199                                            SelectionDAG &DAG) {
6200  assert(VT.isInteger() && "Only supports integer vector types!");
6201  MVT EltVT = VT.getScalarType();
6202  int NumEltBits = EltVT.getSizeInBits();
6203  SDValue Zero = DAG.getConstant(0, EltVT);
6204  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), EltVT);
6205  SmallVector<SDValue, 16> MaskOps;
6206  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6207    if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size)
6208      return SDValue(); // Shuffled input!
6209    MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
6210  }
6211
6212  SDValue V1Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, MaskOps);
6213  V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
6214  // We have to cast V2 around.
6215  MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
6216  V2 = DAG.getNode(ISD::BITCAST, DL, VT,
6217                   DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
6218                               DAG.getNode(ISD::BITCAST, DL, MaskVT, V1Mask),
6219                               DAG.getNode(ISD::BITCAST, DL, MaskVT, V2)));
6220  return DAG.getNode(ISD::OR, DL, VT, V1, V2);
6221}
6222
6223/// \brief Try to emit a blend instruction for a shuffle.
6224///
6225/// This doesn't do any checks for the availability of instructions for blending
6226/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
6227/// be matched in the backend with the type given. What it does check for is
6228/// that the shuffle mask is in fact a blend.
6229static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
6230                                         SDValue V2, ArrayRef<int> Mask,
6231                                         const X86Subtarget *Subtarget,
6232                                         SelectionDAG &DAG) {
6233  unsigned BlendMask = 0;
6234  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6235    if (Mask[i] >= Size) {
6236      if (Mask[i] != i + Size)
6237        return SDValue(); // Shuffled V2 input!
6238      BlendMask |= 1u << i;
6239      continue;
6240    }
6241    if (Mask[i] >= 0 && Mask[i] != i)
6242      return SDValue(); // Shuffled V1 input!
6243  }
6244  switch (VT.SimpleTy) {
6245  case MVT::v2f64:
6246  case MVT::v4f32:
6247  case MVT::v4f64:
6248  case MVT::v8f32:
6249    return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
6250                       DAG.getConstant(BlendMask, MVT::i8));
6251
6252  case MVT::v4i64:
6253  case MVT::v8i32:
6254    assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
6255    // FALLTHROUGH
6256  case MVT::v2i64:
6257  case MVT::v4i32:
6258    // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
6259    // that instruction.
6260    if (Subtarget->hasAVX2()) {
6261      // Scale the blend by the number of 32-bit dwords per element.
6262      int Scale =  VT.getScalarSizeInBits() / 32;
6263      BlendMask = 0;
6264      for (int i = 0, Size = Mask.size(); i < Size; ++i)
6265        if (Mask[i] >= Size)
6266          for (int j = 0; j < Scale; ++j)
6267            BlendMask |= 1u << (i * Scale + j);
6268
6269      MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
6270      V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
6271      V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
6272      return DAG.getNode(ISD::BITCAST, DL, VT,
6273                         DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
6274                                     DAG.getConstant(BlendMask, MVT::i8)));
6275    }
6276    // FALLTHROUGH
6277  case MVT::v8i16: {
6278    // For integer shuffles we need to expand the mask and cast the inputs to
6279    // v8i16s prior to blending.
6280    int Scale = 8 / VT.getVectorNumElements();
6281    BlendMask = 0;
6282    for (int i = 0, Size = Mask.size(); i < Size; ++i)
6283      if (Mask[i] >= Size)
6284        for (int j = 0; j < Scale; ++j)
6285          BlendMask |= 1u << (i * Scale + j);
6286
6287    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
6288    V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
6289    return DAG.getNode(ISD::BITCAST, DL, VT,
6290                       DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
6291                                   DAG.getConstant(BlendMask, MVT::i8)));
6292  }
6293
6294  case MVT::v16i16: {
6295    assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
6296    SmallVector<int, 8> RepeatedMask;
6297    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
6298      // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
6299      assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
6300      BlendMask = 0;
6301      for (int i = 0; i < 8; ++i)
6302        if (RepeatedMask[i] >= 16)
6303          BlendMask |= 1u << i;
6304      return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
6305                         DAG.getConstant(BlendMask, MVT::i8));
6306    }
6307  }
6308    // FALLTHROUGH
6309  case MVT::v16i8:
6310  case MVT::v32i8: {
6311    assert((VT.getSizeInBits() == 128 || Subtarget->hasAVX2()) &&
6312           "256-bit byte-blends require AVX2 support!");
6313
6314    // Scale the blend by the number of bytes per element.
6315    int Scale = VT.getScalarSizeInBits() / 8;
6316
6317    // This form of blend is always done on bytes. Compute the byte vector
6318    // type.
6319    MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
6320
6321    // Compute the VSELECT mask. Note that VSELECT is really confusing in the
6322    // mix of LLVM's code generator and the x86 backend. We tell the code
6323    // generator that boolean values in the elements of an x86 vector register
6324    // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
6325    // mapping a select to operand #1, and 'false' mapping to operand #2. The
6326    // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
6327    // of the element (the remaining are ignored) and 0 in that high bit would
6328    // mean operand #1 while 1 in the high bit would mean operand #2. So while
6329    // the LLVM model for boolean values in vector elements gets the relevant
6330    // bit set, it is set backwards and over constrained relative to x86's
6331    // actual model.
6332    SmallVector<SDValue, 32> VSELECTMask;
6333    for (int i = 0, Size = Mask.size(); i < Size; ++i)
6334      for (int j = 0; j < Scale; ++j)
6335        VSELECTMask.push_back(
6336            Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
6337                        : DAG.getConstant(Mask[i] < Size ? -1 : 0, MVT::i8));
6338
6339    V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
6340    V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
6341    return DAG.getNode(
6342        ISD::BITCAST, DL, VT,
6343        DAG.getNode(ISD::VSELECT, DL, BlendVT,
6344                    DAG.getNode(ISD::BUILD_VECTOR, DL, BlendVT, VSELECTMask),
6345                    V1, V2));
6346  }
6347
6348  default:
6349    llvm_unreachable("Not a supported integer vector type!");
6350  }
6351}
6352
6353/// \brief Try to lower as a blend of elements from two inputs followed by
6354/// a single-input permutation.
6355///
6356/// This matches the pattern where we can blend elements from two inputs and
6357/// then reduce the shuffle to a single-input permutation.
6358static SDValue lowerVectorShuffleAsBlendAndPermute(SDLoc DL, MVT VT, SDValue V1,
6359                                                   SDValue V2,
6360                                                   ArrayRef<int> Mask,
6361                                                   SelectionDAG &DAG) {
6362  // We build up the blend mask while checking whether a blend is a viable way
6363  // to reduce the shuffle.
6364  SmallVector<int, 32> BlendMask(Mask.size(), -1);
6365  SmallVector<int, 32> PermuteMask(Mask.size(), -1);
6366
6367  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6368    if (Mask[i] < 0)
6369      continue;
6370
6371    assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
6372
6373    if (BlendMask[Mask[i] % Size] == -1)
6374      BlendMask[Mask[i] % Size] = Mask[i];
6375    else if (BlendMask[Mask[i] % Size] != Mask[i])
6376      return SDValue(); // Can't blend in the needed input!
6377
6378    PermuteMask[i] = Mask[i] % Size;
6379  }
6380
6381  SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
6382  return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
6383}
6384
6385/// \brief Generic routine to decompose a shuffle and blend into indepndent
6386/// blends and permutes.
6387///
6388/// This matches the extremely common pattern for handling combined
6389/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
6390/// operations. It will try to pick the best arrangement of shuffles and
6391/// blends.
6392static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT,
6393                                                          SDValue V1,
6394                                                          SDValue V2,
6395                                                          ArrayRef<int> Mask,
6396                                                          SelectionDAG &DAG) {
6397  // Shuffle the input elements into the desired positions in V1 and V2 and
6398  // blend them together.
6399  SmallVector<int, 32> V1Mask(Mask.size(), -1);
6400  SmallVector<int, 32> V2Mask(Mask.size(), -1);
6401  SmallVector<int, 32> BlendMask(Mask.size(), -1);
6402  for (int i = 0, Size = Mask.size(); i < Size; ++i)
6403    if (Mask[i] >= 0 && Mask[i] < Size) {
6404      V1Mask[i] = Mask[i];
6405      BlendMask[i] = i;
6406    } else if (Mask[i] >= Size) {
6407      V2Mask[i] = Mask[i] - Size;
6408      BlendMask[i] = i + Size;
6409    }
6410
6411  // Try to lower with the simpler initial blend strategy unless one of the
6412  // input shuffles would be a no-op. We prefer to shuffle inputs as the
6413  // shuffle may be able to fold with a load or other benefit. However, when
6414  // we'll have to do 2x as many shuffles in order to achieve this, blending
6415  // first is a better strategy.
6416  if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask))
6417    if (SDValue BlendPerm =
6418            lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG))
6419      return BlendPerm;
6420
6421  V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
6422  V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
6423  return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
6424}
6425
6426/// \brief Try to lower a vector shuffle as a byte rotation.
6427///
6428/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
6429/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
6430/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
6431/// try to generically lower a vector shuffle through such an pattern. It
6432/// does not check for the profitability of lowering either as PALIGNR or
6433/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
6434/// This matches shuffle vectors that look like:
6435///
6436///   v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
6437///
6438/// Essentially it concatenates V1 and V2, shifts right by some number of
6439/// elements, and takes the low elements as the result. Note that while this is
6440/// specified as a *right shift* because x86 is little-endian, it is a *left
6441/// rotate* of the vector lanes.
6442static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
6443                                              SDValue V2,
6444                                              ArrayRef<int> Mask,
6445                                              const X86Subtarget *Subtarget,
6446                                              SelectionDAG &DAG) {
6447  assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
6448
6449  int NumElts = Mask.size();
6450  int NumLanes = VT.getSizeInBits() / 128;
6451  int NumLaneElts = NumElts / NumLanes;
6452
6453  // We need to detect various ways of spelling a rotation:
6454  //   [11, 12, 13, 14, 15,  0,  1,  2]
6455  //   [-1, 12, 13, 14, -1, -1,  1, -1]
6456  //   [-1, -1, -1, -1, -1, -1,  1,  2]
6457  //   [ 3,  4,  5,  6,  7,  8,  9, 10]
6458  //   [-1,  4,  5,  6, -1, -1,  9, -1]
6459  //   [-1,  4,  5,  6, -1, -1, -1, -1]
6460  int Rotation = 0;
6461  SDValue Lo, Hi;
6462  for (int l = 0; l < NumElts; l += NumLaneElts) {
6463    for (int i = 0; i < NumLaneElts; ++i) {
6464      if (Mask[l + i] == -1)
6465        continue;
6466      assert(Mask[l + i] >= 0 && "Only -1 is a valid negative mask element!");
6467
6468      // Get the mod-Size index and lane correct it.
6469      int LaneIdx = (Mask[l + i] % NumElts) - l;
6470      // Make sure it was in this lane.
6471      if (LaneIdx < 0 || LaneIdx >= NumLaneElts)
6472        return SDValue();
6473
6474      // Determine where a rotated vector would have started.
6475      int StartIdx = i - LaneIdx;
6476      if (StartIdx == 0)
6477        // The identity rotation isn't interesting, stop.
6478        return SDValue();
6479
6480      // If we found the tail of a vector the rotation must be the missing
6481      // front. If we found the head of a vector, it must be how much of the
6482      // head.
6483      int CandidateRotation = StartIdx < 0 ? -StartIdx : NumLaneElts - StartIdx;
6484
6485      if (Rotation == 0)
6486        Rotation = CandidateRotation;
6487      else if (Rotation != CandidateRotation)
6488        // The rotations don't match, so we can't match this mask.
6489        return SDValue();
6490
6491      // Compute which value this mask is pointing at.
6492      SDValue MaskV = Mask[l + i] < NumElts ? V1 : V2;
6493
6494      // Compute which of the two target values this index should be assigned
6495      // to. This reflects whether the high elements are remaining or the low
6496      // elements are remaining.
6497      SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
6498
6499      // Either set up this value if we've not encountered it before, or check
6500      // that it remains consistent.
6501      if (!TargetV)
6502        TargetV = MaskV;
6503      else if (TargetV != MaskV)
6504        // This may be a rotation, but it pulls from the inputs in some
6505        // unsupported interleaving.
6506        return SDValue();
6507    }
6508  }
6509
6510  // Check that we successfully analyzed the mask, and normalize the results.
6511  assert(Rotation != 0 && "Failed to locate a viable rotation!");
6512  assert((Lo || Hi) && "Failed to find a rotated input vector!");
6513  if (!Lo)
6514    Lo = Hi;
6515  else if (!Hi)
6516    Hi = Lo;
6517
6518  // The actual rotate instruction rotates bytes, so we need to scale the
6519  // rotation based on how many bytes are in the vector lane.
6520  int Scale = 16 / NumLaneElts;
6521
6522  // SSSE3 targets can use the palignr instruction.
6523  if (Subtarget->hasSSSE3()) {
6524    // Cast the inputs to i8 vector of correct length to match PALIGNR.
6525    MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes);
6526    Lo = DAG.getNode(ISD::BITCAST, DL, AlignVT, Lo);
6527    Hi = DAG.getNode(ISD::BITCAST, DL, AlignVT, Hi);
6528
6529    return DAG.getNode(ISD::BITCAST, DL, VT,
6530                       DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Hi, Lo,
6531                                   DAG.getConstant(Rotation * Scale, MVT::i8)));
6532  }
6533
6534  assert(VT.getSizeInBits() == 128 &&
6535         "Rotate-based lowering only supports 128-bit lowering!");
6536  assert(Mask.size() <= 16 &&
6537         "Can shuffle at most 16 bytes in a 128-bit vector!");
6538
6539  // Default SSE2 implementation
6540  int LoByteShift = 16 - Rotation * Scale;
6541  int HiByteShift = Rotation * Scale;
6542
6543  // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
6544  Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Lo);
6545  Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Hi);
6546
6547  SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
6548                                DAG.getConstant(LoByteShift, MVT::i8));
6549  SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
6550                                DAG.getConstant(HiByteShift, MVT::i8));
6551  return DAG.getNode(ISD::BITCAST, DL, VT,
6552                     DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
6553}
6554
6555/// \brief Compute whether each element of a shuffle is zeroable.
6556///
6557/// A "zeroable" vector shuffle element is one which can be lowered to zero.
6558/// Either it is an undef element in the shuffle mask, the element of the input
6559/// referenced is undef, or the element of the input referenced is known to be
6560/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
6561/// as many lanes with this technique as possible to simplify the remaining
6562/// shuffle.
6563static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
6564                                                     SDValue V1, SDValue V2) {
6565  SmallBitVector Zeroable(Mask.size(), false);
6566
6567  while (V1.getOpcode() == ISD::BITCAST)
6568    V1 = V1->getOperand(0);
6569  while (V2.getOpcode() == ISD::BITCAST)
6570    V2 = V2->getOperand(0);
6571
6572  bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
6573  bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
6574
6575  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6576    int M = Mask[i];
6577    // Handle the easy cases.
6578    if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
6579      Zeroable[i] = true;
6580      continue;
6581    }
6582
6583    // If this is an index into a build_vector node (which has the same number
6584    // of elements), dig out the input value and use it.
6585    SDValue V = M < Size ? V1 : V2;
6586    if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands())
6587      continue;
6588
6589    SDValue Input = V.getOperand(M % Size);
6590    // The UNDEF opcode check really should be dead code here, but not quite
6591    // worth asserting on (it isn't invalid, just unexpected).
6592    if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
6593      Zeroable[i] = true;
6594  }
6595
6596  return Zeroable;
6597}
6598
6599/// \brief Try to emit a bitmask instruction for a shuffle.
6600///
6601/// This handles cases where we can model a blend exactly as a bitmask due to
6602/// one of the inputs being zeroable.
6603static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
6604                                           SDValue V2, ArrayRef<int> Mask,
6605                                           SelectionDAG &DAG) {
6606  MVT EltVT = VT.getScalarType();
6607  int NumEltBits = EltVT.getSizeInBits();
6608  MVT IntEltVT = MVT::getIntegerVT(NumEltBits);
6609  SDValue Zero = DAG.getConstant(0, IntEltVT);
6610  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), IntEltVT);
6611  if (EltVT.isFloatingPoint()) {
6612    Zero = DAG.getNode(ISD::BITCAST, DL, EltVT, Zero);
6613    AllOnes = DAG.getNode(ISD::BITCAST, DL, EltVT, AllOnes);
6614  }
6615  SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
6616  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6617  SDValue V;
6618  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6619    if (Zeroable[i])
6620      continue;
6621    if (Mask[i] % Size != i)
6622      return SDValue(); // Not a blend.
6623    if (!V)
6624      V = Mask[i] < Size ? V1 : V2;
6625    else if (V != (Mask[i] < Size ? V1 : V2))
6626      return SDValue(); // Can only let one input through the mask.
6627
6628    VMaskOps[i] = AllOnes;
6629  }
6630  if (!V)
6631    return SDValue(); // No non-zeroable elements!
6632
6633  SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps);
6634  V = DAG.getNode(VT.isFloatingPoint()
6635                  ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND,
6636                  DL, VT, V, VMask);
6637  return V;
6638}
6639
6640/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros).
6641///
6642/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
6643/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
6644/// matches elements from one of the input vectors shuffled to the left or
6645/// right with zeroable elements 'shifted in'. It handles both the strictly
6646/// bit-wise element shifts and the byte shift across an entire 128-bit double
6647/// quad word lane.
6648///
6649/// PSHL : (little-endian) left bit shift.
6650/// [ zz, 0, zz,  2 ]
6651/// [ -1, 4, zz, -1 ]
6652/// PSRL : (little-endian) right bit shift.
6653/// [  1, zz,  3, zz]
6654/// [ -1, -1,  7, zz]
6655/// PSLLDQ : (little-endian) left byte shift
6656/// [ zz,  0,  1,  2,  3,  4,  5,  6]
6657/// [ zz, zz, -1, -1,  2,  3,  4, -1]
6658/// [ zz, zz, zz, zz, zz, zz, -1,  1]
6659/// PSRLDQ : (little-endian) right byte shift
6660/// [  5, 6,  7, zz, zz, zz, zz, zz]
6661/// [ -1, 5,  6,  7, zz, zz, zz, zz]
6662/// [  1, 2, -1, -1, -1, -1, zz, zz]
6663static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1,
6664                                         SDValue V2, ArrayRef<int> Mask,
6665                                         SelectionDAG &DAG) {
6666  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6667
6668  int Size = Mask.size();
6669  assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
6670
6671  auto CheckZeros = [&](int Shift, int Scale, bool Left) {
6672    for (int i = 0; i < Size; i += Scale)
6673      for (int j = 0; j < Shift; ++j)
6674        if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
6675          return false;
6676
6677    return true;
6678  };
6679
6680  auto MatchShift = [&](int Shift, int Scale, bool Left, SDValue V) {
6681    for (int i = 0; i != Size; i += Scale) {
6682      unsigned Pos = Left ? i + Shift : i;
6683      unsigned Low = Left ? i : i + Shift;
6684      unsigned Len = Scale - Shift;
6685      if (!isSequentialOrUndefInRange(Mask, Pos, Len,
6686                                      Low + (V == V1 ? 0 : Size)))
6687        return SDValue();
6688    }
6689
6690    int ShiftEltBits = VT.getScalarSizeInBits() * Scale;
6691    bool ByteShift = ShiftEltBits > 64;
6692    unsigned OpCode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
6693                           : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
6694    int ShiftAmt = Shift * VT.getScalarSizeInBits() / (ByteShift ? 8 : 1);
6695
6696    // Normalize the scale for byte shifts to still produce an i64 element
6697    // type.
6698    Scale = ByteShift ? Scale / 2 : Scale;
6699
6700    // We need to round trip through the appropriate type for the shift.
6701    MVT ShiftSVT = MVT::getIntegerVT(VT.getScalarSizeInBits() * Scale);
6702    MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale);
6703    assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
6704           "Illegal integer vector type");
6705    V = DAG.getNode(ISD::BITCAST, DL, ShiftVT, V);
6706
6707    V = DAG.getNode(OpCode, DL, ShiftVT, V, DAG.getConstant(ShiftAmt, MVT::i8));
6708    return DAG.getNode(ISD::BITCAST, DL, VT, V);
6709  };
6710
6711  // SSE/AVX supports logical shifts up to 64-bit integers - so we can just
6712  // keep doubling the size of the integer elements up to that. We can
6713  // then shift the elements of the integer vector by whole multiples of
6714  // their width within the elements of the larger integer vector. Test each
6715  // multiple to see if we can find a match with the moved element indices
6716  // and that the shifted in elements are all zeroable.
6717  for (int Scale = 2; Scale * VT.getScalarSizeInBits() <= 128; Scale *= 2)
6718    for (int Shift = 1; Shift != Scale; ++Shift)
6719      for (bool Left : {true, false})
6720        if (CheckZeros(Shift, Scale, Left))
6721          for (SDValue V : {V1, V2})
6722            if (SDValue Match = MatchShift(Shift, Scale, Left, V))
6723              return Match;
6724
6725  // no match
6726  return SDValue();
6727}
6728
6729/// \brief Lower a vector shuffle as a zero or any extension.
6730///
6731/// Given a specific number of elements, element bit width, and extension
6732/// stride, produce either a zero or any extension based on the available
6733/// features of the subtarget.
6734static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
6735    SDLoc DL, MVT VT, int Scale, bool AnyExt, SDValue InputV,
6736    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6737  assert(Scale > 1 && "Need a scale to extend.");
6738  int NumElements = VT.getVectorNumElements();
6739  int EltBits = VT.getScalarSizeInBits();
6740  assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
6741         "Only 8, 16, and 32 bit elements can be extended.");
6742  assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
6743
6744  // Found a valid zext mask! Try various lowering strategies based on the
6745  // input type and available ISA extensions.
6746  if (Subtarget->hasSSE41()) {
6747    MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
6748                                 NumElements / Scale);
6749    return DAG.getNode(ISD::BITCAST, DL, VT,
6750                       DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
6751  }
6752
6753  // For any extends we can cheat for larger element sizes and use shuffle
6754  // instructions that can fold with a load and/or copy.
6755  if (AnyExt && EltBits == 32) {
6756    int PSHUFDMask[4] = {0, -1, 1, -1};
6757    return DAG.getNode(
6758        ISD::BITCAST, DL, VT,
6759        DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
6760                    DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
6761                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
6762  }
6763  if (AnyExt && EltBits == 16 && Scale > 2) {
6764    int PSHUFDMask[4] = {0, -1, 0, -1};
6765    InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
6766                         DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
6767                         getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG));
6768    int PSHUFHWMask[4] = {1, -1, -1, -1};
6769    return DAG.getNode(
6770        ISD::BITCAST, DL, VT,
6771        DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
6772                    DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, InputV),
6773                    getV4X86ShuffleImm8ForMask(PSHUFHWMask, DAG)));
6774  }
6775
6776  // If this would require more than 2 unpack instructions to expand, use
6777  // pshufb when available. We can only use more than 2 unpack instructions
6778  // when zero extending i8 elements which also makes it easier to use pshufb.
6779  if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) {
6780    assert(NumElements == 16 && "Unexpected byte vector width!");
6781    SDValue PSHUFBMask[16];
6782    for (int i = 0; i < 16; ++i)
6783      PSHUFBMask[i] =
6784          DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, MVT::i8);
6785    InputV = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, InputV);
6786    return DAG.getNode(ISD::BITCAST, DL, VT,
6787                       DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
6788                                   DAG.getNode(ISD::BUILD_VECTOR, DL,
6789                                               MVT::v16i8, PSHUFBMask)));
6790  }
6791
6792  // Otherwise emit a sequence of unpacks.
6793  do {
6794    MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
6795    SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
6796                         : getZeroVector(InputVT, Subtarget, DAG, DL);
6797    InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
6798    InputV = DAG.getNode(X86ISD::UNPCKL, DL, InputVT, InputV, Ext);
6799    Scale /= 2;
6800    EltBits *= 2;
6801    NumElements /= 2;
6802  } while (Scale > 1);
6803  return DAG.getNode(ISD::BITCAST, DL, VT, InputV);
6804}
6805
6806/// \brief Try to lower a vector shuffle as a zero extension on any microarch.
6807///
6808/// This routine will try to do everything in its power to cleverly lower
6809/// a shuffle which happens to match the pattern of a zero extend. It doesn't
6810/// check for the profitability of this lowering,  it tries to aggressively
6811/// match this pattern. It will use all of the micro-architectural details it
6812/// can to emit an efficient lowering. It handles both blends with all-zero
6813/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
6814/// masking out later).
6815///
6816/// The reason we have dedicated lowering for zext-style shuffles is that they
6817/// are both incredibly common and often quite performance sensitive.
6818static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
6819    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
6820    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6821  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6822
6823  int Bits = VT.getSizeInBits();
6824  int NumElements = VT.getVectorNumElements();
6825  assert(VT.getScalarSizeInBits() <= 32 &&
6826         "Exceeds 32-bit integer zero extension limit");
6827  assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
6828
6829  // Define a helper function to check a particular ext-scale and lower to it if
6830  // valid.
6831  auto Lower = [&](int Scale) -> SDValue {
6832    SDValue InputV;
6833    bool AnyExt = true;
6834    for (int i = 0; i < NumElements; ++i) {
6835      if (Mask[i] == -1)
6836        continue; // Valid anywhere but doesn't tell us anything.
6837      if (i % Scale != 0) {
6838        // Each of the extended elements need to be zeroable.
6839        if (!Zeroable[i])
6840          return SDValue();
6841
6842        // We no longer are in the anyext case.
6843        AnyExt = false;
6844        continue;
6845      }
6846
6847      // Each of the base elements needs to be consecutive indices into the
6848      // same input vector.
6849      SDValue V = Mask[i] < NumElements ? V1 : V2;
6850      if (!InputV)
6851        InputV = V;
6852      else if (InputV != V)
6853        return SDValue(); // Flip-flopping inputs.
6854
6855      if (Mask[i] % NumElements != i / Scale)
6856        return SDValue(); // Non-consecutive strided elements.
6857    }
6858
6859    // If we fail to find an input, we have a zero-shuffle which should always
6860    // have already been handled.
6861    // FIXME: Maybe handle this here in case during blending we end up with one?
6862    if (!InputV)
6863      return SDValue();
6864
6865    return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
6866        DL, VT, Scale, AnyExt, InputV, Subtarget, DAG);
6867  };
6868
6869  // The widest scale possible for extending is to a 64-bit integer.
6870  assert(Bits % 64 == 0 &&
6871         "The number of bits in a vector must be divisible by 64 on x86!");
6872  int NumExtElements = Bits / 64;
6873
6874  // Each iteration, try extending the elements half as much, but into twice as
6875  // many elements.
6876  for (; NumExtElements < NumElements; NumExtElements *= 2) {
6877    assert(NumElements % NumExtElements == 0 &&
6878           "The input vector size must be divisible by the extended size.");
6879    if (SDValue V = Lower(NumElements / NumExtElements))
6880      return V;
6881  }
6882
6883  // General extends failed, but 128-bit vectors may be able to use MOVQ.
6884  if (Bits != 128)
6885    return SDValue();
6886
6887  // Returns one of the source operands if the shuffle can be reduced to a
6888  // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
6889  auto CanZExtLowHalf = [&]() {
6890    for (int i = NumElements / 2; i != NumElements; ++i)
6891      if (!Zeroable[i])
6892        return SDValue();
6893    if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
6894      return V1;
6895    if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
6896      return V2;
6897    return SDValue();
6898  };
6899
6900  if (SDValue V = CanZExtLowHalf()) {
6901    V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V);
6902    V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
6903    return DAG.getNode(ISD::BITCAST, DL, VT, V);
6904  }
6905
6906  // No viable ext lowering found.
6907  return SDValue();
6908}
6909
6910/// \brief Try to get a scalar value for a specific element of a vector.
6911///
6912/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
6913static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
6914                                              SelectionDAG &DAG) {
6915  MVT VT = V.getSimpleValueType();
6916  MVT EltVT = VT.getVectorElementType();
6917  while (V.getOpcode() == ISD::BITCAST)
6918    V = V.getOperand(0);
6919  // If the bitcasts shift the element size, we can't extract an equivalent
6920  // element from it.
6921  MVT NewVT = V.getSimpleValueType();
6922  if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
6923    return SDValue();
6924
6925  if (V.getOpcode() == ISD::BUILD_VECTOR ||
6926      (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR))
6927    return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, V.getOperand(Idx));
6928
6929  return SDValue();
6930}
6931
6932/// \brief Helper to test for a load that can be folded with x86 shuffles.
6933///
6934/// This is particularly important because the set of instructions varies
6935/// significantly based on whether the operand is a load or not.
6936static bool isShuffleFoldableLoad(SDValue V) {
6937  while (V.getOpcode() == ISD::BITCAST)
6938    V = V.getOperand(0);
6939
6940  return ISD::isNON_EXTLoad(V.getNode());
6941}
6942
6943/// \brief Try to lower insertion of a single element into a zero vector.
6944///
6945/// This is a common pattern that we have especially efficient patterns to lower
6946/// across all subtarget feature sets.
6947static SDValue lowerVectorShuffleAsElementInsertion(
6948    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
6949    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6950  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6951  MVT ExtVT = VT;
6952  MVT EltVT = VT.getVectorElementType();
6953
6954  int V2Index = std::find_if(Mask.begin(), Mask.end(),
6955                             [&Mask](int M) { return M >= (int)Mask.size(); }) -
6956                Mask.begin();
6957  bool IsV1Zeroable = true;
6958  for (int i = 0, Size = Mask.size(); i < Size; ++i)
6959    if (i != V2Index && !Zeroable[i]) {
6960      IsV1Zeroable = false;
6961      break;
6962    }
6963
6964  // Check for a single input from a SCALAR_TO_VECTOR node.
6965  // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
6966  // all the smarts here sunk into that routine. However, the current
6967  // lowering of BUILD_VECTOR makes that nearly impossible until the old
6968  // vector shuffle lowering is dead.
6969  if (SDValue V2S = getScalarValueForVectorElement(
6970          V2, Mask[V2Index] - Mask.size(), DAG)) {
6971    // We need to zext the scalar if it is smaller than an i32.
6972    V2S = DAG.getNode(ISD::BITCAST, DL, EltVT, V2S);
6973    if (EltVT == MVT::i8 || EltVT == MVT::i16) {
6974      // Using zext to expand a narrow element won't work for non-zero
6975      // insertions.
6976      if (!IsV1Zeroable)
6977        return SDValue();
6978
6979      // Zero-extend directly to i32.
6980      ExtVT = MVT::v4i32;
6981      V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
6982    }
6983    V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
6984  } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
6985             EltVT == MVT::i16) {
6986    // Either not inserting from the low element of the input or the input
6987    // element size is too small to use VZEXT_MOVL to clear the high bits.
6988    return SDValue();
6989  }
6990
6991  if (!IsV1Zeroable) {
6992    // If V1 can't be treated as a zero vector we have fewer options to lower
6993    // this. We can't support integer vectors or non-zero targets cheaply, and
6994    // the V1 elements can't be permuted in any way.
6995    assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
6996    if (!VT.isFloatingPoint() || V2Index != 0)
6997      return SDValue();
6998    SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
6999    V1Mask[V2Index] = -1;
7000    if (!isNoopShuffleMask(V1Mask))
7001      return SDValue();
7002    // This is essentially a special case blend operation, but if we have
7003    // general purpose blend operations, they are always faster. Bail and let
7004    // the rest of the lowering handle these as blends.
7005    if (Subtarget->hasSSE41())
7006      return SDValue();
7007
7008    // Otherwise, use MOVSD or MOVSS.
7009    assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
7010           "Only two types of floating point element types to handle!");
7011    return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
7012                       ExtVT, V1, V2);
7013  }
7014
7015  // This lowering only works for the low element with floating point vectors.
7016  if (VT.isFloatingPoint() && V2Index != 0)
7017    return SDValue();
7018
7019  V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
7020  if (ExtVT != VT)
7021    V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
7022
7023  if (V2Index != 0) {
7024    // If we have 4 or fewer lanes we can cheaply shuffle the element into
7025    // the desired position. Otherwise it is more efficient to do a vector
7026    // shift left. We know that we can do a vector shift left because all
7027    // the inputs are zero.
7028    if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
7029      SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
7030      V2Shuffle[V2Index] = 0;
7031      V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
7032    } else {
7033      V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V2);
7034      V2 = DAG.getNode(
7035          X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
7036          DAG.getConstant(
7037              V2Index * EltVT.getSizeInBits()/8,
7038              DAG.getTargetLoweringInfo().getScalarShiftAmountTy(MVT::v2i64)));
7039      V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
7040    }
7041  }
7042  return V2;
7043}
7044
7045/// \brief Try to lower broadcast of a single element.
7046///
7047/// For convenience, this code also bundles all of the subtarget feature set
7048/// filtering. While a little annoying to re-dispatch on type here, there isn't
7049/// a convenient way to factor it out.
7050static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V,
7051                                             ArrayRef<int> Mask,
7052                                             const X86Subtarget *Subtarget,
7053                                             SelectionDAG &DAG) {
7054  if (!Subtarget->hasAVX())
7055    return SDValue();
7056  if (VT.isInteger() && !Subtarget->hasAVX2())
7057    return SDValue();
7058
7059  // Check that the mask is a broadcast.
7060  int BroadcastIdx = -1;
7061  for (int M : Mask)
7062    if (M >= 0 && BroadcastIdx == -1)
7063      BroadcastIdx = M;
7064    else if (M >= 0 && M != BroadcastIdx)
7065      return SDValue();
7066
7067  assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
7068                                            "a sorted mask where the broadcast "
7069                                            "comes from V1.");
7070
7071  // Go up the chain of (vector) values to find a scalar load that we can
7072  // combine with the broadcast.
7073  for (;;) {
7074    switch (V.getOpcode()) {
7075    case ISD::CONCAT_VECTORS: {
7076      int OperandSize = Mask.size() / V.getNumOperands();
7077      V = V.getOperand(BroadcastIdx / OperandSize);
7078      BroadcastIdx %= OperandSize;
7079      continue;
7080    }
7081
7082    case ISD::INSERT_SUBVECTOR: {
7083      SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
7084      auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
7085      if (!ConstantIdx)
7086        break;
7087
7088      int BeginIdx = (int)ConstantIdx->getZExtValue();
7089      int EndIdx =
7090          BeginIdx + (int)VInner.getValueType().getVectorNumElements();
7091      if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
7092        BroadcastIdx -= BeginIdx;
7093        V = VInner;
7094      } else {
7095        V = VOuter;
7096      }
7097      continue;
7098    }
7099    }
7100    break;
7101  }
7102
7103  // Check if this is a broadcast of a scalar. We special case lowering
7104  // for scalars so that we can more effectively fold with loads.
7105  if (V.getOpcode() == ISD::BUILD_VECTOR ||
7106      (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
7107    V = V.getOperand(BroadcastIdx);
7108
7109    // If the scalar isn't a load, we can't broadcast from it in AVX1.
7110    // Only AVX2 has register broadcasts.
7111    if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V))
7112      return SDValue();
7113  } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) {
7114    // We can't broadcast from a vector register without AVX2, and we can only
7115    // broadcast from the zero-element of a vector register.
7116    return SDValue();
7117  }
7118
7119  return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V);
7120}
7121
7122// Check for whether we can use INSERTPS to perform the shuffle. We only use
7123// INSERTPS when the V1 elements are already in the correct locations
7124// because otherwise we can just always use two SHUFPS instructions which
7125// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
7126// perform INSERTPS if a single V1 element is out of place and all V2
7127// elements are zeroable.
7128static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2,
7129                                            ArrayRef<int> Mask,
7130                                            SelectionDAG &DAG) {
7131  assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
7132  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7133  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7134  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
7135
7136  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7137
7138  unsigned ZMask = 0;
7139  int V1DstIndex = -1;
7140  int V2DstIndex = -1;
7141  bool V1UsedInPlace = false;
7142
7143  for (int i = 0; i < 4; ++i) {
7144    // Synthesize a zero mask from the zeroable elements (includes undefs).
7145    if (Zeroable[i]) {
7146      ZMask |= 1 << i;
7147      continue;
7148    }
7149
7150    // Flag if we use any V1 inputs in place.
7151    if (i == Mask[i]) {
7152      V1UsedInPlace = true;
7153      continue;
7154    }
7155
7156    // We can only insert a single non-zeroable element.
7157    if (V1DstIndex != -1 || V2DstIndex != -1)
7158      return SDValue();
7159
7160    if (Mask[i] < 4) {
7161      // V1 input out of place for insertion.
7162      V1DstIndex = i;
7163    } else {
7164      // V2 input for insertion.
7165      V2DstIndex = i;
7166    }
7167  }
7168
7169  // Don't bother if we have no (non-zeroable) element for insertion.
7170  if (V1DstIndex == -1 && V2DstIndex == -1)
7171    return SDValue();
7172
7173  // Determine element insertion src/dst indices. The src index is from the
7174  // start of the inserted vector, not the start of the concatenated vector.
7175  unsigned V2SrcIndex = 0;
7176  if (V1DstIndex != -1) {
7177    // If we have a V1 input out of place, we use V1 as the V2 element insertion
7178    // and don't use the original V2 at all.
7179    V2SrcIndex = Mask[V1DstIndex];
7180    V2DstIndex = V1DstIndex;
7181    V2 = V1;
7182  } else {
7183    V2SrcIndex = Mask[V2DstIndex] - 4;
7184  }
7185
7186  // If no V1 inputs are used in place, then the result is created only from
7187  // the zero mask and the V2 insertion - so remove V1 dependency.
7188  if (!V1UsedInPlace)
7189    V1 = DAG.getUNDEF(MVT::v4f32);
7190
7191  unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask;
7192  assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
7193
7194  // Insert the V2 element into the desired position.
7195  SDLoc DL(Op);
7196  return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
7197                     DAG.getConstant(InsertPSMask, MVT::i8));
7198}
7199
7200/// \brief Try to lower a shuffle as a permute of the inputs followed by an
7201/// UNPCK instruction.
7202///
7203/// This specifically targets cases where we end up with alternating between
7204/// the two inputs, and so can permute them into something that feeds a single
7205/// UNPCK instruction. Note that this routine only targets integer vectors
7206/// because for floating point vectors we have a generalized SHUFPS lowering
7207/// strategy that handles everything that doesn't *exactly* match an unpack,
7208/// making this clever lowering unnecessary.
7209static SDValue lowerVectorShuffleAsUnpack(SDLoc DL, MVT VT, SDValue V1,
7210                                          SDValue V2, ArrayRef<int> Mask,
7211                                          SelectionDAG &DAG) {
7212  assert(!VT.isFloatingPoint() &&
7213         "This routine only supports integer vectors.");
7214  assert(!isSingleInputShuffleMask(Mask) &&
7215         "This routine should only be used when blending two inputs.");
7216  assert(Mask.size() >= 2 && "Single element masks are invalid.");
7217
7218  int Size = Mask.size();
7219
7220  int NumLoInputs = std::count_if(Mask.begin(), Mask.end(), [Size](int M) {
7221    return M >= 0 && M % Size < Size / 2;
7222  });
7223  int NumHiInputs = std::count_if(
7224      Mask.begin(), Mask.end(), [Size](int M) { return M % Size >= Size / 2; });
7225
7226  bool UnpackLo = NumLoInputs >= NumHiInputs;
7227
7228  auto TryUnpack = [&](MVT UnpackVT, int Scale) {
7229    SmallVector<int, 32> V1Mask(Mask.size(), -1);
7230    SmallVector<int, 32> V2Mask(Mask.size(), -1);
7231
7232    for (int i = 0; i < Size; ++i) {
7233      if (Mask[i] < 0)
7234        continue;
7235
7236      // Each element of the unpack contains Scale elements from this mask.
7237      int UnpackIdx = i / Scale;
7238
7239      // We only handle the case where V1 feeds the first slots of the unpack.
7240      // We rely on canonicalization to ensure this is the case.
7241      if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
7242        return SDValue();
7243
7244      // Setup the mask for this input. The indexing is tricky as we have to
7245      // handle the unpack stride.
7246      SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
7247      VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
7248          Mask[i] % Size;
7249    }
7250
7251    // If we will have to shuffle both inputs to use the unpack, check whether
7252    // we can just unpack first and shuffle the result. If so, skip this unpack.
7253    if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
7254        !isNoopShuffleMask(V2Mask))
7255      return SDValue();
7256
7257    // Shuffle the inputs into place.
7258    V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
7259    V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
7260
7261    // Cast the inputs to the type we will use to unpack them.
7262    V1 = DAG.getNode(ISD::BITCAST, DL, UnpackVT, V1);
7263    V2 = DAG.getNode(ISD::BITCAST, DL, UnpackVT, V2);
7264
7265    // Unpack the inputs and cast the result back to the desired type.
7266    return DAG.getNode(ISD::BITCAST, DL, VT,
7267                       DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH,
7268                                   DL, UnpackVT, V1, V2));
7269  };
7270
7271  // We try each unpack from the largest to the smallest to try and find one
7272  // that fits this mask.
7273  int OrigNumElements = VT.getVectorNumElements();
7274  int OrigScalarSize = VT.getScalarSizeInBits();
7275  for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) {
7276    int Scale = ScalarSize / OrigScalarSize;
7277    int NumElements = OrigNumElements / Scale;
7278    MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), NumElements);
7279    if (SDValue Unpack = TryUnpack(UnpackVT, Scale))
7280      return Unpack;
7281  }
7282
7283  // If none of the unpack-rooted lowerings worked (or were profitable) try an
7284  // initial unpack.
7285  if (NumLoInputs == 0 || NumHiInputs == 0) {
7286    assert((NumLoInputs > 0 || NumHiInputs > 0) &&
7287           "We have to have *some* inputs!");
7288    int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
7289
7290    // FIXME: We could consider the total complexity of the permute of each
7291    // possible unpacking. Or at the least we should consider how many
7292    // half-crossings are created.
7293    // FIXME: We could consider commuting the unpacks.
7294
7295    SmallVector<int, 32> PermMask;
7296    PermMask.assign(Size, -1);
7297    for (int i = 0; i < Size; ++i) {
7298      if (Mask[i] < 0)
7299        continue;
7300
7301      assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
7302
7303      PermMask[i] =
7304          2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
7305    }
7306    return DAG.getVectorShuffle(
7307        VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
7308                            DL, VT, V1, V2),
7309        DAG.getUNDEF(VT), PermMask);
7310  }
7311
7312  return SDValue();
7313}
7314
7315/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
7316///
7317/// This is the basis function for the 2-lane 64-bit shuffles as we have full
7318/// support for floating point shuffles but not integer shuffles. These
7319/// instructions will incur a domain crossing penalty on some chips though so
7320/// it is better to avoid lowering through this for integer vectors where
7321/// possible.
7322static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7323                                       const X86Subtarget *Subtarget,
7324                                       SelectionDAG &DAG) {
7325  SDLoc DL(Op);
7326  assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
7327  assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
7328  assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
7329  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7330  ArrayRef<int> Mask = SVOp->getMask();
7331  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
7332
7333  if (isSingleInputShuffleMask(Mask)) {
7334    // Use low duplicate instructions for masks that match their pattern.
7335    if (Subtarget->hasSSE3())
7336      if (isShuffleEquivalent(V1, V2, Mask, {0, 0}))
7337        return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1);
7338
7339    // Straight shuffle of a single input vector. Simulate this by using the
7340    // single input as both of the "inputs" to this instruction..
7341    unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
7342
7343    if (Subtarget->hasAVX()) {
7344      // If we have AVX, we can use VPERMILPS which will allow folding a load
7345      // into the shuffle.
7346      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
7347                         DAG.getConstant(SHUFPDMask, MVT::i8));
7348    }
7349
7350    return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1,
7351                       DAG.getConstant(SHUFPDMask, MVT::i8));
7352  }
7353  assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
7354  assert(Mask[1] >= 2 && "Non-canonicalized blend!");
7355
7356  // If we have a single input, insert that into V1 if we can do so cheaply.
7357  if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
7358    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7359            DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
7360      return Insertion;
7361    // Try inverting the insertion since for v2 masks it is easy to do and we
7362    // can't reliably sort the mask one way or the other.
7363    int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
7364                          Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
7365    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7366            DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG))
7367      return Insertion;
7368  }
7369
7370  // Try to use one of the special instruction patterns to handle two common
7371  // blend patterns if a zero-blend above didn't work.
7372  if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
7373      isShuffleEquivalent(V1, V2, Mask, {1, 3}))
7374    if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
7375      // We can either use a special instruction to load over the low double or
7376      // to move just the low double.
7377      return DAG.getNode(
7378          isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
7379          DL, MVT::v2f64, V2,
7380          DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
7381
7382  if (Subtarget->hasSSE41())
7383    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
7384                                                  Subtarget, DAG))
7385      return Blend;
7386
7387  // Use dedicated unpack instructions for masks that match their pattern.
7388  if (isShuffleEquivalent(V1, V2, Mask, {0, 2}))
7389    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2f64, V1, V2);
7390  if (isShuffleEquivalent(V1, V2, Mask, {1, 3}))
7391    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2f64, V1, V2);
7392
7393  unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
7394  return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2,
7395                     DAG.getConstant(SHUFPDMask, MVT::i8));
7396}
7397
7398/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
7399///
7400/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
7401/// the integer unit to minimize domain crossing penalties. However, for blends
7402/// it falls back to the floating point shuffle operation with appropriate bit
7403/// casting.
7404static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7405                                       const X86Subtarget *Subtarget,
7406                                       SelectionDAG &DAG) {
7407  SDLoc DL(Op);
7408  assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
7409  assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
7410  assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
7411  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7412  ArrayRef<int> Mask = SVOp->getMask();
7413  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
7414
7415  if (isSingleInputShuffleMask(Mask)) {
7416    // Check for being able to broadcast a single element.
7417    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v2i64, V1,
7418                                                          Mask, Subtarget, DAG))
7419      return Broadcast;
7420
7421    // Straight shuffle of a single input vector. For everything from SSE2
7422    // onward this has a single fast instruction with no scary immediates.
7423    // We have to map the mask as it is actually a v4i32 shuffle instruction.
7424    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1);
7425    int WidenedMask[4] = {
7426        std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
7427        std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
7428    return DAG.getNode(
7429        ISD::BITCAST, DL, MVT::v2i64,
7430        DAG.getNode(X86ISD::PSHUFD, SDLoc(Op), MVT::v4i32, V1,
7431                    getV4X86ShuffleImm8ForMask(WidenedMask, DAG)));
7432  }
7433  assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
7434  assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
7435  assert(Mask[0] < 2 && "We sort V1 to be the first input.");
7436  assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
7437
7438  // If we have a blend of two PACKUS operations an the blend aligns with the
7439  // low and half halves, we can just merge the PACKUS operations. This is
7440  // particularly important as it lets us merge shuffles that this routine itself
7441  // creates.
7442  auto GetPackNode = [](SDValue V) {
7443    while (V.getOpcode() == ISD::BITCAST)
7444      V = V.getOperand(0);
7445
7446    return V.getOpcode() == X86ISD::PACKUS ? V : SDValue();
7447  };
7448  if (SDValue V1Pack = GetPackNode(V1))
7449    if (SDValue V2Pack = GetPackNode(V2))
7450      return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
7451                         DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
7452                                     Mask[0] == 0 ? V1Pack.getOperand(0)
7453                                                  : V1Pack.getOperand(1),
7454                                     Mask[1] == 2 ? V2Pack.getOperand(0)
7455                                                  : V2Pack.getOperand(1)));
7456
7457  // Try to use shift instructions.
7458  if (SDValue Shift =
7459          lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, DAG))
7460    return Shift;
7461
7462  // When loading a scalar and then shuffling it into a vector we can often do
7463  // the insertion cheaply.
7464  if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7465          DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
7466    return Insertion;
7467  // Try inverting the insertion since for v2 masks it is easy to do and we
7468  // can't reliably sort the mask one way or the other.
7469  int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
7470  if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7471          DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG))
7472    return Insertion;
7473
7474  // We have different paths for blend lowering, but they all must use the
7475  // *exact* same predicate.
7476  bool IsBlendSupported = Subtarget->hasSSE41();
7477  if (IsBlendSupported)
7478    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
7479                                                  Subtarget, DAG))
7480      return Blend;
7481
7482  // Use dedicated unpack instructions for masks that match their pattern.
7483  if (isShuffleEquivalent(V1, V2, Mask, {0, 2}))
7484    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, V1, V2);
7485  if (isShuffleEquivalent(V1, V2, Mask, {1, 3}))
7486    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2i64, V1, V2);
7487
7488  // Try to use byte rotation instructions.
7489  // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
7490  if (Subtarget->hasSSSE3())
7491    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
7492            DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
7493      return Rotate;
7494
7495  // If we have direct support for blends, we should lower by decomposing into
7496  // a permute. That will be faster than the domain cross.
7497  if (IsBlendSupported)
7498    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2,
7499                                                      Mask, DAG);
7500
7501  // We implement this with SHUFPD which is pretty lame because it will likely
7502  // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
7503  // However, all the alternatives are still more cycles and newer chips don't
7504  // have this problem. It would be really nice if x86 had better shuffles here.
7505  V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1);
7506  V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2);
7507  return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
7508                     DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
7509}
7510
7511/// \brief Test whether this can be lowered with a single SHUFPS instruction.
7512///
7513/// This is used to disable more specialized lowerings when the shufps lowering
7514/// will happen to be efficient.
7515static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
7516  // This routine only handles 128-bit shufps.
7517  assert(Mask.size() == 4 && "Unsupported mask size!");
7518
7519  // To lower with a single SHUFPS we need to have the low half and high half
7520  // each requiring a single input.
7521  if (Mask[0] != -1 && Mask[1] != -1 && (Mask[0] < 4) != (Mask[1] < 4))
7522    return false;
7523  if (Mask[2] != -1 && Mask[3] != -1 && (Mask[2] < 4) != (Mask[3] < 4))
7524    return false;
7525
7526  return true;
7527}
7528
7529/// \brief Lower a vector shuffle using the SHUFPS instruction.
7530///
7531/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
7532/// It makes no assumptions about whether this is the *best* lowering, it simply
7533/// uses it.
7534static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
7535                                            ArrayRef<int> Mask, SDValue V1,
7536                                            SDValue V2, SelectionDAG &DAG) {
7537  SDValue LowV = V1, HighV = V2;
7538  int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
7539
7540  int NumV2Elements =
7541      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
7542
7543  if (NumV2Elements == 1) {
7544    int V2Index =
7545        std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
7546        Mask.begin();
7547
7548    // Compute the index adjacent to V2Index and in the same half by toggling
7549    // the low bit.
7550    int V2AdjIndex = V2Index ^ 1;
7551
7552    if (Mask[V2AdjIndex] == -1) {
7553      // Handles all the cases where we have a single V2 element and an undef.
7554      // This will only ever happen in the high lanes because we commute the
7555      // vector otherwise.
7556      if (V2Index < 2)
7557        std::swap(LowV, HighV);
7558      NewMask[V2Index] -= 4;
7559    } else {
7560      // Handle the case where the V2 element ends up adjacent to a V1 element.
7561      // To make this work, blend them together as the first step.
7562      int V1Index = V2AdjIndex;
7563      int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
7564      V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
7565                       getV4X86ShuffleImm8ForMask(BlendMask, DAG));
7566
7567      // Now proceed to reconstruct the final blend as we have the necessary
7568      // high or low half formed.
7569      if (V2Index < 2) {
7570        LowV = V2;
7571        HighV = V1;
7572      } else {
7573        HighV = V2;
7574      }
7575      NewMask[V1Index] = 2; // We put the V1 element in V2[2].
7576      NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
7577    }
7578  } else if (NumV2Elements == 2) {
7579    if (Mask[0] < 4 && Mask[1] < 4) {
7580      // Handle the easy case where we have V1 in the low lanes and V2 in the
7581      // high lanes.
7582      NewMask[2] -= 4;
7583      NewMask[3] -= 4;
7584    } else if (Mask[2] < 4 && Mask[3] < 4) {
7585      // We also handle the reversed case because this utility may get called
7586      // when we detect a SHUFPS pattern but can't easily commute the shuffle to
7587      // arrange things in the right direction.
7588      NewMask[0] -= 4;
7589      NewMask[1] -= 4;
7590      HighV = V1;
7591      LowV = V2;
7592    } else {
7593      // We have a mixture of V1 and V2 in both low and high lanes. Rather than
7594      // trying to place elements directly, just blend them and set up the final
7595      // shuffle to place them.
7596
7597      // The first two blend mask elements are for V1, the second two are for
7598      // V2.
7599      int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
7600                          Mask[2] < 4 ? Mask[2] : Mask[3],
7601                          (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
7602                          (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
7603      V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
7604                       getV4X86ShuffleImm8ForMask(BlendMask, DAG));
7605
7606      // Now we do a normal shuffle of V1 by giving V1 as both operands to
7607      // a blend.
7608      LowV = HighV = V1;
7609      NewMask[0] = Mask[0] < 4 ? 0 : 2;
7610      NewMask[1] = Mask[0] < 4 ? 2 : 0;
7611      NewMask[2] = Mask[2] < 4 ? 1 : 3;
7612      NewMask[3] = Mask[2] < 4 ? 3 : 1;
7613    }
7614  }
7615  return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
7616                     getV4X86ShuffleImm8ForMask(NewMask, DAG));
7617}
7618
7619/// \brief Lower 4-lane 32-bit floating point shuffles.
7620///
7621/// Uses instructions exclusively from the floating point unit to minimize
7622/// domain crossing penalties, as these are sufficient to implement all v4f32
7623/// shuffles.
7624static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7625                                       const X86Subtarget *Subtarget,
7626                                       SelectionDAG &DAG) {
7627  SDLoc DL(Op);
7628  assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
7629  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7630  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7631  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7632  ArrayRef<int> Mask = SVOp->getMask();
7633  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
7634
7635  int NumV2Elements =
7636      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
7637
7638  if (NumV2Elements == 0) {
7639    // Check for being able to broadcast a single element.
7640    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f32, V1,
7641                                                          Mask, Subtarget, DAG))
7642      return Broadcast;
7643
7644    // Use even/odd duplicate instructions for masks that match their pattern.
7645    if (Subtarget->hasSSE3()) {
7646      if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
7647        return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
7648      if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
7649        return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
7650    }
7651
7652    if (Subtarget->hasAVX()) {
7653      // If we have AVX, we can use VPERMILPS which will allow folding a load
7654      // into the shuffle.
7655      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
7656                         getV4X86ShuffleImm8ForMask(Mask, DAG));
7657    }
7658
7659    // Otherwise, use a straight shuffle of a single input vector. We pass the
7660    // input vector to both operands to simulate this with a SHUFPS.
7661    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
7662                       getV4X86ShuffleImm8ForMask(Mask, DAG));
7663  }
7664
7665  // There are special ways we can lower some single-element blends. However, we
7666  // have custom ways we can lower more complex single-element blends below that
7667  // we defer to if both this and BLENDPS fail to match, so restrict this to
7668  // when the V2 input is targeting element 0 of the mask -- that is the fast
7669  // case here.
7670  if (NumV2Elements == 1 && Mask[0] >= 4)
7671    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2,
7672                                                         Mask, Subtarget, DAG))
7673      return V;
7674
7675  if (Subtarget->hasSSE41()) {
7676    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
7677                                                  Subtarget, DAG))
7678      return Blend;
7679
7680    // Use INSERTPS if we can complete the shuffle efficiently.
7681    if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG))
7682      return V;
7683
7684    if (!isSingleSHUFPSMask(Mask))
7685      if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(
7686              DL, MVT::v4f32, V1, V2, Mask, DAG))
7687        return BlendPerm;
7688  }
7689
7690  // Use dedicated unpack instructions for masks that match their pattern.
7691  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 1, 5}))
7692    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V1, V2);
7693  if (isShuffleEquivalent(V1, V2, Mask, {2, 6, 3, 7}))
7694    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V1, V2);
7695  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 5, 1}))
7696    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V2, V1);
7697  if (isShuffleEquivalent(V1, V2, Mask, {6, 2, 7, 3}))
7698    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V2, V1);
7699
7700  // Otherwise fall back to a SHUFPS lowering strategy.
7701  return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
7702}
7703
7704/// \brief Lower 4-lane i32 vector shuffles.
7705///
7706/// We try to handle these with integer-domain shuffles where we can, but for
7707/// blends we use the floating point domain blend instructions.
7708static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7709                                       const X86Subtarget *Subtarget,
7710                                       SelectionDAG &DAG) {
7711  SDLoc DL(Op);
7712  assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
7713  assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
7714  assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
7715  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7716  ArrayRef<int> Mask = SVOp->getMask();
7717  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
7718
7719  // Whenever we can lower this as a zext, that instruction is strictly faster
7720  // than any alternative. It also allows us to fold memory operands into the
7721  // shuffle in many cases.
7722  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2,
7723                                                         Mask, Subtarget, DAG))
7724    return ZExt;
7725
7726  int NumV2Elements =
7727      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
7728
7729  if (NumV2Elements == 0) {
7730    // Check for being able to broadcast a single element.
7731    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i32, V1,
7732                                                          Mask, Subtarget, DAG))
7733      return Broadcast;
7734
7735    // Straight shuffle of a single input vector. For everything from SSE2
7736    // onward this has a single fast instruction with no scary immediates.
7737    // We coerce the shuffle pattern to be compatible with UNPCK instructions
7738    // but we aren't actually going to use the UNPCK instruction because doing
7739    // so prevents folding a load into this instruction or making a copy.
7740    const int UnpackLoMask[] = {0, 0, 1, 1};
7741    const int UnpackHiMask[] = {2, 2, 3, 3};
7742    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
7743      Mask = UnpackLoMask;
7744    else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
7745      Mask = UnpackHiMask;
7746
7747    return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
7748                       getV4X86ShuffleImm8ForMask(Mask, DAG));
7749  }
7750
7751  // Try to use shift instructions.
7752  if (SDValue Shift =
7753          lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, DAG))
7754    return Shift;
7755
7756  // There are special ways we can lower some single-element blends.
7757  if (NumV2Elements == 1)
7758    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2,
7759                                                         Mask, Subtarget, DAG))
7760      return V;
7761
7762  // We have different paths for blend lowering, but they all must use the
7763  // *exact* same predicate.
7764  bool IsBlendSupported = Subtarget->hasSSE41();
7765  if (IsBlendSupported)
7766    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
7767                                                  Subtarget, DAG))
7768      return Blend;
7769
7770  if (SDValue Masked =
7771          lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, DAG))
7772    return Masked;
7773
7774  // Use dedicated unpack instructions for masks that match their pattern.
7775  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 1, 5}))
7776    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V1, V2);
7777  if (isShuffleEquivalent(V1, V2, Mask, {2, 6, 3, 7}))
7778    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V1, V2);
7779  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 5, 1}))
7780    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V2, V1);
7781  if (isShuffleEquivalent(V1, V2, Mask, {6, 2, 7, 3}))
7782    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V2, V1);
7783
7784  // Try to use byte rotation instructions.
7785  // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
7786  if (Subtarget->hasSSSE3())
7787    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
7788            DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
7789      return Rotate;
7790
7791  // If we have direct support for blends, we should lower by decomposing into
7792  // a permute. That will be faster than the domain cross.
7793  if (IsBlendSupported)
7794    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2,
7795                                                      Mask, DAG);
7796
7797  // Try to lower by permuting the inputs into an unpack instruction.
7798  if (SDValue Unpack =
7799          lowerVectorShuffleAsUnpack(DL, MVT::v4i32, V1, V2, Mask, DAG))
7800    return Unpack;
7801
7802  // We implement this with SHUFPS because it can blend from two vectors.
7803  // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
7804  // up the inputs, bypassing domain shift penalties that we would encur if we
7805  // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
7806  // relevant.
7807  return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32,
7808                     DAG.getVectorShuffle(
7809                         MVT::v4f32, DL,
7810                         DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1),
7811                         DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask));
7812}
7813
7814/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
7815/// shuffle lowering, and the most complex part.
7816///
7817/// The lowering strategy is to try to form pairs of input lanes which are
7818/// targeted at the same half of the final vector, and then use a dword shuffle
7819/// to place them onto the right half, and finally unpack the paired lanes into
7820/// their final position.
7821///
7822/// The exact breakdown of how to form these dword pairs and align them on the
7823/// correct sides is really tricky. See the comments within the function for
7824/// more of the details.
7825///
7826/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
7827/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
7828/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
7829/// vector, form the analogous 128-bit 8-element Mask.
7830static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
7831    SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
7832    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7833  assert(VT.getScalarType() == MVT::i16 && "Bad input type!");
7834  MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
7835
7836  assert(Mask.size() == 8 && "Shuffle mask length doen't match!");
7837  MutableArrayRef<int> LoMask = Mask.slice(0, 4);
7838  MutableArrayRef<int> HiMask = Mask.slice(4, 4);
7839
7840  SmallVector<int, 4> LoInputs;
7841  std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
7842               [](int M) { return M >= 0; });
7843  std::sort(LoInputs.begin(), LoInputs.end());
7844  LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
7845  SmallVector<int, 4> HiInputs;
7846  std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
7847               [](int M) { return M >= 0; });
7848  std::sort(HiInputs.begin(), HiInputs.end());
7849  HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
7850  int NumLToL =
7851      std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
7852  int NumHToL = LoInputs.size() - NumLToL;
7853  int NumLToH =
7854      std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
7855  int NumHToH = HiInputs.size() - NumLToH;
7856  MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
7857  MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
7858  MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
7859  MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
7860
7861  // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
7862  // such inputs we can swap two of the dwords across the half mark and end up
7863  // with <=2 inputs to each half in each half. Once there, we can fall through
7864  // to the generic code below. For example:
7865  //
7866  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
7867  // Mask:  [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
7868  //
7869  // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
7870  // and an existing 2-into-2 on the other half. In this case we may have to
7871  // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
7872  // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
7873  // Fortunately, we don't have to handle anything but a 2-into-2 pattern
7874  // because any other situation (including a 3-into-1 or 1-into-3 in the other
7875  // half than the one we target for fixing) will be fixed when we re-enter this
7876  // path. We will also combine away any sequence of PSHUFD instructions that
7877  // result into a single instruction. Here is an example of the tricky case:
7878  //
7879  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
7880  // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
7881  //
7882  // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
7883  //
7884  // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
7885  // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
7886  //
7887  // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
7888  // Mask:  [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
7889  //
7890  // The result is fine to be handled by the generic logic.
7891  auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
7892                          ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
7893                          int AOffset, int BOffset) {
7894    assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
7895           "Must call this with A having 3 or 1 inputs from the A half.");
7896    assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
7897           "Must call this with B having 1 or 3 inputs from the B half.");
7898    assert(AToAInputs.size() + BToAInputs.size() == 4 &&
7899           "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
7900
7901    // Compute the index of dword with only one word among the three inputs in
7902    // a half by taking the sum of the half with three inputs and subtracting
7903    // the sum of the actual three inputs. The difference is the remaining
7904    // slot.
7905    int ADWord, BDWord;
7906    int &TripleDWord = AToAInputs.size() == 3 ? ADWord : BDWord;
7907    int &OneInputDWord = AToAInputs.size() == 3 ? BDWord : ADWord;
7908    int TripleInputOffset = AToAInputs.size() == 3 ? AOffset : BOffset;
7909    ArrayRef<int> TripleInputs = AToAInputs.size() == 3 ? AToAInputs : BToAInputs;
7910    int OneInput = AToAInputs.size() == 3 ? BToAInputs[0] : AToAInputs[0];
7911    int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
7912    int TripleNonInputIdx =
7913        TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
7914    TripleDWord = TripleNonInputIdx / 2;
7915
7916    // We use xor with one to compute the adjacent DWord to whichever one the
7917    // OneInput is in.
7918    OneInputDWord = (OneInput / 2) ^ 1;
7919
7920    // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
7921    // and BToA inputs. If there is also such a problem with the BToB and AToB
7922    // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
7923    // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
7924    // is essential that we don't *create* a 3<-1 as then we might oscillate.
7925    if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
7926      // Compute how many inputs will be flipped by swapping these DWords. We
7927      // need
7928      // to balance this to ensure we don't form a 3-1 shuffle in the other
7929      // half.
7930      int NumFlippedAToBInputs =
7931          std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
7932          std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
7933      int NumFlippedBToBInputs =
7934          std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
7935          std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
7936      if ((NumFlippedAToBInputs == 1 &&
7937           (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
7938          (NumFlippedBToBInputs == 1 &&
7939           (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
7940        // We choose whether to fix the A half or B half based on whether that
7941        // half has zero flipped inputs. At zero, we may not be able to fix it
7942        // with that half. We also bias towards fixing the B half because that
7943        // will more commonly be the high half, and we have to bias one way.
7944        auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
7945                                                       ArrayRef<int> Inputs) {
7946          int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
7947          bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(),
7948                                         PinnedIdx ^ 1) != Inputs.end();
7949          // Determine whether the free index is in the flipped dword or the
7950          // unflipped dword based on where the pinned index is. We use this bit
7951          // in an xor to conditionally select the adjacent dword.
7952          int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
7953          bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
7954                                             FixFreeIdx) != Inputs.end();
7955          if (IsFixIdxInput == IsFixFreeIdxInput)
7956            FixFreeIdx += 1;
7957          IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
7958                                        FixFreeIdx) != Inputs.end();
7959          assert(IsFixIdxInput != IsFixFreeIdxInput &&
7960                 "We need to be changing the number of flipped inputs!");
7961          int PSHUFHalfMask[] = {0, 1, 2, 3};
7962          std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
7963          V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
7964                          MVT::v8i16, V,
7965                          getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DAG));
7966
7967          for (int &M : Mask)
7968            if (M != -1 && M == FixIdx)
7969              M = FixFreeIdx;
7970            else if (M != -1 && M == FixFreeIdx)
7971              M = FixIdx;
7972        };
7973        if (NumFlippedBToBInputs != 0) {
7974          int BPinnedIdx =
7975              BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
7976          FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
7977        } else {
7978          assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
7979          int APinnedIdx =
7980              AToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
7981          FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
7982        }
7983      }
7984    }
7985
7986    int PSHUFDMask[] = {0, 1, 2, 3};
7987    PSHUFDMask[ADWord] = BDWord;
7988    PSHUFDMask[BDWord] = ADWord;
7989    V = DAG.getNode(ISD::BITCAST, DL, VT,
7990                    DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT,
7991                                DAG.getNode(ISD::BITCAST, DL, PSHUFDVT, V),
7992                                getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
7993
7994    // Adjust the mask to match the new locations of A and B.
7995    for (int &M : Mask)
7996      if (M != -1 && M/2 == ADWord)
7997        M = 2 * BDWord + M % 2;
7998      else if (M != -1 && M/2 == BDWord)
7999        M = 2 * ADWord + M % 2;
8000
8001    // Recurse back into this routine to re-compute state now that this isn't
8002    // a 3 and 1 problem.
8003    return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
8004                                                     DAG);
8005  };
8006  if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
8007    return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
8008  else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
8009    return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
8010
8011  // At this point there are at most two inputs to the low and high halves from
8012  // each half. That means the inputs can always be grouped into dwords and
8013  // those dwords can then be moved to the correct half with a dword shuffle.
8014  // We use at most one low and one high word shuffle to collect these paired
8015  // inputs into dwords, and finally a dword shuffle to place them.
8016  int PSHUFLMask[4] = {-1, -1, -1, -1};
8017  int PSHUFHMask[4] = {-1, -1, -1, -1};
8018  int PSHUFDMask[4] = {-1, -1, -1, -1};
8019
8020  // First fix the masks for all the inputs that are staying in their
8021  // original halves. This will then dictate the targets of the cross-half
8022  // shuffles.
8023  auto fixInPlaceInputs =
8024      [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
8025                    MutableArrayRef<int> SourceHalfMask,
8026                    MutableArrayRef<int> HalfMask, int HalfOffset) {
8027    if (InPlaceInputs.empty())
8028      return;
8029    if (InPlaceInputs.size() == 1) {
8030      SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
8031          InPlaceInputs[0] - HalfOffset;
8032      PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
8033      return;
8034    }
8035    if (IncomingInputs.empty()) {
8036      // Just fix all of the in place inputs.
8037      for (int Input : InPlaceInputs) {
8038        SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
8039        PSHUFDMask[Input / 2] = Input / 2;
8040      }
8041      return;
8042    }
8043
8044    assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
8045    SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
8046        InPlaceInputs[0] - HalfOffset;
8047    // Put the second input next to the first so that they are packed into
8048    // a dword. We find the adjacent index by toggling the low bit.
8049    int AdjIndex = InPlaceInputs[0] ^ 1;
8050    SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
8051    std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
8052    PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
8053  };
8054  fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
8055  fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
8056
8057  // Now gather the cross-half inputs and place them into a free dword of
8058  // their target half.
8059  // FIXME: This operation could almost certainly be simplified dramatically to
8060  // look more like the 3-1 fixing operation.
8061  auto moveInputsToRightHalf = [&PSHUFDMask](
8062      MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
8063      MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
8064      MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
8065      int DestOffset) {
8066    auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
8067      return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
8068    };
8069    auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
8070                                               int Word) {
8071      int LowWord = Word & ~1;
8072      int HighWord = Word | 1;
8073      return isWordClobbered(SourceHalfMask, LowWord) ||
8074             isWordClobbered(SourceHalfMask, HighWord);
8075    };
8076
8077    if (IncomingInputs.empty())
8078      return;
8079
8080    if (ExistingInputs.empty()) {
8081      // Map any dwords with inputs from them into the right half.
8082      for (int Input : IncomingInputs) {
8083        // If the source half mask maps over the inputs, turn those into
8084        // swaps and use the swapped lane.
8085        if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
8086          if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
8087            SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
8088                Input - SourceOffset;
8089            // We have to swap the uses in our half mask in one sweep.
8090            for (int &M : HalfMask)
8091              if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
8092                M = Input;
8093              else if (M == Input)
8094                M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
8095          } else {
8096            assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
8097                       Input - SourceOffset &&
8098                   "Previous placement doesn't match!");
8099          }
8100          // Note that this correctly re-maps both when we do a swap and when
8101          // we observe the other side of the swap above. We rely on that to
8102          // avoid swapping the members of the input list directly.
8103          Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
8104        }
8105
8106        // Map the input's dword into the correct half.
8107        if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
8108          PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
8109        else
8110          assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
8111                     Input / 2 &&
8112                 "Previous placement doesn't match!");
8113      }
8114
8115      // And just directly shift any other-half mask elements to be same-half
8116      // as we will have mirrored the dword containing the element into the
8117      // same position within that half.
8118      for (int &M : HalfMask)
8119        if (M >= SourceOffset && M < SourceOffset + 4) {
8120          M = M - SourceOffset + DestOffset;
8121          assert(M >= 0 && "This should never wrap below zero!");
8122        }
8123      return;
8124    }
8125
8126    // Ensure we have the input in a viable dword of its current half. This
8127    // is particularly tricky because the original position may be clobbered
8128    // by inputs being moved and *staying* in that half.
8129    if (IncomingInputs.size() == 1) {
8130      if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
8131        int InputFixed = std::find(std::begin(SourceHalfMask),
8132                                   std::end(SourceHalfMask), -1) -
8133                         std::begin(SourceHalfMask) + SourceOffset;
8134        SourceHalfMask[InputFixed - SourceOffset] =
8135            IncomingInputs[0] - SourceOffset;
8136        std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
8137                     InputFixed);
8138        IncomingInputs[0] = InputFixed;
8139      }
8140    } else if (IncomingInputs.size() == 2) {
8141      if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
8142          isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
8143        // We have two non-adjacent or clobbered inputs we need to extract from
8144        // the source half. To do this, we need to map them into some adjacent
8145        // dword slot in the source mask.
8146        int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
8147                              IncomingInputs[1] - SourceOffset};
8148
8149        // If there is a free slot in the source half mask adjacent to one of
8150        // the inputs, place the other input in it. We use (Index XOR 1) to
8151        // compute an adjacent index.
8152        if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
8153            SourceHalfMask[InputsFixed[0] ^ 1] == -1) {
8154          SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
8155          SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
8156          InputsFixed[1] = InputsFixed[0] ^ 1;
8157        } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
8158                   SourceHalfMask[InputsFixed[1] ^ 1] == -1) {
8159          SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
8160          SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
8161          InputsFixed[0] = InputsFixed[1] ^ 1;
8162        } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 &&
8163                   SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) {
8164          // The two inputs are in the same DWord but it is clobbered and the
8165          // adjacent DWord isn't used at all. Move both inputs to the free
8166          // slot.
8167          SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
8168          SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
8169          InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
8170          InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
8171        } else {
8172          // The only way we hit this point is if there is no clobbering
8173          // (because there are no off-half inputs to this half) and there is no
8174          // free slot adjacent to one of the inputs. In this case, we have to
8175          // swap an input with a non-input.
8176          for (int i = 0; i < 4; ++i)
8177            assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) &&
8178                   "We can't handle any clobbers here!");
8179          assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
8180                 "Cannot have adjacent inputs here!");
8181
8182          SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
8183          SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
8184
8185          // We also have to update the final source mask in this case because
8186          // it may need to undo the above swap.
8187          for (int &M : FinalSourceHalfMask)
8188            if (M == (InputsFixed[0] ^ 1) + SourceOffset)
8189              M = InputsFixed[1] + SourceOffset;
8190            else if (M == InputsFixed[1] + SourceOffset)
8191              M = (InputsFixed[0] ^ 1) + SourceOffset;
8192
8193          InputsFixed[1] = InputsFixed[0] ^ 1;
8194        }
8195
8196        // Point everything at the fixed inputs.
8197        for (int &M : HalfMask)
8198          if (M == IncomingInputs[0])
8199            M = InputsFixed[0] + SourceOffset;
8200          else if (M == IncomingInputs[1])
8201            M = InputsFixed[1] + SourceOffset;
8202
8203        IncomingInputs[0] = InputsFixed[0] + SourceOffset;
8204        IncomingInputs[1] = InputsFixed[1] + SourceOffset;
8205      }
8206    } else {
8207      llvm_unreachable("Unhandled input size!");
8208    }
8209
8210    // Now hoist the DWord down to the right half.
8211    int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
8212    assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
8213    PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
8214    for (int &M : HalfMask)
8215      for (int Input : IncomingInputs)
8216        if (M == Input)
8217          M = FreeDWord * 2 + Input % 2;
8218  };
8219  moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
8220                        /*SourceOffset*/ 4, /*DestOffset*/ 0);
8221  moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
8222                        /*SourceOffset*/ 0, /*DestOffset*/ 4);
8223
8224  // Now enact all the shuffles we've computed to move the inputs into their
8225  // target half.
8226  if (!isNoopShuffleMask(PSHUFLMask))
8227    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
8228                    getV4X86ShuffleImm8ForMask(PSHUFLMask, DAG));
8229  if (!isNoopShuffleMask(PSHUFHMask))
8230    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
8231                    getV4X86ShuffleImm8ForMask(PSHUFHMask, DAG));
8232  if (!isNoopShuffleMask(PSHUFDMask))
8233    V = DAG.getNode(ISD::BITCAST, DL, VT,
8234                    DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT,
8235                                DAG.getNode(ISD::BITCAST, DL, PSHUFDVT, V),
8236                                getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
8237
8238  // At this point, each half should contain all its inputs, and we can then
8239  // just shuffle them into their final position.
8240  assert(std::count_if(LoMask.begin(), LoMask.end(),
8241                       [](int M) { return M >= 4; }) == 0 &&
8242         "Failed to lift all the high half inputs to the low mask!");
8243  assert(std::count_if(HiMask.begin(), HiMask.end(),
8244                       [](int M) { return M >= 0 && M < 4; }) == 0 &&
8245         "Failed to lift all the low half inputs to the high mask!");
8246
8247  // Do a half shuffle for the low mask.
8248  if (!isNoopShuffleMask(LoMask))
8249    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
8250                    getV4X86ShuffleImm8ForMask(LoMask, DAG));
8251
8252  // Do a half shuffle with the high mask after shifting its values down.
8253  for (int &M : HiMask)
8254    if (M >= 0)
8255      M -= 4;
8256  if (!isNoopShuffleMask(HiMask))
8257    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
8258                    getV4X86ShuffleImm8ForMask(HiMask, DAG));
8259
8260  return V;
8261}
8262
8263/// \brief Helper to form a PSHUFB-based shuffle+blend.
8264static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
8265                                          SDValue V2, ArrayRef<int> Mask,
8266                                          SelectionDAG &DAG, bool &V1InUse,
8267                                          bool &V2InUse) {
8268  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
8269  SDValue V1Mask[16];
8270  SDValue V2Mask[16];
8271  V1InUse = false;
8272  V2InUse = false;
8273
8274  int Size = Mask.size();
8275  int Scale = 16 / Size;
8276  for (int i = 0; i < 16; ++i) {
8277    if (Mask[i / Scale] == -1) {
8278      V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
8279    } else {
8280      const int ZeroMask = 0x80;
8281      int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale
8282                                          : ZeroMask;
8283      int V2Idx = Mask[i / Scale] < Size
8284                      ? ZeroMask
8285                      : (Mask[i / Scale] - Size) * Scale + i % Scale;
8286      if (Zeroable[i / Scale])
8287        V1Idx = V2Idx = ZeroMask;
8288      V1Mask[i] = DAG.getConstant(V1Idx, MVT::i8);
8289      V2Mask[i] = DAG.getConstant(V2Idx, MVT::i8);
8290      V1InUse |= (ZeroMask != V1Idx);
8291      V2InUse |= (ZeroMask != V2Idx);
8292    }
8293  }
8294
8295  if (V1InUse)
8296    V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
8297                     DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, V1),
8298                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
8299  if (V2InUse)
8300    V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
8301                     DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, V2),
8302                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
8303
8304  // If we need shuffled inputs from both, blend the two.
8305  SDValue V;
8306  if (V1InUse && V2InUse)
8307    V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
8308  else
8309    V = V1InUse ? V1 : V2;
8310
8311  // Cast the result back to the correct type.
8312  return DAG.getNode(ISD::BITCAST, DL, VT, V);
8313}
8314
8315/// \brief Generic lowering of 8-lane i16 shuffles.
8316///
8317/// This handles both single-input shuffles and combined shuffle/blends with
8318/// two inputs. The single input shuffles are immediately delegated to
8319/// a dedicated lowering routine.
8320///
8321/// The blends are lowered in one of three fundamental ways. If there are few
8322/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
8323/// of the input is significantly cheaper when lowered as an interleaving of
8324/// the two inputs, try to interleave them. Otherwise, blend the low and high
8325/// halves of the inputs separately (making them have relatively few inputs)
8326/// and then concatenate them.
8327static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8328                                       const X86Subtarget *Subtarget,
8329                                       SelectionDAG &DAG) {
8330  SDLoc DL(Op);
8331  assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
8332  assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
8333  assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
8334  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8335  ArrayRef<int> OrigMask = SVOp->getMask();
8336  int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
8337                        OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
8338  MutableArrayRef<int> Mask(MaskStorage);
8339
8340  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
8341
8342  // Whenever we can lower this as a zext, that instruction is strictly faster
8343  // than any alternative.
8344  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
8345          DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG))
8346    return ZExt;
8347
8348  auto isV1 = [](int M) { return M >= 0 && M < 8; };
8349  (void)isV1;
8350  auto isV2 = [](int M) { return M >= 8; };
8351
8352  int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
8353
8354  if (NumV2Inputs == 0) {
8355    // Check for being able to broadcast a single element.
8356    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i16, V1,
8357                                                          Mask, Subtarget, DAG))
8358      return Broadcast;
8359
8360    // Try to use shift instructions.
8361    if (SDValue Shift =
8362            lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG))
8363      return Shift;
8364
8365    // Use dedicated unpack instructions for masks that match their pattern.
8366    if (isShuffleEquivalent(V1, V1, Mask, {0, 0, 1, 1, 2, 2, 3, 3}))
8367      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V1);
8368    if (isShuffleEquivalent(V1, V1, Mask, {4, 4, 5, 5, 6, 6, 7, 7}))
8369      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V1);
8370
8371    // Try to use byte rotation instructions.
8372    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
8373                                                        Mask, Subtarget, DAG))
8374      return Rotate;
8375
8376    return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask,
8377                                                     Subtarget, DAG);
8378  }
8379
8380  assert(std::any_of(Mask.begin(), Mask.end(), isV1) &&
8381         "All single-input shuffles should be canonicalized to be V1-input "
8382         "shuffles.");
8383
8384  // Try to use shift instructions.
8385  if (SDValue Shift =
8386          lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, DAG))
8387    return Shift;
8388
8389  // There are special ways we can lower some single-element blends.
8390  if (NumV2Inputs == 1)
8391    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2,
8392                                                         Mask, Subtarget, DAG))
8393      return V;
8394
8395  // We have different paths for blend lowering, but they all must use the
8396  // *exact* same predicate.
8397  bool IsBlendSupported = Subtarget->hasSSE41();
8398  if (IsBlendSupported)
8399    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
8400                                                  Subtarget, DAG))
8401      return Blend;
8402
8403  if (SDValue Masked =
8404          lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, DAG))
8405    return Masked;
8406
8407  // Use dedicated unpack instructions for masks that match their pattern.
8408  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 2, 10, 3, 11}))
8409    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V2);
8410  if (isShuffleEquivalent(V1, V2, Mask, {4, 12, 5, 13, 6, 14, 7, 15}))
8411    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V2);
8412
8413  // Try to use byte rotation instructions.
8414  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
8415          DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
8416    return Rotate;
8417
8418  if (SDValue BitBlend =
8419          lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
8420    return BitBlend;
8421
8422  if (SDValue Unpack =
8423          lowerVectorShuffleAsUnpack(DL, MVT::v8i16, V1, V2, Mask, DAG))
8424    return Unpack;
8425
8426  // If we can't directly blend but can use PSHUFB, that will be better as it
8427  // can both shuffle and set up the inefficient blend.
8428  if (!IsBlendSupported && Subtarget->hasSSSE3()) {
8429    bool V1InUse, V2InUse;
8430    return lowerVectorShuffleAsPSHUFB(DL, MVT::v8i16, V1, V2, Mask, DAG,
8431                                      V1InUse, V2InUse);
8432  }
8433
8434  // We can always bit-blend if we have to so the fallback strategy is to
8435  // decompose into single-input permutes and blends.
8436  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
8437                                                      Mask, DAG);
8438}
8439
8440/// \brief Check whether a compaction lowering can be done by dropping even
8441/// elements and compute how many times even elements must be dropped.
8442///
8443/// This handles shuffles which take every Nth element where N is a power of
8444/// two. Example shuffle masks:
8445///
8446///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14,  0,  2,  4,  6,  8, 10, 12, 14
8447///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
8448///  N = 2:  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12
8449///  N = 2:  0,  4,  8, 12, 16, 20, 24, 28,  0,  4,  8, 12, 16, 20, 24, 28
8450///  N = 3:  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8
8451///  N = 3:  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24
8452///
8453/// Any of these lanes can of course be undef.
8454///
8455/// This routine only supports N <= 3.
8456/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
8457/// for larger N.
8458///
8459/// \returns N above, or the number of times even elements must be dropped if
8460/// there is such a number. Otherwise returns zero.
8461static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) {
8462  // Figure out whether we're looping over two inputs or just one.
8463  bool IsSingleInput = isSingleInputShuffleMask(Mask);
8464
8465  // The modulus for the shuffle vector entries is based on whether this is
8466  // a single input or not.
8467  int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
8468  assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
8469         "We should only be called with masks with a power-of-2 size!");
8470
8471  uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
8472
8473  // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
8474  // and 2^3 simultaneously. This is because we may have ambiguity with
8475  // partially undef inputs.
8476  bool ViableForN[3] = {true, true, true};
8477
8478  for (int i = 0, e = Mask.size(); i < e; ++i) {
8479    // Ignore undef lanes, we'll optimistically collapse them to the pattern we
8480    // want.
8481    if (Mask[i] == -1)
8482      continue;
8483
8484    bool IsAnyViable = false;
8485    for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
8486      if (ViableForN[j]) {
8487        uint64_t N = j + 1;
8488
8489        // The shuffle mask must be equal to (i * 2^N) % M.
8490        if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
8491          IsAnyViable = true;
8492        else
8493          ViableForN[j] = false;
8494      }
8495    // Early exit if we exhaust the possible powers of two.
8496    if (!IsAnyViable)
8497      break;
8498  }
8499
8500  for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
8501    if (ViableForN[j])
8502      return j + 1;
8503
8504  // Return 0 as there is no viable power of two.
8505  return 0;
8506}
8507
8508/// \brief Generic lowering of v16i8 shuffles.
8509///
8510/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
8511/// detect any complexity reducing interleaving. If that doesn't help, it uses
8512/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
8513/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
8514/// back together.
8515static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8516                                       const X86Subtarget *Subtarget,
8517                                       SelectionDAG &DAG) {
8518  SDLoc DL(Op);
8519  assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
8520  assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
8521  assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
8522  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8523  ArrayRef<int> Mask = SVOp->getMask();
8524  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
8525
8526  // Try to use shift instructions.
8527  if (SDValue Shift =
8528          lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, DAG))
8529    return Shift;
8530
8531  // Try to use byte rotation instructions.
8532  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
8533          DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
8534    return Rotate;
8535
8536  // Try to use a zext lowering.
8537  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
8538          DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
8539    return ZExt;
8540
8541  int NumV2Elements =
8542      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; });
8543
8544  // For single-input shuffles, there are some nicer lowering tricks we can use.
8545  if (NumV2Elements == 0) {
8546    // Check for being able to broadcast a single element.
8547    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i8, V1,
8548                                                          Mask, Subtarget, DAG))
8549      return Broadcast;
8550
8551    // Check whether we can widen this to an i16 shuffle by duplicating bytes.
8552    // Notably, this handles splat and partial-splat shuffles more efficiently.
8553    // However, it only makes sense if the pre-duplication shuffle simplifies
8554    // things significantly. Currently, this means we need to be able to
8555    // express the pre-duplication shuffle as an i16 shuffle.
8556    //
8557    // FIXME: We should check for other patterns which can be widened into an
8558    // i16 shuffle as well.
8559    auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
8560      for (int i = 0; i < 16; i += 2)
8561        if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1])
8562          return false;
8563
8564      return true;
8565    };
8566    auto tryToWidenViaDuplication = [&]() -> SDValue {
8567      if (!canWidenViaDuplication(Mask))
8568        return SDValue();
8569      SmallVector<int, 4> LoInputs;
8570      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
8571                   [](int M) { return M >= 0 && M < 8; });
8572      std::sort(LoInputs.begin(), LoInputs.end());
8573      LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
8574                     LoInputs.end());
8575      SmallVector<int, 4> HiInputs;
8576      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
8577                   [](int M) { return M >= 8; });
8578      std::sort(HiInputs.begin(), HiInputs.end());
8579      HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
8580                     HiInputs.end());
8581
8582      bool TargetLo = LoInputs.size() >= HiInputs.size();
8583      ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
8584      ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
8585
8586      int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
8587      SmallDenseMap<int, int, 8> LaneMap;
8588      for (int I : InPlaceInputs) {
8589        PreDupI16Shuffle[I/2] = I/2;
8590        LaneMap[I] = I;
8591      }
8592      int j = TargetLo ? 0 : 4, je = j + 4;
8593      for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
8594        // Check if j is already a shuffle of this input. This happens when
8595        // there are two adjacent bytes after we move the low one.
8596        if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
8597          // If we haven't yet mapped the input, search for a slot into which
8598          // we can map it.
8599          while (j < je && PreDupI16Shuffle[j] != -1)
8600            ++j;
8601
8602          if (j == je)
8603            // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
8604            return SDValue();
8605
8606          // Map this input with the i16 shuffle.
8607          PreDupI16Shuffle[j] = MovingInputs[i] / 2;
8608        }
8609
8610        // Update the lane map based on the mapping we ended up with.
8611        LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
8612      }
8613      V1 = DAG.getNode(
8614          ISD::BITCAST, DL, MVT::v16i8,
8615          DAG.getVectorShuffle(MVT::v8i16, DL,
8616                               DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
8617                               DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
8618
8619      // Unpack the bytes to form the i16s that will be shuffled into place.
8620      V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
8621                       MVT::v16i8, V1, V1);
8622
8623      int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
8624      for (int i = 0; i < 16; ++i)
8625        if (Mask[i] != -1) {
8626          int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
8627          assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
8628          if (PostDupI16Shuffle[i / 2] == -1)
8629            PostDupI16Shuffle[i / 2] = MappedMask;
8630          else
8631            assert(PostDupI16Shuffle[i / 2] == MappedMask &&
8632                   "Conflicting entrties in the original shuffle!");
8633        }
8634      return DAG.getNode(
8635          ISD::BITCAST, DL, MVT::v16i8,
8636          DAG.getVectorShuffle(MVT::v8i16, DL,
8637                               DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
8638                               DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
8639    };
8640    if (SDValue V = tryToWidenViaDuplication())
8641      return V;
8642  }
8643
8644  // Use dedicated unpack instructions for masks that match their pattern.
8645  if (isShuffleEquivalent(V1, V2, Mask, {// Low half.
8646                                         0, 16, 1, 17, 2, 18, 3, 19,
8647                                         // High half.
8648                                         4, 20, 5, 21, 6, 22, 7, 23}))
8649    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V1, V2);
8650  if (isShuffleEquivalent(V1, V2, Mask, {// Low half.
8651                                         8, 24, 9, 25, 10, 26, 11, 27,
8652                                         // High half.
8653                                         12, 28, 13, 29, 14, 30, 15, 31}))
8654    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V1, V2);
8655
8656  // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
8657  // with PSHUFB. It is important to do this before we attempt to generate any
8658  // blends but after all of the single-input lowerings. If the single input
8659  // lowerings can find an instruction sequence that is faster than a PSHUFB, we
8660  // want to preserve that and we can DAG combine any longer sequences into
8661  // a PSHUFB in the end. But once we start blending from multiple inputs,
8662  // the complexity of DAG combining bad patterns back into PSHUFB is too high,
8663  // and there are *very* few patterns that would actually be faster than the
8664  // PSHUFB approach because of its ability to zero lanes.
8665  //
8666  // FIXME: The only exceptions to the above are blends which are exact
8667  // interleavings with direct instructions supporting them. We currently don't
8668  // handle those well here.
8669  if (Subtarget->hasSSSE3()) {
8670    bool V1InUse = false;
8671    bool V2InUse = false;
8672
8673    SDValue PSHUFB = lowerVectorShuffleAsPSHUFB(DL, MVT::v16i8, V1, V2, Mask,
8674                                                DAG, V1InUse, V2InUse);
8675
8676    // If both V1 and V2 are in use and we can use a direct blend or an unpack,
8677    // do so. This avoids using them to handle blends-with-zero which is
8678    // important as a single pshufb is significantly faster for that.
8679    if (V1InUse && V2InUse) {
8680      if (Subtarget->hasSSE41())
8681        if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i8, V1, V2,
8682                                                      Mask, Subtarget, DAG))
8683          return Blend;
8684
8685      // We can use an unpack to do the blending rather than an or in some
8686      // cases. Even though the or may be (very minorly) more efficient, we
8687      // preference this lowering because there are common cases where part of
8688      // the complexity of the shuffles goes away when we do the final blend as
8689      // an unpack.
8690      // FIXME: It might be worth trying to detect if the unpack-feeding
8691      // shuffles will both be pshufb, in which case we shouldn't bother with
8692      // this.
8693      if (SDValue Unpack =
8694              lowerVectorShuffleAsUnpack(DL, MVT::v16i8, V1, V2, Mask, DAG))
8695        return Unpack;
8696    }
8697
8698    return PSHUFB;
8699  }
8700
8701  // There are special ways we can lower some single-element blends.
8702  if (NumV2Elements == 1)
8703    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2,
8704                                                         Mask, Subtarget, DAG))
8705      return V;
8706
8707  if (SDValue BitBlend =
8708          lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
8709    return BitBlend;
8710
8711  // Check whether a compaction lowering can be done. This handles shuffles
8712  // which take every Nth element for some even N. See the helper function for
8713  // details.
8714  //
8715  // We special case these as they can be particularly efficiently handled with
8716  // the PACKUSB instruction on x86 and they show up in common patterns of
8717  // rearranging bytes to truncate wide elements.
8718  if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) {
8719    // NumEvenDrops is the power of two stride of the elements. Another way of
8720    // thinking about it is that we need to drop the even elements this many
8721    // times to get the original input.
8722    bool IsSingleInput = isSingleInputShuffleMask(Mask);
8723
8724    // First we need to zero all the dropped bytes.
8725    assert(NumEvenDrops <= 3 &&
8726           "No support for dropping even elements more than 3 times.");
8727    // We use the mask type to pick which bytes are preserved based on how many
8728    // elements are dropped.
8729    MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
8730    SDValue ByteClearMask =
8731        DAG.getNode(ISD::BITCAST, DL, MVT::v16i8,
8732                    DAG.getConstant(0xFF, MaskVTs[NumEvenDrops - 1]));
8733    V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
8734    if (!IsSingleInput)
8735      V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
8736
8737    // Now pack things back together.
8738    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
8739    V2 = IsSingleInput ? V1 : DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
8740    SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
8741    for (int i = 1; i < NumEvenDrops; ++i) {
8742      Result = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Result);
8743      Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
8744    }
8745
8746    return Result;
8747  }
8748
8749  // Handle multi-input cases by blending single-input shuffles.
8750  if (NumV2Elements > 0)
8751    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2,
8752                                                      Mask, DAG);
8753
8754  // The fallback path for single-input shuffles widens this into two v8i16
8755  // vectors with unpacks, shuffles those, and then pulls them back together
8756  // with a pack.
8757  SDValue V = V1;
8758
8759  int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
8760  int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
8761  for (int i = 0; i < 16; ++i)
8762    if (Mask[i] >= 0)
8763      (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
8764
8765  SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
8766
8767  SDValue VLoHalf, VHiHalf;
8768  // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
8769  // them out and avoid using UNPCK{L,H} to extract the elements of V as
8770  // i16s.
8771  if (std::none_of(std::begin(LoBlendMask), std::end(LoBlendMask),
8772                   [](int M) { return M >= 0 && M % 2 == 1; }) &&
8773      std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask),
8774                   [](int M) { return M >= 0 && M % 2 == 1; })) {
8775    // Use a mask to drop the high bytes.
8776    VLoHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
8777    VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
8778                     DAG.getConstant(0x00FF, MVT::v8i16));
8779
8780    // This will be a single vector shuffle instead of a blend so nuke VHiHalf.
8781    VHiHalf = DAG.getUNDEF(MVT::v8i16);
8782
8783    // Squash the masks to point directly into VLoHalf.
8784    for (int &M : LoBlendMask)
8785      if (M >= 0)
8786        M /= 2;
8787    for (int &M : HiBlendMask)
8788      if (M >= 0)
8789        M /= 2;
8790  } else {
8791    // Otherwise just unpack the low half of V into VLoHalf and the high half into
8792    // VHiHalf so that we can blend them as i16s.
8793    VLoHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
8794                     DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
8795    VHiHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
8796                     DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
8797  }
8798
8799  SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
8800  SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
8801
8802  return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
8803}
8804
8805/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
8806///
8807/// This routine breaks down the specific type of 128-bit shuffle and
8808/// dispatches to the lowering routines accordingly.
8809static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8810                                        MVT VT, const X86Subtarget *Subtarget,
8811                                        SelectionDAG &DAG) {
8812  switch (VT.SimpleTy) {
8813  case MVT::v2i64:
8814    return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
8815  case MVT::v2f64:
8816    return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
8817  case MVT::v4i32:
8818    return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
8819  case MVT::v4f32:
8820    return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
8821  case MVT::v8i16:
8822    return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
8823  case MVT::v16i8:
8824    return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
8825
8826  default:
8827    llvm_unreachable("Unimplemented!");
8828  }
8829}
8830
8831/// \brief Helper function to test whether a shuffle mask could be
8832/// simplified by widening the elements being shuffled.
8833///
8834/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
8835/// leaves it in an unspecified state.
8836///
8837/// NOTE: This must handle normal vector shuffle masks and *target* vector
8838/// shuffle masks. The latter have the special property of a '-2' representing
8839/// a zero-ed lane of a vector.
8840static bool canWidenShuffleElements(ArrayRef<int> Mask,
8841                                    SmallVectorImpl<int> &WidenedMask) {
8842  for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
8843    // If both elements are undef, its trivial.
8844    if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
8845      WidenedMask.push_back(SM_SentinelUndef);
8846      continue;
8847    }
8848
8849    // Check for an undef mask and a mask value properly aligned to fit with
8850    // a pair of values. If we find such a case, use the non-undef mask's value.
8851    if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) {
8852      WidenedMask.push_back(Mask[i + 1] / 2);
8853      continue;
8854    }
8855    if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
8856      WidenedMask.push_back(Mask[i] / 2);
8857      continue;
8858    }
8859
8860    // When zeroing, we need to spread the zeroing across both lanes to widen.
8861    if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
8862      if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
8863          (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
8864        WidenedMask.push_back(SM_SentinelZero);
8865        continue;
8866      }
8867      return false;
8868    }
8869
8870    // Finally check if the two mask values are adjacent and aligned with
8871    // a pair.
8872    if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) {
8873      WidenedMask.push_back(Mask[i] / 2);
8874      continue;
8875    }
8876
8877    // Otherwise we can't safely widen the elements used in this shuffle.
8878    return false;
8879  }
8880  assert(WidenedMask.size() == Mask.size() / 2 &&
8881         "Incorrect size of mask after widening the elements!");
8882
8883  return true;
8884}
8885
8886/// \brief Generic routine to split vector shuffle into half-sized shuffles.
8887///
8888/// This routine just extracts two subvectors, shuffles them independently, and
8889/// then concatenates them back together. This should work effectively with all
8890/// AVX vector shuffle types.
8891static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
8892                                          SDValue V2, ArrayRef<int> Mask,
8893                                          SelectionDAG &DAG) {
8894  assert(VT.getSizeInBits() >= 256 &&
8895         "Only for 256-bit or wider vector shuffles!");
8896  assert(V1.getSimpleValueType() == VT && "Bad operand type!");
8897  assert(V2.getSimpleValueType() == VT && "Bad operand type!");
8898
8899  ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
8900  ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
8901
8902  int NumElements = VT.getVectorNumElements();
8903  int SplitNumElements = NumElements / 2;
8904  MVT ScalarVT = VT.getScalarType();
8905  MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
8906
8907  // Rather than splitting build-vectors, just build two narrower build
8908  // vectors. This helps shuffling with splats and zeros.
8909  auto SplitVector = [&](SDValue V) {
8910    while (V.getOpcode() == ISD::BITCAST)
8911      V = V->getOperand(0);
8912
8913    MVT OrigVT = V.getSimpleValueType();
8914    int OrigNumElements = OrigVT.getVectorNumElements();
8915    int OrigSplitNumElements = OrigNumElements / 2;
8916    MVT OrigScalarVT = OrigVT.getScalarType();
8917    MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
8918
8919    SDValue LoV, HiV;
8920
8921    auto *BV = dyn_cast<BuildVectorSDNode>(V);
8922    if (!BV) {
8923      LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
8924                        DAG.getIntPtrConstant(0));
8925      HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
8926                        DAG.getIntPtrConstant(OrigSplitNumElements));
8927    } else {
8928
8929      SmallVector<SDValue, 16> LoOps, HiOps;
8930      for (int i = 0; i < OrigSplitNumElements; ++i) {
8931        LoOps.push_back(BV->getOperand(i));
8932        HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
8933      }
8934      LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps);
8935      HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps);
8936    }
8937    return std::make_pair(DAG.getNode(ISD::BITCAST, DL, SplitVT, LoV),
8938                          DAG.getNode(ISD::BITCAST, DL, SplitVT, HiV));
8939  };
8940
8941  SDValue LoV1, HiV1, LoV2, HiV2;
8942  std::tie(LoV1, HiV1) = SplitVector(V1);
8943  std::tie(LoV2, HiV2) = SplitVector(V2);
8944
8945  // Now create two 4-way blends of these half-width vectors.
8946  auto HalfBlend = [&](ArrayRef<int> HalfMask) {
8947    bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
8948    SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask;
8949    for (int i = 0; i < SplitNumElements; ++i) {
8950      int M = HalfMask[i];
8951      if (M >= NumElements) {
8952        if (M >= NumElements + SplitNumElements)
8953          UseHiV2 = true;
8954        else
8955          UseLoV2 = true;
8956        V2BlendMask.push_back(M - NumElements);
8957        V1BlendMask.push_back(-1);
8958        BlendMask.push_back(SplitNumElements + i);
8959      } else if (M >= 0) {
8960        if (M >= SplitNumElements)
8961          UseHiV1 = true;
8962        else
8963          UseLoV1 = true;
8964        V2BlendMask.push_back(-1);
8965        V1BlendMask.push_back(M);
8966        BlendMask.push_back(i);
8967      } else {
8968        V2BlendMask.push_back(-1);
8969        V1BlendMask.push_back(-1);
8970        BlendMask.push_back(-1);
8971      }
8972    }
8973
8974    // Because the lowering happens after all combining takes place, we need to
8975    // manually combine these blend masks as much as possible so that we create
8976    // a minimal number of high-level vector shuffle nodes.
8977
8978    // First try just blending the halves of V1 or V2.
8979    if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
8980      return DAG.getUNDEF(SplitVT);
8981    if (!UseLoV2 && !UseHiV2)
8982      return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
8983    if (!UseLoV1 && !UseHiV1)
8984      return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
8985
8986    SDValue V1Blend, V2Blend;
8987    if (UseLoV1 && UseHiV1) {
8988      V1Blend =
8989        DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
8990    } else {
8991      // We only use half of V1 so map the usage down into the final blend mask.
8992      V1Blend = UseLoV1 ? LoV1 : HiV1;
8993      for (int i = 0; i < SplitNumElements; ++i)
8994        if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
8995          BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
8996    }
8997    if (UseLoV2 && UseHiV2) {
8998      V2Blend =
8999        DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
9000    } else {
9001      // We only use half of V2 so map the usage down into the final blend mask.
9002      V2Blend = UseLoV2 ? LoV2 : HiV2;
9003      for (int i = 0; i < SplitNumElements; ++i)
9004        if (BlendMask[i] >= SplitNumElements)
9005          BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
9006    }
9007    return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
9008  };
9009  SDValue Lo = HalfBlend(LoMask);
9010  SDValue Hi = HalfBlend(HiMask);
9011  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
9012}
9013
9014/// \brief Either split a vector in halves or decompose the shuffles and the
9015/// blend.
9016///
9017/// This is provided as a good fallback for many lowerings of non-single-input
9018/// shuffles with more than one 128-bit lane. In those cases, we want to select
9019/// between splitting the shuffle into 128-bit components and stitching those
9020/// back together vs. extracting the single-input shuffles and blending those
9021/// results.
9022static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1,
9023                                                SDValue V2, ArrayRef<int> Mask,
9024                                                SelectionDAG &DAG) {
9025  assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to "
9026                                            "lower single-input shuffles as it "
9027                                            "could then recurse on itself.");
9028  int Size = Mask.size();
9029
9030  // If this can be modeled as a broadcast of two elements followed by a blend,
9031  // prefer that lowering. This is especially important because broadcasts can
9032  // often fold with memory operands.
9033  auto DoBothBroadcast = [&] {
9034    int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
9035    for (int M : Mask)
9036      if (M >= Size) {
9037        if (V2BroadcastIdx == -1)
9038          V2BroadcastIdx = M - Size;
9039        else if (M - Size != V2BroadcastIdx)
9040          return false;
9041      } else if (M >= 0) {
9042        if (V1BroadcastIdx == -1)
9043          V1BroadcastIdx = M;
9044        else if (M != V1BroadcastIdx)
9045          return false;
9046      }
9047    return true;
9048  };
9049  if (DoBothBroadcast())
9050    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
9051                                                      DAG);
9052
9053  // If the inputs all stem from a single 128-bit lane of each input, then we
9054  // split them rather than blending because the split will decompose to
9055  // unusually few instructions.
9056  int LaneCount = VT.getSizeInBits() / 128;
9057  int LaneSize = Size / LaneCount;
9058  SmallBitVector LaneInputs[2];
9059  LaneInputs[0].resize(LaneCount, false);
9060  LaneInputs[1].resize(LaneCount, false);
9061  for (int i = 0; i < Size; ++i)
9062    if (Mask[i] >= 0)
9063      LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
9064  if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
9065    return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
9066
9067  // Otherwise, just fall back to decomposed shuffles and a blend. This requires
9068  // that the decomposed single-input shuffles don't end up here.
9069  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
9070}
9071
9072/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
9073/// a permutation and blend of those lanes.
9074///
9075/// This essentially blends the out-of-lane inputs to each lane into the lane
9076/// from a permuted copy of the vector. This lowering strategy results in four
9077/// instructions in the worst case for a single-input cross lane shuffle which
9078/// is lower than any other fully general cross-lane shuffle strategy I'm aware
9079/// of. Special cases for each particular shuffle pattern should be handled
9080/// prior to trying this lowering.
9081static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
9082                                                       SDValue V1, SDValue V2,
9083                                                       ArrayRef<int> Mask,
9084                                                       SelectionDAG &DAG) {
9085  // FIXME: This should probably be generalized for 512-bit vectors as well.
9086  assert(VT.getSizeInBits() == 256 && "Only for 256-bit vector shuffles!");
9087  int LaneSize = Mask.size() / 2;
9088
9089  // If there are only inputs from one 128-bit lane, splitting will in fact be
9090  // less expensive. The flags track whether the given lane contains an element
9091  // that crosses to another lane.
9092  bool LaneCrossing[2] = {false, false};
9093  for (int i = 0, Size = Mask.size(); i < Size; ++i)
9094    if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
9095      LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
9096  if (!LaneCrossing[0] || !LaneCrossing[1])
9097    return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
9098
9099  if (isSingleInputShuffleMask(Mask)) {
9100    SmallVector<int, 32> FlippedBlendMask;
9101    for (int i = 0, Size = Mask.size(); i < Size; ++i)
9102      FlippedBlendMask.push_back(
9103          Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
9104                                  ? Mask[i]
9105                                  : Mask[i] % LaneSize +
9106                                        (i / LaneSize) * LaneSize + Size));
9107
9108    // Flip the vector, and blend the results which should now be in-lane. The
9109    // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
9110    // 5 for the high source. The value 3 selects the high half of source 2 and
9111    // the value 2 selects the low half of source 2. We only use source 2 to
9112    // allow folding it into a memory operand.
9113    unsigned PERMMask = 3 | 2 << 4;
9114    SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
9115                                  V1, DAG.getConstant(PERMMask, MVT::i8));
9116    return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
9117  }
9118
9119  // This now reduces to two single-input shuffles of V1 and V2 which at worst
9120  // will be handled by the above logic and a blend of the results, much like
9121  // other patterns in AVX.
9122  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
9123}
9124
9125/// \brief Handle lowering 2-lane 128-bit shuffles.
9126static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1,
9127                                        SDValue V2, ArrayRef<int> Mask,
9128                                        const X86Subtarget *Subtarget,
9129                                        SelectionDAG &DAG) {
9130  // TODO: If minimizing size and one of the inputs is a zero vector and the
9131  // the zero vector has only one use, we could use a VPERM2X128 to save the
9132  // instruction bytes needed to explicitly generate the zero vector.
9133
9134  // Blends are faster and handle all the non-lane-crossing cases.
9135  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
9136                                                Subtarget, DAG))
9137    return Blend;
9138
9139  bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode());
9140  bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode());
9141
9142  // If either input operand is a zero vector, use VPERM2X128 because its mask
9143  // allows us to replace the zero input with an implicit zero.
9144  if (!IsV1Zero && !IsV2Zero) {
9145    // Check for patterns which can be matched with a single insert of a 128-bit
9146    // subvector.
9147    bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
9148    if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
9149      MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
9150                                   VT.getVectorNumElements() / 2);
9151      SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
9152                                DAG.getIntPtrConstant(0));
9153      SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
9154                                OnlyUsesV1 ? V1 : V2, DAG.getIntPtrConstant(0));
9155      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
9156    }
9157  }
9158
9159  // Otherwise form a 128-bit permutation. After accounting for undefs,
9160  // convert the 64-bit shuffle mask selection values into 128-bit
9161  // selection bits by dividing the indexes by 2 and shifting into positions
9162  // defined by a vperm2*128 instruction's immediate control byte.
9163
9164  // The immediate permute control byte looks like this:
9165  //    [1:0] - select 128 bits from sources for low half of destination
9166  //    [2]   - ignore
9167  //    [3]   - zero low half of destination
9168  //    [5:4] - select 128 bits from sources for high half of destination
9169  //    [6]   - ignore
9170  //    [7]   - zero high half of destination
9171
9172  int MaskLO = Mask[0];
9173  if (MaskLO == SM_SentinelUndef)
9174    MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1];
9175
9176  int MaskHI = Mask[2];
9177  if (MaskHI == SM_SentinelUndef)
9178    MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3];
9179
9180  unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4;
9181
9182  // If either input is a zero vector, replace it with an undef input.
9183  // Shuffle mask values <  4 are selecting elements of V1.
9184  // Shuffle mask values >= 4 are selecting elements of V2.
9185  // Adjust each half of the permute mask by clearing the half that was
9186  // selecting the zero vector and setting the zero mask bit.
9187  if (IsV1Zero) {
9188    V1 = DAG.getUNDEF(VT);
9189    if (MaskLO < 4)
9190      PermMask = (PermMask & 0xf0) | 0x08;
9191    if (MaskHI < 4)
9192      PermMask = (PermMask & 0x0f) | 0x80;
9193  }
9194  if (IsV2Zero) {
9195    V2 = DAG.getUNDEF(VT);
9196    if (MaskLO >= 4)
9197      PermMask = (PermMask & 0xf0) | 0x08;
9198    if (MaskHI >= 4)
9199      PermMask = (PermMask & 0x0f) | 0x80;
9200  }
9201
9202  return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
9203                     DAG.getConstant(PermMask, MVT::i8));
9204}
9205
9206/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
9207/// shuffling each lane.
9208///
9209/// This will only succeed when the result of fixing the 128-bit lanes results
9210/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
9211/// each 128-bit lanes. This handles many cases where we can quickly blend away
9212/// the lane crosses early and then use simpler shuffles within each lane.
9213///
9214/// FIXME: It might be worthwhile at some point to support this without
9215/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
9216/// in x86 only floating point has interesting non-repeating shuffles, and even
9217/// those are still *marginally* more expensive.
9218static SDValue lowerVectorShuffleByMerging128BitLanes(
9219    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
9220    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
9221  assert(!isSingleInputShuffleMask(Mask) &&
9222         "This is only useful with multiple inputs.");
9223
9224  int Size = Mask.size();
9225  int LaneSize = 128 / VT.getScalarSizeInBits();
9226  int NumLanes = Size / LaneSize;
9227  assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
9228
9229  // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
9230  // check whether the in-128-bit lane shuffles share a repeating pattern.
9231  SmallVector<int, 4> Lanes;
9232  Lanes.resize(NumLanes, -1);
9233  SmallVector<int, 4> InLaneMask;
9234  InLaneMask.resize(LaneSize, -1);
9235  for (int i = 0; i < Size; ++i) {
9236    if (Mask[i] < 0)
9237      continue;
9238
9239    int j = i / LaneSize;
9240
9241    if (Lanes[j] < 0) {
9242      // First entry we've seen for this lane.
9243      Lanes[j] = Mask[i] / LaneSize;
9244    } else if (Lanes[j] != Mask[i] / LaneSize) {
9245      // This doesn't match the lane selected previously!
9246      return SDValue();
9247    }
9248
9249    // Check that within each lane we have a consistent shuffle mask.
9250    int k = i % LaneSize;
9251    if (InLaneMask[k] < 0) {
9252      InLaneMask[k] = Mask[i] % LaneSize;
9253    } else if (InLaneMask[k] != Mask[i] % LaneSize) {
9254      // This doesn't fit a repeating in-lane mask.
9255      return SDValue();
9256    }
9257  }
9258
9259  // First shuffle the lanes into place.
9260  MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
9261                                VT.getSizeInBits() / 64);
9262  SmallVector<int, 8> LaneMask;
9263  LaneMask.resize(NumLanes * 2, -1);
9264  for (int i = 0; i < NumLanes; ++i)
9265    if (Lanes[i] >= 0) {
9266      LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
9267      LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
9268    }
9269
9270  V1 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V1);
9271  V2 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V2);
9272  SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
9273
9274  // Cast it back to the type we actually want.
9275  LaneShuffle = DAG.getNode(ISD::BITCAST, DL, VT, LaneShuffle);
9276
9277  // Now do a simple shuffle that isn't lane crossing.
9278  SmallVector<int, 8> NewMask;
9279  NewMask.resize(Size, -1);
9280  for (int i = 0; i < Size; ++i)
9281    if (Mask[i] >= 0)
9282      NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
9283  assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
9284         "Must not introduce lane crosses at this point!");
9285
9286  return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
9287}
9288
9289/// \brief Test whether the specified input (0 or 1) is in-place blended by the
9290/// given mask.
9291///
9292/// This returns true if the elements from a particular input are already in the
9293/// slot required by the given mask and require no permutation.
9294static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
9295  assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
9296  int Size = Mask.size();
9297  for (int i = 0; i < Size; ++i)
9298    if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
9299      return false;
9300
9301  return true;
9302}
9303
9304/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
9305///
9306/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
9307/// isn't available.
9308static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9309                                       const X86Subtarget *Subtarget,
9310                                       SelectionDAG &DAG) {
9311  SDLoc DL(Op);
9312  assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
9313  assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
9314  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9315  ArrayRef<int> Mask = SVOp->getMask();
9316  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
9317
9318  SmallVector<int, 4> WidenedMask;
9319  if (canWidenShuffleElements(Mask, WidenedMask))
9320    return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget,
9321                                    DAG);
9322
9323  if (isSingleInputShuffleMask(Mask)) {
9324    // Check for being able to broadcast a single element.
9325    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f64, V1,
9326                                                          Mask, Subtarget, DAG))
9327      return Broadcast;
9328
9329    // Use low duplicate instructions for masks that match their pattern.
9330    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
9331      return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
9332
9333    if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
9334      // Non-half-crossing single input shuffles can be lowerid with an
9335      // interleaved permutation.
9336      unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
9337                              ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
9338      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
9339                         DAG.getConstant(VPERMILPMask, MVT::i8));
9340    }
9341
9342    // With AVX2 we have direct support for this permutation.
9343    if (Subtarget->hasAVX2())
9344      return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
9345                         getV4X86ShuffleImm8ForMask(Mask, DAG));
9346
9347    // Otherwise, fall back.
9348    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
9349                                                   DAG);
9350  }
9351
9352  // X86 has dedicated unpack instructions that can handle specific blend
9353  // operations: UNPCKH and UNPCKL.
9354  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 2, 6}))
9355    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V1, V2);
9356  if (isShuffleEquivalent(V1, V2, Mask, {1, 5, 3, 7}))
9357    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V1, V2);
9358  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 6, 2}))
9359    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V2, V1);
9360  if (isShuffleEquivalent(V1, V2, Mask, {5, 1, 7, 3}))
9361    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V2, V1);
9362
9363  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
9364                                                Subtarget, DAG))
9365    return Blend;
9366
9367  // Check if the blend happens to exactly fit that of SHUFPD.
9368  if ((Mask[0] == -1 || Mask[0] < 2) &&
9369      (Mask[1] == -1 || (Mask[1] >= 4 && Mask[1] < 6)) &&
9370      (Mask[2] == -1 || (Mask[2] >= 2 && Mask[2] < 4)) &&
9371      (Mask[3] == -1 || Mask[3] >= 6)) {
9372    unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 5) << 1) |
9373                          ((Mask[2] == 3) << 2) | ((Mask[3] == 7) << 3);
9374    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V1, V2,
9375                       DAG.getConstant(SHUFPDMask, MVT::i8));
9376  }
9377  if ((Mask[0] == -1 || (Mask[0] >= 4 && Mask[0] < 6)) &&
9378      (Mask[1] == -1 || Mask[1] < 2) &&
9379      (Mask[2] == -1 || Mask[2] >= 6) &&
9380      (Mask[3] == -1 || (Mask[3] >= 2 && Mask[3] < 4))) {
9381    unsigned SHUFPDMask = (Mask[0] == 5) | ((Mask[1] == 1) << 1) |
9382                          ((Mask[2] == 7) << 2) | ((Mask[3] == 3) << 3);
9383    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V2, V1,
9384                       DAG.getConstant(SHUFPDMask, MVT::i8));
9385  }
9386
9387  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9388  // shuffle. However, if we have AVX2 and either inputs are already in place,
9389  // we will be able to shuffle even across lanes the other input in a single
9390  // instruction so skip this pattern.
9391  if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
9392                                 isShuffleMaskInputInPlace(1, Mask))))
9393    if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9394            DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
9395      return Result;
9396
9397  // If we have AVX2 then we always want to lower with a blend because an v4 we
9398  // can fully permute the elements.
9399  if (Subtarget->hasAVX2())
9400    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
9401                                                      Mask, DAG);
9402
9403  // Otherwise fall back on generic lowering.
9404  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
9405}
9406
9407/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
9408///
9409/// This routine is only called when we have AVX2 and thus a reasonable
9410/// instruction set for v4i64 shuffling..
9411static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9412                                       const X86Subtarget *Subtarget,
9413                                       SelectionDAG &DAG) {
9414  SDLoc DL(Op);
9415  assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
9416  assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
9417  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9418  ArrayRef<int> Mask = SVOp->getMask();
9419  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
9420  assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!");
9421
9422  SmallVector<int, 4> WidenedMask;
9423  if (canWidenShuffleElements(Mask, WidenedMask))
9424    return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget,
9425                                    DAG);
9426
9427  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
9428                                                Subtarget, DAG))
9429    return Blend;
9430
9431  // Check for being able to broadcast a single element.
9432  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1,
9433                                                        Mask, Subtarget, DAG))
9434    return Broadcast;
9435
9436  // When the shuffle is mirrored between the 128-bit lanes of the unit, we can
9437  // use lower latency instructions that will operate on both 128-bit lanes.
9438  SmallVector<int, 2> RepeatedMask;
9439  if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
9440    if (isSingleInputShuffleMask(Mask)) {
9441      int PSHUFDMask[] = {-1, -1, -1, -1};
9442      for (int i = 0; i < 2; ++i)
9443        if (RepeatedMask[i] >= 0) {
9444          PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
9445          PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
9446        }
9447      return DAG.getNode(
9448          ISD::BITCAST, DL, MVT::v4i64,
9449          DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
9450                      DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, V1),
9451                      getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
9452    }
9453  }
9454
9455  // AVX2 provides a direct instruction for permuting a single input across
9456  // lanes.
9457  if (isSingleInputShuffleMask(Mask))
9458    return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
9459                       getV4X86ShuffleImm8ForMask(Mask, DAG));
9460
9461  // Try to use shift instructions.
9462  if (SDValue Shift =
9463          lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, DAG))
9464    return Shift;
9465
9466  // Use dedicated unpack instructions for masks that match their pattern.
9467  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 2, 6}))
9468    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V1, V2);
9469  if (isShuffleEquivalent(V1, V2, Mask, {1, 5, 3, 7}))
9470    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V1, V2);
9471  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 6, 2}))
9472    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V2, V1);
9473  if (isShuffleEquivalent(V1, V2, Mask, {5, 1, 7, 3}))
9474    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V2, V1);
9475
9476  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9477  // shuffle. However, if we have AVX2 and either inputs are already in place,
9478  // we will be able to shuffle even across lanes the other input in a single
9479  // instruction so skip this pattern.
9480  if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
9481                                 isShuffleMaskInputInPlace(1, Mask))))
9482    if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9483            DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
9484      return Result;
9485
9486  // Otherwise fall back on generic blend lowering.
9487  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
9488                                                    Mask, DAG);
9489}
9490
9491/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
9492///
9493/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
9494/// isn't available.
9495static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9496                                       const X86Subtarget *Subtarget,
9497                                       SelectionDAG &DAG) {
9498  SDLoc DL(Op);
9499  assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
9500  assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
9501  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9502  ArrayRef<int> Mask = SVOp->getMask();
9503  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9504
9505  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
9506                                                Subtarget, DAG))
9507    return Blend;
9508
9509  // Check for being able to broadcast a single element.
9510  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1,
9511                                                        Mask, Subtarget, DAG))
9512    return Broadcast;
9513
9514  // If the shuffle mask is repeated in each 128-bit lane, we have many more
9515  // options to efficiently lower the shuffle.
9516  SmallVector<int, 4> RepeatedMask;
9517  if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
9518    assert(RepeatedMask.size() == 4 &&
9519           "Repeated masks must be half the mask width!");
9520
9521    // Use even/odd duplicate instructions for masks that match their pattern.
9522    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
9523      return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
9524    if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7}))
9525      return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
9526
9527    if (isSingleInputShuffleMask(Mask))
9528      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
9529                         getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
9530
9531    // Use dedicated unpack instructions for masks that match their pattern.
9532    if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 4, 12, 5, 13}))
9533      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V1, V2);
9534    if (isShuffleEquivalent(V1, V2, Mask, {2, 10, 3, 11, 6, 14, 7, 15}))
9535      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V1, V2);
9536    if (isShuffleEquivalent(V1, V2, Mask, {8, 0, 9, 1, 12, 4, 13, 5}))
9537      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V2, V1);
9538    if (isShuffleEquivalent(V1, V2, Mask, {10, 2, 11, 3, 14, 6, 15, 7}))
9539      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V2, V1);
9540
9541    // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
9542    // have already handled any direct blends. We also need to squash the
9543    // repeated mask into a simulated v4f32 mask.
9544    for (int i = 0; i < 4; ++i)
9545      if (RepeatedMask[i] >= 8)
9546        RepeatedMask[i] -= 4;
9547    return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
9548  }
9549
9550  // If we have a single input shuffle with different shuffle patterns in the
9551  // two 128-bit lanes use the variable mask to VPERMILPS.
9552  if (isSingleInputShuffleMask(Mask)) {
9553    SDValue VPermMask[8];
9554    for (int i = 0; i < 8; ++i)
9555      VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
9556                                 : DAG.getConstant(Mask[i], MVT::i32);
9557    if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
9558      return DAG.getNode(
9559          X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
9560          DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
9561
9562    if (Subtarget->hasAVX2())
9563      return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32,
9564                         DAG.getNode(ISD::BITCAST, DL, MVT::v8f32,
9565                                     DAG.getNode(ISD::BUILD_VECTOR, DL,
9566                                                 MVT::v8i32, VPermMask)),
9567                         V1);
9568
9569    // Otherwise, fall back.
9570    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
9571                                                   DAG);
9572  }
9573
9574  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9575  // shuffle.
9576  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9577          DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
9578    return Result;
9579
9580  // If we have AVX2 then we always want to lower with a blend because at v8 we
9581  // can fully permute the elements.
9582  if (Subtarget->hasAVX2())
9583    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
9584                                                      Mask, DAG);
9585
9586  // Otherwise fall back on generic lowering.
9587  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
9588}
9589
9590/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
9591///
9592/// This routine is only called when we have AVX2 and thus a reasonable
9593/// instruction set for v8i32 shuffling..
9594static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9595                                       const X86Subtarget *Subtarget,
9596                                       SelectionDAG &DAG) {
9597  SDLoc DL(Op);
9598  assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
9599  assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
9600  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9601  ArrayRef<int> Mask = SVOp->getMask();
9602  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9603  assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!");
9604
9605  // Whenever we can lower this as a zext, that instruction is strictly faster
9606  // than any alternative. It also allows us to fold memory operands into the
9607  // shuffle in many cases.
9608  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2,
9609                                                         Mask, Subtarget, DAG))
9610    return ZExt;
9611
9612  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
9613                                                Subtarget, DAG))
9614    return Blend;
9615
9616  // Check for being able to broadcast a single element.
9617  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1,
9618                                                        Mask, Subtarget, DAG))
9619    return Broadcast;
9620
9621  // If the shuffle mask is repeated in each 128-bit lane we can use more
9622  // efficient instructions that mirror the shuffles across the two 128-bit
9623  // lanes.
9624  SmallVector<int, 4> RepeatedMask;
9625  if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) {
9626    assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
9627    if (isSingleInputShuffleMask(Mask))
9628      return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
9629                         getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
9630
9631    // Use dedicated unpack instructions for masks that match their pattern.
9632    if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 4, 12, 5, 13}))
9633      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V1, V2);
9634    if (isShuffleEquivalent(V1, V2, Mask, {2, 10, 3, 11, 6, 14, 7, 15}))
9635      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V1, V2);
9636    if (isShuffleEquivalent(V1, V2, Mask, {8, 0, 9, 1, 12, 4, 13, 5}))
9637      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V2, V1);
9638    if (isShuffleEquivalent(V1, V2, Mask, {10, 2, 11, 3, 14, 6, 15, 7}))
9639      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V2, V1);
9640  }
9641
9642  // Try to use shift instructions.
9643  if (SDValue Shift =
9644          lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, DAG))
9645    return Shift;
9646
9647  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
9648          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
9649    return Rotate;
9650
9651  // If the shuffle patterns aren't repeated but it is a single input, directly
9652  // generate a cross-lane VPERMD instruction.
9653  if (isSingleInputShuffleMask(Mask)) {
9654    SDValue VPermMask[8];
9655    for (int i = 0; i < 8; ++i)
9656      VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
9657                                 : DAG.getConstant(Mask[i], MVT::i32);
9658    return DAG.getNode(
9659        X86ISD::VPERMV, DL, MVT::v8i32,
9660        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
9661  }
9662
9663  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9664  // shuffle.
9665  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9666          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
9667    return Result;
9668
9669  // Otherwise fall back on generic blend lowering.
9670  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
9671                                                    Mask, DAG);
9672}
9673
9674/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
9675///
9676/// This routine is only called when we have AVX2 and thus a reasonable
9677/// instruction set for v16i16 shuffling..
9678static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9679                                        const X86Subtarget *Subtarget,
9680                                        SelectionDAG &DAG) {
9681  SDLoc DL(Op);
9682  assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
9683  assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
9684  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9685  ArrayRef<int> Mask = SVOp->getMask();
9686  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
9687  assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!");
9688
9689  // Whenever we can lower this as a zext, that instruction is strictly faster
9690  // than any alternative. It also allows us to fold memory operands into the
9691  // shuffle in many cases.
9692  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v16i16, V1, V2,
9693                                                         Mask, Subtarget, DAG))
9694    return ZExt;
9695
9696  // Check for being able to broadcast a single element.
9697  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1,
9698                                                        Mask, Subtarget, DAG))
9699    return Broadcast;
9700
9701  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
9702                                                Subtarget, DAG))
9703    return Blend;
9704
9705  // Use dedicated unpack instructions for masks that match their pattern.
9706  if (isShuffleEquivalent(V1, V2, Mask,
9707                          {// First 128-bit lane:
9708                           0, 16, 1, 17, 2, 18, 3, 19,
9709                           // Second 128-bit lane:
9710                           8, 24, 9, 25, 10, 26, 11, 27}))
9711    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i16, V1, V2);
9712  if (isShuffleEquivalent(V1, V2, Mask,
9713                          {// First 128-bit lane:
9714                           4, 20, 5, 21, 6, 22, 7, 23,
9715                           // Second 128-bit lane:
9716                           12, 28, 13, 29, 14, 30, 15, 31}))
9717    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i16, V1, V2);
9718
9719  // Try to use shift instructions.
9720  if (SDValue Shift =
9721          lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, DAG))
9722    return Shift;
9723
9724  // Try to use byte rotation instructions.
9725  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
9726          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
9727    return Rotate;
9728
9729  if (isSingleInputShuffleMask(Mask)) {
9730    // There are no generalized cross-lane shuffle operations available on i16
9731    // element types.
9732    if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
9733      return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
9734                                                     Mask, DAG);
9735
9736    SmallVector<int, 8> RepeatedMask;
9737    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
9738      // As this is a single-input shuffle, the repeated mask should be
9739      // a strictly valid v8i16 mask that we can pass through to the v8i16
9740      // lowering to handle even the v16 case.
9741      return lowerV8I16GeneralSingleInputVectorShuffle(
9742          DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
9743    }
9744
9745    SDValue PSHUFBMask[32];
9746    for (int i = 0; i < 16; ++i) {
9747      if (Mask[i] == -1) {
9748        PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8);
9749        continue;
9750      }
9751
9752      int M = i < 8 ? Mask[i] : Mask[i] - 8;
9753      assert(M >= 0 && M < 8 && "Invalid single-input mask!");
9754      PSHUFBMask[2 * i] = DAG.getConstant(2 * M, MVT::i8);
9755      PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, MVT::i8);
9756    }
9757    return DAG.getNode(
9758        ISD::BITCAST, DL, MVT::v16i16,
9759        DAG.getNode(
9760            X86ISD::PSHUFB, DL, MVT::v32i8,
9761            DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1),
9762            DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)));
9763  }
9764
9765  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9766  // shuffle.
9767  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9768          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
9769    return Result;
9770
9771  // Otherwise fall back on generic lowering.
9772  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
9773}
9774
9775/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
9776///
9777/// This routine is only called when we have AVX2 and thus a reasonable
9778/// instruction set for v32i8 shuffling..
9779static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9780                                       const X86Subtarget *Subtarget,
9781                                       SelectionDAG &DAG) {
9782  SDLoc DL(Op);
9783  assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
9784  assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
9785  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9786  ArrayRef<int> Mask = SVOp->getMask();
9787  assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
9788  assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!");
9789
9790  // Whenever we can lower this as a zext, that instruction is strictly faster
9791  // than any alternative. It also allows us to fold memory operands into the
9792  // shuffle in many cases.
9793  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2,
9794                                                         Mask, Subtarget, DAG))
9795    return ZExt;
9796
9797  // Check for being able to broadcast a single element.
9798  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1,
9799                                                        Mask, Subtarget, DAG))
9800    return Broadcast;
9801
9802  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
9803                                                Subtarget, DAG))
9804    return Blend;
9805
9806  // Use dedicated unpack instructions for masks that match their pattern.
9807  // Note that these are repeated 128-bit lane unpacks, not unpacks across all
9808  // 256-bit lanes.
9809  if (isShuffleEquivalent(
9810          V1, V2, Mask,
9811          {// First 128-bit lane:
9812           0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39,
9813           // Second 128-bit lane:
9814           16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55}))
9815    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v32i8, V1, V2);
9816  if (isShuffleEquivalent(
9817          V1, V2, Mask,
9818          {// First 128-bit lane:
9819           8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47,
9820           // Second 128-bit lane:
9821           24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63}))
9822    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v32i8, V1, V2);
9823
9824  // Try to use shift instructions.
9825  if (SDValue Shift =
9826          lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, DAG))
9827    return Shift;
9828
9829  // Try to use byte rotation instructions.
9830  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
9831          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
9832    return Rotate;
9833
9834  if (isSingleInputShuffleMask(Mask)) {
9835    // There are no generalized cross-lane shuffle operations available on i8
9836    // element types.
9837    if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
9838      return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2,
9839                                                     Mask, DAG);
9840
9841    SDValue PSHUFBMask[32];
9842    for (int i = 0; i < 32; ++i)
9843      PSHUFBMask[i] =
9844          Mask[i] < 0
9845              ? DAG.getUNDEF(MVT::i8)
9846              : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, MVT::i8);
9847
9848    return DAG.getNode(
9849        X86ISD::PSHUFB, DL, MVT::v32i8, V1,
9850        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask));
9851  }
9852
9853  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9854  // shuffle.
9855  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9856          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
9857    return Result;
9858
9859  // Otherwise fall back on generic lowering.
9860  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
9861}
9862
9863/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
9864///
9865/// This routine either breaks down the specific type of a 256-bit x86 vector
9866/// shuffle or splits it into two 128-bit shuffles and fuses the results back
9867/// together based on the available instructions.
9868static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9869                                        MVT VT, const X86Subtarget *Subtarget,
9870                                        SelectionDAG &DAG) {
9871  SDLoc DL(Op);
9872  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9873  ArrayRef<int> Mask = SVOp->getMask();
9874
9875  // If we have a single input to the zero element, insert that into V1 if we
9876  // can do so cheaply.
9877  int NumElts = VT.getVectorNumElements();
9878  int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [NumElts](int M) {
9879    return M >= NumElts;
9880  });
9881
9882  if (NumV2Elements == 1 && Mask[0] >= NumElts)
9883    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
9884                              DL, VT, V1, V2, Mask, Subtarget, DAG))
9885      return Insertion;
9886
9887  // There is a really nice hard cut-over between AVX1 and AVX2 that means we can
9888  // check for those subtargets here and avoid much of the subtarget querying in
9889  // the per-vector-type lowering routines. With AVX1 we have essentially *zero*
9890  // ability to manipulate a 256-bit vector with integer types. Since we'll use
9891  // floating point types there eventually, just immediately cast everything to
9892  // a float and operate entirely in that domain.
9893  if (VT.isInteger() && !Subtarget->hasAVX2()) {
9894    int ElementBits = VT.getScalarSizeInBits();
9895    if (ElementBits < 32)
9896      // No floating point type available, decompose into 128-bit vectors.
9897      return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
9898
9899    MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
9900                                VT.getVectorNumElements());
9901    V1 = DAG.getNode(ISD::BITCAST, DL, FpVT, V1);
9902    V2 = DAG.getNode(ISD::BITCAST, DL, FpVT, V2);
9903    return DAG.getNode(ISD::BITCAST, DL, VT,
9904                       DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
9905  }
9906
9907  switch (VT.SimpleTy) {
9908  case MVT::v4f64:
9909    return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9910  case MVT::v4i64:
9911    return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9912  case MVT::v8f32:
9913    return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9914  case MVT::v8i32:
9915    return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9916  case MVT::v16i16:
9917    return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
9918  case MVT::v32i8:
9919    return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
9920
9921  default:
9922    llvm_unreachable("Not a valid 256-bit x86 vector type!");
9923  }
9924}
9925
9926/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
9927static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9928                                       const X86Subtarget *Subtarget,
9929                                       SelectionDAG &DAG) {
9930  SDLoc DL(Op);
9931  assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
9932  assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
9933  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9934  ArrayRef<int> Mask = SVOp->getMask();
9935  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9936
9937  // X86 has dedicated unpack instructions that can handle specific blend
9938  // operations: UNPCKH and UNPCKL.
9939  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14}))
9940    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f64, V1, V2);
9941  if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15}))
9942    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f64, V1, V2);
9943
9944  // FIXME: Implement direct support for this type!
9945  return splitAndLowerVectorShuffle(DL, MVT::v8f64, V1, V2, Mask, DAG);
9946}
9947
9948/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
9949static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9950                                       const X86Subtarget *Subtarget,
9951                                       SelectionDAG &DAG) {
9952  SDLoc DL(Op);
9953  assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
9954  assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
9955  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9956  ArrayRef<int> Mask = SVOp->getMask();
9957  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
9958
9959  // Use dedicated unpack instructions for masks that match their pattern.
9960  if (isShuffleEquivalent(V1, V2, Mask,
9961                          {// First 128-bit lane.
9962                           0, 16, 1, 17, 4, 20, 5, 21,
9963                           // Second 128-bit lane.
9964                           8, 24, 9, 25, 12, 28, 13, 29}))
9965    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16f32, V1, V2);
9966  if (isShuffleEquivalent(V1, V2, Mask,
9967                          {// First 128-bit lane.
9968                           2, 18, 3, 19, 6, 22, 7, 23,
9969                           // Second 128-bit lane.
9970                           10, 26, 11, 27, 14, 30, 15, 31}))
9971    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16f32, V1, V2);
9972
9973  // FIXME: Implement direct support for this type!
9974  return splitAndLowerVectorShuffle(DL, MVT::v16f32, V1, V2, Mask, DAG);
9975}
9976
9977/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
9978static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9979                                       const X86Subtarget *Subtarget,
9980                                       SelectionDAG &DAG) {
9981  SDLoc DL(Op);
9982  assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
9983  assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
9984  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9985  ArrayRef<int> Mask = SVOp->getMask();
9986  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9987
9988  // X86 has dedicated unpack instructions that can handle specific blend
9989  // operations: UNPCKH and UNPCKL.
9990  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14}))
9991    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i64, V1, V2);
9992  if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15}))
9993    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i64, V1, V2);
9994
9995  // FIXME: Implement direct support for this type!
9996  return splitAndLowerVectorShuffle(DL, MVT::v8i64, V1, V2, Mask, DAG);
9997}
9998
9999/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
10000static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10001                                       const X86Subtarget *Subtarget,
10002                                       SelectionDAG &DAG) {
10003  SDLoc DL(Op);
10004  assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
10005  assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
10006  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10007  ArrayRef<int> Mask = SVOp->getMask();
10008  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
10009
10010  // Use dedicated unpack instructions for masks that match their pattern.
10011  if (isShuffleEquivalent(V1, V2, Mask,
10012                          {// First 128-bit lane.
10013                           0, 16, 1, 17, 4, 20, 5, 21,
10014                           // Second 128-bit lane.
10015                           8, 24, 9, 25, 12, 28, 13, 29}))
10016    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i32, V1, V2);
10017  if (isShuffleEquivalent(V1, V2, Mask,
10018                          {// First 128-bit lane.
10019                           2, 18, 3, 19, 6, 22, 7, 23,
10020                           // Second 128-bit lane.
10021                           10, 26, 11, 27, 14, 30, 15, 31}))
10022    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i32, V1, V2);
10023
10024  // FIXME: Implement direct support for this type!
10025  return splitAndLowerVectorShuffle(DL, MVT::v16i32, V1, V2, Mask, DAG);
10026}
10027
10028/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
10029static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10030                                        const X86Subtarget *Subtarget,
10031                                        SelectionDAG &DAG) {
10032  SDLoc DL(Op);
10033  assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
10034  assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
10035  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10036  ArrayRef<int> Mask = SVOp->getMask();
10037  assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
10038  assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
10039
10040  // FIXME: Implement direct support for this type!
10041  return splitAndLowerVectorShuffle(DL, MVT::v32i16, V1, V2, Mask, DAG);
10042}
10043
10044/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
10045static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10046                                       const X86Subtarget *Subtarget,
10047                                       SelectionDAG &DAG) {
10048  SDLoc DL(Op);
10049  assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
10050  assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
10051  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10052  ArrayRef<int> Mask = SVOp->getMask();
10053  assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
10054  assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
10055
10056  // FIXME: Implement direct support for this type!
10057  return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
10058}
10059
10060/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
10061///
10062/// This routine either breaks down the specific type of a 512-bit x86 vector
10063/// shuffle or splits it into two 256-bit shuffles and fuses the results back
10064/// together based on the available instructions.
10065static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10066                                        MVT VT, const X86Subtarget *Subtarget,
10067                                        SelectionDAG &DAG) {
10068  SDLoc DL(Op);
10069  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10070  ArrayRef<int> Mask = SVOp->getMask();
10071  assert(Subtarget->hasAVX512() &&
10072         "Cannot lower 512-bit vectors w/ basic ISA!");
10073
10074  // Check for being able to broadcast a single element.
10075  if (SDValue Broadcast =
10076          lowerVectorShuffleAsBroadcast(DL, VT, V1, Mask, Subtarget, DAG))
10077    return Broadcast;
10078
10079  // Dispatch to each element type for lowering. If we don't have supprot for
10080  // specific element type shuffles at 512 bits, immediately split them and
10081  // lower them. Each lowering routine of a given type is allowed to assume that
10082  // the requisite ISA extensions for that element type are available.
10083  switch (VT.SimpleTy) {
10084  case MVT::v8f64:
10085    return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
10086  case MVT::v16f32:
10087    return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
10088  case MVT::v8i64:
10089    return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
10090  case MVT::v16i32:
10091    return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
10092  case MVT::v32i16:
10093    if (Subtarget->hasBWI())
10094      return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
10095    break;
10096  case MVT::v64i8:
10097    if (Subtarget->hasBWI())
10098      return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
10099    break;
10100
10101  default:
10102    llvm_unreachable("Not a valid 512-bit x86 vector type!");
10103  }
10104
10105  // Otherwise fall back on splitting.
10106  return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
10107}
10108
10109/// \brief Top-level lowering for x86 vector shuffles.
10110///
10111/// This handles decomposition, canonicalization, and lowering of all x86
10112/// vector shuffles. Most of the specific lowering strategies are encapsulated
10113/// above in helper routines. The canonicalization attempts to widen shuffles
10114/// to involve fewer lanes of wider elements, consolidate symmetric patterns
10115/// s.t. only one of the two inputs needs to be tested, etc.
10116static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
10117                                  SelectionDAG &DAG) {
10118  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10119  ArrayRef<int> Mask = SVOp->getMask();
10120  SDValue V1 = Op.getOperand(0);
10121  SDValue V2 = Op.getOperand(1);
10122  MVT VT = Op.getSimpleValueType();
10123  int NumElements = VT.getVectorNumElements();
10124  SDLoc dl(Op);
10125
10126  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
10127
10128  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
10129  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
10130  if (V1IsUndef && V2IsUndef)
10131    return DAG.getUNDEF(VT);
10132
10133  // When we create a shuffle node we put the UNDEF node to second operand,
10134  // but in some cases the first operand may be transformed to UNDEF.
10135  // In this case we should just commute the node.
10136  if (V1IsUndef)
10137    return DAG.getCommutedVectorShuffle(*SVOp);
10138
10139  // Check for non-undef masks pointing at an undef vector and make the masks
10140  // undef as well. This makes it easier to match the shuffle based solely on
10141  // the mask.
10142  if (V2IsUndef)
10143    for (int M : Mask)
10144      if (M >= NumElements) {
10145        SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
10146        for (int &M : NewMask)
10147          if (M >= NumElements)
10148            M = -1;
10149        return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
10150      }
10151
10152  // We actually see shuffles that are entirely re-arrangements of a set of
10153  // zero inputs. This mostly happens while decomposing complex shuffles into
10154  // simple ones. Directly lower these as a buildvector of zeros.
10155  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
10156  if (Zeroable.all())
10157    return getZeroVector(VT, Subtarget, DAG, dl);
10158
10159  // Try to collapse shuffles into using a vector type with fewer elements but
10160  // wider element types. We cap this to not form integers or floating point
10161  // elements wider than 64 bits, but it might be interesting to form i128
10162  // integers to handle flipping the low and high halves of AVX 256-bit vectors.
10163  SmallVector<int, 16> WidenedMask;
10164  if (VT.getScalarSizeInBits() < 64 &&
10165      canWidenShuffleElements(Mask, WidenedMask)) {
10166    MVT NewEltVT = VT.isFloatingPoint()
10167                       ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
10168                       : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
10169    MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
10170    // Make sure that the new vector type is legal. For example, v2f64 isn't
10171    // legal on SSE1.
10172    if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
10173      V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
10174      V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
10175      return DAG.getNode(ISD::BITCAST, dl, VT,
10176                         DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
10177    }
10178  }
10179
10180  int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
10181  for (int M : SVOp->getMask())
10182    if (M < 0)
10183      ++NumUndefElements;
10184    else if (M < NumElements)
10185      ++NumV1Elements;
10186    else
10187      ++NumV2Elements;
10188
10189  // Commute the shuffle as needed such that more elements come from V1 than
10190  // V2. This allows us to match the shuffle pattern strictly on how many
10191  // elements come from V1 without handling the symmetric cases.
10192  if (NumV2Elements > NumV1Elements)
10193    return DAG.getCommutedVectorShuffle(*SVOp);
10194
10195  // When the number of V1 and V2 elements are the same, try to minimize the
10196  // number of uses of V2 in the low half of the vector. When that is tied,
10197  // ensure that the sum of indices for V1 is equal to or lower than the sum
10198  // indices for V2. When those are equal, try to ensure that the number of odd
10199  // indices for V1 is lower than the number of odd indices for V2.
10200  if (NumV1Elements == NumV2Elements) {
10201    int LowV1Elements = 0, LowV2Elements = 0;
10202    for (int M : SVOp->getMask().slice(0, NumElements / 2))
10203      if (M >= NumElements)
10204        ++LowV2Elements;
10205      else if (M >= 0)
10206        ++LowV1Elements;
10207    if (LowV2Elements > LowV1Elements) {
10208      return DAG.getCommutedVectorShuffle(*SVOp);
10209    } else if (LowV2Elements == LowV1Elements) {
10210      int SumV1Indices = 0, SumV2Indices = 0;
10211      for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
10212        if (SVOp->getMask()[i] >= NumElements)
10213          SumV2Indices += i;
10214        else if (SVOp->getMask()[i] >= 0)
10215          SumV1Indices += i;
10216      if (SumV2Indices < SumV1Indices) {
10217        return DAG.getCommutedVectorShuffle(*SVOp);
10218      } else if (SumV2Indices == SumV1Indices) {
10219        int NumV1OddIndices = 0, NumV2OddIndices = 0;
10220        for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
10221          if (SVOp->getMask()[i] >= NumElements)
10222            NumV2OddIndices += i % 2;
10223          else if (SVOp->getMask()[i] >= 0)
10224            NumV1OddIndices += i % 2;
10225        if (NumV2OddIndices < NumV1OddIndices)
10226          return DAG.getCommutedVectorShuffle(*SVOp);
10227      }
10228    }
10229  }
10230
10231  // For each vector width, delegate to a specialized lowering routine.
10232  if (VT.getSizeInBits() == 128)
10233    return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
10234
10235  if (VT.getSizeInBits() == 256)
10236    return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
10237
10238  // Force AVX-512 vectors to be scalarized for now.
10239  // FIXME: Implement AVX-512 support!
10240  if (VT.getSizeInBits() == 512)
10241    return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
10242
10243  llvm_unreachable("Unimplemented!");
10244}
10245
10246// This function assumes its argument is a BUILD_VECTOR of constants or
10247// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
10248// true.
10249static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
10250                                    unsigned &MaskValue) {
10251  MaskValue = 0;
10252  unsigned NumElems = BuildVector->getNumOperands();
10253  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
10254  unsigned NumLanes = (NumElems - 1) / 8 + 1;
10255  unsigned NumElemsInLane = NumElems / NumLanes;
10256
10257  // Blend for v16i16 should be symetric for the both lanes.
10258  for (unsigned i = 0; i < NumElemsInLane; ++i) {
10259    SDValue EltCond = BuildVector->getOperand(i);
10260    SDValue SndLaneEltCond =
10261        (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
10262
10263    int Lane1Cond = -1, Lane2Cond = -1;
10264    if (isa<ConstantSDNode>(EltCond))
10265      Lane1Cond = !isZero(EltCond);
10266    if (isa<ConstantSDNode>(SndLaneEltCond))
10267      Lane2Cond = !isZero(SndLaneEltCond);
10268
10269    if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
10270      // Lane1Cond != 0, means we want the first argument.
10271      // Lane1Cond == 0, means we want the second argument.
10272      // The encoding of this argument is 0 for the first argument, 1
10273      // for the second. Therefore, invert the condition.
10274      MaskValue |= !Lane1Cond << i;
10275    else if (Lane1Cond < 0)
10276      MaskValue |= !Lane2Cond << i;
10277    else
10278      return false;
10279  }
10280  return true;
10281}
10282
10283/// \brief Try to lower a VSELECT instruction to a vector shuffle.
10284static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
10285                                           const X86Subtarget *Subtarget,
10286                                           SelectionDAG &DAG) {
10287  SDValue Cond = Op.getOperand(0);
10288  SDValue LHS = Op.getOperand(1);
10289  SDValue RHS = Op.getOperand(2);
10290  SDLoc dl(Op);
10291  MVT VT = Op.getSimpleValueType();
10292
10293  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
10294    return SDValue();
10295  auto *CondBV = cast<BuildVectorSDNode>(Cond);
10296
10297  // Only non-legal VSELECTs reach this lowering, convert those into generic
10298  // shuffles and re-use the shuffle lowering path for blends.
10299  SmallVector<int, 32> Mask;
10300  for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) {
10301    SDValue CondElt = CondBV->getOperand(i);
10302    Mask.push_back(
10303        isa<ConstantSDNode>(CondElt) ? i + (isZero(CondElt) ? Size : 0) : -1);
10304  }
10305  return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask);
10306}
10307
10308SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
10309  // A vselect where all conditions and data are constants can be optimized into
10310  // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
10311  if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
10312      ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
10313      ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
10314    return SDValue();
10315
10316  // Try to lower this to a blend-style vector shuffle. This can handle all
10317  // constant condition cases.
10318  if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
10319    return BlendOp;
10320
10321  // Variable blends are only legal from SSE4.1 onward.
10322  if (!Subtarget->hasSSE41())
10323    return SDValue();
10324
10325  // Only some types will be legal on some subtargets. If we can emit a legal
10326  // VSELECT-matching blend, return Op, and but if we need to expand, return
10327  // a null value.
10328  switch (Op.getSimpleValueType().SimpleTy) {
10329  default:
10330    // Most of the vector types have blends past SSE4.1.
10331    return Op;
10332
10333  case MVT::v32i8:
10334    // The byte blends for AVX vectors were introduced only in AVX2.
10335    if (Subtarget->hasAVX2())
10336      return Op;
10337
10338    return SDValue();
10339
10340  case MVT::v8i16:
10341  case MVT::v16i16:
10342    // AVX-512 BWI and VLX features support VSELECT with i16 elements.
10343    if (Subtarget->hasBWI() && Subtarget->hasVLX())
10344      return Op;
10345
10346    // FIXME: We should custom lower this by fixing the condition and using i8
10347    // blends.
10348    return SDValue();
10349  }
10350}
10351
10352static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
10353  MVT VT = Op.getSimpleValueType();
10354  SDLoc dl(Op);
10355
10356  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
10357    return SDValue();
10358
10359  if (VT.getSizeInBits() == 8) {
10360    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
10361                                  Op.getOperand(0), Op.getOperand(1));
10362    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
10363                                  DAG.getValueType(VT));
10364    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
10365  }
10366
10367  if (VT.getSizeInBits() == 16) {
10368    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10369    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
10370    if (Idx == 0)
10371      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
10372                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
10373                                     DAG.getNode(ISD::BITCAST, dl,
10374                                                 MVT::v4i32,
10375                                                 Op.getOperand(0)),
10376                                     Op.getOperand(1)));
10377    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
10378                                  Op.getOperand(0), Op.getOperand(1));
10379    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
10380                                  DAG.getValueType(VT));
10381    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
10382  }
10383
10384  if (VT == MVT::f32) {
10385    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
10386    // the result back to FR32 register. It's only worth matching if the
10387    // result has a single use which is a store or a bitcast to i32.  And in
10388    // the case of a store, it's not worth it if the index is a constant 0,
10389    // because a MOVSSmr can be used instead, which is smaller and faster.
10390    if (!Op.hasOneUse())
10391      return SDValue();
10392    SDNode *User = *Op.getNode()->use_begin();
10393    if ((User->getOpcode() != ISD::STORE ||
10394         (isa<ConstantSDNode>(Op.getOperand(1)) &&
10395          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
10396        (User->getOpcode() != ISD::BITCAST ||
10397         User->getValueType(0) != MVT::i32))
10398      return SDValue();
10399    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
10400                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
10401                                              Op.getOperand(0)),
10402                                              Op.getOperand(1));
10403    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
10404  }
10405
10406  if (VT == MVT::i32 || VT == MVT::i64) {
10407    // ExtractPS/pextrq works with constant index.
10408    if (isa<ConstantSDNode>(Op.getOperand(1)))
10409      return Op;
10410  }
10411  return SDValue();
10412}
10413
10414/// Extract one bit from mask vector, like v16i1 or v8i1.
10415/// AVX-512 feature.
10416SDValue
10417X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
10418  SDValue Vec = Op.getOperand(0);
10419  SDLoc dl(Vec);
10420  MVT VecVT = Vec.getSimpleValueType();
10421  SDValue Idx = Op.getOperand(1);
10422  MVT EltVT = Op.getSimpleValueType();
10423
10424  assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
10425  assert((VecVT.getVectorNumElements() <= 16 || Subtarget->hasBWI()) &&
10426         "Unexpected vector type in ExtractBitFromMaskVector");
10427
10428  // variable index can't be handled in mask registers,
10429  // extend vector to VR512
10430  if (!isa<ConstantSDNode>(Idx)) {
10431    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
10432    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
10433    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
10434                              ExtVT.getVectorElementType(), Ext, Idx);
10435    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
10436  }
10437
10438  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10439  const TargetRegisterClass* rc = getRegClassFor(VecVT);
10440  if (!Subtarget->hasDQI() && (VecVT.getVectorNumElements() <= 8))
10441    rc = getRegClassFor(MVT::v16i1);
10442  unsigned MaxSift = rc->getSize()*8 - 1;
10443  Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
10444                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
10445  Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
10446                    DAG.getConstant(MaxSift, MVT::i8));
10447  return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
10448                       DAG.getIntPtrConstant(0));
10449}
10450
10451SDValue
10452X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10453                                           SelectionDAG &DAG) const {
10454  SDLoc dl(Op);
10455  SDValue Vec = Op.getOperand(0);
10456  MVT VecVT = Vec.getSimpleValueType();
10457  SDValue Idx = Op.getOperand(1);
10458
10459  if (Op.getSimpleValueType() == MVT::i1)
10460    return ExtractBitFromMaskVector(Op, DAG);
10461
10462  if (!isa<ConstantSDNode>(Idx)) {
10463    if (VecVT.is512BitVector() ||
10464        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
10465         VecVT.getVectorElementType().getSizeInBits() == 32)) {
10466
10467      MVT MaskEltVT =
10468        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
10469      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
10470                                    MaskEltVT.getSizeInBits());
10471
10472      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
10473      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
10474                                getZeroVector(MaskVT, Subtarget, DAG, dl),
10475                                Idx, DAG.getConstant(0, getPointerTy()));
10476      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
10477      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
10478                        Perm, DAG.getConstant(0, getPointerTy()));
10479    }
10480    return SDValue();
10481  }
10482
10483  // If this is a 256-bit vector result, first extract the 128-bit vector and
10484  // then extract the element from the 128-bit vector.
10485  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
10486
10487    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10488    // Get the 128-bit vector.
10489    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
10490    MVT EltVT = VecVT.getVectorElementType();
10491
10492    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
10493
10494    //if (IdxVal >= NumElems/2)
10495    //  IdxVal -= NumElems/2;
10496    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
10497    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
10498                       DAG.getConstant(IdxVal, MVT::i32));
10499  }
10500
10501  assert(VecVT.is128BitVector() && "Unexpected vector length");
10502
10503  if (Subtarget->hasSSE41()) {
10504    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
10505    if (Res.getNode())
10506      return Res;
10507  }
10508
10509  MVT VT = Op.getSimpleValueType();
10510  // TODO: handle v16i8.
10511  if (VT.getSizeInBits() == 16) {
10512    SDValue Vec = Op.getOperand(0);
10513    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10514    if (Idx == 0)
10515      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
10516                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
10517                                     DAG.getNode(ISD::BITCAST, dl,
10518                                                 MVT::v4i32, Vec),
10519                                     Op.getOperand(1)));
10520    // Transform it so it match pextrw which produces a 32-bit result.
10521    MVT EltVT = MVT::i32;
10522    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
10523                                  Op.getOperand(0), Op.getOperand(1));
10524    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
10525                                  DAG.getValueType(VT));
10526    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
10527  }
10528
10529  if (VT.getSizeInBits() == 32) {
10530    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10531    if (Idx == 0)
10532      return Op;
10533
10534    // SHUFPS the element to the lowest double word, then movss.
10535    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
10536    MVT VVT = Op.getOperand(0).getSimpleValueType();
10537    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
10538                                       DAG.getUNDEF(VVT), Mask);
10539    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
10540                       DAG.getIntPtrConstant(0));
10541  }
10542
10543  if (VT.getSizeInBits() == 64) {
10544    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
10545    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
10546    //        to match extract_elt for f64.
10547    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10548    if (Idx == 0)
10549      return Op;
10550
10551    // UNPCKHPD the element to the lowest double word, then movsd.
10552    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
10553    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
10554    int Mask[2] = { 1, -1 };
10555    MVT VVT = Op.getOperand(0).getSimpleValueType();
10556    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
10557                                       DAG.getUNDEF(VVT), Mask);
10558    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
10559                       DAG.getIntPtrConstant(0));
10560  }
10561
10562  return SDValue();
10563}
10564
10565/// Insert one bit to mask vector, like v16i1 or v8i1.
10566/// AVX-512 feature.
10567SDValue
10568X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
10569  SDLoc dl(Op);
10570  SDValue Vec = Op.getOperand(0);
10571  SDValue Elt = Op.getOperand(1);
10572  SDValue Idx = Op.getOperand(2);
10573  MVT VecVT = Vec.getSimpleValueType();
10574
10575  if (!isa<ConstantSDNode>(Idx)) {
10576    // Non constant index. Extend source and destination,
10577    // insert element and then truncate the result.
10578    MVT ExtVecVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
10579    MVT ExtEltVT = (VecVT == MVT::v8i1 ?  MVT::i64 : MVT::i32);
10580    SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
10581      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
10582      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
10583    return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
10584  }
10585
10586  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10587  SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
10588  if (Vec.getOpcode() == ISD::UNDEF)
10589    return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
10590                       DAG.getConstant(IdxVal, MVT::i8));
10591  const TargetRegisterClass* rc = getRegClassFor(VecVT);
10592  unsigned MaxSift = rc->getSize()*8 - 1;
10593  EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
10594                    DAG.getConstant(MaxSift, MVT::i8));
10595  EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec,
10596                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
10597  return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
10598}
10599
10600SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10601                                                  SelectionDAG &DAG) const {
10602  MVT VT = Op.getSimpleValueType();
10603  MVT EltVT = VT.getVectorElementType();
10604
10605  if (EltVT == MVT::i1)
10606    return InsertBitToMaskVector(Op, DAG);
10607
10608  SDLoc dl(Op);
10609  SDValue N0 = Op.getOperand(0);
10610  SDValue N1 = Op.getOperand(1);
10611  SDValue N2 = Op.getOperand(2);
10612  if (!isa<ConstantSDNode>(N2))
10613    return SDValue();
10614  auto *N2C = cast<ConstantSDNode>(N2);
10615  unsigned IdxVal = N2C->getZExtValue();
10616
10617  // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
10618  // into that, and then insert the subvector back into the result.
10619  if (VT.is256BitVector() || VT.is512BitVector()) {
10620    // With a 256-bit vector, we can insert into the zero element efficiently
10621    // using a blend if we have AVX or AVX2 and the right data type.
10622    if (VT.is256BitVector() && IdxVal == 0) {
10623      // TODO: It is worthwhile to cast integer to floating point and back
10624      // and incur a domain crossing penalty if that's what we'll end up
10625      // doing anyway after extracting to a 128-bit vector.
10626      if ((Subtarget->hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
10627          (Subtarget->hasAVX2() && EltVT == MVT::i32)) {
10628        SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
10629        N2 = DAG.getIntPtrConstant(1);
10630        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
10631      }
10632    }
10633
10634    // Get the desired 128-bit vector chunk.
10635    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
10636
10637    // Insert the element into the desired chunk.
10638    unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
10639    unsigned IdxIn128 = IdxVal - (IdxVal / NumEltsIn128) * NumEltsIn128;
10640
10641    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
10642                    DAG.getConstant(IdxIn128, MVT::i32));
10643
10644    // Insert the changed part back into the bigger vector
10645    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
10646  }
10647  assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
10648
10649  if (Subtarget->hasSSE41()) {
10650    if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
10651      unsigned Opc;
10652      if (VT == MVT::v8i16) {
10653        Opc = X86ISD::PINSRW;
10654      } else {
10655        assert(VT == MVT::v16i8);
10656        Opc = X86ISD::PINSRB;
10657      }
10658
10659      // Transform it so it match pinsr{b,w} which expects a GR32 as its second
10660      // argument.
10661      if (N1.getValueType() != MVT::i32)
10662        N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
10663      if (N2.getValueType() != MVT::i32)
10664        N2 = DAG.getIntPtrConstant(IdxVal);
10665      return DAG.getNode(Opc, dl, VT, N0, N1, N2);
10666    }
10667
10668    if (EltVT == MVT::f32) {
10669      // Bits [7:6] of the constant are the source select. This will always be
10670      //   zero here. The DAG Combiner may combine an extract_elt index into
10671      //   these bits. For example (insert (extract, 3), 2) could be matched by
10672      //   putting the '3' into bits [7:6] of X86ISD::INSERTPS.
10673      // Bits [5:4] of the constant are the destination select. This is the
10674      //   value of the incoming immediate.
10675      // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
10676      //   combine either bitwise AND or insert of float 0.0 to set these bits.
10677
10678      const Function *F = DAG.getMachineFunction().getFunction();
10679      bool MinSize = F->hasFnAttribute(Attribute::MinSize);
10680      if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
10681        // If this is an insertion of 32-bits into the low 32-bits of
10682        // a vector, we prefer to generate a blend with immediate rather
10683        // than an insertps. Blends are simpler operations in hardware and so
10684        // will always have equal or better performance than insertps.
10685        // But if optimizing for size and there's a load folding opportunity,
10686        // generate insertps because blendps does not have a 32-bit memory
10687        // operand form.
10688        N2 = DAG.getIntPtrConstant(1);
10689        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
10690        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
10691      }
10692      N2 = DAG.getIntPtrConstant(IdxVal << 4);
10693      // Create this as a scalar to vector..
10694      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
10695      return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
10696    }
10697
10698    if (EltVT == MVT::i32 || EltVT == MVT::i64) {
10699      // PINSR* works with constant index.
10700      return Op;
10701    }
10702  }
10703
10704  if (EltVT == MVT::i8)
10705    return SDValue();
10706
10707  if (EltVT.getSizeInBits() == 16) {
10708    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
10709    // as its second argument.
10710    if (N1.getValueType() != MVT::i32)
10711      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
10712    if (N2.getValueType() != MVT::i32)
10713      N2 = DAG.getIntPtrConstant(IdxVal);
10714    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
10715  }
10716  return SDValue();
10717}
10718
10719static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
10720  SDLoc dl(Op);
10721  MVT OpVT = Op.getSimpleValueType();
10722
10723  // If this is a 256-bit vector result, first insert into a 128-bit
10724  // vector and then insert into the 256-bit vector.
10725  if (!OpVT.is128BitVector()) {
10726    // Insert into a 128-bit vector.
10727    unsigned SizeFactor = OpVT.getSizeInBits()/128;
10728    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
10729                                 OpVT.getVectorNumElements() / SizeFactor);
10730
10731    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
10732
10733    // Insert the 128-bit vector.
10734    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
10735  }
10736
10737  if (OpVT == MVT::v1i64 &&
10738      Op.getOperand(0).getValueType() == MVT::i64)
10739    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
10740
10741  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
10742  assert(OpVT.is128BitVector() && "Expected an SSE type!");
10743  return DAG.getNode(ISD::BITCAST, dl, OpVT,
10744                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
10745}
10746
10747// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
10748// a simple subregister reference or explicit instructions to grab
10749// upper bits of a vector.
10750static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
10751                                      SelectionDAG &DAG) {
10752  SDLoc dl(Op);
10753  SDValue In =  Op.getOperand(0);
10754  SDValue Idx = Op.getOperand(1);
10755  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10756  MVT ResVT   = Op.getSimpleValueType();
10757  MVT InVT    = In.getSimpleValueType();
10758
10759  if (Subtarget->hasFp256()) {
10760    if (ResVT.is128BitVector() &&
10761        (InVT.is256BitVector() || InVT.is512BitVector()) &&
10762        isa<ConstantSDNode>(Idx)) {
10763      return Extract128BitVector(In, IdxVal, DAG, dl);
10764    }
10765    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
10766        isa<ConstantSDNode>(Idx)) {
10767      return Extract256BitVector(In, IdxVal, DAG, dl);
10768    }
10769  }
10770  return SDValue();
10771}
10772
10773// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
10774// simple superregister reference or explicit instructions to insert
10775// the upper bits of a vector.
10776static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
10777                                     SelectionDAG &DAG) {
10778  if (!Subtarget->hasAVX())
10779    return SDValue();
10780
10781  SDLoc dl(Op);
10782  SDValue Vec = Op.getOperand(0);
10783  SDValue SubVec = Op.getOperand(1);
10784  SDValue Idx = Op.getOperand(2);
10785
10786  if (!isa<ConstantSDNode>(Idx))
10787    return SDValue();
10788
10789  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10790  MVT OpVT = Op.getSimpleValueType();
10791  MVT SubVecVT = SubVec.getSimpleValueType();
10792
10793  // Fold two 16-byte subvector loads into one 32-byte load:
10794  // (insert_subvector (insert_subvector undef, (load addr), 0),
10795  //                   (load addr + 16), Elts/2)
10796  // --> load32 addr
10797  if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
10798      Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
10799      OpVT.is256BitVector() && SubVecVT.is128BitVector() &&
10800      !Subtarget->isUnalignedMem32Slow()) {
10801    SDValue SubVec2 = Vec.getOperand(1);
10802    if (auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2))) {
10803      if (Idx2->getZExtValue() == 0) {
10804        SDValue Ops[] = { SubVec2, SubVec };
10805        SDValue LD = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false);
10806        if (LD.getNode())
10807          return LD;
10808      }
10809    }
10810  }
10811
10812  if ((OpVT.is256BitVector() || OpVT.is512BitVector()) &&
10813      SubVecVT.is128BitVector())
10814    return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
10815
10816  if (OpVT.is512BitVector() && SubVecVT.is256BitVector())
10817    return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
10818
10819  if (OpVT.getVectorElementType() == MVT::i1) {
10820    if (IdxVal == 0  && Vec.getOpcode() == ISD::UNDEF) // the operation is legal
10821      return Op;
10822    SDValue ZeroIdx = DAG.getIntPtrConstant(0);
10823    SDValue Undef = DAG.getUNDEF(OpVT);
10824    unsigned NumElems = OpVT.getVectorNumElements();
10825    SDValue ShiftBits = DAG.getConstant(NumElems/2, MVT::i8);
10826
10827    if (IdxVal == OpVT.getVectorNumElements() / 2) {
10828      // Zero upper bits of the Vec
10829      Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
10830      Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
10831
10832      SDValue Vec2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef,
10833                                 SubVec, ZeroIdx);
10834      Vec2 = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec2, ShiftBits);
10835      return DAG.getNode(ISD::OR, dl, OpVT, Vec, Vec2);
10836    }
10837    if (IdxVal == 0) {
10838      SDValue Vec2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef,
10839                                 SubVec, ZeroIdx);
10840      // Zero upper bits of the Vec2
10841      Vec2 = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec2, ShiftBits);
10842      Vec2 = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec2, ShiftBits);
10843      // Zero lower bits of the Vec
10844      Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
10845      Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
10846      // Merge them together
10847      return DAG.getNode(ISD::OR, dl, OpVT, Vec, Vec2);
10848    }
10849  }
10850  return SDValue();
10851}
10852
10853// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
10854// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
10855// one of the above mentioned nodes. It has to be wrapped because otherwise
10856// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
10857// be used to form addressing mode. These wrapped nodes will be selected
10858// into MOV32ri.
10859SDValue
10860X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
10861  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
10862
10863  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10864  // global base reg.
10865  unsigned char OpFlag = 0;
10866  unsigned WrapperKind = X86ISD::Wrapper;
10867  CodeModel::Model M = DAG.getTarget().getCodeModel();
10868
10869  if (Subtarget->isPICStyleRIPRel() &&
10870      (M == CodeModel::Small || M == CodeModel::Kernel))
10871    WrapperKind = X86ISD::WrapperRIP;
10872  else if (Subtarget->isPICStyleGOT())
10873    OpFlag = X86II::MO_GOTOFF;
10874  else if (Subtarget->isPICStyleStubPIC())
10875    OpFlag = X86II::MO_PIC_BASE_OFFSET;
10876
10877  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
10878                                             CP->getAlignment(),
10879                                             CP->getOffset(), OpFlag);
10880  SDLoc DL(CP);
10881  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10882  // With PIC, the address is actually $g + Offset.
10883  if (OpFlag) {
10884    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10885                         DAG.getNode(X86ISD::GlobalBaseReg,
10886                                     SDLoc(), getPointerTy()),
10887                         Result);
10888  }
10889
10890  return Result;
10891}
10892
10893SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
10894  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
10895
10896  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10897  // global base reg.
10898  unsigned char OpFlag = 0;
10899  unsigned WrapperKind = X86ISD::Wrapper;
10900  CodeModel::Model M = DAG.getTarget().getCodeModel();
10901
10902  if (Subtarget->isPICStyleRIPRel() &&
10903      (M == CodeModel::Small || M == CodeModel::Kernel))
10904    WrapperKind = X86ISD::WrapperRIP;
10905  else if (Subtarget->isPICStyleGOT())
10906    OpFlag = X86II::MO_GOTOFF;
10907  else if (Subtarget->isPICStyleStubPIC())
10908    OpFlag = X86II::MO_PIC_BASE_OFFSET;
10909
10910  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
10911                                          OpFlag);
10912  SDLoc DL(JT);
10913  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10914
10915  // With PIC, the address is actually $g + Offset.
10916  if (OpFlag)
10917    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10918                         DAG.getNode(X86ISD::GlobalBaseReg,
10919                                     SDLoc(), getPointerTy()),
10920                         Result);
10921
10922  return Result;
10923}
10924
10925SDValue
10926X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
10927  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10928
10929  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10930  // global base reg.
10931  unsigned char OpFlag = 0;
10932  unsigned WrapperKind = X86ISD::Wrapper;
10933  CodeModel::Model M = DAG.getTarget().getCodeModel();
10934
10935  if (Subtarget->isPICStyleRIPRel() &&
10936      (M == CodeModel::Small || M == CodeModel::Kernel)) {
10937    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
10938      OpFlag = X86II::MO_GOTPCREL;
10939    WrapperKind = X86ISD::WrapperRIP;
10940  } else if (Subtarget->isPICStyleGOT()) {
10941    OpFlag = X86II::MO_GOT;
10942  } else if (Subtarget->isPICStyleStubPIC()) {
10943    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
10944  } else if (Subtarget->isPICStyleStubNoDynamic()) {
10945    OpFlag = X86II::MO_DARWIN_NONLAZY;
10946  }
10947
10948  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
10949
10950  SDLoc DL(Op);
10951  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10952
10953  // With PIC, the address is actually $g + Offset.
10954  if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
10955      !Subtarget->is64Bit()) {
10956    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10957                         DAG.getNode(X86ISD::GlobalBaseReg,
10958                                     SDLoc(), getPointerTy()),
10959                         Result);
10960  }
10961
10962  // For symbols that require a load from a stub to get the address, emit the
10963  // load.
10964  if (isGlobalStubReference(OpFlag))
10965    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
10966                         MachinePointerInfo::getGOT(), false, false, false, 0);
10967
10968  return Result;
10969}
10970
10971SDValue
10972X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
10973  // Create the TargetBlockAddressAddress node.
10974  unsigned char OpFlags =
10975    Subtarget->ClassifyBlockAddressReference();
10976  CodeModel::Model M = DAG.getTarget().getCodeModel();
10977  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
10978  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
10979  SDLoc dl(Op);
10980  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
10981                                             OpFlags);
10982
10983  if (Subtarget->isPICStyleRIPRel() &&
10984      (M == CodeModel::Small || M == CodeModel::Kernel))
10985    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
10986  else
10987    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
10988
10989  // With PIC, the address is actually $g + Offset.
10990  if (isGlobalRelativeToPICBase(OpFlags)) {
10991    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
10992                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
10993                         Result);
10994  }
10995
10996  return Result;
10997}
10998
10999SDValue
11000X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
11001                                      int64_t Offset, SelectionDAG &DAG) const {
11002  // Create the TargetGlobalAddress node, folding in the constant
11003  // offset if it is legal.
11004  unsigned char OpFlags =
11005      Subtarget->ClassifyGlobalReference(GV, DAG.getTarget());
11006  CodeModel::Model M = DAG.getTarget().getCodeModel();
11007  SDValue Result;
11008  if (OpFlags == X86II::MO_NO_FLAG &&
11009      X86::isOffsetSuitableForCodeModel(Offset, M)) {
11010    // A direct static reference to a global.
11011    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
11012    Offset = 0;
11013  } else {
11014    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
11015  }
11016
11017  if (Subtarget->isPICStyleRIPRel() &&
11018      (M == CodeModel::Small || M == CodeModel::Kernel))
11019    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
11020  else
11021    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
11022
11023  // With PIC, the address is actually $g + Offset.
11024  if (isGlobalRelativeToPICBase(OpFlags)) {
11025    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
11026                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
11027                         Result);
11028  }
11029
11030  // For globals that require a load from a stub to get the address, emit the
11031  // load.
11032  if (isGlobalStubReference(OpFlags))
11033    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
11034                         MachinePointerInfo::getGOT(), false, false, false, 0);
11035
11036  // If there was a non-zero offset that we didn't fold, create an explicit
11037  // addition for it.
11038  if (Offset != 0)
11039    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
11040                         DAG.getConstant(Offset, getPointerTy()));
11041
11042  return Result;
11043}
11044
11045SDValue
11046X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
11047  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
11048  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
11049  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
11050}
11051
11052static SDValue
11053GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
11054           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
11055           unsigned char OperandFlags, bool LocalDynamic = false) {
11056  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11057  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11058  SDLoc dl(GA);
11059  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
11060                                           GA->getValueType(0),
11061                                           GA->getOffset(),
11062                                           OperandFlags);
11063
11064  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
11065                                           : X86ISD::TLSADDR;
11066
11067  if (InFlag) {
11068    SDValue Ops[] = { Chain,  TGA, *InFlag };
11069    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
11070  } else {
11071    SDValue Ops[]  = { Chain, TGA };
11072    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
11073  }
11074
11075  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
11076  MFI->setAdjustsStack(true);
11077  MFI->setHasCalls(true);
11078
11079  SDValue Flag = Chain.getValue(1);
11080  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
11081}
11082
11083// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
11084static SDValue
11085LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
11086                                const EVT PtrVT) {
11087  SDValue InFlag;
11088  SDLoc dl(GA);  // ? function entry point might be better
11089  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
11090                                   DAG.getNode(X86ISD::GlobalBaseReg,
11091                                               SDLoc(), PtrVT), InFlag);
11092  InFlag = Chain.getValue(1);
11093
11094  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
11095}
11096
11097// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
11098static SDValue
11099LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
11100                                const EVT PtrVT) {
11101  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
11102                    X86::RAX, X86II::MO_TLSGD);
11103}
11104
11105static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
11106                                           SelectionDAG &DAG,
11107                                           const EVT PtrVT,
11108                                           bool is64Bit) {
11109  SDLoc dl(GA);
11110
11111  // Get the start address of the TLS block for this module.
11112  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
11113      .getInfo<X86MachineFunctionInfo>();
11114  MFI->incNumLocalDynamicTLSAccesses();
11115
11116  SDValue Base;
11117  if (is64Bit) {
11118    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
11119                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
11120  } else {
11121    SDValue InFlag;
11122    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
11123        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
11124    InFlag = Chain.getValue(1);
11125    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
11126                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
11127  }
11128
11129  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
11130  // of Base.
11131
11132  // Build x@dtpoff.
11133  unsigned char OperandFlags = X86II::MO_DTPOFF;
11134  unsigned WrapperKind = X86ISD::Wrapper;
11135  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
11136                                           GA->getValueType(0),
11137                                           GA->getOffset(), OperandFlags);
11138  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
11139
11140  // Add x@dtpoff with the base.
11141  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
11142}
11143
11144// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
11145static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
11146                                   const EVT PtrVT, TLSModel::Model model,
11147                                   bool is64Bit, bool isPIC) {
11148  SDLoc dl(GA);
11149
11150  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
11151  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
11152                                                         is64Bit ? 257 : 256));
11153
11154  SDValue ThreadPointer =
11155      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
11156                  MachinePointerInfo(Ptr), false, false, false, 0);
11157
11158  unsigned char OperandFlags = 0;
11159  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
11160  // initialexec.
11161  unsigned WrapperKind = X86ISD::Wrapper;
11162  if (model == TLSModel::LocalExec) {
11163    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
11164  } else if (model == TLSModel::InitialExec) {
11165    if (is64Bit) {
11166      OperandFlags = X86II::MO_GOTTPOFF;
11167      WrapperKind = X86ISD::WrapperRIP;
11168    } else {
11169      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
11170    }
11171  } else {
11172    llvm_unreachable("Unexpected model");
11173  }
11174
11175  // emit "addl x@ntpoff,%eax" (local exec)
11176  // or "addl x@indntpoff,%eax" (initial exec)
11177  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
11178  SDValue TGA =
11179      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
11180                                 GA->getOffset(), OperandFlags);
11181  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
11182
11183  if (model == TLSModel::InitialExec) {
11184    if (isPIC && !is64Bit) {
11185      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
11186                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
11187                           Offset);
11188    }
11189
11190    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
11191                         MachinePointerInfo::getGOT(), false, false, false, 0);
11192  }
11193
11194  // The address of the thread local variable is the add of the thread
11195  // pointer with the offset of the variable.
11196  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
11197}
11198
11199SDValue
11200X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
11201
11202  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
11203  const GlobalValue *GV = GA->getGlobal();
11204
11205  if (Subtarget->isTargetELF()) {
11206    TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
11207
11208    switch (model) {
11209      case TLSModel::GeneralDynamic:
11210        if (Subtarget->is64Bit())
11211          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
11212        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
11213      case TLSModel::LocalDynamic:
11214        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
11215                                           Subtarget->is64Bit());
11216      case TLSModel::InitialExec:
11217      case TLSModel::LocalExec:
11218        return LowerToTLSExecModel(
11219            GA, DAG, getPointerTy(), model, Subtarget->is64Bit(),
11220            DAG.getTarget().getRelocationModel() == Reloc::PIC_);
11221    }
11222    llvm_unreachable("Unknown TLS model.");
11223  }
11224
11225  if (Subtarget->isTargetDarwin()) {
11226    // Darwin only has one model of TLS.  Lower to that.
11227    unsigned char OpFlag = 0;
11228    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
11229                           X86ISD::WrapperRIP : X86ISD::Wrapper;
11230
11231    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
11232    // global base reg.
11233    bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
11234                 !Subtarget->is64Bit();
11235    if (PIC32)
11236      OpFlag = X86II::MO_TLVP_PIC_BASE;
11237    else
11238      OpFlag = X86II::MO_TLVP;
11239    SDLoc DL(Op);
11240    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
11241                                                GA->getValueType(0),
11242                                                GA->getOffset(), OpFlag);
11243    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
11244
11245    // With PIC32, the address is actually $g + Offset.
11246    if (PIC32)
11247      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
11248                           DAG.getNode(X86ISD::GlobalBaseReg,
11249                                       SDLoc(), getPointerTy()),
11250                           Offset);
11251
11252    // Lowering the machine isd will make sure everything is in the right
11253    // location.
11254    SDValue Chain = DAG.getEntryNode();
11255    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11256    SDValue Args[] = { Chain, Offset };
11257    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
11258
11259    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
11260    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11261    MFI->setAdjustsStack(true);
11262
11263    // And our return value (tls address) is in the standard call return value
11264    // location.
11265    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11266    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
11267                              Chain.getValue(1));
11268  }
11269
11270  if (Subtarget->isTargetKnownWindowsMSVC() ||
11271      Subtarget->isTargetWindowsGNU()) {
11272    // Just use the implicit TLS architecture
11273    // Need to generate someting similar to:
11274    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
11275    //                                  ; from TEB
11276    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
11277    //   mov     rcx, qword [rdx+rcx*8]
11278    //   mov     eax, .tls$:tlsvar
11279    //   [rax+rcx] contains the address
11280    // Windows 64bit: gs:0x58
11281    // Windows 32bit: fs:__tls_array
11282
11283    SDLoc dl(GA);
11284    SDValue Chain = DAG.getEntryNode();
11285
11286    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
11287    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
11288    // use its literal value of 0x2C.
11289    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
11290                                        ? Type::getInt8PtrTy(*DAG.getContext(),
11291                                                             256)
11292                                        : Type::getInt32PtrTy(*DAG.getContext(),
11293                                                              257));
11294
11295    SDValue TlsArray =
11296        Subtarget->is64Bit()
11297            ? DAG.getIntPtrConstant(0x58)
11298            : (Subtarget->isTargetWindowsGNU()
11299                   ? DAG.getIntPtrConstant(0x2C)
11300                   : DAG.getExternalSymbol("_tls_array", getPointerTy()));
11301
11302    SDValue ThreadPointer =
11303        DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
11304                    MachinePointerInfo(Ptr), false, false, false, 0);
11305
11306    // Load the _tls_index variable
11307    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
11308    if (Subtarget->is64Bit())
11309      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
11310                           IDX, MachinePointerInfo(), MVT::i32,
11311                           false, false, false, 0);
11312    else
11313      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
11314                        false, false, false, 0);
11315
11316    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
11317                                    getPointerTy());
11318    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
11319
11320    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
11321    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
11322                      false, false, false, 0);
11323
11324    // Get the offset of start of .tls section
11325    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
11326                                             GA->getValueType(0),
11327                                             GA->getOffset(), X86II::MO_SECREL);
11328    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
11329
11330    // The address of the thread local variable is the add of the thread
11331    // pointer with the offset of the variable.
11332    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
11333  }
11334
11335  llvm_unreachable("TLS not implemented for this target.");
11336}
11337
11338/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
11339/// and take a 2 x i32 value to shift plus a shift amount.
11340static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
11341  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
11342  MVT VT = Op.getSimpleValueType();
11343  unsigned VTBits = VT.getSizeInBits();
11344  SDLoc dl(Op);
11345  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
11346  SDValue ShOpLo = Op.getOperand(0);
11347  SDValue ShOpHi = Op.getOperand(1);
11348  SDValue ShAmt  = Op.getOperand(2);
11349  // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
11350  // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
11351  // during isel.
11352  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
11353                                  DAG.getConstant(VTBits - 1, MVT::i8));
11354  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
11355                                     DAG.getConstant(VTBits - 1, MVT::i8))
11356                       : DAG.getConstant(0, VT);
11357
11358  SDValue Tmp2, Tmp3;
11359  if (Op.getOpcode() == ISD::SHL_PARTS) {
11360    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
11361    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
11362  } else {
11363    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
11364    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
11365  }
11366
11367  // If the shift amount is larger or equal than the width of a part we can't
11368  // rely on the results of shld/shrd. Insert a test and select the appropriate
11369  // values for large shift amounts.
11370  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
11371                                DAG.getConstant(VTBits, MVT::i8));
11372  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
11373                             AndNode, DAG.getConstant(0, MVT::i8));
11374
11375  SDValue Hi, Lo;
11376  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
11377  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
11378  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
11379
11380  if (Op.getOpcode() == ISD::SHL_PARTS) {
11381    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
11382    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
11383  } else {
11384    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
11385    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
11386  }
11387
11388  SDValue Ops[2] = { Lo, Hi };
11389  return DAG.getMergeValues(Ops, dl);
11390}
11391
11392SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
11393                                           SelectionDAG &DAG) const {
11394  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
11395  SDLoc dl(Op);
11396
11397  if (SrcVT.isVector()) {
11398    if (SrcVT.getVectorElementType() == MVT::i1) {
11399      MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
11400      return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
11401                         DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT,
11402                                     Op.getOperand(0)));
11403    }
11404    return SDValue();
11405  }
11406
11407  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
11408         "Unknown SINT_TO_FP to lower!");
11409
11410  // These are really Legal; return the operand so the caller accepts it as
11411  // Legal.
11412  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
11413    return Op;
11414  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
11415      Subtarget->is64Bit()) {
11416    return Op;
11417  }
11418
11419  unsigned Size = SrcVT.getSizeInBits()/8;
11420  MachineFunction &MF = DAG.getMachineFunction();
11421  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
11422  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11423  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
11424                               StackSlot,
11425                               MachinePointerInfo::getFixedStack(SSFI),
11426                               false, false, 0);
11427  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
11428}
11429
11430SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
11431                                     SDValue StackSlot,
11432                                     SelectionDAG &DAG) const {
11433  // Build the FILD
11434  SDLoc DL(Op);
11435  SDVTList Tys;
11436  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
11437  if (useSSE)
11438    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
11439  else
11440    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
11441
11442  unsigned ByteSize = SrcVT.getSizeInBits()/8;
11443
11444  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
11445  MachineMemOperand *MMO;
11446  if (FI) {
11447    int SSFI = FI->getIndex();
11448    MMO =
11449      DAG.getMachineFunction()
11450      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11451                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
11452  } else {
11453    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
11454    StackSlot = StackSlot.getOperand(1);
11455  }
11456  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
11457  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
11458                                           X86ISD::FILD, DL,
11459                                           Tys, Ops, SrcVT, MMO);
11460
11461  if (useSSE) {
11462    Chain = Result.getValue(1);
11463    SDValue InFlag = Result.getValue(2);
11464
11465    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
11466    // shouldn't be necessary except that RFP cannot be live across
11467    // multiple blocks. When stackifier is fixed, they can be uncoupled.
11468    MachineFunction &MF = DAG.getMachineFunction();
11469    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
11470    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
11471    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11472    Tys = DAG.getVTList(MVT::Other);
11473    SDValue Ops[] = {
11474      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
11475    };
11476    MachineMemOperand *MMO =
11477      DAG.getMachineFunction()
11478      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11479                            MachineMemOperand::MOStore, SSFISize, SSFISize);
11480
11481    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
11482                                    Ops, Op.getValueType(), MMO);
11483    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
11484                         MachinePointerInfo::getFixedStack(SSFI),
11485                         false, false, false, 0);
11486  }
11487
11488  return Result;
11489}
11490
11491// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
11492SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
11493                                               SelectionDAG &DAG) const {
11494  // This algorithm is not obvious. Here it is what we're trying to output:
11495  /*
11496     movq       %rax,  %xmm0
11497     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
11498     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
11499     #ifdef __SSE3__
11500       haddpd   %xmm0, %xmm0
11501     #else
11502       pshufd   $0x4e, %xmm0, %xmm1
11503       addpd    %xmm1, %xmm0
11504     #endif
11505  */
11506
11507  SDLoc dl(Op);
11508  LLVMContext *Context = DAG.getContext();
11509
11510  // Build some magic constants.
11511  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
11512  Constant *C0 = ConstantDataVector::get(*Context, CV0);
11513  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
11514
11515  SmallVector<Constant*,2> CV1;
11516  CV1.push_back(
11517    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
11518                                      APInt(64, 0x4330000000000000ULL))));
11519  CV1.push_back(
11520    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
11521                                      APInt(64, 0x4530000000000000ULL))));
11522  Constant *C1 = ConstantVector::get(CV1);
11523  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
11524
11525  // Load the 64-bit value into an XMM register.
11526  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
11527                            Op.getOperand(0));
11528  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
11529                              MachinePointerInfo::getConstantPool(),
11530                              false, false, false, 16);
11531  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
11532                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
11533                              CLod0);
11534
11535  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
11536                              MachinePointerInfo::getConstantPool(),
11537                              false, false, false, 16);
11538  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
11539  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
11540  SDValue Result;
11541
11542  if (Subtarget->hasSSE3()) {
11543    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
11544    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
11545  } else {
11546    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
11547    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
11548                                           S2F, 0x4E, DAG);
11549    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
11550                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
11551                         Sub);
11552  }
11553
11554  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
11555                     DAG.getIntPtrConstant(0));
11556}
11557
11558// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
11559SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
11560                                               SelectionDAG &DAG) const {
11561  SDLoc dl(Op);
11562  // FP constant to bias correct the final result.
11563  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
11564                                   MVT::f64);
11565
11566  // Load the 32-bit value into an XMM register.
11567  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
11568                             Op.getOperand(0));
11569
11570  // Zero out the upper parts of the register.
11571  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
11572
11573  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
11574                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
11575                     DAG.getIntPtrConstant(0));
11576
11577  // Or the load with the bias.
11578  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
11579                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
11580                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
11581                                                   MVT::v2f64, Load)),
11582                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
11583                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
11584                                                   MVT::v2f64, Bias)));
11585  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
11586                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
11587                   DAG.getIntPtrConstant(0));
11588
11589  // Subtract the bias.
11590  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
11591
11592  // Handle final rounding.
11593  EVT DestVT = Op.getValueType();
11594
11595  if (DestVT.bitsLT(MVT::f64))
11596    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
11597                       DAG.getIntPtrConstant(0));
11598  if (DestVT.bitsGT(MVT::f64))
11599    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
11600
11601  // Handle final rounding.
11602  return Sub;
11603}
11604
11605static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
11606                                     const X86Subtarget &Subtarget) {
11607  // The algorithm is the following:
11608  // #ifdef __SSE4_1__
11609  //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
11610  //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
11611  //                                 (uint4) 0x53000000, 0xaa);
11612  // #else
11613  //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
11614  //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
11615  // #endif
11616  //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
11617  //     return (float4) lo + fhi;
11618
11619  SDLoc DL(Op);
11620  SDValue V = Op->getOperand(0);
11621  EVT VecIntVT = V.getValueType();
11622  bool Is128 = VecIntVT == MVT::v4i32;
11623  EVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
11624  // If we convert to something else than the supported type, e.g., to v4f64,
11625  // abort early.
11626  if (VecFloatVT != Op->getValueType(0))
11627    return SDValue();
11628
11629  unsigned NumElts = VecIntVT.getVectorNumElements();
11630  assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
11631         "Unsupported custom type");
11632  assert(NumElts <= 8 && "The size of the constant array must be fixed");
11633
11634  // In the #idef/#else code, we have in common:
11635  // - The vector of constants:
11636  // -- 0x4b000000
11637  // -- 0x53000000
11638  // - A shift:
11639  // -- v >> 16
11640
11641  // Create the splat vector for 0x4b000000.
11642  SDValue CstLow = DAG.getConstant(0x4b000000, MVT::i32);
11643  SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow,
11644                           CstLow, CstLow, CstLow, CstLow};
11645  SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
11646                                  makeArrayRef(&CstLowArray[0], NumElts));
11647  // Create the splat vector for 0x53000000.
11648  SDValue CstHigh = DAG.getConstant(0x53000000, MVT::i32);
11649  SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh,
11650                            CstHigh, CstHigh, CstHigh, CstHigh};
11651  SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
11652                                   makeArrayRef(&CstHighArray[0], NumElts));
11653
11654  // Create the right shift.
11655  SDValue CstShift = DAG.getConstant(16, MVT::i32);
11656  SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift,
11657                             CstShift, CstShift, CstShift, CstShift};
11658  SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
11659                                    makeArrayRef(&CstShiftArray[0], NumElts));
11660  SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
11661
11662  SDValue Low, High;
11663  if (Subtarget.hasSSE41()) {
11664    EVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
11665    //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
11666    SDValue VecCstLowBitcast =
11667        DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstLow);
11668    SDValue VecBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, V);
11669    // Low will be bitcasted right away, so do not bother bitcasting back to its
11670    // original type.
11671    Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
11672                      VecCstLowBitcast, DAG.getConstant(0xaa, MVT::i32));
11673    //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
11674    //                                 (uint4) 0x53000000, 0xaa);
11675    SDValue VecCstHighBitcast =
11676        DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstHigh);
11677    SDValue VecShiftBitcast =
11678        DAG.getNode(ISD::BITCAST, DL, VecI16VT, HighShift);
11679    // High will be bitcasted right away, so do not bother bitcasting back to
11680    // its original type.
11681    High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
11682                       VecCstHighBitcast, DAG.getConstant(0xaa, MVT::i32));
11683  } else {
11684    SDValue CstMask = DAG.getConstant(0xffff, MVT::i32);
11685    SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask,
11686                                     CstMask, CstMask, CstMask);
11687    //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
11688    SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
11689    Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
11690
11691    //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
11692    High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
11693  }
11694
11695  // Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
11696  SDValue CstFAdd = DAG.getConstantFP(
11697      APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), MVT::f32);
11698  SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd,
11699                            CstFAdd, CstFAdd, CstFAdd, CstFAdd};
11700  SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT,
11701                                   makeArrayRef(&CstFAddArray[0], NumElts));
11702
11703  //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
11704  SDValue HighBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, High);
11705  SDValue FHigh =
11706      DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
11707  //     return (float4) lo + fhi;
11708  SDValue LowBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, Low);
11709  return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
11710}
11711
11712SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
11713                                               SelectionDAG &DAG) const {
11714  SDValue N0 = Op.getOperand(0);
11715  MVT SVT = N0.getSimpleValueType();
11716  SDLoc dl(Op);
11717
11718  switch (SVT.SimpleTy) {
11719  default:
11720    llvm_unreachable("Custom UINT_TO_FP is not supported!");
11721  case MVT::v4i8:
11722  case MVT::v4i16:
11723  case MVT::v8i8:
11724  case MVT::v8i16: {
11725    MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
11726    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
11727                       DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
11728  }
11729  case MVT::v4i32:
11730  case MVT::v8i32:
11731    return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget);
11732  }
11733  llvm_unreachable(nullptr);
11734}
11735
11736SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
11737                                           SelectionDAG &DAG) const {
11738  SDValue N0 = Op.getOperand(0);
11739  SDLoc dl(Op);
11740
11741  if (Op.getValueType().isVector())
11742    return lowerUINT_TO_FP_vec(Op, DAG);
11743
11744  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
11745  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
11746  // the optimization here.
11747  if (DAG.SignBitIsZero(N0))
11748    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
11749
11750  MVT SrcVT = N0.getSimpleValueType();
11751  MVT DstVT = Op.getSimpleValueType();
11752  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
11753    return LowerUINT_TO_FP_i64(Op, DAG);
11754  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
11755    return LowerUINT_TO_FP_i32(Op, DAG);
11756  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
11757    return SDValue();
11758
11759  // Make a 64-bit buffer, and use it to build an FILD.
11760  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
11761  if (SrcVT == MVT::i32) {
11762    SDValue WordOff = DAG.getConstant(4, getPointerTy());
11763    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
11764                                     getPointerTy(), StackSlot, WordOff);
11765    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
11766                                  StackSlot, MachinePointerInfo(),
11767                                  false, false, 0);
11768    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
11769                                  OffsetSlot, MachinePointerInfo(),
11770                                  false, false, 0);
11771    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
11772    return Fild;
11773  }
11774
11775  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
11776  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
11777                               StackSlot, MachinePointerInfo(),
11778                               false, false, 0);
11779  // For i64 source, we need to add the appropriate power of 2 if the input
11780  // was negative.  This is the same as the optimization in
11781  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
11782  // we must be careful to do the computation in x87 extended precision, not
11783  // in SSE. (The generic code can't know it's OK to do this, or how to.)
11784  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
11785  MachineMemOperand *MMO =
11786    DAG.getMachineFunction()
11787    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11788                          MachineMemOperand::MOLoad, 8, 8);
11789
11790  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
11791  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
11792  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
11793                                         MVT::i64, MMO);
11794
11795  APInt FF(32, 0x5F800000ULL);
11796
11797  // Check whether the sign bit is set.
11798  SDValue SignSet = DAG.getSetCC(dl,
11799                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
11800                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
11801                                 ISD::SETLT);
11802
11803  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
11804  SDValue FudgePtr = DAG.getConstantPool(
11805                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
11806                                         getPointerTy());
11807
11808  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
11809  SDValue Zero = DAG.getIntPtrConstant(0);
11810  SDValue Four = DAG.getIntPtrConstant(4);
11811  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
11812                               Zero, Four);
11813  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
11814
11815  // Load the value out, extending it from f32 to f80.
11816  // FIXME: Avoid the extend by constructing the right constant pool?
11817  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
11818                                 FudgePtr, MachinePointerInfo::getConstantPool(),
11819                                 MVT::f32, false, false, false, 4);
11820  // Extend everything to 80 bits to force it to be done on x87.
11821  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
11822  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
11823}
11824
11825std::pair<SDValue,SDValue>
11826X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
11827                                    bool IsSigned, bool IsReplace) const {
11828  SDLoc DL(Op);
11829
11830  EVT DstTy = Op.getValueType();
11831
11832  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
11833    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
11834    DstTy = MVT::i64;
11835  }
11836
11837  assert(DstTy.getSimpleVT() <= MVT::i64 &&
11838         DstTy.getSimpleVT() >= MVT::i16 &&
11839         "Unknown FP_TO_INT to lower!");
11840
11841  // These are really Legal.
11842  if (DstTy == MVT::i32 &&
11843      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
11844    return std::make_pair(SDValue(), SDValue());
11845  if (Subtarget->is64Bit() &&
11846      DstTy == MVT::i64 &&
11847      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
11848    return std::make_pair(SDValue(), SDValue());
11849
11850  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
11851  // stack slot, or into the FTOL runtime function.
11852  MachineFunction &MF = DAG.getMachineFunction();
11853  unsigned MemSize = DstTy.getSizeInBits()/8;
11854  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
11855  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11856
11857  unsigned Opc;
11858  if (!IsSigned && isIntegerTypeFTOL(DstTy))
11859    Opc = X86ISD::WIN_FTOL;
11860  else
11861    switch (DstTy.getSimpleVT().SimpleTy) {
11862    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
11863    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
11864    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
11865    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
11866    }
11867
11868  SDValue Chain = DAG.getEntryNode();
11869  SDValue Value = Op.getOperand(0);
11870  EVT TheVT = Op.getOperand(0).getValueType();
11871  // FIXME This causes a redundant load/store if the SSE-class value is already
11872  // in memory, such as if it is on the callstack.
11873  if (isScalarFPTypeInSSEReg(TheVT)) {
11874    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
11875    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
11876                         MachinePointerInfo::getFixedStack(SSFI),
11877                         false, false, 0);
11878    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
11879    SDValue Ops[] = {
11880      Chain, StackSlot, DAG.getValueType(TheVT)
11881    };
11882
11883    MachineMemOperand *MMO =
11884      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11885                              MachineMemOperand::MOLoad, MemSize, MemSize);
11886    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
11887    Chain = Value.getValue(1);
11888    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
11889    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11890  }
11891
11892  MachineMemOperand *MMO =
11893    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11894                            MachineMemOperand::MOStore, MemSize, MemSize);
11895
11896  if (Opc != X86ISD::WIN_FTOL) {
11897    // Build the FP_TO_INT*_IN_MEM
11898    SDValue Ops[] = { Chain, Value, StackSlot };
11899    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
11900                                           Ops, DstTy, MMO);
11901    return std::make_pair(FIST, StackSlot);
11902  } else {
11903    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
11904      DAG.getVTList(MVT::Other, MVT::Glue),
11905      Chain, Value);
11906    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
11907      MVT::i32, ftol.getValue(1));
11908    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
11909      MVT::i32, eax.getValue(2));
11910    SDValue Ops[] = { eax, edx };
11911    SDValue pair = IsReplace
11912      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops)
11913      : DAG.getMergeValues(Ops, DL);
11914    return std::make_pair(pair, SDValue());
11915  }
11916}
11917
11918static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
11919                              const X86Subtarget *Subtarget) {
11920  MVT VT = Op->getSimpleValueType(0);
11921  SDValue In = Op->getOperand(0);
11922  MVT InVT = In.getSimpleValueType();
11923  SDLoc dl(Op);
11924
11925  // Optimize vectors in AVX mode:
11926  //
11927  //   v8i16 -> v8i32
11928  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
11929  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
11930  //   Concat upper and lower parts.
11931  //
11932  //   v4i32 -> v4i64
11933  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
11934  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
11935  //   Concat upper and lower parts.
11936  //
11937
11938  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
11939      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
11940      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
11941    return SDValue();
11942
11943  if (Subtarget->hasInt256())
11944    return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
11945
11946  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
11947  SDValue Undef = DAG.getUNDEF(InVT);
11948  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
11949  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
11950  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
11951
11952  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
11953                             VT.getVectorNumElements()/2);
11954
11955  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
11956  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
11957
11958  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
11959}
11960
11961static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
11962                                        SelectionDAG &DAG) {
11963  MVT VT = Op->getSimpleValueType(0);
11964  SDValue In = Op->getOperand(0);
11965  MVT InVT = In.getSimpleValueType();
11966  SDLoc DL(Op);
11967  unsigned int NumElts = VT.getVectorNumElements();
11968  if (NumElts != 8 && NumElts != 16)
11969    return SDValue();
11970
11971  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
11972    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
11973
11974  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
11975  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11976  // Now we have only mask extension
11977  assert(InVT.getVectorElementType() == MVT::i1);
11978  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
11979  const Constant *C = cast<ConstantSDNode>(Cst)->getConstantIntValue();
11980  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
11981  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
11982  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
11983                           MachinePointerInfo::getConstantPool(),
11984                           false, false, false, Alignment);
11985
11986  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
11987  if (VT.is512BitVector())
11988    return Brcst;
11989  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
11990}
11991
11992static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
11993                               SelectionDAG &DAG) {
11994  if (Subtarget->hasFp256()) {
11995    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
11996    if (Res.getNode())
11997      return Res;
11998  }
11999
12000  return SDValue();
12001}
12002
12003static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
12004                                SelectionDAG &DAG) {
12005  SDLoc DL(Op);
12006  MVT VT = Op.getSimpleValueType();
12007  SDValue In = Op.getOperand(0);
12008  MVT SVT = In.getSimpleValueType();
12009
12010  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
12011    return LowerZERO_EXTEND_AVX512(Op, DAG);
12012
12013  if (Subtarget->hasFp256()) {
12014    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
12015    if (Res.getNode())
12016      return Res;
12017  }
12018
12019  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
12020         VT.getVectorNumElements() != SVT.getVectorNumElements());
12021  return SDValue();
12022}
12023
12024SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
12025  SDLoc DL(Op);
12026  MVT VT = Op.getSimpleValueType();
12027  SDValue In = Op.getOperand(0);
12028  MVT InVT = In.getSimpleValueType();
12029
12030  if (VT == MVT::i1) {
12031    assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
12032           "Invalid scalar TRUNCATE operation");
12033    if (InVT.getSizeInBits() >= 32)
12034      return SDValue();
12035    In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
12036    return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
12037  }
12038  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
12039         "Invalid TRUNCATE operation");
12040
12041  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
12042    if (VT.getVectorElementType().getSizeInBits() >=8)
12043      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
12044
12045    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
12046    unsigned NumElts = InVT.getVectorNumElements();
12047    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
12048    if (InVT.getSizeInBits() < 512) {
12049      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
12050      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
12051      InVT = ExtVT;
12052    }
12053
12054    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
12055    const Constant *C = cast<ConstantSDNode>(Cst)->getConstantIntValue();
12056    SDValue CP = DAG.getConstantPool(C, getPointerTy());
12057    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
12058    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
12059                           MachinePointerInfo::getConstantPool(),
12060                           false, false, false, Alignment);
12061    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
12062    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
12063    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
12064  }
12065
12066  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
12067    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
12068    if (Subtarget->hasInt256()) {
12069      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
12070      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
12071      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
12072                                ShufMask);
12073      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
12074                         DAG.getIntPtrConstant(0));
12075    }
12076
12077    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
12078                               DAG.getIntPtrConstant(0));
12079    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
12080                               DAG.getIntPtrConstant(2));
12081    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
12082    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
12083    static const int ShufMask[] = {0, 2, 4, 6};
12084    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
12085  }
12086
12087  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
12088    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
12089    if (Subtarget->hasInt256()) {
12090      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
12091
12092      SmallVector<SDValue,32> pshufbMask;
12093      for (unsigned i = 0; i < 2; ++i) {
12094        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
12095        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
12096        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
12097        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
12098        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
12099        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
12100        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
12101        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
12102        for (unsigned j = 0; j < 8; ++j)
12103          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
12104      }
12105      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
12106      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
12107      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
12108
12109      static const int ShufMask[] = {0,  2,  -1,  -1};
12110      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
12111                                &ShufMask[0]);
12112      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
12113                       DAG.getIntPtrConstant(0));
12114      return DAG.getNode(ISD::BITCAST, DL, VT, In);
12115    }
12116
12117    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
12118                               DAG.getIntPtrConstant(0));
12119
12120    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
12121                               DAG.getIntPtrConstant(4));
12122
12123    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
12124    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
12125
12126    // The PSHUFB mask:
12127    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
12128                                   -1, -1, -1, -1, -1, -1, -1, -1};
12129
12130    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
12131    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
12132    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
12133
12134    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
12135    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
12136
12137    // The MOVLHPS Mask:
12138    static const int ShufMask2[] = {0, 1, 4, 5};
12139    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
12140    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
12141  }
12142
12143  // Handle truncation of V256 to V128 using shuffles.
12144  if (!VT.is128BitVector() || !InVT.is256BitVector())
12145    return SDValue();
12146
12147  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
12148
12149  unsigned NumElems = VT.getVectorNumElements();
12150  MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
12151
12152  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
12153  // Prepare truncation shuffle mask
12154  for (unsigned i = 0; i != NumElems; ++i)
12155    MaskVec[i] = i * 2;
12156  SDValue V = DAG.getVectorShuffle(NVT, DL,
12157                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
12158                                   DAG.getUNDEF(NVT), &MaskVec[0]);
12159  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
12160                     DAG.getIntPtrConstant(0));
12161}
12162
12163SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
12164                                           SelectionDAG &DAG) const {
12165  assert(!Op.getSimpleValueType().isVector());
12166
12167  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
12168    /*IsSigned=*/ true, /*IsReplace=*/ false);
12169  SDValue FIST = Vals.first, StackSlot = Vals.second;
12170  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
12171  if (!FIST.getNode()) return Op;
12172
12173  if (StackSlot.getNode())
12174    // Load the result.
12175    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
12176                       FIST, StackSlot, MachinePointerInfo(),
12177                       false, false, false, 0);
12178
12179  // The node is the result.
12180  return FIST;
12181}
12182
12183SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
12184                                           SelectionDAG &DAG) const {
12185  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
12186    /*IsSigned=*/ false, /*IsReplace=*/ false);
12187  SDValue FIST = Vals.first, StackSlot = Vals.second;
12188  assert(FIST.getNode() && "Unexpected failure");
12189
12190  if (StackSlot.getNode())
12191    // Load the result.
12192    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
12193                       FIST, StackSlot, MachinePointerInfo(),
12194                       false, false, false, 0);
12195
12196  // The node is the result.
12197  return FIST;
12198}
12199
12200static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
12201  SDLoc DL(Op);
12202  MVT VT = Op.getSimpleValueType();
12203  SDValue In = Op.getOperand(0);
12204  MVT SVT = In.getSimpleValueType();
12205
12206  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
12207
12208  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
12209                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
12210                                 In, DAG.getUNDEF(SVT)));
12211}
12212
12213/// The only differences between FABS and FNEG are the mask and the logic op.
12214/// FNEG also has a folding opportunity for FNEG(FABS(x)).
12215static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
12216  assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
12217         "Wrong opcode for lowering FABS or FNEG.");
12218
12219  bool IsFABS = (Op.getOpcode() == ISD::FABS);
12220
12221  // If this is a FABS and it has an FNEG user, bail out to fold the combination
12222  // into an FNABS. We'll lower the FABS after that if it is still in use.
12223  if (IsFABS)
12224    for (SDNode *User : Op->uses())
12225      if (User->getOpcode() == ISD::FNEG)
12226        return Op;
12227
12228  SDValue Op0 = Op.getOperand(0);
12229  bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
12230
12231  SDLoc dl(Op);
12232  MVT VT = Op.getSimpleValueType();
12233  // Assume scalar op for initialization; update for vector if needed.
12234  // Note that there are no scalar bitwise logical SSE/AVX instructions, so we
12235  // generate a 16-byte vector constant and logic op even for the scalar case.
12236  // Using a 16-byte mask allows folding the load of the mask with
12237  // the logic op, so it can save (~4 bytes) on code size.
12238  MVT EltVT = VT;
12239  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
12240  // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
12241  // decide if we should generate a 16-byte constant mask when we only need 4 or
12242  // 8 bytes for the scalar case.
12243  if (VT.isVector()) {
12244    EltVT = VT.getVectorElementType();
12245    NumElts = VT.getVectorNumElements();
12246  }
12247
12248  unsigned EltBits = EltVT.getSizeInBits();
12249  LLVMContext *Context = DAG.getContext();
12250  // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
12251  APInt MaskElt =
12252    IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
12253  Constant *C = ConstantInt::get(*Context, MaskElt);
12254  C = ConstantVector::getSplat(NumElts, C);
12255  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12256  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
12257  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
12258  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
12259                             MachinePointerInfo::getConstantPool(),
12260                             false, false, false, Alignment);
12261
12262  if (VT.isVector()) {
12263    // For a vector, cast operands to a vector type, perform the logic op,
12264    // and cast the result back to the original value type.
12265    MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
12266    SDValue MaskCasted = DAG.getNode(ISD::BITCAST, dl, VecVT, Mask);
12267    SDValue Operand = IsFNABS ?
12268      DAG.getNode(ISD::BITCAST, dl, VecVT, Op0.getOperand(0)) :
12269      DAG.getNode(ISD::BITCAST, dl, VecVT, Op0);
12270    unsigned BitOp = IsFABS ? ISD::AND : IsFNABS ? ISD::OR : ISD::XOR;
12271    return DAG.getNode(ISD::BITCAST, dl, VT,
12272                       DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
12273  }
12274
12275  // If not vector, then scalar.
12276  unsigned BitOp = IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
12277  SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
12278  return DAG.getNode(BitOp, dl, VT, Operand, Mask);
12279}
12280
12281static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
12282  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12283  LLVMContext *Context = DAG.getContext();
12284  SDValue Op0 = Op.getOperand(0);
12285  SDValue Op1 = Op.getOperand(1);
12286  SDLoc dl(Op);
12287  MVT VT = Op.getSimpleValueType();
12288  MVT SrcVT = Op1.getSimpleValueType();
12289
12290  // If second operand is smaller, extend it first.
12291  if (SrcVT.bitsLT(VT)) {
12292    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
12293    SrcVT = VT;
12294  }
12295  // And if it is bigger, shrink it first.
12296  if (SrcVT.bitsGT(VT)) {
12297    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
12298    SrcVT = VT;
12299  }
12300
12301  // At this point the operands and the result should have the same
12302  // type, and that won't be f80 since that is not custom lowered.
12303
12304  const fltSemantics &Sem =
12305      VT == MVT::f64 ? APFloat::IEEEdouble : APFloat::IEEEsingle;
12306  const unsigned SizeInBits = VT.getSizeInBits();
12307
12308  SmallVector<Constant *, 4> CV(
12309      VT == MVT::f64 ? 2 : 4,
12310      ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0))));
12311
12312  // First, clear all bits but the sign bit from the second operand (sign).
12313  CV[0] = ConstantFP::get(*Context,
12314                          APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1)));
12315  Constant *C = ConstantVector::get(CV);
12316  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
12317  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
12318                              MachinePointerInfo::getConstantPool(),
12319                              false, false, false, 16);
12320  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
12321
12322  // Next, clear the sign bit from the first operand (magnitude).
12323  // If it's a constant, we can clear it here.
12324  if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) {
12325    APFloat APF = Op0CN->getValueAPF();
12326    // If the magnitude is a positive zero, the sign bit alone is enough.
12327    if (APF.isPosZero())
12328      return SignBit;
12329    APF.clearSign();
12330    CV[0] = ConstantFP::get(*Context, APF);
12331  } else {
12332    CV[0] = ConstantFP::get(
12333        *Context,
12334        APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1)));
12335  }
12336  C = ConstantVector::get(CV);
12337  CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
12338  SDValue Val = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
12339                            MachinePointerInfo::getConstantPool(),
12340                            false, false, false, 16);
12341  // If the magnitude operand wasn't a constant, we need to AND out the sign.
12342  if (!isa<ConstantFPSDNode>(Op0))
12343    Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Val);
12344
12345  // OR the magnitude value with the sign bit.
12346  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
12347}
12348
12349static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
12350  SDValue N0 = Op.getOperand(0);
12351  SDLoc dl(Op);
12352  MVT VT = Op.getSimpleValueType();
12353
12354  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
12355  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
12356                                  DAG.getConstant(1, VT));
12357  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
12358}
12359
12360// Check whether an OR'd tree is PTEST-able.
12361static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
12362                                      SelectionDAG &DAG) {
12363  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
12364
12365  if (!Subtarget->hasSSE41())
12366    return SDValue();
12367
12368  if (!Op->hasOneUse())
12369    return SDValue();
12370
12371  SDNode *N = Op.getNode();
12372  SDLoc DL(N);
12373
12374  SmallVector<SDValue, 8> Opnds;
12375  DenseMap<SDValue, unsigned> VecInMap;
12376  SmallVector<SDValue, 8> VecIns;
12377  EVT VT = MVT::Other;
12378
12379  // Recognize a special case where a vector is casted into wide integer to
12380  // test all 0s.
12381  Opnds.push_back(N->getOperand(0));
12382  Opnds.push_back(N->getOperand(1));
12383
12384  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
12385    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
12386    // BFS traverse all OR'd operands.
12387    if (I->getOpcode() == ISD::OR) {
12388      Opnds.push_back(I->getOperand(0));
12389      Opnds.push_back(I->getOperand(1));
12390      // Re-evaluate the number of nodes to be traversed.
12391      e += 2; // 2 more nodes (LHS and RHS) are pushed.
12392      continue;
12393    }
12394
12395    // Quit if a non-EXTRACT_VECTOR_ELT
12396    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12397      return SDValue();
12398
12399    // Quit if without a constant index.
12400    SDValue Idx = I->getOperand(1);
12401    if (!isa<ConstantSDNode>(Idx))
12402      return SDValue();
12403
12404    SDValue ExtractedFromVec = I->getOperand(0);
12405    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
12406    if (M == VecInMap.end()) {
12407      VT = ExtractedFromVec.getValueType();
12408      // Quit if not 128/256-bit vector.
12409      if (!VT.is128BitVector() && !VT.is256BitVector())
12410        return SDValue();
12411      // Quit if not the same type.
12412      if (VecInMap.begin() != VecInMap.end() &&
12413          VT != VecInMap.begin()->first.getValueType())
12414        return SDValue();
12415      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
12416      VecIns.push_back(ExtractedFromVec);
12417    }
12418    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
12419  }
12420
12421  assert((VT.is128BitVector() || VT.is256BitVector()) &&
12422         "Not extracted from 128-/256-bit vector.");
12423
12424  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
12425
12426  for (DenseMap<SDValue, unsigned>::const_iterator
12427        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
12428    // Quit if not all elements are used.
12429    if (I->second != FullMask)
12430      return SDValue();
12431  }
12432
12433  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
12434
12435  // Cast all vectors into TestVT for PTEST.
12436  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
12437    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
12438
12439  // If more than one full vectors are evaluated, OR them first before PTEST.
12440  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
12441    // Each iteration will OR 2 nodes and append the result until there is only
12442    // 1 node left, i.e. the final OR'd value of all vectors.
12443    SDValue LHS = VecIns[Slot];
12444    SDValue RHS = VecIns[Slot + 1];
12445    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
12446  }
12447
12448  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
12449                     VecIns.back(), VecIns.back());
12450}
12451
12452/// \brief return true if \c Op has a use that doesn't just read flags.
12453static bool hasNonFlagsUse(SDValue Op) {
12454  for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
12455       ++UI) {
12456    SDNode *User = *UI;
12457    unsigned UOpNo = UI.getOperandNo();
12458    if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
12459      // Look pass truncate.
12460      UOpNo = User->use_begin().getOperandNo();
12461      User = *User->use_begin();
12462    }
12463
12464    if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
12465        !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
12466      return true;
12467  }
12468  return false;
12469}
12470
12471/// Emit nodes that will be selected as "test Op0,Op0", or something
12472/// equivalent.
12473SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
12474                                    SelectionDAG &DAG) const {
12475  if (Op.getValueType() == MVT::i1) {
12476    SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op);
12477    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp,
12478                       DAG.getConstant(0, MVT::i8));
12479  }
12480  // CF and OF aren't always set the way we want. Determine which
12481  // of these we need.
12482  bool NeedCF = false;
12483  bool NeedOF = false;
12484  switch (X86CC) {
12485  default: break;
12486  case X86::COND_A: case X86::COND_AE:
12487  case X86::COND_B: case X86::COND_BE:
12488    NeedCF = true;
12489    break;
12490  case X86::COND_G: case X86::COND_GE:
12491  case X86::COND_L: case X86::COND_LE:
12492  case X86::COND_O: case X86::COND_NO: {
12493    // Check if we really need to set the
12494    // Overflow flag. If NoSignedWrap is present
12495    // that is not actually needed.
12496    switch (Op->getOpcode()) {
12497    case ISD::ADD:
12498    case ISD::SUB:
12499    case ISD::MUL:
12500    case ISD::SHL: {
12501      const BinaryWithFlagsSDNode *BinNode =
12502          cast<BinaryWithFlagsSDNode>(Op.getNode());
12503      if (BinNode->hasNoSignedWrap())
12504        break;
12505    }
12506    default:
12507      NeedOF = true;
12508      break;
12509    }
12510    break;
12511  }
12512  }
12513  // See if we can use the EFLAGS value from the operand instead of
12514  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
12515  // we prove that the arithmetic won't overflow, we can't use OF or CF.
12516  if (Op.getResNo() != 0 || NeedOF || NeedCF) {
12517    // Emit a CMP with 0, which is the TEST pattern.
12518    //if (Op.getValueType() == MVT::i1)
12519    //  return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
12520    //                     DAG.getConstant(0, MVT::i1));
12521    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
12522                       DAG.getConstant(0, Op.getValueType()));
12523  }
12524  unsigned Opcode = 0;
12525  unsigned NumOperands = 0;
12526
12527  // Truncate operations may prevent the merge of the SETCC instruction
12528  // and the arithmetic instruction before it. Attempt to truncate the operands
12529  // of the arithmetic instruction and use a reduced bit-width instruction.
12530  bool NeedTruncation = false;
12531  SDValue ArithOp = Op;
12532  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
12533    SDValue Arith = Op->getOperand(0);
12534    // Both the trunc and the arithmetic op need to have one user each.
12535    if (Arith->hasOneUse())
12536      switch (Arith.getOpcode()) {
12537        default: break;
12538        case ISD::ADD:
12539        case ISD::SUB:
12540        case ISD::AND:
12541        case ISD::OR:
12542        case ISD::XOR: {
12543          NeedTruncation = true;
12544          ArithOp = Arith;
12545        }
12546      }
12547  }
12548
12549  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
12550  // which may be the result of a CAST.  We use the variable 'Op', which is the
12551  // non-casted variable when we check for possible users.
12552  switch (ArithOp.getOpcode()) {
12553  case ISD::ADD:
12554    // Due to an isel shortcoming, be conservative if this add is likely to be
12555    // selected as part of a load-modify-store instruction. When the root node
12556    // in a match is a store, isel doesn't know how to remap non-chain non-flag
12557    // uses of other nodes in the match, such as the ADD in this case. This
12558    // leads to the ADD being left around and reselected, with the result being
12559    // two adds in the output.  Alas, even if none our users are stores, that
12560    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
12561    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
12562    // climbing the DAG back to the root, and it doesn't seem to be worth the
12563    // effort.
12564    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12565         UE = Op.getNode()->use_end(); UI != UE; ++UI)
12566      if (UI->getOpcode() != ISD::CopyToReg &&
12567          UI->getOpcode() != ISD::SETCC &&
12568          UI->getOpcode() != ISD::STORE)
12569        goto default_case;
12570
12571    if (ConstantSDNode *C =
12572        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
12573      // An add of one will be selected as an INC.
12574      if (C->getAPIntValue() == 1 && !Subtarget->slowIncDec()) {
12575        Opcode = X86ISD::INC;
12576        NumOperands = 1;
12577        break;
12578      }
12579
12580      // An add of negative one (subtract of one) will be selected as a DEC.
12581      if (C->getAPIntValue().isAllOnesValue() && !Subtarget->slowIncDec()) {
12582        Opcode = X86ISD::DEC;
12583        NumOperands = 1;
12584        break;
12585      }
12586    }
12587
12588    // Otherwise use a regular EFLAGS-setting add.
12589    Opcode = X86ISD::ADD;
12590    NumOperands = 2;
12591    break;
12592  case ISD::SHL:
12593  case ISD::SRL:
12594    // If we have a constant logical shift that's only used in a comparison
12595    // against zero turn it into an equivalent AND. This allows turning it into
12596    // a TEST instruction later.
12597    if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
12598        isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
12599      EVT VT = Op.getValueType();
12600      unsigned BitWidth = VT.getSizeInBits();
12601      unsigned ShAmt = Op->getConstantOperandVal(1);
12602      if (ShAmt >= BitWidth) // Avoid undefined shifts.
12603        break;
12604      APInt Mask = ArithOp.getOpcode() == ISD::SRL
12605                       ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
12606                       : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
12607      if (!Mask.isSignedIntN(32)) // Avoid large immediates.
12608        break;
12609      SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
12610                                DAG.getConstant(Mask, VT));
12611      DAG.ReplaceAllUsesWith(Op, New);
12612      Op = New;
12613    }
12614    break;
12615
12616  case ISD::AND:
12617    // If the primary and result isn't used, don't bother using X86ISD::AND,
12618    // because a TEST instruction will be better.
12619    if (!hasNonFlagsUse(Op))
12620      break;
12621    // FALL THROUGH
12622  case ISD::SUB:
12623  case ISD::OR:
12624  case ISD::XOR:
12625    // Due to the ISEL shortcoming noted above, be conservative if this op is
12626    // likely to be selected as part of a load-modify-store instruction.
12627    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12628           UE = Op.getNode()->use_end(); UI != UE; ++UI)
12629      if (UI->getOpcode() == ISD::STORE)
12630        goto default_case;
12631
12632    // Otherwise use a regular EFLAGS-setting instruction.
12633    switch (ArithOp.getOpcode()) {
12634    default: llvm_unreachable("unexpected operator!");
12635    case ISD::SUB: Opcode = X86ISD::SUB; break;
12636    case ISD::XOR: Opcode = X86ISD::XOR; break;
12637    case ISD::AND: Opcode = X86ISD::AND; break;
12638    case ISD::OR: {
12639      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
12640        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
12641        if (EFLAGS.getNode())
12642          return EFLAGS;
12643      }
12644      Opcode = X86ISD::OR;
12645      break;
12646    }
12647    }
12648
12649    NumOperands = 2;
12650    break;
12651  case X86ISD::ADD:
12652  case X86ISD::SUB:
12653  case X86ISD::INC:
12654  case X86ISD::DEC:
12655  case X86ISD::OR:
12656  case X86ISD::XOR:
12657  case X86ISD::AND:
12658    return SDValue(Op.getNode(), 1);
12659  default:
12660  default_case:
12661    break;
12662  }
12663
12664  // If we found that truncation is beneficial, perform the truncation and
12665  // update 'Op'.
12666  if (NeedTruncation) {
12667    EVT VT = Op.getValueType();
12668    SDValue WideVal = Op->getOperand(0);
12669    EVT WideVT = WideVal.getValueType();
12670    unsigned ConvertedOp = 0;
12671    // Use a target machine opcode to prevent further DAGCombine
12672    // optimizations that may separate the arithmetic operations
12673    // from the setcc node.
12674    switch (WideVal.getOpcode()) {
12675      default: break;
12676      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
12677      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
12678      case ISD::AND: ConvertedOp = X86ISD::AND; break;
12679      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
12680      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
12681    }
12682
12683    if (ConvertedOp) {
12684      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12685      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
12686        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
12687        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
12688        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
12689      }
12690    }
12691  }
12692
12693  if (Opcode == 0)
12694    // Emit a CMP with 0, which is the TEST pattern.
12695    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
12696                       DAG.getConstant(0, Op.getValueType()));
12697
12698  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
12699  SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
12700
12701  SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
12702  DAG.ReplaceAllUsesWith(Op, New);
12703  return SDValue(New.getNode(), 1);
12704}
12705
12706/// Emit nodes that will be selected as "cmp Op0,Op1", or something
12707/// equivalent.
12708SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
12709                                   SDLoc dl, SelectionDAG &DAG) const {
12710  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) {
12711    if (C->getAPIntValue() == 0)
12712      return EmitTest(Op0, X86CC, dl, DAG);
12713
12714     if (Op0.getValueType() == MVT::i1)
12715       llvm_unreachable("Unexpected comparison operation for MVT::i1 operands");
12716  }
12717
12718  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
12719       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
12720    // Do the comparison at i32 if it's smaller, besides the Atom case.
12721    // This avoids subregister aliasing issues. Keep the smaller reference
12722    // if we're optimizing for size, however, as that'll allow better folding
12723    // of memory operations.
12724    if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
12725        !DAG.getMachineFunction().getFunction()->hasFnAttribute(
12726            Attribute::MinSize) &&
12727        !Subtarget->isAtom()) {
12728      unsigned ExtendOp =
12729          isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
12730      Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
12731      Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
12732    }
12733    // Use SUB instead of CMP to enable CSE between SUB and CMP.
12734    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
12735    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
12736                              Op0, Op1);
12737    return SDValue(Sub.getNode(), 1);
12738  }
12739  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
12740}
12741
12742/// Convert a comparison if required by the subtarget.
12743SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
12744                                                 SelectionDAG &DAG) const {
12745  // If the subtarget does not support the FUCOMI instruction, floating-point
12746  // comparisons have to be converted.
12747  if (Subtarget->hasCMov() ||
12748      Cmp.getOpcode() != X86ISD::CMP ||
12749      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
12750      !Cmp.getOperand(1).getValueType().isFloatingPoint())
12751    return Cmp;
12752
12753  // The instruction selector will select an FUCOM instruction instead of
12754  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
12755  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
12756  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
12757  SDLoc dl(Cmp);
12758  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
12759  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
12760  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
12761                            DAG.getConstant(8, MVT::i8));
12762  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
12763  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
12764}
12765
12766/// The minimum architected relative accuracy is 2^-12. We need one
12767/// Newton-Raphson step to have a good float result (24 bits of precision).
12768SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
12769                                            DAGCombinerInfo &DCI,
12770                                            unsigned &RefinementSteps,
12771                                            bool &UseOneConstNR) const {
12772  // FIXME: We should use instruction latency models to calculate the cost of
12773  // each potential sequence, but this is very hard to do reliably because
12774  // at least Intel's Core* chips have variable timing based on the number of
12775  // significant digits in the divisor and/or sqrt operand.
12776  if (!Subtarget->useSqrtEst())
12777    return SDValue();
12778
12779  EVT VT = Op.getValueType();
12780
12781  // SSE1 has rsqrtss and rsqrtps.
12782  // TODO: Add support for AVX512 (v16f32).
12783  // It is likely not profitable to do this for f64 because a double-precision
12784  // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
12785  // instructions: convert to single, rsqrtss, convert back to double, refine
12786  // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
12787  // along with FMA, this could be a throughput win.
12788  if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
12789      (Subtarget->hasAVX() && VT == MVT::v8f32)) {
12790    RefinementSteps = 1;
12791    UseOneConstNR = false;
12792    return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
12793  }
12794  return SDValue();
12795}
12796
12797/// The minimum architected relative accuracy is 2^-12. We need one
12798/// Newton-Raphson step to have a good float result (24 bits of precision).
12799SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
12800                                            DAGCombinerInfo &DCI,
12801                                            unsigned &RefinementSteps) const {
12802  // FIXME: We should use instruction latency models to calculate the cost of
12803  // each potential sequence, but this is very hard to do reliably because
12804  // at least Intel's Core* chips have variable timing based on the number of
12805  // significant digits in the divisor.
12806  if (!Subtarget->useReciprocalEst())
12807    return SDValue();
12808
12809  EVT VT = Op.getValueType();
12810
12811  // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
12812  // TODO: Add support for AVX512 (v16f32).
12813  // It is likely not profitable to do this for f64 because a double-precision
12814  // reciprocal estimate with refinement on x86 prior to FMA requires
12815  // 15 instructions: convert to single, rcpss, convert back to double, refine
12816  // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
12817  // along with FMA, this could be a throughput win.
12818  if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
12819      (Subtarget->hasAVX() && VT == MVT::v8f32)) {
12820    RefinementSteps = ReciprocalEstimateRefinementSteps;
12821    return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
12822  }
12823  return SDValue();
12824}
12825
12826/// If we have at least two divisions that use the same divisor, convert to
12827/// multplication by a reciprocal. This may need to be adjusted for a given
12828/// CPU if a division's cost is not at least twice the cost of a multiplication.
12829/// This is because we still need one division to calculate the reciprocal and
12830/// then we need two multiplies by that reciprocal as replacements for the
12831/// original divisions.
12832bool X86TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
12833  return NumUsers > 1;
12834}
12835
12836static bool isAllOnes(SDValue V) {
12837  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12838  return C && C->isAllOnesValue();
12839}
12840
12841/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
12842/// if it's possible.
12843SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
12844                                     SDLoc dl, SelectionDAG &DAG) const {
12845  SDValue Op0 = And.getOperand(0);
12846  SDValue Op1 = And.getOperand(1);
12847  if (Op0.getOpcode() == ISD::TRUNCATE)
12848    Op0 = Op0.getOperand(0);
12849  if (Op1.getOpcode() == ISD::TRUNCATE)
12850    Op1 = Op1.getOperand(0);
12851
12852  SDValue LHS, RHS;
12853  if (Op1.getOpcode() == ISD::SHL)
12854    std::swap(Op0, Op1);
12855  if (Op0.getOpcode() == ISD::SHL) {
12856    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
12857      if (And00C->getZExtValue() == 1) {
12858        // If we looked past a truncate, check that it's only truncating away
12859        // known zeros.
12860        unsigned BitWidth = Op0.getValueSizeInBits();
12861        unsigned AndBitWidth = And.getValueSizeInBits();
12862        if (BitWidth > AndBitWidth) {
12863          APInt Zeros, Ones;
12864          DAG.computeKnownBits(Op0, Zeros, Ones);
12865          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
12866            return SDValue();
12867        }
12868        LHS = Op1;
12869        RHS = Op0.getOperand(1);
12870      }
12871  } else if (Op1.getOpcode() == ISD::Constant) {
12872    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
12873    uint64_t AndRHSVal = AndRHS->getZExtValue();
12874    SDValue AndLHS = Op0;
12875
12876    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
12877      LHS = AndLHS.getOperand(0);
12878      RHS = AndLHS.getOperand(1);
12879    }
12880
12881    // Use BT if the immediate can't be encoded in a TEST instruction.
12882    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
12883      LHS = AndLHS;
12884      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
12885    }
12886  }
12887
12888  if (LHS.getNode()) {
12889    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
12890    // instruction.  Since the shift amount is in-range-or-undefined, we know
12891    // that doing a bittest on the i32 value is ok.  We extend to i32 because
12892    // the encoding for the i16 version is larger than the i32 version.
12893    // Also promote i16 to i32 for performance / code size reason.
12894    if (LHS.getValueType() == MVT::i8 ||
12895        LHS.getValueType() == MVT::i16)
12896      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
12897
12898    // If the operand types disagree, extend the shift amount to match.  Since
12899    // BT ignores high bits (like shifts) we can use anyextend.
12900    if (LHS.getValueType() != RHS.getValueType())
12901      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
12902
12903    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
12904    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
12905    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
12906                       DAG.getConstant(Cond, MVT::i8), BT);
12907  }
12908
12909  return SDValue();
12910}
12911
12912/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
12913/// mask CMPs.
12914static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
12915                              SDValue &Op1) {
12916  unsigned SSECC;
12917  bool Swap = false;
12918
12919  // SSE Condition code mapping:
12920  //  0 - EQ
12921  //  1 - LT
12922  //  2 - LE
12923  //  3 - UNORD
12924  //  4 - NEQ
12925  //  5 - NLT
12926  //  6 - NLE
12927  //  7 - ORD
12928  switch (SetCCOpcode) {
12929  default: llvm_unreachable("Unexpected SETCC condition");
12930  case ISD::SETOEQ:
12931  case ISD::SETEQ:  SSECC = 0; break;
12932  case ISD::SETOGT:
12933  case ISD::SETGT:  Swap = true; // Fallthrough
12934  case ISD::SETLT:
12935  case ISD::SETOLT: SSECC = 1; break;
12936  case ISD::SETOGE:
12937  case ISD::SETGE:  Swap = true; // Fallthrough
12938  case ISD::SETLE:
12939  case ISD::SETOLE: SSECC = 2; break;
12940  case ISD::SETUO:  SSECC = 3; break;
12941  case ISD::SETUNE:
12942  case ISD::SETNE:  SSECC = 4; break;
12943  case ISD::SETULE: Swap = true; // Fallthrough
12944  case ISD::SETUGE: SSECC = 5; break;
12945  case ISD::SETULT: Swap = true; // Fallthrough
12946  case ISD::SETUGT: SSECC = 6; break;
12947  case ISD::SETO:   SSECC = 7; break;
12948  case ISD::SETUEQ:
12949  case ISD::SETONE: SSECC = 8; break;
12950  }
12951  if (Swap)
12952    std::swap(Op0, Op1);
12953
12954  return SSECC;
12955}
12956
12957// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
12958// ones, and then concatenate the result back.
12959static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
12960  MVT VT = Op.getSimpleValueType();
12961
12962  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
12963         "Unsupported value type for operation");
12964
12965  unsigned NumElems = VT.getVectorNumElements();
12966  SDLoc dl(Op);
12967  SDValue CC = Op.getOperand(2);
12968
12969  // Extract the LHS vectors
12970  SDValue LHS = Op.getOperand(0);
12971  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12972  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12973
12974  // Extract the RHS vectors
12975  SDValue RHS = Op.getOperand(1);
12976  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
12977  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
12978
12979  // Issue the operation on the smaller types and concatenate the result back
12980  MVT EltVT = VT.getVectorElementType();
12981  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12982  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
12983                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
12984                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
12985}
12986
12987static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
12988                                     const X86Subtarget *Subtarget) {
12989  SDValue Op0 = Op.getOperand(0);
12990  SDValue Op1 = Op.getOperand(1);
12991  SDValue CC = Op.getOperand(2);
12992  MVT VT = Op.getSimpleValueType();
12993  SDLoc dl(Op);
12994
12995  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 8 &&
12996         Op.getValueType().getScalarType() == MVT::i1 &&
12997         "Cannot set masked compare for this operation");
12998
12999  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
13000  unsigned  Opc = 0;
13001  bool Unsigned = false;
13002  bool Swap = false;
13003  unsigned SSECC;
13004  switch (SetCCOpcode) {
13005  default: llvm_unreachable("Unexpected SETCC condition");
13006  case ISD::SETNE:  SSECC = 4; break;
13007  case ISD::SETEQ:  Opc = X86ISD::PCMPEQM; break;
13008  case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
13009  case ISD::SETLT:  Swap = true; //fall-through
13010  case ISD::SETGT:  Opc = X86ISD::PCMPGTM; break;
13011  case ISD::SETULT: SSECC = 1; Unsigned = true; break;
13012  case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
13013  case ISD::SETGE:  Swap = true; SSECC = 2; break; // LE + swap
13014  case ISD::SETULE: Unsigned = true; //fall-through
13015  case ISD::SETLE:  SSECC = 2; break;
13016  }
13017
13018  if (Swap)
13019    std::swap(Op0, Op1);
13020  if (Opc)
13021    return DAG.getNode(Opc, dl, VT, Op0, Op1);
13022  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
13023  return DAG.getNode(Opc, dl, VT, Op0, Op1,
13024                     DAG.getConstant(SSECC, MVT::i8));
13025}
13026
13027/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
13028/// operand \p Op1.  If non-trivial (for example because it's not constant)
13029/// return an empty value.
13030static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
13031{
13032  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
13033  if (!BV)
13034    return SDValue();
13035
13036  MVT VT = Op1.getSimpleValueType();
13037  MVT EVT = VT.getVectorElementType();
13038  unsigned n = VT.getVectorNumElements();
13039  SmallVector<SDValue, 8> ULTOp1;
13040
13041  for (unsigned i = 0; i < n; ++i) {
13042    ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
13043    if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT)
13044      return SDValue();
13045
13046    // Avoid underflow.
13047    APInt Val = Elt->getAPIntValue();
13048    if (Val == 0)
13049      return SDValue();
13050
13051    ULTOp1.push_back(DAG.getConstant(Val - 1, EVT));
13052  }
13053
13054  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
13055}
13056
13057static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
13058                           SelectionDAG &DAG) {
13059  SDValue Op0 = Op.getOperand(0);
13060  SDValue Op1 = Op.getOperand(1);
13061  SDValue CC = Op.getOperand(2);
13062  MVT VT = Op.getSimpleValueType();
13063  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
13064  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
13065  SDLoc dl(Op);
13066
13067  if (isFP) {
13068#ifndef NDEBUG
13069    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
13070    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
13071#endif
13072
13073    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
13074    unsigned Opc = X86ISD::CMPP;
13075    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
13076      assert(VT.getVectorNumElements() <= 16);
13077      Opc = X86ISD::CMPM;
13078    }
13079    // In the two special cases we can't handle, emit two comparisons.
13080    if (SSECC == 8) {
13081      unsigned CC0, CC1;
13082      unsigned CombineOpc;
13083      if (SetCCOpcode == ISD::SETUEQ) {
13084        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
13085      } else {
13086        assert(SetCCOpcode == ISD::SETONE);
13087        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
13088      }
13089
13090      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
13091                                 DAG.getConstant(CC0, MVT::i8));
13092      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
13093                                 DAG.getConstant(CC1, MVT::i8));
13094      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
13095    }
13096    // Handle all other FP comparisons here.
13097    return DAG.getNode(Opc, dl, VT, Op0, Op1,
13098                       DAG.getConstant(SSECC, MVT::i8));
13099  }
13100
13101  // Break 256-bit integer vector compare into smaller ones.
13102  if (VT.is256BitVector() && !Subtarget->hasInt256())
13103    return Lower256IntVSETCC(Op, DAG);
13104
13105  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
13106  EVT OpVT = Op1.getValueType();
13107  if (Subtarget->hasAVX512()) {
13108    if (Op1.getValueType().is512BitVector() ||
13109        (Subtarget->hasBWI() && Subtarget->hasVLX()) ||
13110        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
13111      return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
13112
13113    // In AVX-512 architecture setcc returns mask with i1 elements,
13114    // But there is no compare instruction for i8 and i16 elements in KNL.
13115    // We are not talking about 512-bit operands in this case, these
13116    // types are illegal.
13117    if (MaskResult &&
13118        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
13119         OpVT.getVectorElementType().getSizeInBits() >= 8))
13120      return DAG.getNode(ISD::TRUNCATE, dl, VT,
13121                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
13122  }
13123
13124  // We are handling one of the integer comparisons here.  Since SSE only has
13125  // GT and EQ comparisons for integer, swapping operands and multiple
13126  // operations may be required for some comparisons.
13127  unsigned Opc;
13128  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
13129  bool Subus = false;
13130
13131  switch (SetCCOpcode) {
13132  default: llvm_unreachable("Unexpected SETCC condition");
13133  case ISD::SETNE:  Invert = true;
13134  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
13135  case ISD::SETLT:  Swap = true;
13136  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
13137  case ISD::SETGE:  Swap = true;
13138  case ISD::SETLE:  Opc = X86ISD::PCMPGT;
13139                    Invert = true; break;
13140  case ISD::SETULT: Swap = true;
13141  case ISD::SETUGT: Opc = X86ISD::PCMPGT;
13142                    FlipSigns = true; break;
13143  case ISD::SETUGE: Swap = true;
13144  case ISD::SETULE: Opc = X86ISD::PCMPGT;
13145                    FlipSigns = true; Invert = true; break;
13146  }
13147
13148  // Special case: Use min/max operations for SETULE/SETUGE
13149  MVT VET = VT.getVectorElementType();
13150  bool hasMinMax =
13151       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
13152    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
13153
13154  if (hasMinMax) {
13155    switch (SetCCOpcode) {
13156    default: break;
13157    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
13158    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
13159    }
13160
13161    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
13162  }
13163
13164  bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
13165  if (!MinMax && hasSubus) {
13166    // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
13167    // Op0 u<= Op1:
13168    //   t = psubus Op0, Op1
13169    //   pcmpeq t, <0..0>
13170    switch (SetCCOpcode) {
13171    default: break;
13172    case ISD::SETULT: {
13173      // If the comparison is against a constant we can turn this into a
13174      // setule.  With psubus, setule does not require a swap.  This is
13175      // beneficial because the constant in the register is no longer
13176      // destructed as the destination so it can be hoisted out of a loop.
13177      // Only do this pre-AVX since vpcmp* is no longer destructive.
13178      if (Subtarget->hasAVX())
13179        break;
13180      SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
13181      if (ULEOp1.getNode()) {
13182        Op1 = ULEOp1;
13183        Subus = true; Invert = false; Swap = false;
13184      }
13185      break;
13186    }
13187    // Psubus is better than flip-sign because it requires no inversion.
13188    case ISD::SETUGE: Subus = true; Invert = false; Swap = true;  break;
13189    case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
13190    }
13191
13192    if (Subus) {
13193      Opc = X86ISD::SUBUS;
13194      FlipSigns = false;
13195    }
13196  }
13197
13198  if (Swap)
13199    std::swap(Op0, Op1);
13200
13201  // Check that the operation in question is available (most are plain SSE2,
13202  // but PCMPGTQ and PCMPEQQ have different requirements).
13203  if (VT == MVT::v2i64) {
13204    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
13205      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
13206
13207      // First cast everything to the right type.
13208      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
13209      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
13210
13211      // Since SSE has no unsigned integer comparisons, we need to flip the sign
13212      // bits of the inputs before performing those operations. The lower
13213      // compare is always unsigned.
13214      SDValue SB;
13215      if (FlipSigns) {
13216        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
13217      } else {
13218        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
13219        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
13220        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
13221                         Sign, Zero, Sign, Zero);
13222      }
13223      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
13224      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
13225
13226      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
13227      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
13228      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
13229
13230      // Create masks for only the low parts/high parts of the 64 bit integers.
13231      static const int MaskHi[] = { 1, 1, 3, 3 };
13232      static const int MaskLo[] = { 0, 0, 2, 2 };
13233      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
13234      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
13235      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
13236
13237      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
13238      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
13239
13240      if (Invert)
13241        Result = DAG.getNOT(dl, Result, MVT::v4i32);
13242
13243      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
13244    }
13245
13246    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
13247      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
13248      // pcmpeqd + pshufd + pand.
13249      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
13250
13251      // First cast everything to the right type.
13252      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
13253      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
13254
13255      // Do the compare.
13256      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
13257
13258      // Make sure the lower and upper halves are both all-ones.
13259      static const int Mask[] = { 1, 0, 3, 2 };
13260      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
13261      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
13262
13263      if (Invert)
13264        Result = DAG.getNOT(dl, Result, MVT::v4i32);
13265
13266      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
13267    }
13268  }
13269
13270  // Since SSE has no unsigned integer comparisons, we need to flip the sign
13271  // bits of the inputs before performing those operations.
13272  if (FlipSigns) {
13273    EVT EltVT = VT.getVectorElementType();
13274    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
13275    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
13276    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
13277  }
13278
13279  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
13280
13281  // If the logical-not of the result is required, perform that now.
13282  if (Invert)
13283    Result = DAG.getNOT(dl, Result, VT);
13284
13285  if (MinMax)
13286    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
13287
13288  if (Subus)
13289    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
13290                         getZeroVector(VT, Subtarget, DAG, dl));
13291
13292  return Result;
13293}
13294
13295SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
13296
13297  MVT VT = Op.getSimpleValueType();
13298
13299  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
13300
13301  assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
13302         && "SetCC type must be 8-bit or 1-bit integer");
13303  SDValue Op0 = Op.getOperand(0);
13304  SDValue Op1 = Op.getOperand(1);
13305  SDLoc dl(Op);
13306  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
13307
13308  // Optimize to BT if possible.
13309  // Lower (X & (1 << N)) == 0 to BT(X, N).
13310  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
13311  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
13312  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
13313      Op1.getOpcode() == ISD::Constant &&
13314      cast<ConstantSDNode>(Op1)->isNullValue() &&
13315      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
13316    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
13317    if (NewSetCC.getNode()) {
13318      if (VT == MVT::i1)
13319        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC);
13320      return NewSetCC;
13321    }
13322  }
13323
13324  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
13325  // these.
13326  if (Op1.getOpcode() == ISD::Constant &&
13327      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
13328       cast<ConstantSDNode>(Op1)->isNullValue()) &&
13329      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
13330
13331    // If the input is a setcc, then reuse the input setcc or use a new one with
13332    // the inverted condition.
13333    if (Op0.getOpcode() == X86ISD::SETCC) {
13334      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
13335      bool Invert = (CC == ISD::SETNE) ^
13336        cast<ConstantSDNode>(Op1)->isNullValue();
13337      if (!Invert)
13338        return Op0;
13339
13340      CCode = X86::GetOppositeBranchCondition(CCode);
13341      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
13342                                  DAG.getConstant(CCode, MVT::i8),
13343                                  Op0.getOperand(1));
13344      if (VT == MVT::i1)
13345        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
13346      return SetCC;
13347    }
13348  }
13349  if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) &&
13350      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1) &&
13351      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
13352
13353    ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
13354    return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC);
13355  }
13356
13357  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
13358  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
13359  if (X86CC == X86::COND_INVALID)
13360    return SDValue();
13361
13362  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
13363  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
13364  SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
13365                              DAG.getConstant(X86CC, MVT::i8), EFLAGS);
13366  if (VT == MVT::i1)
13367    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
13368  return SetCC;
13369}
13370
13371// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
13372static bool isX86LogicalCmp(SDValue Op) {
13373  unsigned Opc = Op.getNode()->getOpcode();
13374  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
13375      Opc == X86ISD::SAHF)
13376    return true;
13377  if (Op.getResNo() == 1 &&
13378      (Opc == X86ISD::ADD ||
13379       Opc == X86ISD::SUB ||
13380       Opc == X86ISD::ADC ||
13381       Opc == X86ISD::SBB ||
13382       Opc == X86ISD::SMUL ||
13383       Opc == X86ISD::UMUL ||
13384       Opc == X86ISD::INC ||
13385       Opc == X86ISD::DEC ||
13386       Opc == X86ISD::OR ||
13387       Opc == X86ISD::XOR ||
13388       Opc == X86ISD::AND))
13389    return true;
13390
13391  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
13392    return true;
13393
13394  return false;
13395}
13396
13397static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
13398  if (V.getOpcode() != ISD::TRUNCATE)
13399    return false;
13400
13401  SDValue VOp0 = V.getOperand(0);
13402  unsigned InBits = VOp0.getValueSizeInBits();
13403  unsigned Bits = V.getValueSizeInBits();
13404  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
13405}
13406
13407SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
13408  bool addTest = true;
13409  SDValue Cond  = Op.getOperand(0);
13410  SDValue Op1 = Op.getOperand(1);
13411  SDValue Op2 = Op.getOperand(2);
13412  SDLoc DL(Op);
13413  EVT VT = Op1.getValueType();
13414  SDValue CC;
13415
13416  // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
13417  // are available or VBLENDV if AVX is available.
13418  // Otherwise FP cmovs get lowered into a less efficient branch sequence later.
13419  if (Cond.getOpcode() == ISD::SETCC &&
13420      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
13421       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
13422      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
13423    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
13424    int SSECC = translateX86FSETCC(
13425        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
13426
13427    if (SSECC != 8) {
13428      if (Subtarget->hasAVX512()) {
13429        SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
13430                                  DAG.getConstant(SSECC, MVT::i8));
13431        return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
13432      }
13433
13434      SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
13435                                DAG.getConstant(SSECC, MVT::i8));
13436
13437      // If we have AVX, we can use a variable vector select (VBLENDV) instead
13438      // of 3 logic instructions for size savings and potentially speed.
13439      // Unfortunately, there is no scalar form of VBLENDV.
13440
13441      // If either operand is a constant, don't try this. We can expect to
13442      // optimize away at least one of the logic instructions later in that
13443      // case, so that sequence would be faster than a variable blend.
13444
13445      // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
13446      // uses XMM0 as the selection register. That may need just as many
13447      // instructions as the AND/ANDN/OR sequence due to register moves, so
13448      // don't bother.
13449
13450      if (Subtarget->hasAVX() &&
13451          !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
13452
13453        // Convert to vectors, do a VSELECT, and convert back to scalar.
13454        // All of the conversions should be optimized away.
13455
13456        EVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
13457        SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
13458        SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
13459        SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
13460
13461        EVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
13462        VCmp = DAG.getNode(ISD::BITCAST, DL, VCmpVT, VCmp);
13463
13464        SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2);
13465
13466        return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
13467                           VSel, DAG.getIntPtrConstant(0));
13468      }
13469      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
13470      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
13471      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
13472    }
13473  }
13474
13475  if (Cond.getOpcode() == ISD::SETCC) {
13476    SDValue NewCond = LowerSETCC(Cond, DAG);
13477    if (NewCond.getNode())
13478      Cond = NewCond;
13479  }
13480
13481  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
13482  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
13483  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
13484  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
13485  if (Cond.getOpcode() == X86ISD::SETCC &&
13486      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
13487      isZero(Cond.getOperand(1).getOperand(1))) {
13488    SDValue Cmp = Cond.getOperand(1);
13489
13490    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
13491
13492    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
13493        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
13494      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
13495
13496      SDValue CmpOp0 = Cmp.getOperand(0);
13497      // Apply further optimizations for special cases
13498      // (select (x != 0), -1, 0) -> neg & sbb
13499      // (select (x == 0), 0, -1) -> neg & sbb
13500      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
13501        if (YC->isNullValue() &&
13502            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
13503          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
13504          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
13505                                    DAG.getConstant(0, CmpOp0.getValueType()),
13506                                    CmpOp0);
13507          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
13508                                    DAG.getConstant(X86::COND_B, MVT::i8),
13509                                    SDValue(Neg.getNode(), 1));
13510          return Res;
13511        }
13512
13513      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
13514                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
13515      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
13516
13517      SDValue Res =   // Res = 0 or -1.
13518        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
13519                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
13520
13521      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
13522        Res = DAG.getNOT(DL, Res, Res.getValueType());
13523
13524      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
13525      if (!N2C || !N2C->isNullValue())
13526        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
13527      return Res;
13528    }
13529  }
13530
13531  // Look past (and (setcc_carry (cmp ...)), 1).
13532  if (Cond.getOpcode() == ISD::AND &&
13533      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
13534    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
13535    if (C && C->getAPIntValue() == 1)
13536      Cond = Cond.getOperand(0);
13537  }
13538
13539  // If condition flag is set by a X86ISD::CMP, then use it as the condition
13540  // setting operand in place of the X86ISD::SETCC.
13541  unsigned CondOpcode = Cond.getOpcode();
13542  if (CondOpcode == X86ISD::SETCC ||
13543      CondOpcode == X86ISD::SETCC_CARRY) {
13544    CC = Cond.getOperand(0);
13545
13546    SDValue Cmp = Cond.getOperand(1);
13547    unsigned Opc = Cmp.getOpcode();
13548    MVT VT = Op.getSimpleValueType();
13549
13550    bool IllegalFPCMov = false;
13551    if (VT.isFloatingPoint() && !VT.isVector() &&
13552        !isScalarFPTypeInSSEReg(VT))  // FPStack?
13553      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
13554
13555    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
13556        Opc == X86ISD::BT) { // FIXME
13557      Cond = Cmp;
13558      addTest = false;
13559    }
13560  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
13561             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
13562             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
13563              Cond.getOperand(0).getValueType() != MVT::i8)) {
13564    SDValue LHS = Cond.getOperand(0);
13565    SDValue RHS = Cond.getOperand(1);
13566    unsigned X86Opcode;
13567    unsigned X86Cond;
13568    SDVTList VTs;
13569    switch (CondOpcode) {
13570    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
13571    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
13572    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
13573    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
13574    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
13575    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
13576    default: llvm_unreachable("unexpected overflowing operator");
13577    }
13578    if (CondOpcode == ISD::UMULO)
13579      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
13580                          MVT::i32);
13581    else
13582      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
13583
13584    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
13585
13586    if (CondOpcode == ISD::UMULO)
13587      Cond = X86Op.getValue(2);
13588    else
13589      Cond = X86Op.getValue(1);
13590
13591    CC = DAG.getConstant(X86Cond, MVT::i8);
13592    addTest = false;
13593  }
13594
13595  if (addTest) {
13596    // Look pass the truncate if the high bits are known zero.
13597    if (isTruncWithZeroHighBitsInput(Cond, DAG))
13598        Cond = Cond.getOperand(0);
13599
13600    // We know the result of AND is compared against zero. Try to match
13601    // it to BT.
13602    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
13603      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
13604      if (NewSetCC.getNode()) {
13605        CC = NewSetCC.getOperand(0);
13606        Cond = NewSetCC.getOperand(1);
13607        addTest = false;
13608      }
13609    }
13610  }
13611
13612  if (addTest) {
13613    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
13614    Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
13615  }
13616
13617  // a <  b ? -1 :  0 -> RES = ~setcc_carry
13618  // a <  b ?  0 : -1 -> RES = setcc_carry
13619  // a >= b ? -1 :  0 -> RES = setcc_carry
13620  // a >= b ?  0 : -1 -> RES = ~setcc_carry
13621  if (Cond.getOpcode() == X86ISD::SUB) {
13622    Cond = ConvertCmpIfNecessary(Cond, DAG);
13623    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
13624
13625    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
13626        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
13627      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
13628                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
13629      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
13630        return DAG.getNOT(DL, Res, Res.getValueType());
13631      return Res;
13632    }
13633  }
13634
13635  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
13636  // widen the cmov and push the truncate through. This avoids introducing a new
13637  // branch during isel and doesn't add any extensions.
13638  if (Op.getValueType() == MVT::i8 &&
13639      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
13640    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
13641    if (T1.getValueType() == T2.getValueType() &&
13642        // Blacklist CopyFromReg to avoid partial register stalls.
13643        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
13644      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
13645      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
13646      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
13647    }
13648  }
13649
13650  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
13651  // condition is true.
13652  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
13653  SDValue Ops[] = { Op2, Op1, CC, Cond };
13654  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
13655}
13656
13657static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget,
13658                                       SelectionDAG &DAG) {
13659  MVT VT = Op->getSimpleValueType(0);
13660  SDValue In = Op->getOperand(0);
13661  MVT InVT = In.getSimpleValueType();
13662  MVT VTElt = VT.getVectorElementType();
13663  MVT InVTElt = InVT.getVectorElementType();
13664  SDLoc dl(Op);
13665
13666  // SKX processor
13667  if ((InVTElt == MVT::i1) &&
13668      (((Subtarget->hasBWI() && Subtarget->hasVLX() &&
13669        VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) ||
13670
13671       ((Subtarget->hasBWI() && VT.is512BitVector() &&
13672        VTElt.getSizeInBits() <= 16)) ||
13673
13674       ((Subtarget->hasDQI() && Subtarget->hasVLX() &&
13675        VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) ||
13676
13677       ((Subtarget->hasDQI() && VT.is512BitVector() &&
13678        VTElt.getSizeInBits() >= 32))))
13679    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
13680
13681  unsigned int NumElts = VT.getVectorNumElements();
13682
13683  if (NumElts != 8 && NumElts != 16)
13684    return SDValue();
13685
13686  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) {
13687    if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT)
13688      return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0));
13689    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
13690  }
13691
13692  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13693  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
13694
13695  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
13696  Constant *C = ConstantInt::get(*DAG.getContext(),
13697    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
13698
13699  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
13700  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
13701  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
13702                          MachinePointerInfo::getConstantPool(),
13703                          false, false, false, Alignment);
13704  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
13705  if (VT.is512BitVector())
13706    return Brcst;
13707  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
13708}
13709
13710static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
13711                                SelectionDAG &DAG) {
13712  MVT VT = Op->getSimpleValueType(0);
13713  SDValue In = Op->getOperand(0);
13714  MVT InVT = In.getSimpleValueType();
13715  SDLoc dl(Op);
13716
13717  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
13718    return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG);
13719
13720  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
13721      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
13722      (VT != MVT::v16i16 || InVT != MVT::v16i8))
13723    return SDValue();
13724
13725  if (Subtarget->hasInt256())
13726    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
13727
13728  // Optimize vectors in AVX mode
13729  // Sign extend  v8i16 to v8i32 and
13730  //              v4i32 to v4i64
13731  //
13732  // Divide input vector into two parts
13733  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
13734  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
13735  // concat the vectors to original VT
13736
13737  unsigned NumElems = InVT.getVectorNumElements();
13738  SDValue Undef = DAG.getUNDEF(InVT);
13739
13740  SmallVector<int,8> ShufMask1(NumElems, -1);
13741  for (unsigned i = 0; i != NumElems/2; ++i)
13742    ShufMask1[i] = i;
13743
13744  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
13745
13746  SmallVector<int,8> ShufMask2(NumElems, -1);
13747  for (unsigned i = 0; i != NumElems/2; ++i)
13748    ShufMask2[i] = i + NumElems/2;
13749
13750  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
13751
13752  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
13753                                VT.getVectorNumElements()/2);
13754
13755  OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
13756  OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
13757
13758  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
13759}
13760
13761// Lower vector extended loads using a shuffle. If SSSE3 is not available we
13762// may emit an illegal shuffle but the expansion is still better than scalar
13763// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
13764// we'll emit a shuffle and a arithmetic shift.
13765// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
13766// TODO: It is possible to support ZExt by zeroing the undef values during
13767// the shuffle phase or after the shuffle.
13768static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
13769                                 SelectionDAG &DAG) {
13770  MVT RegVT = Op.getSimpleValueType();
13771  assert(RegVT.isVector() && "We only custom lower vector sext loads.");
13772  assert(RegVT.isInteger() &&
13773         "We only custom lower integer vector sext loads.");
13774
13775  // Nothing useful we can do without SSE2 shuffles.
13776  assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2.");
13777
13778  LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
13779  SDLoc dl(Ld);
13780  EVT MemVT = Ld->getMemoryVT();
13781  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13782  unsigned RegSz = RegVT.getSizeInBits();
13783
13784  ISD::LoadExtType Ext = Ld->getExtensionType();
13785
13786  assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
13787         && "Only anyext and sext are currently implemented.");
13788  assert(MemVT != RegVT && "Cannot extend to the same type");
13789  assert(MemVT.isVector() && "Must load a vector from memory");
13790
13791  unsigned NumElems = RegVT.getVectorNumElements();
13792  unsigned MemSz = MemVT.getSizeInBits();
13793  assert(RegSz > MemSz && "Register size must be greater than the mem size");
13794
13795  if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) {
13796    // The only way in which we have a legal 256-bit vector result but not the
13797    // integer 256-bit operations needed to directly lower a sextload is if we
13798    // have AVX1 but not AVX2. In that case, we can always emit a sextload to
13799    // a 128-bit vector and a normal sign_extend to 256-bits that should get
13800    // correctly legalized. We do this late to allow the canonical form of
13801    // sextload to persist throughout the rest of the DAG combiner -- it wants
13802    // to fold together any extensions it can, and so will fuse a sign_extend
13803    // of an sextload into a sextload targeting a wider value.
13804    SDValue Load;
13805    if (MemSz == 128) {
13806      // Just switch this to a normal load.
13807      assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
13808                                       "it must be a legal 128-bit vector "
13809                                       "type!");
13810      Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
13811                  Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(),
13812                  Ld->isInvariant(), Ld->getAlignment());
13813    } else {
13814      assert(MemSz < 128 &&
13815             "Can't extend a type wider than 128 bits to a 256 bit vector!");
13816      // Do an sext load to a 128-bit vector type. We want to use the same
13817      // number of elements, but elements half as wide. This will end up being
13818      // recursively lowered by this routine, but will succeed as we definitely
13819      // have all the necessary features if we're using AVX1.
13820      EVT HalfEltVT =
13821          EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
13822      EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
13823      Load =
13824          DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
13825                         Ld->getPointerInfo(), MemVT, Ld->isVolatile(),
13826                         Ld->isNonTemporal(), Ld->isInvariant(),
13827                         Ld->getAlignment());
13828    }
13829
13830    // Replace chain users with the new chain.
13831    assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
13832    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
13833
13834    // Finally, do a normal sign-extend to the desired register.
13835    return DAG.getSExtOrTrunc(Load, dl, RegVT);
13836  }
13837
13838  // All sizes must be a power of two.
13839  assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
13840         "Non-power-of-two elements are not custom lowered!");
13841
13842  // Attempt to load the original value using scalar loads.
13843  // Find the largest scalar type that divides the total loaded size.
13844  MVT SclrLoadTy = MVT::i8;
13845  for (MVT Tp : MVT::integer_valuetypes()) {
13846    if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
13847      SclrLoadTy = Tp;
13848    }
13849  }
13850
13851  // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
13852  if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
13853      (64 <= MemSz))
13854    SclrLoadTy = MVT::f64;
13855
13856  // Calculate the number of scalar loads that we need to perform
13857  // in order to load our vector from memory.
13858  unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
13859
13860  assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
13861         "Can only lower sext loads with a single scalar load!");
13862
13863  unsigned loadRegZize = RegSz;
13864  if (Ext == ISD::SEXTLOAD && RegSz == 256)
13865    loadRegZize /= 2;
13866
13867  // Represent our vector as a sequence of elements which are the
13868  // largest scalar that we can load.
13869  EVT LoadUnitVecVT = EVT::getVectorVT(
13870      *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
13871
13872  // Represent the data using the same element type that is stored in
13873  // memory. In practice, we ''widen'' MemVT.
13874  EVT WideVecVT =
13875      EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13876                       loadRegZize / MemVT.getScalarType().getSizeInBits());
13877
13878  assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
13879         "Invalid vector type");
13880
13881  // We can't shuffle using an illegal type.
13882  assert(TLI.isTypeLegal(WideVecVT) &&
13883         "We only lower types that form legal widened vector types");
13884
13885  SmallVector<SDValue, 8> Chains;
13886  SDValue Ptr = Ld->getBasePtr();
13887  SDValue Increment =
13888      DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, TLI.getPointerTy());
13889  SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
13890
13891  for (unsigned i = 0; i < NumLoads; ++i) {
13892    // Perform a single load.
13893    SDValue ScalarLoad =
13894        DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
13895                    Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(),
13896                    Ld->getAlignment());
13897    Chains.push_back(ScalarLoad.getValue(1));
13898    // Create the first element type using SCALAR_TO_VECTOR in order to avoid
13899    // another round of DAGCombining.
13900    if (i == 0)
13901      Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
13902    else
13903      Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
13904                        ScalarLoad, DAG.getIntPtrConstant(i));
13905
13906    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13907  }
13908
13909  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
13910
13911  // Bitcast the loaded value to a vector of the original element type, in
13912  // the size of the target vector type.
13913  SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
13914  unsigned SizeRatio = RegSz / MemSz;
13915
13916  if (Ext == ISD::SEXTLOAD) {
13917    // If we have SSE4.1, we can directly emit a VSEXT node.
13918    if (Subtarget->hasSSE41()) {
13919      SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
13920      DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
13921      return Sext;
13922    }
13923
13924    // Otherwise we'll shuffle the small elements in the high bits of the
13925    // larger type and perform an arithmetic shift. If the shift is not legal
13926    // it's better to scalarize.
13927    assert(TLI.isOperationLegalOrCustom(ISD::SRA, RegVT) &&
13928           "We can't implement a sext load without an arithmetic right shift!");
13929
13930    // Redistribute the loaded elements into the different locations.
13931    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
13932    for (unsigned i = 0; i != NumElems; ++i)
13933      ShuffleVec[i * SizeRatio + SizeRatio - 1] = i;
13934
13935    SDValue Shuff = DAG.getVectorShuffle(
13936        WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
13937
13938    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13939
13940    // Build the arithmetic shift.
13941    unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
13942                   MemVT.getVectorElementType().getSizeInBits();
13943    Shuff =
13944        DAG.getNode(ISD::SRA, dl, RegVT, Shuff, DAG.getConstant(Amt, RegVT));
13945
13946    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
13947    return Shuff;
13948  }
13949
13950  // Redistribute the loaded elements into the different locations.
13951  SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
13952  for (unsigned i = 0; i != NumElems; ++i)
13953    ShuffleVec[i * SizeRatio] = i;
13954
13955  SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13956                                       DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
13957
13958  // Bitcast to the requested type.
13959  Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13960  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
13961  return Shuff;
13962}
13963
13964// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
13965// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
13966// from the AND / OR.
13967static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
13968  Opc = Op.getOpcode();
13969  if (Opc != ISD::OR && Opc != ISD::AND)
13970    return false;
13971  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
13972          Op.getOperand(0).hasOneUse() &&
13973          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
13974          Op.getOperand(1).hasOneUse());
13975}
13976
13977// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
13978// 1 and that the SETCC node has a single use.
13979static bool isXor1OfSetCC(SDValue Op) {
13980  if (Op.getOpcode() != ISD::XOR)
13981    return false;
13982  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
13983  if (N1C && N1C->getAPIntValue() == 1) {
13984    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
13985      Op.getOperand(0).hasOneUse();
13986  }
13987  return false;
13988}
13989
13990SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
13991  bool addTest = true;
13992  SDValue Chain = Op.getOperand(0);
13993  SDValue Cond  = Op.getOperand(1);
13994  SDValue Dest  = Op.getOperand(2);
13995  SDLoc dl(Op);
13996  SDValue CC;
13997  bool Inverted = false;
13998
13999  if (Cond.getOpcode() == ISD::SETCC) {
14000    // Check for setcc([su]{add,sub,mul}o == 0).
14001    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
14002        isa<ConstantSDNode>(Cond.getOperand(1)) &&
14003        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
14004        Cond.getOperand(0).getResNo() == 1 &&
14005        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
14006         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
14007         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
14008         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
14009         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
14010         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
14011      Inverted = true;
14012      Cond = Cond.getOperand(0);
14013    } else {
14014      SDValue NewCond = LowerSETCC(Cond, DAG);
14015      if (NewCond.getNode())
14016        Cond = NewCond;
14017    }
14018  }
14019#if 0
14020  // FIXME: LowerXALUO doesn't handle these!!
14021  else if (Cond.getOpcode() == X86ISD::ADD  ||
14022           Cond.getOpcode() == X86ISD::SUB  ||
14023           Cond.getOpcode() == X86ISD::SMUL ||
14024           Cond.getOpcode() == X86ISD::UMUL)
14025    Cond = LowerXALUO(Cond, DAG);
14026#endif
14027
14028  // Look pass (and (setcc_carry (cmp ...)), 1).
14029  if (Cond.getOpcode() == ISD::AND &&
14030      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
14031    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
14032    if (C && C->getAPIntValue() == 1)
14033      Cond = Cond.getOperand(0);
14034  }
14035
14036  // If condition flag is set by a X86ISD::CMP, then use it as the condition
14037  // setting operand in place of the X86ISD::SETCC.
14038  unsigned CondOpcode = Cond.getOpcode();
14039  if (CondOpcode == X86ISD::SETCC ||
14040      CondOpcode == X86ISD::SETCC_CARRY) {
14041    CC = Cond.getOperand(0);
14042
14043    SDValue Cmp = Cond.getOperand(1);
14044    unsigned Opc = Cmp.getOpcode();
14045    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
14046    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
14047      Cond = Cmp;
14048      addTest = false;
14049    } else {
14050      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
14051      default: break;
14052      case X86::COND_O:
14053      case X86::COND_B:
14054        // These can only come from an arithmetic instruction with overflow,
14055        // e.g. SADDO, UADDO.
14056        Cond = Cond.getNode()->getOperand(1);
14057        addTest = false;
14058        break;
14059      }
14060    }
14061  }
14062  CondOpcode = Cond.getOpcode();
14063  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
14064      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
14065      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
14066       Cond.getOperand(0).getValueType() != MVT::i8)) {
14067    SDValue LHS = Cond.getOperand(0);
14068    SDValue RHS = Cond.getOperand(1);
14069    unsigned X86Opcode;
14070    unsigned X86Cond;
14071    SDVTList VTs;
14072    // Keep this in sync with LowerXALUO, otherwise we might create redundant
14073    // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
14074    // X86ISD::INC).
14075    switch (CondOpcode) {
14076    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
14077    case ISD::SADDO:
14078      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
14079        if (C->isOne()) {
14080          X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
14081          break;
14082        }
14083      X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
14084    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
14085    case ISD::SSUBO:
14086      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
14087        if (C->isOne()) {
14088          X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
14089          break;
14090        }
14091      X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
14092    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
14093    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
14094    default: llvm_unreachable("unexpected overflowing operator");
14095    }
14096    if (Inverted)
14097      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
14098    if (CondOpcode == ISD::UMULO)
14099      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
14100                          MVT::i32);
14101    else
14102      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
14103
14104    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
14105
14106    if (CondOpcode == ISD::UMULO)
14107      Cond = X86Op.getValue(2);
14108    else
14109      Cond = X86Op.getValue(1);
14110
14111    CC = DAG.getConstant(X86Cond, MVT::i8);
14112    addTest = false;
14113  } else {
14114    unsigned CondOpc;
14115    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
14116      SDValue Cmp = Cond.getOperand(0).getOperand(1);
14117      if (CondOpc == ISD::OR) {
14118        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
14119        // two branches instead of an explicit OR instruction with a
14120        // separate test.
14121        if (Cmp == Cond.getOperand(1).getOperand(1) &&
14122            isX86LogicalCmp(Cmp)) {
14123          CC = Cond.getOperand(0).getOperand(0);
14124          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14125                              Chain, Dest, CC, Cmp);
14126          CC = Cond.getOperand(1).getOperand(0);
14127          Cond = Cmp;
14128          addTest = false;
14129        }
14130      } else { // ISD::AND
14131        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
14132        // two branches instead of an explicit AND instruction with a
14133        // separate test. However, we only do this if this block doesn't
14134        // have a fall-through edge, because this requires an explicit
14135        // jmp when the condition is false.
14136        if (Cmp == Cond.getOperand(1).getOperand(1) &&
14137            isX86LogicalCmp(Cmp) &&
14138            Op.getNode()->hasOneUse()) {
14139          X86::CondCode CCode =
14140            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
14141          CCode = X86::GetOppositeBranchCondition(CCode);
14142          CC = DAG.getConstant(CCode, MVT::i8);
14143          SDNode *User = *Op.getNode()->use_begin();
14144          // Look for an unconditional branch following this conditional branch.
14145          // We need this because we need to reverse the successors in order
14146          // to implement FCMP_OEQ.
14147          if (User->getOpcode() == ISD::BR) {
14148            SDValue FalseBB = User->getOperand(1);
14149            SDNode *NewBR =
14150              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
14151            assert(NewBR == User);
14152            (void)NewBR;
14153            Dest = FalseBB;
14154
14155            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14156                                Chain, Dest, CC, Cmp);
14157            X86::CondCode CCode =
14158              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
14159            CCode = X86::GetOppositeBranchCondition(CCode);
14160            CC = DAG.getConstant(CCode, MVT::i8);
14161            Cond = Cmp;
14162            addTest = false;
14163          }
14164        }
14165      }
14166    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
14167      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
14168      // It should be transformed during dag combiner except when the condition
14169      // is set by a arithmetics with overflow node.
14170      X86::CondCode CCode =
14171        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
14172      CCode = X86::GetOppositeBranchCondition(CCode);
14173      CC = DAG.getConstant(CCode, MVT::i8);
14174      Cond = Cond.getOperand(0).getOperand(1);
14175      addTest = false;
14176    } else if (Cond.getOpcode() == ISD::SETCC &&
14177               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
14178      // For FCMP_OEQ, we can emit
14179      // two branches instead of an explicit AND instruction with a
14180      // separate test. However, we only do this if this block doesn't
14181      // have a fall-through edge, because this requires an explicit
14182      // jmp when the condition is false.
14183      if (Op.getNode()->hasOneUse()) {
14184        SDNode *User = *Op.getNode()->use_begin();
14185        // Look for an unconditional branch following this conditional branch.
14186        // We need this because we need to reverse the successors in order
14187        // to implement FCMP_OEQ.
14188        if (User->getOpcode() == ISD::BR) {
14189          SDValue FalseBB = User->getOperand(1);
14190          SDNode *NewBR =
14191            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
14192          assert(NewBR == User);
14193          (void)NewBR;
14194          Dest = FalseBB;
14195
14196          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
14197                                    Cond.getOperand(0), Cond.getOperand(1));
14198          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
14199          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
14200          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14201                              Chain, Dest, CC, Cmp);
14202          CC = DAG.getConstant(X86::COND_P, MVT::i8);
14203          Cond = Cmp;
14204          addTest = false;
14205        }
14206      }
14207    } else if (Cond.getOpcode() == ISD::SETCC &&
14208               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
14209      // For FCMP_UNE, we can emit
14210      // two branches instead of an explicit AND instruction with a
14211      // separate test. However, we only do this if this block doesn't
14212      // have a fall-through edge, because this requires an explicit
14213      // jmp when the condition is false.
14214      if (Op.getNode()->hasOneUse()) {
14215        SDNode *User = *Op.getNode()->use_begin();
14216        // Look for an unconditional branch following this conditional branch.
14217        // We need this because we need to reverse the successors in order
14218        // to implement FCMP_UNE.
14219        if (User->getOpcode() == ISD::BR) {
14220          SDValue FalseBB = User->getOperand(1);
14221          SDNode *NewBR =
14222            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
14223          assert(NewBR == User);
14224          (void)NewBR;
14225
14226          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
14227                                    Cond.getOperand(0), Cond.getOperand(1));
14228          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
14229          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
14230          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14231                              Chain, Dest, CC, Cmp);
14232          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
14233          Cond = Cmp;
14234          addTest = false;
14235          Dest = FalseBB;
14236        }
14237      }
14238    }
14239  }
14240
14241  if (addTest) {
14242    // Look pass the truncate if the high bits are known zero.
14243    if (isTruncWithZeroHighBitsInput(Cond, DAG))
14244        Cond = Cond.getOperand(0);
14245
14246    // We know the result of AND is compared against zero. Try to match
14247    // it to BT.
14248    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
14249      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
14250      if (NewSetCC.getNode()) {
14251        CC = NewSetCC.getOperand(0);
14252        Cond = NewSetCC.getOperand(1);
14253        addTest = false;
14254      }
14255    }
14256  }
14257
14258  if (addTest) {
14259    X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
14260    CC = DAG.getConstant(X86Cond, MVT::i8);
14261    Cond = EmitTest(Cond, X86Cond, dl, DAG);
14262  }
14263  Cond = ConvertCmpIfNecessary(Cond, DAG);
14264  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14265                     Chain, Dest, CC, Cond);
14266}
14267
14268// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
14269// Calls to _alloca are needed to probe the stack when allocating more than 4k
14270// bytes in one go. Touching the stack at 4K increments is necessary to ensure
14271// that the guard pages used by the OS virtual memory manager are allocated in
14272// correct sequence.
14273SDValue
14274X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
14275                                           SelectionDAG &DAG) const {
14276  MachineFunction &MF = DAG.getMachineFunction();
14277  bool SplitStack = MF.shouldSplitStack();
14278  bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) ||
14279               SplitStack;
14280  SDLoc dl(Op);
14281
14282  if (!Lower) {
14283    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14284    SDNode* Node = Op.getNode();
14285
14286    unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
14287    assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
14288        " not tell us which reg is the stack pointer!");
14289    EVT VT = Node->getValueType(0);
14290    SDValue Tmp1 = SDValue(Node, 0);
14291    SDValue Tmp2 = SDValue(Node, 1);
14292    SDValue Tmp3 = Node->getOperand(2);
14293    SDValue Chain = Tmp1.getOperand(0);
14294
14295    // Chain the dynamic stack allocation so that it doesn't modify the stack
14296    // pointer when other instructions are using the stack.
14297    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
14298        SDLoc(Node));
14299
14300    SDValue Size = Tmp2.getOperand(1);
14301    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
14302    Chain = SP.getValue(1);
14303    unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
14304    const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
14305    unsigned StackAlign = TFI.getStackAlignment();
14306    Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
14307    if (Align > StackAlign)
14308      Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
14309          DAG.getConstant(-(uint64_t)Align, VT));
14310    Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
14311
14312    Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
14313        DAG.getIntPtrConstant(0, true), SDValue(),
14314        SDLoc(Node));
14315
14316    SDValue Ops[2] = { Tmp1, Tmp2 };
14317    return DAG.getMergeValues(Ops, dl);
14318  }
14319
14320  // Get the inputs.
14321  SDValue Chain = Op.getOperand(0);
14322  SDValue Size  = Op.getOperand(1);
14323  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
14324  EVT VT = Op.getNode()->getValueType(0);
14325
14326  bool Is64Bit = Subtarget->is64Bit();
14327  EVT SPTy = getPointerTy();
14328
14329  if (SplitStack) {
14330    MachineRegisterInfo &MRI = MF.getRegInfo();
14331
14332    if (Is64Bit) {
14333      // The 64 bit implementation of segmented stacks needs to clobber both r10
14334      // r11. This makes it impossible to use it along with nested parameters.
14335      const Function *F = MF.getFunction();
14336
14337      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
14338           I != E; ++I)
14339        if (I->hasNestAttr())
14340          report_fatal_error("Cannot use segmented stacks with functions that "
14341                             "have nested arguments.");
14342    }
14343
14344    const TargetRegisterClass *AddrRegClass =
14345      getRegClassFor(getPointerTy());
14346    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
14347    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
14348    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
14349                                DAG.getRegister(Vreg, SPTy));
14350    SDValue Ops1[2] = { Value, Chain };
14351    return DAG.getMergeValues(Ops1, dl);
14352  } else {
14353    SDValue Flag;
14354    const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX);
14355
14356    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
14357    Flag = Chain.getValue(1);
14358    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14359
14360    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
14361
14362    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
14363    unsigned SPReg = RegInfo->getStackRegister();
14364    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
14365    Chain = SP.getValue(1);
14366
14367    if (Align) {
14368      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
14369                       DAG.getConstant(-(uint64_t)Align, VT));
14370      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
14371    }
14372
14373    SDValue Ops1[2] = { SP, Chain };
14374    return DAG.getMergeValues(Ops1, dl);
14375  }
14376}
14377
14378SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
14379  MachineFunction &MF = DAG.getMachineFunction();
14380  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
14381
14382  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
14383  SDLoc DL(Op);
14384
14385  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
14386    // vastart just stores the address of the VarArgsFrameIndex slot into the
14387    // memory location argument.
14388    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
14389                                   getPointerTy());
14390    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
14391                        MachinePointerInfo(SV), false, false, 0);
14392  }
14393
14394  // __va_list_tag:
14395  //   gp_offset         (0 - 6 * 8)
14396  //   fp_offset         (48 - 48 + 8 * 16)
14397  //   overflow_arg_area (point to parameters coming in memory).
14398  //   reg_save_area
14399  SmallVector<SDValue, 8> MemOps;
14400  SDValue FIN = Op.getOperand(1);
14401  // Store gp_offset
14402  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
14403                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
14404                                               MVT::i32),
14405                               FIN, MachinePointerInfo(SV), false, false, 0);
14406  MemOps.push_back(Store);
14407
14408  // Store fp_offset
14409  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
14410                    FIN, DAG.getIntPtrConstant(4));
14411  Store = DAG.getStore(Op.getOperand(0), DL,
14412                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
14413                                       MVT::i32),
14414                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
14415  MemOps.push_back(Store);
14416
14417  // Store ptr to overflow_arg_area
14418  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
14419                    FIN, DAG.getIntPtrConstant(4));
14420  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
14421                                    getPointerTy());
14422  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
14423                       MachinePointerInfo(SV, 8),
14424                       false, false, 0);
14425  MemOps.push_back(Store);
14426
14427  // Store ptr to reg_save_area.
14428  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
14429                    FIN, DAG.getIntPtrConstant(8));
14430  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
14431                                    getPointerTy());
14432  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
14433                       MachinePointerInfo(SV, 16), false, false, 0);
14434  MemOps.push_back(Store);
14435  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
14436}
14437
14438SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
14439  assert(Subtarget->is64Bit() &&
14440         "LowerVAARG only handles 64-bit va_arg!");
14441  assert((Subtarget->isTargetLinux() ||
14442          Subtarget->isTargetDarwin()) &&
14443          "Unhandled target in LowerVAARG");
14444  assert(Op.getNode()->getNumOperands() == 4);
14445  SDValue Chain = Op.getOperand(0);
14446  SDValue SrcPtr = Op.getOperand(1);
14447  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
14448  unsigned Align = Op.getConstantOperandVal(3);
14449  SDLoc dl(Op);
14450
14451  EVT ArgVT = Op.getNode()->getValueType(0);
14452  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
14453  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
14454  uint8_t ArgMode;
14455
14456  // Decide which area this value should be read from.
14457  // TODO: Implement the AMD64 ABI in its entirety. This simple
14458  // selection mechanism works only for the basic types.
14459  if (ArgVT == MVT::f80) {
14460    llvm_unreachable("va_arg for f80 not yet implemented");
14461  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
14462    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
14463  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
14464    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
14465  } else {
14466    llvm_unreachable("Unhandled argument type in LowerVAARG");
14467  }
14468
14469  if (ArgMode == 2) {
14470    // Sanity Check: Make sure using fp_offset makes sense.
14471    assert(!DAG.getTarget().Options.UseSoftFloat &&
14472           !(DAG.getMachineFunction().getFunction()->hasFnAttribute(
14473               Attribute::NoImplicitFloat)) &&
14474           Subtarget->hasSSE1());
14475  }
14476
14477  // Insert VAARG_64 node into the DAG
14478  // VAARG_64 returns two values: Variable Argument Address, Chain
14479  SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, MVT::i32),
14480                       DAG.getConstant(ArgMode, MVT::i8),
14481                       DAG.getConstant(Align, MVT::i32)};
14482  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
14483  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
14484                                          VTs, InstOps, MVT::i64,
14485                                          MachinePointerInfo(SV),
14486                                          /*Align=*/0,
14487                                          /*Volatile=*/false,
14488                                          /*ReadMem=*/true,
14489                                          /*WriteMem=*/true);
14490  Chain = VAARG.getValue(1);
14491
14492  // Load the next argument and return it
14493  return DAG.getLoad(ArgVT, dl,
14494                     Chain,
14495                     VAARG,
14496                     MachinePointerInfo(),
14497                     false, false, false, 0);
14498}
14499
14500static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
14501                           SelectionDAG &DAG) {
14502  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
14503  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
14504  SDValue Chain = Op.getOperand(0);
14505  SDValue DstPtr = Op.getOperand(1);
14506  SDValue SrcPtr = Op.getOperand(2);
14507  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
14508  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
14509  SDLoc DL(Op);
14510
14511  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
14512                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
14513                       false, false,
14514                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
14515}
14516
14517// getTargetVShiftByConstNode - Handle vector element shifts where the shift
14518// amount is a constant. Takes immediate version of shift as input.
14519static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
14520                                          SDValue SrcOp, uint64_t ShiftAmt,
14521                                          SelectionDAG &DAG) {
14522  MVT ElementType = VT.getVectorElementType();
14523
14524  // Fold this packed shift into its first operand if ShiftAmt is 0.
14525  if (ShiftAmt == 0)
14526    return SrcOp;
14527
14528  // Check for ShiftAmt >= element width
14529  if (ShiftAmt >= ElementType.getSizeInBits()) {
14530    if (Opc == X86ISD::VSRAI)
14531      ShiftAmt = ElementType.getSizeInBits() - 1;
14532    else
14533      return DAG.getConstant(0, VT);
14534  }
14535
14536  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
14537         && "Unknown target vector shift-by-constant node");
14538
14539  // Fold this packed vector shift into a build vector if SrcOp is a
14540  // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
14541  if (VT == SrcOp.getSimpleValueType() &&
14542      ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
14543    SmallVector<SDValue, 8> Elts;
14544    unsigned NumElts = SrcOp->getNumOperands();
14545    ConstantSDNode *ND;
14546
14547    switch(Opc) {
14548    default: llvm_unreachable(nullptr);
14549    case X86ISD::VSHLI:
14550      for (unsigned i=0; i!=NumElts; ++i) {
14551        SDValue CurrentOp = SrcOp->getOperand(i);
14552        if (CurrentOp->getOpcode() == ISD::UNDEF) {
14553          Elts.push_back(CurrentOp);
14554          continue;
14555        }
14556        ND = cast<ConstantSDNode>(CurrentOp);
14557        const APInt &C = ND->getAPIntValue();
14558        Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
14559      }
14560      break;
14561    case X86ISD::VSRLI:
14562      for (unsigned i=0; i!=NumElts; ++i) {
14563        SDValue CurrentOp = SrcOp->getOperand(i);
14564        if (CurrentOp->getOpcode() == ISD::UNDEF) {
14565          Elts.push_back(CurrentOp);
14566          continue;
14567        }
14568        ND = cast<ConstantSDNode>(CurrentOp);
14569        const APInt &C = ND->getAPIntValue();
14570        Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
14571      }
14572      break;
14573    case X86ISD::VSRAI:
14574      for (unsigned i=0; i!=NumElts; ++i) {
14575        SDValue CurrentOp = SrcOp->getOperand(i);
14576        if (CurrentOp->getOpcode() == ISD::UNDEF) {
14577          Elts.push_back(CurrentOp);
14578          continue;
14579        }
14580        ND = cast<ConstantSDNode>(CurrentOp);
14581        const APInt &C = ND->getAPIntValue();
14582        Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
14583      }
14584      break;
14585    }
14586
14587    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
14588  }
14589
14590  return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
14591}
14592
14593// getTargetVShiftNode - Handle vector element shifts where the shift amount
14594// may or may not be a constant. Takes immediate version of shift as input.
14595static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
14596                                   SDValue SrcOp, SDValue ShAmt,
14597                                   SelectionDAG &DAG) {
14598  MVT SVT = ShAmt.getSimpleValueType();
14599  assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
14600
14601  // Catch shift-by-constant.
14602  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
14603    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
14604                                      CShAmt->getZExtValue(), DAG);
14605
14606  // Change opcode to non-immediate version
14607  switch (Opc) {
14608    default: llvm_unreachable("Unknown target vector shift node");
14609    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
14610    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
14611    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
14612  }
14613
14614  const X86Subtarget &Subtarget =
14615      static_cast<const X86Subtarget &>(DAG.getSubtarget());
14616  if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
14617      ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
14618    // Let the shuffle legalizer expand this shift amount node.
14619    SDValue Op0 = ShAmt.getOperand(0);
14620    Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0);
14621    ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG);
14622  } else {
14623    // Need to build a vector containing shift amount.
14624    // SSE/AVX packed shifts only use the lower 64-bit of the shift count.
14625    SmallVector<SDValue, 4> ShOps;
14626    ShOps.push_back(ShAmt);
14627    if (SVT == MVT::i32) {
14628      ShOps.push_back(DAG.getConstant(0, SVT));
14629      ShOps.push_back(DAG.getUNDEF(SVT));
14630    }
14631    ShOps.push_back(DAG.getUNDEF(SVT));
14632
14633    MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64;
14634    ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps);
14635  }
14636
14637  // The return type has to be a 128-bit type with the same element
14638  // type as the input type.
14639  MVT EltVT = VT.getVectorElementType();
14640  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
14641
14642  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
14643  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
14644}
14645
14646/// \brief Return (and \p Op, \p Mask) for compare instructions or
14647/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
14648/// necessary casting for \p Mask when lowering masking intrinsics.
14649static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
14650                                    SDValue PreservedSrc,
14651                                    const X86Subtarget *Subtarget,
14652                                    SelectionDAG &DAG) {
14653    EVT VT = Op.getValueType();
14654    EVT MaskVT = EVT::getVectorVT(*DAG.getContext(),
14655                                  MVT::i1, VT.getVectorNumElements());
14656    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14657                                     Mask.getValueType().getSizeInBits());
14658    SDLoc dl(Op);
14659
14660    assert(MaskVT.isSimple() && "invalid mask type");
14661
14662    if (isAllOnes(Mask))
14663      return Op;
14664
14665    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
14666    // are extracted by EXTRACT_SUBVECTOR.
14667    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
14668                              DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
14669                              DAG.getIntPtrConstant(0));
14670
14671    switch (Op.getOpcode()) {
14672      default: break;
14673      case X86ISD::PCMPEQM:
14674      case X86ISD::PCMPGTM:
14675      case X86ISD::CMPM:
14676      case X86ISD::CMPMU:
14677        return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
14678    }
14679    if (PreservedSrc.getOpcode() == ISD::UNDEF)
14680      PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
14681    return DAG.getNode(ISD::VSELECT, dl, VT, VMask, Op, PreservedSrc);
14682}
14683
14684/// \brief Creates an SDNode for a predicated scalar operation.
14685/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
14686/// The mask is comming as MVT::i8 and it should be truncated
14687/// to MVT::i1 while lowering masking intrinsics.
14688/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
14689/// "X86select" instead of "vselect". We just can't create the "vselect" node for
14690/// a scalar instruction.
14691static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
14692                                    SDValue PreservedSrc,
14693                                    const X86Subtarget *Subtarget,
14694                                    SelectionDAG &DAG) {
14695    if (isAllOnes(Mask))
14696      return Op;
14697
14698    EVT VT = Op.getValueType();
14699    SDLoc dl(Op);
14700    // The mask should be of type MVT::i1
14701    SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask);
14702
14703    if (PreservedSrc.getOpcode() == ISD::UNDEF)
14704      PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
14705    return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc);
14706}
14707
14708static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
14709                                       SelectionDAG &DAG) {
14710  SDLoc dl(Op);
14711  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14712  EVT VT = Op.getValueType();
14713  const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
14714  if (IntrData) {
14715    switch(IntrData->Type) {
14716    case INTR_TYPE_1OP:
14717      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
14718    case INTR_TYPE_2OP:
14719      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
14720        Op.getOperand(2));
14721    case INTR_TYPE_3OP:
14722      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
14723        Op.getOperand(2), Op.getOperand(3));
14724    case INTR_TYPE_1OP_MASK_RM: {
14725      SDValue Src = Op.getOperand(1);
14726      SDValue Src0 = Op.getOperand(2);
14727      SDValue Mask = Op.getOperand(3);
14728      SDValue RoundingMode = Op.getOperand(4);
14729      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
14730                                              RoundingMode),
14731                                  Mask, Src0, Subtarget, DAG);
14732    }
14733    case INTR_TYPE_SCALAR_MASK_RM: {
14734      SDValue Src1 = Op.getOperand(1);
14735      SDValue Src2 = Op.getOperand(2);
14736      SDValue Src0 = Op.getOperand(3);
14737      SDValue Mask = Op.getOperand(4);
14738      // There are 2 kinds of intrinsics in this group:
14739      // (1) With supress-all-exceptions (sae) - 6 operands
14740      // (2) With rounding mode and sae - 7 operands.
14741      if (Op.getNumOperands() == 6) {
14742        SDValue Sae  = Op.getOperand(5);
14743        return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
14744                                                Sae),
14745                                    Mask, Src0, Subtarget, DAG);
14746      }
14747      assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
14748      SDValue RoundingMode  = Op.getOperand(5);
14749      SDValue Sae  = Op.getOperand(6);
14750      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
14751                                              RoundingMode, Sae),
14752                                  Mask, Src0, Subtarget, DAG);
14753    }
14754    case INTR_TYPE_2OP_MASK: {
14755      SDValue Src1 = Op.getOperand(1);
14756      SDValue Src2 = Op.getOperand(2);
14757      SDValue PassThru = Op.getOperand(3);
14758      SDValue Mask = Op.getOperand(4);
14759      // We specify 2 possible opcodes for intrinsics with rounding modes.
14760      // First, we check if the intrinsic may have non-default rounding mode,
14761      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
14762      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
14763      if (IntrWithRoundingModeOpcode != 0) {
14764        SDValue Rnd = Op.getOperand(5);
14765        unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
14766        if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
14767          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
14768                                      dl, Op.getValueType(),
14769                                      Src1, Src2, Rnd),
14770                                      Mask, PassThru, Subtarget, DAG);
14771        }
14772      }
14773      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
14774                                              Src1,Src2),
14775                                  Mask, PassThru, Subtarget, DAG);
14776    }
14777    case FMA_OP_MASK: {
14778      SDValue Src1 = Op.getOperand(1);
14779      SDValue Src2 = Op.getOperand(2);
14780      SDValue Src3 = Op.getOperand(3);
14781      SDValue Mask = Op.getOperand(4);
14782      // We specify 2 possible opcodes for intrinsics with rounding modes.
14783      // First, we check if the intrinsic may have non-default rounding mode,
14784      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
14785      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
14786      if (IntrWithRoundingModeOpcode != 0) {
14787        SDValue Rnd = Op.getOperand(5);
14788        if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
14789            X86::STATIC_ROUNDING::CUR_DIRECTION)
14790          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
14791                                                  dl, Op.getValueType(),
14792                                                  Src1, Src2, Src3, Rnd),
14793                                      Mask, Src1, Subtarget, DAG);
14794      }
14795      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
14796                                              dl, Op.getValueType(),
14797                                              Src1, Src2, Src3),
14798                                  Mask, Src1, Subtarget, DAG);
14799    }
14800    case CMP_MASK:
14801    case CMP_MASK_CC: {
14802      // Comparison intrinsics with masks.
14803      // Example of transformation:
14804      // (i8 (int_x86_avx512_mask_pcmpeq_q_128
14805      //             (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
14806      // (i8 (bitcast
14807      //   (v8i1 (insert_subvector undef,
14808      //           (v2i1 (and (PCMPEQM %a, %b),
14809      //                      (extract_subvector
14810      //                         (v8i1 (bitcast %mask)), 0))), 0))))
14811      EVT VT = Op.getOperand(1).getValueType();
14812      EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14813                                    VT.getVectorNumElements());
14814      SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
14815      EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14816                                       Mask.getValueType().getSizeInBits());
14817      SDValue Cmp;
14818      if (IntrData->Type == CMP_MASK_CC) {
14819        Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
14820                    Op.getOperand(2), Op.getOperand(3));
14821      } else {
14822        assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
14823        Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
14824                    Op.getOperand(2));
14825      }
14826      SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
14827                                             DAG.getTargetConstant(0, MaskVT),
14828                                             Subtarget, DAG);
14829      SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
14830                                DAG.getUNDEF(BitcastVT), CmpMask,
14831                                DAG.getIntPtrConstant(0));
14832      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
14833    }
14834    case COMI: { // Comparison intrinsics
14835      ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
14836      SDValue LHS = Op.getOperand(1);
14837      SDValue RHS = Op.getOperand(2);
14838      unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
14839      assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
14840      SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
14841      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14842                                  DAG.getConstant(X86CC, MVT::i8), Cond);
14843      return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
14844    }
14845    case VSHIFT:
14846      return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
14847                                 Op.getOperand(1), Op.getOperand(2), DAG);
14848    case VSHIFT_MASK:
14849      return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl,
14850                                                      Op.getSimpleValueType(),
14851                                                      Op.getOperand(1),
14852                                                      Op.getOperand(2), DAG),
14853                                  Op.getOperand(4), Op.getOperand(3), Subtarget,
14854                                  DAG);
14855    case COMPRESS_EXPAND_IN_REG: {
14856      SDValue Mask = Op.getOperand(3);
14857      SDValue DataToCompress = Op.getOperand(1);
14858      SDValue PassThru = Op.getOperand(2);
14859      if (isAllOnes(Mask)) // return data as is
14860        return Op.getOperand(1);
14861      EVT VT = Op.getValueType();
14862      EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14863                                    VT.getVectorNumElements());
14864      EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14865                                       Mask.getValueType().getSizeInBits());
14866      SDLoc dl(Op);
14867      SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
14868                                  DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
14869                                  DAG.getIntPtrConstant(0));
14870
14871      return DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToCompress,
14872                         PassThru);
14873    }
14874    case BLEND: {
14875      SDValue Mask = Op.getOperand(3);
14876      EVT VT = Op.getValueType();
14877      EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14878                                    VT.getVectorNumElements());
14879      EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14880                                       Mask.getValueType().getSizeInBits());
14881      SDLoc dl(Op);
14882      SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
14883                                  DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
14884                                  DAG.getIntPtrConstant(0));
14885      return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1),
14886                         Op.getOperand(2));
14887    }
14888    default:
14889      break;
14890    }
14891  }
14892
14893  switch (IntNo) {
14894  default: return SDValue();    // Don't custom lower most intrinsics.
14895
14896  case Intrinsic::x86_avx2_permd:
14897  case Intrinsic::x86_avx2_permps:
14898    // Operands intentionally swapped. Mask is last operand to intrinsic,
14899    // but second operand for node/instruction.
14900    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
14901                       Op.getOperand(2), Op.getOperand(1));
14902
14903  case Intrinsic::x86_avx512_mask_valign_q_512:
14904  case Intrinsic::x86_avx512_mask_valign_d_512:
14905    // Vector source operands are swapped.
14906    return getVectorMaskingNode(DAG.getNode(X86ISD::VALIGN, dl,
14907                                            Op.getValueType(), Op.getOperand(2),
14908                                            Op.getOperand(1),
14909                                            Op.getOperand(3)),
14910                                Op.getOperand(5), Op.getOperand(4),
14911                                Subtarget, DAG);
14912
14913  // ptest and testp intrinsics. The intrinsic these come from are designed to
14914  // return an integer value, not just an instruction so lower it to the ptest
14915  // or testp pattern and a setcc for the result.
14916  case Intrinsic::x86_sse41_ptestz:
14917  case Intrinsic::x86_sse41_ptestc:
14918  case Intrinsic::x86_sse41_ptestnzc:
14919  case Intrinsic::x86_avx_ptestz_256:
14920  case Intrinsic::x86_avx_ptestc_256:
14921  case Intrinsic::x86_avx_ptestnzc_256:
14922  case Intrinsic::x86_avx_vtestz_ps:
14923  case Intrinsic::x86_avx_vtestc_ps:
14924  case Intrinsic::x86_avx_vtestnzc_ps:
14925  case Intrinsic::x86_avx_vtestz_pd:
14926  case Intrinsic::x86_avx_vtestc_pd:
14927  case Intrinsic::x86_avx_vtestnzc_pd:
14928  case Intrinsic::x86_avx_vtestz_ps_256:
14929  case Intrinsic::x86_avx_vtestc_ps_256:
14930  case Intrinsic::x86_avx_vtestnzc_ps_256:
14931  case Intrinsic::x86_avx_vtestz_pd_256:
14932  case Intrinsic::x86_avx_vtestc_pd_256:
14933  case Intrinsic::x86_avx_vtestnzc_pd_256: {
14934    bool IsTestPacked = false;
14935    unsigned X86CC;
14936    switch (IntNo) {
14937    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
14938    case Intrinsic::x86_avx_vtestz_ps:
14939    case Intrinsic::x86_avx_vtestz_pd:
14940    case Intrinsic::x86_avx_vtestz_ps_256:
14941    case Intrinsic::x86_avx_vtestz_pd_256:
14942      IsTestPacked = true; // Fallthrough
14943    case Intrinsic::x86_sse41_ptestz:
14944    case Intrinsic::x86_avx_ptestz_256:
14945      // ZF = 1
14946      X86CC = X86::COND_E;
14947      break;
14948    case Intrinsic::x86_avx_vtestc_ps:
14949    case Intrinsic::x86_avx_vtestc_pd:
14950    case Intrinsic::x86_avx_vtestc_ps_256:
14951    case Intrinsic::x86_avx_vtestc_pd_256:
14952      IsTestPacked = true; // Fallthrough
14953    case Intrinsic::x86_sse41_ptestc:
14954    case Intrinsic::x86_avx_ptestc_256:
14955      // CF = 1
14956      X86CC = X86::COND_B;
14957      break;
14958    case Intrinsic::x86_avx_vtestnzc_ps:
14959    case Intrinsic::x86_avx_vtestnzc_pd:
14960    case Intrinsic::x86_avx_vtestnzc_ps_256:
14961    case Intrinsic::x86_avx_vtestnzc_pd_256:
14962      IsTestPacked = true; // Fallthrough
14963    case Intrinsic::x86_sse41_ptestnzc:
14964    case Intrinsic::x86_avx_ptestnzc_256:
14965      // ZF and CF = 0
14966      X86CC = X86::COND_A;
14967      break;
14968    }
14969
14970    SDValue LHS = Op.getOperand(1);
14971    SDValue RHS = Op.getOperand(2);
14972    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
14973    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
14974    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
14975    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
14976    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
14977  }
14978  case Intrinsic::x86_avx512_kortestz_w:
14979  case Intrinsic::x86_avx512_kortestc_w: {
14980    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
14981    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
14982    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
14983    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
14984    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
14985    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
14986    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
14987  }
14988
14989  case Intrinsic::x86_sse42_pcmpistria128:
14990  case Intrinsic::x86_sse42_pcmpestria128:
14991  case Intrinsic::x86_sse42_pcmpistric128:
14992  case Intrinsic::x86_sse42_pcmpestric128:
14993  case Intrinsic::x86_sse42_pcmpistrio128:
14994  case Intrinsic::x86_sse42_pcmpestrio128:
14995  case Intrinsic::x86_sse42_pcmpistris128:
14996  case Intrinsic::x86_sse42_pcmpestris128:
14997  case Intrinsic::x86_sse42_pcmpistriz128:
14998  case Intrinsic::x86_sse42_pcmpestriz128: {
14999    unsigned Opcode;
15000    unsigned X86CC;
15001    switch (IntNo) {
15002    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
15003    case Intrinsic::x86_sse42_pcmpistria128:
15004      Opcode = X86ISD::PCMPISTRI;
15005      X86CC = X86::COND_A;
15006      break;
15007    case Intrinsic::x86_sse42_pcmpestria128:
15008      Opcode = X86ISD::PCMPESTRI;
15009      X86CC = X86::COND_A;
15010      break;
15011    case Intrinsic::x86_sse42_pcmpistric128:
15012      Opcode = X86ISD::PCMPISTRI;
15013      X86CC = X86::COND_B;
15014      break;
15015    case Intrinsic::x86_sse42_pcmpestric128:
15016      Opcode = X86ISD::PCMPESTRI;
15017      X86CC = X86::COND_B;
15018      break;
15019    case Intrinsic::x86_sse42_pcmpistrio128:
15020      Opcode = X86ISD::PCMPISTRI;
15021      X86CC = X86::COND_O;
15022      break;
15023    case Intrinsic::x86_sse42_pcmpestrio128:
15024      Opcode = X86ISD::PCMPESTRI;
15025      X86CC = X86::COND_O;
15026      break;
15027    case Intrinsic::x86_sse42_pcmpistris128:
15028      Opcode = X86ISD::PCMPISTRI;
15029      X86CC = X86::COND_S;
15030      break;
15031    case Intrinsic::x86_sse42_pcmpestris128:
15032      Opcode = X86ISD::PCMPESTRI;
15033      X86CC = X86::COND_S;
15034      break;
15035    case Intrinsic::x86_sse42_pcmpistriz128:
15036      Opcode = X86ISD::PCMPISTRI;
15037      X86CC = X86::COND_E;
15038      break;
15039    case Intrinsic::x86_sse42_pcmpestriz128:
15040      Opcode = X86ISD::PCMPESTRI;
15041      X86CC = X86::COND_E;
15042      break;
15043    }
15044    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
15045    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
15046    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
15047    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
15048                                DAG.getConstant(X86CC, MVT::i8),
15049                                SDValue(PCMP.getNode(), 1));
15050    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
15051  }
15052
15053  case Intrinsic::x86_sse42_pcmpistri128:
15054  case Intrinsic::x86_sse42_pcmpestri128: {
15055    unsigned Opcode;
15056    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
15057      Opcode = X86ISD::PCMPISTRI;
15058    else
15059      Opcode = X86ISD::PCMPESTRI;
15060
15061    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
15062    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
15063    return DAG.getNode(Opcode, dl, VTs, NewOps);
15064  }
15065  }
15066}
15067
15068static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
15069                              SDValue Src, SDValue Mask, SDValue Base,
15070                              SDValue Index, SDValue ScaleOp, SDValue Chain,
15071                              const X86Subtarget * Subtarget) {
15072  SDLoc dl(Op);
15073  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
15074  assert(C && "Invalid scale type");
15075  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
15076  EVT MaskVT = MVT::getVectorVT(MVT::i1,
15077                             Index.getSimpleValueType().getVectorNumElements());
15078  SDValue MaskInReg;
15079  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
15080  if (MaskC)
15081    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
15082  else
15083    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
15084  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
15085  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
15086  SDValue Segment = DAG.getRegister(0, MVT::i32);
15087  if (Src.getOpcode() == ISD::UNDEF)
15088    Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
15089  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
15090  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
15091  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
15092  return DAG.getMergeValues(RetOps, dl);
15093}
15094
15095static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
15096                               SDValue Src, SDValue Mask, SDValue Base,
15097                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
15098  SDLoc dl(Op);
15099  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
15100  assert(C && "Invalid scale type");
15101  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
15102  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
15103  SDValue Segment = DAG.getRegister(0, MVT::i32);
15104  EVT MaskVT = MVT::getVectorVT(MVT::i1,
15105                             Index.getSimpleValueType().getVectorNumElements());
15106  SDValue MaskInReg;
15107  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
15108  if (MaskC)
15109    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
15110  else
15111    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
15112  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
15113  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
15114  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
15115  return SDValue(Res, 1);
15116}
15117
15118static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
15119                               SDValue Mask, SDValue Base, SDValue Index,
15120                               SDValue ScaleOp, SDValue Chain) {
15121  SDLoc dl(Op);
15122  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
15123  assert(C && "Invalid scale type");
15124  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
15125  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
15126  SDValue Segment = DAG.getRegister(0, MVT::i32);
15127  EVT MaskVT =
15128    MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
15129  SDValue MaskInReg;
15130  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
15131  if (MaskC)
15132    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
15133  else
15134    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
15135  //SDVTList VTs = DAG.getVTList(MVT::Other);
15136  SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
15137  SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
15138  return SDValue(Res, 0);
15139}
15140
15141// getReadPerformanceCounter - Handles the lowering of builtin intrinsics that
15142// read performance monitor counters (x86_rdpmc).
15143static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
15144                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
15145                              SmallVectorImpl<SDValue> &Results) {
15146  assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
15147  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
15148  SDValue LO, HI;
15149
15150  // The ECX register is used to select the index of the performance counter
15151  // to read.
15152  SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
15153                                   N->getOperand(2));
15154  SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
15155
15156  // Reads the content of a 64-bit performance counter and returns it in the
15157  // registers EDX:EAX.
15158  if (Subtarget->is64Bit()) {
15159    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
15160    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
15161                            LO.getValue(2));
15162  } else {
15163    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
15164    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
15165                            LO.getValue(2));
15166  }
15167  Chain = HI.getValue(1);
15168
15169  if (Subtarget->is64Bit()) {
15170    // The EAX register is loaded with the low-order 32 bits. The EDX register
15171    // is loaded with the supported high-order bits of the counter.
15172    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
15173                              DAG.getConstant(32, MVT::i8));
15174    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
15175    Results.push_back(Chain);
15176    return;
15177  }
15178
15179  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
15180  SDValue Ops[] = { LO, HI };
15181  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
15182  Results.push_back(Pair);
15183  Results.push_back(Chain);
15184}
15185
15186// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
15187// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
15188// also used to custom lower READCYCLECOUNTER nodes.
15189static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
15190                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
15191                              SmallVectorImpl<SDValue> &Results) {
15192  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
15193  SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
15194  SDValue LO, HI;
15195
15196  // The processor's time-stamp counter (a 64-bit MSR) is stored into the
15197  // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
15198  // and the EAX register is loaded with the low-order 32 bits.
15199  if (Subtarget->is64Bit()) {
15200    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
15201    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
15202                            LO.getValue(2));
15203  } else {
15204    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
15205    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
15206                            LO.getValue(2));
15207  }
15208  SDValue Chain = HI.getValue(1);
15209
15210  if (Opcode == X86ISD::RDTSCP_DAG) {
15211    assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
15212
15213    // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
15214    // the ECX register. Add 'ecx' explicitly to the chain.
15215    SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
15216                                     HI.getValue(2));
15217    // Explicitly store the content of ECX at the location passed in input
15218    // to the 'rdtscp' intrinsic.
15219    Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
15220                         MachinePointerInfo(), false, false, 0);
15221  }
15222
15223  if (Subtarget->is64Bit()) {
15224    // The EDX register is loaded with the high-order 32 bits of the MSR, and
15225    // the EAX register is loaded with the low-order 32 bits.
15226    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
15227                              DAG.getConstant(32, MVT::i8));
15228    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
15229    Results.push_back(Chain);
15230    return;
15231  }
15232
15233  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
15234  SDValue Ops[] = { LO, HI };
15235  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
15236  Results.push_back(Pair);
15237  Results.push_back(Chain);
15238}
15239
15240static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
15241                                     SelectionDAG &DAG) {
15242  SmallVector<SDValue, 2> Results;
15243  SDLoc DL(Op);
15244  getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
15245                          Results);
15246  return DAG.getMergeValues(Results, DL);
15247}
15248
15249
15250static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
15251                                      SelectionDAG &DAG) {
15252  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
15253
15254  const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
15255  if (!IntrData)
15256    return SDValue();
15257
15258  SDLoc dl(Op);
15259  switch(IntrData->Type) {
15260  default:
15261    llvm_unreachable("Unknown Intrinsic Type");
15262    break;
15263  case RDSEED:
15264  case RDRAND: {
15265    // Emit the node with the right value type.
15266    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
15267    SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
15268
15269    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
15270    // Otherwise return the value from Rand, which is always 0, casted to i32.
15271    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
15272                      DAG.getConstant(1, Op->getValueType(1)),
15273                      DAG.getConstant(X86::COND_B, MVT::i32),
15274                      SDValue(Result.getNode(), 1) };
15275    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
15276                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
15277                                  Ops);
15278
15279    // Return { result, isValid, chain }.
15280    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
15281                       SDValue(Result.getNode(), 2));
15282  }
15283  case GATHER: {
15284  //gather(v1, mask, index, base, scale);
15285    SDValue Chain = Op.getOperand(0);
15286    SDValue Src   = Op.getOperand(2);
15287    SDValue Base  = Op.getOperand(3);
15288    SDValue Index = Op.getOperand(4);
15289    SDValue Mask  = Op.getOperand(5);
15290    SDValue Scale = Op.getOperand(6);
15291    return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
15292                          Subtarget);
15293  }
15294  case SCATTER: {
15295  //scatter(base, mask, index, v1, scale);
15296    SDValue Chain = Op.getOperand(0);
15297    SDValue Base  = Op.getOperand(2);
15298    SDValue Mask  = Op.getOperand(3);
15299    SDValue Index = Op.getOperand(4);
15300    SDValue Src   = Op.getOperand(5);
15301    SDValue Scale = Op.getOperand(6);
15302    return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
15303  }
15304  case PREFETCH: {
15305    SDValue Hint = Op.getOperand(6);
15306    unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue();
15307    assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1");
15308    unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
15309    SDValue Chain = Op.getOperand(0);
15310    SDValue Mask  = Op.getOperand(2);
15311    SDValue Index = Op.getOperand(3);
15312    SDValue Base  = Op.getOperand(4);
15313    SDValue Scale = Op.getOperand(5);
15314    return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
15315  }
15316  // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
15317  case RDTSC: {
15318    SmallVector<SDValue, 2> Results;
15319    getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, Results);
15320    return DAG.getMergeValues(Results, dl);
15321  }
15322  // Read Performance Monitoring Counters.
15323  case RDPMC: {
15324    SmallVector<SDValue, 2> Results;
15325    getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
15326    return DAG.getMergeValues(Results, dl);
15327  }
15328  // XTEST intrinsics.
15329  case XTEST: {
15330    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
15331    SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
15332    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
15333                                DAG.getConstant(X86::COND_NE, MVT::i8),
15334                                InTrans);
15335    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
15336    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
15337                       Ret, SDValue(InTrans.getNode(), 1));
15338  }
15339  // ADC/ADCX/SBB
15340  case ADX: {
15341    SmallVector<SDValue, 2> Results;
15342    SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
15343    SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
15344    SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
15345                                DAG.getConstant(-1, MVT::i8));
15346    SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
15347                              Op.getOperand(4), GenCF.getValue(1));
15348    SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
15349                                 Op.getOperand(5), MachinePointerInfo(),
15350                                 false, false, 0);
15351    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
15352                                DAG.getConstant(X86::COND_B, MVT::i8),
15353                                Res.getValue(1));
15354    Results.push_back(SetCC);
15355    Results.push_back(Store);
15356    return DAG.getMergeValues(Results, dl);
15357  }
15358  case COMPRESS_TO_MEM: {
15359    SDLoc dl(Op);
15360    SDValue Mask = Op.getOperand(4);
15361    SDValue DataToCompress = Op.getOperand(3);
15362    SDValue Addr = Op.getOperand(2);
15363    SDValue Chain = Op.getOperand(0);
15364
15365    if (isAllOnes(Mask)) // return just a store
15366      return DAG.getStore(Chain, dl, DataToCompress, Addr,
15367                          MachinePointerInfo(), false, false, 0);
15368
15369    EVT VT = DataToCompress.getValueType();
15370    EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
15371                                  VT.getVectorNumElements());
15372    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
15373                                     Mask.getValueType().getSizeInBits());
15374    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
15375                                DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
15376                                DAG.getIntPtrConstant(0));
15377
15378    SDValue Compressed =  DAG.getNode(IntrData->Opc0, dl, VT, VMask,
15379                                      DataToCompress, DAG.getUNDEF(VT));
15380    return DAG.getStore(Chain, dl, Compressed, Addr,
15381                        MachinePointerInfo(), false, false, 0);
15382  }
15383  case EXPAND_FROM_MEM: {
15384    SDLoc dl(Op);
15385    SDValue Mask = Op.getOperand(4);
15386    SDValue PathThru = Op.getOperand(3);
15387    SDValue Addr = Op.getOperand(2);
15388    SDValue Chain = Op.getOperand(0);
15389    EVT VT = Op.getValueType();
15390
15391    if (isAllOnes(Mask)) // return just a load
15392      return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false,
15393                         false, 0);
15394    EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
15395                                  VT.getVectorNumElements());
15396    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
15397                                     Mask.getValueType().getSizeInBits());
15398    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
15399                                DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
15400                                DAG.getIntPtrConstant(0));
15401
15402    SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(),
15403                                   false, false, false, 0);
15404
15405    SDValue Results[] = {
15406        DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToExpand, PathThru),
15407        Chain};
15408    return DAG.getMergeValues(Results, dl);
15409  }
15410  }
15411}
15412
15413SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
15414                                           SelectionDAG &DAG) const {
15415  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
15416  MFI->setReturnAddressIsTaken(true);
15417
15418  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15419    return SDValue();
15420
15421  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15422  SDLoc dl(Op);
15423  EVT PtrVT = getPointerTy();
15424
15425  if (Depth > 0) {
15426    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15427    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15428    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
15429    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15430                       DAG.getNode(ISD::ADD, dl, PtrVT,
15431                                   FrameAddr, Offset),
15432                       MachinePointerInfo(), false, false, false, 0);
15433  }
15434
15435  // Just load the return address.
15436  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
15437  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15438                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
15439}
15440
15441SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
15442  MachineFunction &MF = DAG.getMachineFunction();
15443  MachineFrameInfo *MFI = MF.getFrameInfo();
15444  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
15445  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15446  EVT VT = Op.getValueType();
15447
15448  MFI->setFrameAddressIsTaken(true);
15449
15450  if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
15451    // Depth > 0 makes no sense on targets which use Windows unwind codes.  It
15452    // is not possible to crawl up the stack without looking at the unwind codes
15453    // simultaneously.
15454    int FrameAddrIndex = FuncInfo->getFAIndex();
15455    if (!FrameAddrIndex) {
15456      // Set up a frame object for the return address.
15457      unsigned SlotSize = RegInfo->getSlotSize();
15458      FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject(
15459          SlotSize, /*Offset=*/INT64_MIN, /*IsImmutable=*/false);
15460      FuncInfo->setFAIndex(FrameAddrIndex);
15461    }
15462    return DAG.getFrameIndex(FrameAddrIndex, VT);
15463  }
15464
15465  unsigned FrameReg =
15466      RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
15467  SDLoc dl(Op);  // FIXME probably not meaningful
15468  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15469  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
15470          (FrameReg == X86::EBP && VT == MVT::i32)) &&
15471         "Invalid Frame Register!");
15472  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
15473  while (Depth--)
15474    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
15475                            MachinePointerInfo(),
15476                            false, false, false, 0);
15477  return FrameAddr;
15478}
15479
15480// FIXME? Maybe this could be a TableGen attribute on some registers and
15481// this table could be generated automatically from RegInfo.
15482unsigned X86TargetLowering::getRegisterByName(const char* RegName,
15483                                              EVT VT) const {
15484  unsigned Reg = StringSwitch<unsigned>(RegName)
15485                       .Case("esp", X86::ESP)
15486                       .Case("rsp", X86::RSP)
15487                       .Default(0);
15488  if (Reg)
15489    return Reg;
15490  report_fatal_error("Invalid register name global variable");
15491}
15492
15493SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
15494                                                     SelectionDAG &DAG) const {
15495  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15496  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
15497}
15498
15499SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
15500  SDValue Chain     = Op.getOperand(0);
15501  SDValue Offset    = Op.getOperand(1);
15502  SDValue Handler   = Op.getOperand(2);
15503  SDLoc dl      (Op);
15504
15505  EVT PtrVT = getPointerTy();
15506  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15507  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
15508  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
15509          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
15510         "Invalid Frame Register!");
15511  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
15512  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
15513
15514  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
15515                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
15516  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
15517  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
15518                       false, false, 0);
15519  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
15520
15521  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
15522                     DAG.getRegister(StoreAddrReg, PtrVT));
15523}
15524
15525SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
15526                                               SelectionDAG &DAG) const {
15527  SDLoc DL(Op);
15528  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
15529                     DAG.getVTList(MVT::i32, MVT::Other),
15530                     Op.getOperand(0), Op.getOperand(1));
15531}
15532
15533SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
15534                                                SelectionDAG &DAG) const {
15535  SDLoc DL(Op);
15536  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
15537                     Op.getOperand(0), Op.getOperand(1));
15538}
15539
15540static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
15541  return Op.getOperand(0);
15542}
15543
15544SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
15545                                                SelectionDAG &DAG) const {
15546  SDValue Root = Op.getOperand(0);
15547  SDValue Trmp = Op.getOperand(1); // trampoline
15548  SDValue FPtr = Op.getOperand(2); // nested function
15549  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
15550  SDLoc dl (Op);
15551
15552  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
15553  const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
15554
15555  if (Subtarget->is64Bit()) {
15556    SDValue OutChains[6];
15557
15558    // Large code-model.
15559    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
15560    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
15561
15562    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
15563    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
15564
15565    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
15566
15567    // Load the pointer to the nested function into R11.
15568    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
15569    SDValue Addr = Trmp;
15570    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
15571                                Addr, MachinePointerInfo(TrmpAddr),
15572                                false, false, 0);
15573
15574    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15575                       DAG.getConstant(2, MVT::i64));
15576    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
15577                                MachinePointerInfo(TrmpAddr, 2),
15578                                false, false, 2);
15579
15580    // Load the 'nest' parameter value into R10.
15581    // R10 is specified in X86CallingConv.td
15582    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
15583    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15584                       DAG.getConstant(10, MVT::i64));
15585    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
15586                                Addr, MachinePointerInfo(TrmpAddr, 10),
15587                                false, false, 0);
15588
15589    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15590                       DAG.getConstant(12, MVT::i64));
15591    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
15592                                MachinePointerInfo(TrmpAddr, 12),
15593                                false, false, 2);
15594
15595    // Jump to the nested function.
15596    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
15597    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15598                       DAG.getConstant(20, MVT::i64));
15599    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
15600                                Addr, MachinePointerInfo(TrmpAddr, 20),
15601                                false, false, 0);
15602
15603    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
15604    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15605                       DAG.getConstant(22, MVT::i64));
15606    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
15607                                MachinePointerInfo(TrmpAddr, 22),
15608                                false, false, 0);
15609
15610    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
15611  } else {
15612    const Function *Func =
15613      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
15614    CallingConv::ID CC = Func->getCallingConv();
15615    unsigned NestReg;
15616
15617    switch (CC) {
15618    default:
15619      llvm_unreachable("Unsupported calling convention");
15620    case CallingConv::C:
15621    case CallingConv::X86_StdCall: {
15622      // Pass 'nest' parameter in ECX.
15623      // Must be kept in sync with X86CallingConv.td
15624      NestReg = X86::ECX;
15625
15626      // Check that ECX wasn't needed by an 'inreg' parameter.
15627      FunctionType *FTy = Func->getFunctionType();
15628      const AttributeSet &Attrs = Func->getAttributes();
15629
15630      if (!Attrs.isEmpty() && !Func->isVarArg()) {
15631        unsigned InRegCount = 0;
15632        unsigned Idx = 1;
15633
15634        for (FunctionType::param_iterator I = FTy->param_begin(),
15635             E = FTy->param_end(); I != E; ++I, ++Idx)
15636          if (Attrs.hasAttribute(Idx, Attribute::InReg))
15637            // FIXME: should only count parameters that are lowered to integers.
15638            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
15639
15640        if (InRegCount > 2) {
15641          report_fatal_error("Nest register in use - reduce number of inreg"
15642                             " parameters!");
15643        }
15644      }
15645      break;
15646    }
15647    case CallingConv::X86_FastCall:
15648    case CallingConv::X86_ThisCall:
15649    case CallingConv::Fast:
15650      // Pass 'nest' parameter in EAX.
15651      // Must be kept in sync with X86CallingConv.td
15652      NestReg = X86::EAX;
15653      break;
15654    }
15655
15656    SDValue OutChains[4];
15657    SDValue Addr, Disp;
15658
15659    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
15660                       DAG.getConstant(10, MVT::i32));
15661    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
15662
15663    // This is storing the opcode for MOV32ri.
15664    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
15665    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
15666    OutChains[0] = DAG.getStore(Root, dl,
15667                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
15668                                Trmp, MachinePointerInfo(TrmpAddr),
15669                                false, false, 0);
15670
15671    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
15672                       DAG.getConstant(1, MVT::i32));
15673    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
15674                                MachinePointerInfo(TrmpAddr, 1),
15675                                false, false, 1);
15676
15677    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
15678    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
15679                       DAG.getConstant(5, MVT::i32));
15680    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
15681                                MachinePointerInfo(TrmpAddr, 5),
15682                                false, false, 1);
15683
15684    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
15685                       DAG.getConstant(6, MVT::i32));
15686    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
15687                                MachinePointerInfo(TrmpAddr, 6),
15688                                false, false, 1);
15689
15690    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
15691  }
15692}
15693
15694SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
15695                                            SelectionDAG &DAG) const {
15696  /*
15697   The rounding mode is in bits 11:10 of FPSR, and has the following
15698   settings:
15699     00 Round to nearest
15700     01 Round to -inf
15701     10 Round to +inf
15702     11 Round to 0
15703
15704  FLT_ROUNDS, on the other hand, expects the following:
15705    -1 Undefined
15706     0 Round to 0
15707     1 Round to nearest
15708     2 Round to +inf
15709     3 Round to -inf
15710
15711  To perform the conversion, we do:
15712    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
15713  */
15714
15715  MachineFunction &MF = DAG.getMachineFunction();
15716  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
15717  unsigned StackAlignment = TFI.getStackAlignment();
15718  MVT VT = Op.getSimpleValueType();
15719  SDLoc DL(Op);
15720
15721  // Save FP Control Word to stack slot
15722  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
15723  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
15724
15725  MachineMemOperand *MMO =
15726   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
15727                           MachineMemOperand::MOStore, 2, 2);
15728
15729  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
15730  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
15731                                          DAG.getVTList(MVT::Other),
15732                                          Ops, MVT::i16, MMO);
15733
15734  // Load FP Control Word from stack slot
15735  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
15736                            MachinePointerInfo(), false, false, false, 0);
15737
15738  // Transform as necessary
15739  SDValue CWD1 =
15740    DAG.getNode(ISD::SRL, DL, MVT::i16,
15741                DAG.getNode(ISD::AND, DL, MVT::i16,
15742                            CWD, DAG.getConstant(0x800, MVT::i16)),
15743                DAG.getConstant(11, MVT::i8));
15744  SDValue CWD2 =
15745    DAG.getNode(ISD::SRL, DL, MVT::i16,
15746                DAG.getNode(ISD::AND, DL, MVT::i16,
15747                            CWD, DAG.getConstant(0x400, MVT::i16)),
15748                DAG.getConstant(9, MVT::i8));
15749
15750  SDValue RetVal =
15751    DAG.getNode(ISD::AND, DL, MVT::i16,
15752                DAG.getNode(ISD::ADD, DL, MVT::i16,
15753                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
15754                            DAG.getConstant(1, MVT::i16)),
15755                DAG.getConstant(3, MVT::i16));
15756
15757  return DAG.getNode((VT.getSizeInBits() < 16 ?
15758                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
15759}
15760
15761static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
15762  MVT VT = Op.getSimpleValueType();
15763  EVT OpVT = VT;
15764  unsigned NumBits = VT.getSizeInBits();
15765  SDLoc dl(Op);
15766
15767  Op = Op.getOperand(0);
15768  if (VT == MVT::i8) {
15769    // Zero extend to i32 since there is not an i8 bsr.
15770    OpVT = MVT::i32;
15771    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
15772  }
15773
15774  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
15775  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
15776  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
15777
15778  // If src is zero (i.e. bsr sets ZF), returns NumBits.
15779  SDValue Ops[] = {
15780    Op,
15781    DAG.getConstant(NumBits+NumBits-1, OpVT),
15782    DAG.getConstant(X86::COND_E, MVT::i8),
15783    Op.getValue(1)
15784  };
15785  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
15786
15787  // Finally xor with NumBits-1.
15788  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
15789
15790  if (VT == MVT::i8)
15791    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
15792  return Op;
15793}
15794
15795static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
15796  MVT VT = Op.getSimpleValueType();
15797  EVT OpVT = VT;
15798  unsigned NumBits = VT.getSizeInBits();
15799  SDLoc dl(Op);
15800
15801  Op = Op.getOperand(0);
15802  if (VT == MVT::i8) {
15803    // Zero extend to i32 since there is not an i8 bsr.
15804    OpVT = MVT::i32;
15805    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
15806  }
15807
15808  // Issue a bsr (scan bits in reverse).
15809  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
15810  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
15811
15812  // And xor with NumBits-1.
15813  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
15814
15815  if (VT == MVT::i8)
15816    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
15817  return Op;
15818}
15819
15820static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
15821  MVT VT = Op.getSimpleValueType();
15822  unsigned NumBits = VT.getSizeInBits();
15823  SDLoc dl(Op);
15824  Op = Op.getOperand(0);
15825
15826  // Issue a bsf (scan bits forward) which also sets EFLAGS.
15827  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
15828  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
15829
15830  // If src is zero (i.e. bsf sets ZF), returns NumBits.
15831  SDValue Ops[] = {
15832    Op,
15833    DAG.getConstant(NumBits, VT),
15834    DAG.getConstant(X86::COND_E, MVT::i8),
15835    Op.getValue(1)
15836  };
15837  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
15838}
15839
15840// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
15841// ones, and then concatenate the result back.
15842static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
15843  MVT VT = Op.getSimpleValueType();
15844
15845  assert(VT.is256BitVector() && VT.isInteger() &&
15846         "Unsupported value type for operation");
15847
15848  unsigned NumElems = VT.getVectorNumElements();
15849  SDLoc dl(Op);
15850
15851  // Extract the LHS vectors
15852  SDValue LHS = Op.getOperand(0);
15853  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
15854  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
15855
15856  // Extract the RHS vectors
15857  SDValue RHS = Op.getOperand(1);
15858  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
15859  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
15860
15861  MVT EltVT = VT.getVectorElementType();
15862  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
15863
15864  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
15865                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
15866                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
15867}
15868
15869static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
15870  assert(Op.getSimpleValueType().is256BitVector() &&
15871         Op.getSimpleValueType().isInteger() &&
15872         "Only handle AVX 256-bit vector integer operation");
15873  return Lower256IntArith(Op, DAG);
15874}
15875
15876static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
15877  assert(Op.getSimpleValueType().is256BitVector() &&
15878         Op.getSimpleValueType().isInteger() &&
15879         "Only handle AVX 256-bit vector integer operation");
15880  return Lower256IntArith(Op, DAG);
15881}
15882
15883static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
15884                        SelectionDAG &DAG) {
15885  SDLoc dl(Op);
15886  MVT VT = Op.getSimpleValueType();
15887
15888  // Decompose 256-bit ops into smaller 128-bit ops.
15889  if (VT.is256BitVector() && !Subtarget->hasInt256())
15890    return Lower256IntArith(Op, DAG);
15891
15892  SDValue A = Op.getOperand(0);
15893  SDValue B = Op.getOperand(1);
15894
15895  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
15896  if (VT == MVT::v4i32) {
15897    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
15898           "Should not custom lower when pmuldq is available!");
15899
15900    // Extract the odd parts.
15901    static const int UnpackMask[] = { 1, -1, 3, -1 };
15902    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
15903    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
15904
15905    // Multiply the even parts.
15906    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
15907    // Now multiply odd parts.
15908    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
15909
15910    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
15911    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
15912
15913    // Merge the two vectors back together with a shuffle. This expands into 2
15914    // shuffles.
15915    static const int ShufMask[] = { 0, 4, 2, 6 };
15916    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
15917  }
15918
15919  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
15920         "Only know how to lower V2I64/V4I64/V8I64 multiply");
15921
15922  //  Ahi = psrlqi(a, 32);
15923  //  Bhi = psrlqi(b, 32);
15924  //
15925  //  AloBlo = pmuludq(a, b);
15926  //  AloBhi = pmuludq(a, Bhi);
15927  //  AhiBlo = pmuludq(Ahi, b);
15928
15929  //  AloBhi = psllqi(AloBhi, 32);
15930  //  AhiBlo = psllqi(AhiBlo, 32);
15931  //  return AloBlo + AloBhi + AhiBlo;
15932
15933  SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
15934  SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
15935
15936  // Bit cast to 32-bit vectors for MULUDQ
15937  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
15938                                  (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
15939  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
15940  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
15941  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
15942  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
15943
15944  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
15945  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
15946  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
15947
15948  AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
15949  AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
15950
15951  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
15952  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
15953}
15954
15955SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
15956  assert(Subtarget->isTargetWin64() && "Unexpected target");
15957  EVT VT = Op.getValueType();
15958  assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
15959         "Unexpected return type for lowering");
15960
15961  RTLIB::Libcall LC;
15962  bool isSigned;
15963  switch (Op->getOpcode()) {
15964  default: llvm_unreachable("Unexpected request for libcall!");
15965  case ISD::SDIV:      isSigned = true;  LC = RTLIB::SDIV_I128;    break;
15966  case ISD::UDIV:      isSigned = false; LC = RTLIB::UDIV_I128;    break;
15967  case ISD::SREM:      isSigned = true;  LC = RTLIB::SREM_I128;    break;
15968  case ISD::UREM:      isSigned = false; LC = RTLIB::UREM_I128;    break;
15969  case ISD::SDIVREM:   isSigned = true;  LC = RTLIB::SDIVREM_I128; break;
15970  case ISD::UDIVREM:   isSigned = false; LC = RTLIB::UDIVREM_I128; break;
15971  }
15972
15973  SDLoc dl(Op);
15974  SDValue InChain = DAG.getEntryNode();
15975
15976  TargetLowering::ArgListTy Args;
15977  TargetLowering::ArgListEntry Entry;
15978  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
15979    EVT ArgVT = Op->getOperand(i).getValueType();
15980    assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
15981           "Unexpected argument type for lowering");
15982    SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
15983    Entry.Node = StackPtr;
15984    InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
15985                           false, false, 16);
15986    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
15987    Entry.Ty = PointerType::get(ArgTy,0);
15988    Entry.isSExt = false;
15989    Entry.isZExt = false;
15990    Args.push_back(Entry);
15991  }
15992
15993  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
15994                                         getPointerTy());
15995
15996  TargetLowering::CallLoweringInfo CLI(DAG);
15997  CLI.setDebugLoc(dl).setChain(InChain)
15998    .setCallee(getLibcallCallingConv(LC),
15999               static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
16000               Callee, std::move(Args), 0)
16001    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
16002
16003  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
16004  return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
16005}
16006
16007static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
16008                             SelectionDAG &DAG) {
16009  SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
16010  EVT VT = Op0.getValueType();
16011  SDLoc dl(Op);
16012
16013  assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
16014         (VT == MVT::v8i32 && Subtarget->hasInt256()));
16015
16016  // PMULxD operations multiply each even value (starting at 0) of LHS with
16017  // the related value of RHS and produce a widen result.
16018  // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
16019  // => <2 x i64> <ae|cg>
16020  //
16021  // In other word, to have all the results, we need to perform two PMULxD:
16022  // 1. one with the even values.
16023  // 2. one with the odd values.
16024  // To achieve #2, with need to place the odd values at an even position.
16025  //
16026  // Place the odd value at an even position (basically, shift all values 1
16027  // step to the left):
16028  const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
16029  // <a|b|c|d> => <b|undef|d|undef>
16030  SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
16031  // <e|f|g|h> => <f|undef|h|undef>
16032  SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
16033
16034  // Emit two multiplies, one for the lower 2 ints and one for the higher 2
16035  // ints.
16036  MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
16037  bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
16038  unsigned Opcode =
16039      (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
16040  // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
16041  // => <2 x i64> <ae|cg>
16042  SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
16043                             DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
16044  // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
16045  // => <2 x i64> <bf|dh>
16046  SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
16047                             DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
16048
16049  // Shuffle it back into the right order.
16050  SDValue Highs, Lows;
16051  if (VT == MVT::v8i32) {
16052    const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
16053    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
16054    const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
16055    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
16056  } else {
16057    const int HighMask[] = {1, 5, 3, 7};
16058    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
16059    const int LowMask[] = {0, 4, 2, 6};
16060    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
16061  }
16062
16063  // If we have a signed multiply but no PMULDQ fix up the high parts of a
16064  // unsigned multiply.
16065  if (IsSigned && !Subtarget->hasSSE41()) {
16066    SDValue ShAmt =
16067        DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
16068    SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
16069                             DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
16070    SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
16071                             DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
16072
16073    SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
16074    Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
16075  }
16076
16077  // The first result of MUL_LOHI is actually the low value, followed by the
16078  // high value.
16079  SDValue Ops[] = {Lows, Highs};
16080  return DAG.getMergeValues(Ops, dl);
16081}
16082
16083static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
16084                                         const X86Subtarget *Subtarget) {
16085  MVT VT = Op.getSimpleValueType();
16086  SDLoc dl(Op);
16087  SDValue R = Op.getOperand(0);
16088  SDValue Amt = Op.getOperand(1);
16089
16090  // Optimize shl/srl/sra with constant shift amount.
16091  if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
16092    if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
16093      uint64_t ShiftAmt = ShiftConst->getZExtValue();
16094
16095      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
16096          (Subtarget->hasInt256() &&
16097           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
16098          (Subtarget->hasAVX512() &&
16099           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
16100        if (Op.getOpcode() == ISD::SHL)
16101          return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
16102                                            DAG);
16103        if (Op.getOpcode() == ISD::SRL)
16104          return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
16105                                            DAG);
16106        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
16107          return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
16108                                            DAG);
16109      }
16110
16111      if (VT == MVT::v16i8 || (Subtarget->hasInt256() && VT == MVT::v32i8)) {
16112        unsigned NumElts = VT.getVectorNumElements();
16113        MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
16114
16115        if (Op.getOpcode() == ISD::SHL) {
16116          // Make a large shift.
16117          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
16118                                                   R, ShiftAmt, DAG);
16119          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
16120          // Zero out the rightmost bits.
16121          SmallVector<SDValue, 32> V(
16122              NumElts, DAG.getConstant(uint8_t(-1U << ShiftAmt), MVT::i8));
16123          return DAG.getNode(ISD::AND, dl, VT, SHL,
16124                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
16125        }
16126        if (Op.getOpcode() == ISD::SRL) {
16127          // Make a large shift.
16128          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
16129                                                   R, ShiftAmt, DAG);
16130          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
16131          // Zero out the leftmost bits.
16132          SmallVector<SDValue, 32> V(
16133              NumElts, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, MVT::i8));
16134          return DAG.getNode(ISD::AND, dl, VT, SRL,
16135                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
16136        }
16137        if (Op.getOpcode() == ISD::SRA) {
16138          if (ShiftAmt == 7) {
16139            // R s>> 7  ===  R s< 0
16140            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
16141            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
16142          }
16143
16144          // R s>> a === ((R u>> a) ^ m) - m
16145          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
16146          SmallVector<SDValue, 32> V(NumElts,
16147                                     DAG.getConstant(128 >> ShiftAmt, MVT::i8));
16148          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
16149          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
16150          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
16151          return Res;
16152        }
16153        llvm_unreachable("Unknown shift opcode.");
16154      }
16155    }
16156  }
16157
16158  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
16159  if (!Subtarget->is64Bit() &&
16160      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
16161      Amt.getOpcode() == ISD::BITCAST &&
16162      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
16163    Amt = Amt.getOperand(0);
16164    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
16165                     VT.getVectorNumElements();
16166    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
16167    uint64_t ShiftAmt = 0;
16168    for (unsigned i = 0; i != Ratio; ++i) {
16169      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
16170      if (!C)
16171        return SDValue();
16172      // 6 == Log2(64)
16173      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
16174    }
16175    // Check remaining shift amounts.
16176    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
16177      uint64_t ShAmt = 0;
16178      for (unsigned j = 0; j != Ratio; ++j) {
16179        ConstantSDNode *C =
16180          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
16181        if (!C)
16182          return SDValue();
16183        // 6 == Log2(64)
16184        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
16185      }
16186      if (ShAmt != ShiftAmt)
16187        return SDValue();
16188    }
16189    switch (Op.getOpcode()) {
16190    default:
16191      llvm_unreachable("Unknown shift opcode!");
16192    case ISD::SHL:
16193      return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
16194                                        DAG);
16195    case ISD::SRL:
16196      return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
16197                                        DAG);
16198    case ISD::SRA:
16199      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
16200                                        DAG);
16201    }
16202  }
16203
16204  return SDValue();
16205}
16206
16207static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
16208                                        const X86Subtarget* Subtarget) {
16209  MVT VT = Op.getSimpleValueType();
16210  SDLoc dl(Op);
16211  SDValue R = Op.getOperand(0);
16212  SDValue Amt = Op.getOperand(1);
16213
16214  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
16215      VT == MVT::v4i32 || VT == MVT::v8i16 ||
16216      (Subtarget->hasInt256() &&
16217       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
16218        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
16219       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
16220    SDValue BaseShAmt;
16221    EVT EltVT = VT.getVectorElementType();
16222
16223    if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) {
16224      // Check if this build_vector node is doing a splat.
16225      // If so, then set BaseShAmt equal to the splat value.
16226      BaseShAmt = BV->getSplatValue();
16227      if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF)
16228        BaseShAmt = SDValue();
16229    } else {
16230      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
16231        Amt = Amt.getOperand(0);
16232
16233      ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt);
16234      if (SVN && SVN->isSplat()) {
16235        unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
16236        SDValue InVec = Amt.getOperand(0);
16237        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
16238          assert((SplatIdx < InVec.getValueType().getVectorNumElements()) &&
16239                 "Unexpected shuffle index found!");
16240          BaseShAmt = InVec.getOperand(SplatIdx);
16241        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
16242           if (ConstantSDNode *C =
16243               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
16244             if (C->getZExtValue() == SplatIdx)
16245               BaseShAmt = InVec.getOperand(1);
16246           }
16247        }
16248
16249        if (!BaseShAmt)
16250          // Avoid introducing an extract element from a shuffle.
16251          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
16252                                    DAG.getIntPtrConstant(SplatIdx));
16253      }
16254    }
16255
16256    if (BaseShAmt.getNode()) {
16257      assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
16258      if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
16259        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
16260      else if (EltVT.bitsLT(MVT::i32))
16261        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
16262
16263      switch (Op.getOpcode()) {
16264      default:
16265        llvm_unreachable("Unknown shift opcode!");
16266      case ISD::SHL:
16267        switch (VT.SimpleTy) {
16268        default: return SDValue();
16269        case MVT::v2i64:
16270        case MVT::v4i32:
16271        case MVT::v8i16:
16272        case MVT::v4i64:
16273        case MVT::v8i32:
16274        case MVT::v16i16:
16275        case MVT::v16i32:
16276        case MVT::v8i64:
16277          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
16278        }
16279      case ISD::SRA:
16280        switch (VT.SimpleTy) {
16281        default: return SDValue();
16282        case MVT::v4i32:
16283        case MVT::v8i16:
16284        case MVT::v8i32:
16285        case MVT::v16i16:
16286        case MVT::v16i32:
16287        case MVT::v8i64:
16288          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
16289        }
16290      case ISD::SRL:
16291        switch (VT.SimpleTy) {
16292        default: return SDValue();
16293        case MVT::v2i64:
16294        case MVT::v4i32:
16295        case MVT::v8i16:
16296        case MVT::v4i64:
16297        case MVT::v8i32:
16298        case MVT::v16i16:
16299        case MVT::v16i32:
16300        case MVT::v8i64:
16301          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
16302        }
16303      }
16304    }
16305  }
16306
16307  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
16308  if (!Subtarget->is64Bit() &&
16309      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
16310      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
16311      Amt.getOpcode() == ISD::BITCAST &&
16312      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
16313    Amt = Amt.getOperand(0);
16314    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
16315                     VT.getVectorNumElements();
16316    std::vector<SDValue> Vals(Ratio);
16317    for (unsigned i = 0; i != Ratio; ++i)
16318      Vals[i] = Amt.getOperand(i);
16319    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
16320      for (unsigned j = 0; j != Ratio; ++j)
16321        if (Vals[j] != Amt.getOperand(i + j))
16322          return SDValue();
16323    }
16324    switch (Op.getOpcode()) {
16325    default:
16326      llvm_unreachable("Unknown shift opcode!");
16327    case ISD::SHL:
16328      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
16329    case ISD::SRL:
16330      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
16331    case ISD::SRA:
16332      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
16333    }
16334  }
16335
16336  return SDValue();
16337}
16338
16339static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
16340                          SelectionDAG &DAG) {
16341  MVT VT = Op.getSimpleValueType();
16342  SDLoc dl(Op);
16343  SDValue R = Op.getOperand(0);
16344  SDValue Amt = Op.getOperand(1);
16345
16346  assert(VT.isVector() && "Custom lowering only for vector shifts!");
16347  assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
16348
16349  if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
16350    return V;
16351
16352  if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
16353      return V;
16354
16355  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
16356    return Op;
16357
16358  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
16359  if (Subtarget->hasInt256()) {
16360    if (Op.getOpcode() == ISD::SRL &&
16361        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
16362         VT == MVT::v4i64 || VT == MVT::v8i32))
16363      return Op;
16364    if (Op.getOpcode() == ISD::SHL &&
16365        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
16366         VT == MVT::v4i64 || VT == MVT::v8i32))
16367      return Op;
16368    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
16369      return Op;
16370  }
16371
16372  // 2i64 vector logical shifts can efficiently avoid scalarization - do the
16373  // shifts per-lane and then shuffle the partial results back together.
16374  if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
16375    // Splat the shift amounts so the scalar shifts above will catch it.
16376    SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
16377    SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
16378    SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
16379    SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
16380    return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
16381  }
16382
16383  // If possible, lower this packed shift into a vector multiply instead of
16384  // expanding it into a sequence of scalar shifts.
16385  // Do this only if the vector shift count is a constant build_vector.
16386  if (Op.getOpcode() == ISD::SHL &&
16387      (VT == MVT::v8i16 || VT == MVT::v4i32 ||
16388       (Subtarget->hasInt256() && VT == MVT::v16i16)) &&
16389      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
16390    SmallVector<SDValue, 8> Elts;
16391    EVT SVT = VT.getScalarType();
16392    unsigned SVTBits = SVT.getSizeInBits();
16393    const APInt &One = APInt(SVTBits, 1);
16394    unsigned NumElems = VT.getVectorNumElements();
16395
16396    for (unsigned i=0; i !=NumElems; ++i) {
16397      SDValue Op = Amt->getOperand(i);
16398      if (Op->getOpcode() == ISD::UNDEF) {
16399        Elts.push_back(Op);
16400        continue;
16401      }
16402
16403      ConstantSDNode *ND = cast<ConstantSDNode>(Op);
16404      const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue());
16405      uint64_t ShAmt = C.getZExtValue();
16406      if (ShAmt >= SVTBits) {
16407        Elts.push_back(DAG.getUNDEF(SVT));
16408        continue;
16409      }
16410      Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT));
16411    }
16412    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
16413    return DAG.getNode(ISD::MUL, dl, VT, R, BV);
16414  }
16415
16416  // Lower SHL with variable shift amount.
16417  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
16418    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
16419
16420    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
16421    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
16422    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
16423    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
16424  }
16425
16426  // If possible, lower this shift as a sequence of two shifts by
16427  // constant plus a MOVSS/MOVSD instead of scalarizing it.
16428  // Example:
16429  //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
16430  //
16431  // Could be rewritten as:
16432  //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
16433  //
16434  // The advantage is that the two shifts from the example would be
16435  // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
16436  // the vector shift into four scalar shifts plus four pairs of vector
16437  // insert/extract.
16438  if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
16439      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
16440    unsigned TargetOpcode = X86ISD::MOVSS;
16441    bool CanBeSimplified;
16442    // The splat value for the first packed shift (the 'X' from the example).
16443    SDValue Amt1 = Amt->getOperand(0);
16444    // The splat value for the second packed shift (the 'Y' from the example).
16445    SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
16446                                        Amt->getOperand(2);
16447
16448    // See if it is possible to replace this node with a sequence of
16449    // two shifts followed by a MOVSS/MOVSD
16450    if (VT == MVT::v4i32) {
16451      // Check if it is legal to use a MOVSS.
16452      CanBeSimplified = Amt2 == Amt->getOperand(2) &&
16453                        Amt2 == Amt->getOperand(3);
16454      if (!CanBeSimplified) {
16455        // Otherwise, check if we can still simplify this node using a MOVSD.
16456        CanBeSimplified = Amt1 == Amt->getOperand(1) &&
16457                          Amt->getOperand(2) == Amt->getOperand(3);
16458        TargetOpcode = X86ISD::MOVSD;
16459        Amt2 = Amt->getOperand(2);
16460      }
16461    } else {
16462      // Do similar checks for the case where the machine value type
16463      // is MVT::v8i16.
16464      CanBeSimplified = Amt1 == Amt->getOperand(1);
16465      for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
16466        CanBeSimplified = Amt2 == Amt->getOperand(i);
16467
16468      if (!CanBeSimplified) {
16469        TargetOpcode = X86ISD::MOVSD;
16470        CanBeSimplified = true;
16471        Amt2 = Amt->getOperand(4);
16472        for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
16473          CanBeSimplified = Amt1 == Amt->getOperand(i);
16474        for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
16475          CanBeSimplified = Amt2 == Amt->getOperand(j);
16476      }
16477    }
16478
16479    if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
16480        isa<ConstantSDNode>(Amt2)) {
16481      // Replace this node with two shifts followed by a MOVSS/MOVSD.
16482      EVT CastVT = MVT::v4i32;
16483      SDValue Splat1 =
16484        DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
16485      SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
16486      SDValue Splat2 =
16487        DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
16488      SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
16489      if (TargetOpcode == X86ISD::MOVSD)
16490        CastVT = MVT::v2i64;
16491      SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
16492      SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
16493      SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
16494                                            BitCast1, DAG);
16495      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
16496    }
16497  }
16498
16499  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
16500    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
16501
16502    // a = a << 5;
16503    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
16504    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
16505
16506    // Turn 'a' into a mask suitable for VSELECT
16507    SDValue VSelM = DAG.getConstant(0x80, VT);
16508    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
16509    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
16510
16511    SDValue CM1 = DAG.getConstant(0x0f, VT);
16512    SDValue CM2 = DAG.getConstant(0x3f, VT);
16513
16514    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
16515    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
16516    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
16517    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
16518    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
16519
16520    // a += a
16521    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
16522    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
16523    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
16524
16525    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
16526    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
16527    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
16528    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
16529    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
16530
16531    // a += a
16532    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
16533    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
16534    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
16535
16536    // return VSELECT(r, r+r, a);
16537    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
16538                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
16539    return R;
16540  }
16541
16542  // It's worth extending once and using the v8i32 shifts for 16-bit types, but
16543  // the extra overheads to get from v16i8 to v8i32 make the existing SSE
16544  // solution better.
16545  if (Subtarget->hasInt256() && VT == MVT::v8i16) {
16546    MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16;
16547    unsigned ExtOpc =
16548        Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
16549    R = DAG.getNode(ExtOpc, dl, NewVT, R);
16550    Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt);
16551    return DAG.getNode(ISD::TRUNCATE, dl, VT,
16552                       DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt));
16553  }
16554
16555  // Decompose 256-bit shifts into smaller 128-bit shifts.
16556  if (VT.is256BitVector()) {
16557    unsigned NumElems = VT.getVectorNumElements();
16558    MVT EltVT = VT.getVectorElementType();
16559    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
16560
16561    // Extract the two vectors
16562    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
16563    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
16564
16565    // Recreate the shift amount vectors
16566    SDValue Amt1, Amt2;
16567    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
16568      // Constant shift amount
16569      SmallVector<SDValue, 8> Ops(Amt->op_begin(), Amt->op_begin() + NumElems);
16570      ArrayRef<SDValue> Amt1Csts = makeArrayRef(Ops).slice(0, NumElems / 2);
16571      ArrayRef<SDValue> Amt2Csts = makeArrayRef(Ops).slice(NumElems / 2);
16572
16573      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
16574      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
16575    } else {
16576      // Variable shift amount
16577      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
16578      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
16579    }
16580
16581    // Issue new vector shifts for the smaller types
16582    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
16583    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
16584
16585    // Concatenate the result back
16586    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
16587  }
16588
16589  return SDValue();
16590}
16591
16592static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
16593  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
16594  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
16595  // looks for this combo and may remove the "setcc" instruction if the "setcc"
16596  // has only one use.
16597  SDNode *N = Op.getNode();
16598  SDValue LHS = N->getOperand(0);
16599  SDValue RHS = N->getOperand(1);
16600  unsigned BaseOp = 0;
16601  unsigned Cond = 0;
16602  SDLoc DL(Op);
16603  switch (Op.getOpcode()) {
16604  default: llvm_unreachable("Unknown ovf instruction!");
16605  case ISD::SADDO:
16606    // A subtract of one will be selected as a INC. Note that INC doesn't
16607    // set CF, so we can't do this for UADDO.
16608    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
16609      if (C->isOne()) {
16610        BaseOp = X86ISD::INC;
16611        Cond = X86::COND_O;
16612        break;
16613      }
16614    BaseOp = X86ISD::ADD;
16615    Cond = X86::COND_O;
16616    break;
16617  case ISD::UADDO:
16618    BaseOp = X86ISD::ADD;
16619    Cond = X86::COND_B;
16620    break;
16621  case ISD::SSUBO:
16622    // A subtract of one will be selected as a DEC. Note that DEC doesn't
16623    // set CF, so we can't do this for USUBO.
16624    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
16625      if (C->isOne()) {
16626        BaseOp = X86ISD::DEC;
16627        Cond = X86::COND_O;
16628        break;
16629      }
16630    BaseOp = X86ISD::SUB;
16631    Cond = X86::COND_O;
16632    break;
16633  case ISD::USUBO:
16634    BaseOp = X86ISD::SUB;
16635    Cond = X86::COND_B;
16636    break;
16637  case ISD::SMULO:
16638    BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
16639    Cond = X86::COND_O;
16640    break;
16641  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
16642    if (N->getValueType(0) == MVT::i8) {
16643      BaseOp = X86ISD::UMUL8;
16644      Cond = X86::COND_O;
16645      break;
16646    }
16647    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
16648                                 MVT::i32);
16649    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
16650
16651    SDValue SetCC =
16652      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16653                  DAG.getConstant(X86::COND_O, MVT::i32),
16654                  SDValue(Sum.getNode(), 2));
16655
16656    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
16657  }
16658  }
16659
16660  // Also sets EFLAGS.
16661  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
16662  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
16663
16664  SDValue SetCC =
16665    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
16666                DAG.getConstant(Cond, MVT::i32),
16667                SDValue(Sum.getNode(), 1));
16668
16669  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
16670}
16671
16672/// Returns true if the operand type is exactly twice the native width, and
16673/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
16674/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
16675/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
16676bool X86TargetLowering::needsCmpXchgNb(const Type *MemType) const {
16677  unsigned OpWidth = MemType->getPrimitiveSizeInBits();
16678
16679  if (OpWidth == 64)
16680    return !Subtarget->is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
16681  else if (OpWidth == 128)
16682    return Subtarget->hasCmpxchg16b();
16683  else
16684    return false;
16685}
16686
16687bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
16688  return needsCmpXchgNb(SI->getValueOperand()->getType());
16689}
16690
16691// Note: this turns large loads into lock cmpxchg8b/16b.
16692// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
16693bool X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
16694  auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
16695  return needsCmpXchgNb(PTy->getElementType());
16696}
16697
16698TargetLoweringBase::AtomicRMWExpansionKind
16699X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
16700  unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
16701  const Type *MemType = AI->getType();
16702
16703  // If the operand is too big, we must see if cmpxchg8/16b is available
16704  // and default to library calls otherwise.
16705  if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
16706    return needsCmpXchgNb(MemType) ? AtomicRMWExpansionKind::CmpXChg
16707                                   : AtomicRMWExpansionKind::None;
16708  }
16709
16710  AtomicRMWInst::BinOp Op = AI->getOperation();
16711  switch (Op) {
16712  default:
16713    llvm_unreachable("Unknown atomic operation");
16714  case AtomicRMWInst::Xchg:
16715  case AtomicRMWInst::Add:
16716  case AtomicRMWInst::Sub:
16717    // It's better to use xadd, xsub or xchg for these in all cases.
16718    return AtomicRMWExpansionKind::None;
16719  case AtomicRMWInst::Or:
16720  case AtomicRMWInst::And:
16721  case AtomicRMWInst::Xor:
16722    // If the atomicrmw's result isn't actually used, we can just add a "lock"
16723    // prefix to a normal instruction for these operations.
16724    return !AI->use_empty() ? AtomicRMWExpansionKind::CmpXChg
16725                            : AtomicRMWExpansionKind::None;
16726  case AtomicRMWInst::Nand:
16727  case AtomicRMWInst::Max:
16728  case AtomicRMWInst::Min:
16729  case AtomicRMWInst::UMax:
16730  case AtomicRMWInst::UMin:
16731    // These always require a non-trivial set of data operations on x86. We must
16732    // use a cmpxchg loop.
16733    return AtomicRMWExpansionKind::CmpXChg;
16734  }
16735}
16736
16737static bool hasMFENCE(const X86Subtarget& Subtarget) {
16738  // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
16739  // no-sse2). There isn't any reason to disable it if the target processor
16740  // supports it.
16741  return Subtarget.hasSSE2() || Subtarget.is64Bit();
16742}
16743
16744LoadInst *
16745X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
16746  unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
16747  const Type *MemType = AI->getType();
16748  // Accesses larger than the native width are turned into cmpxchg/libcalls, so
16749  // there is no benefit in turning such RMWs into loads, and it is actually
16750  // harmful as it introduces a mfence.
16751  if (MemType->getPrimitiveSizeInBits() > NativeWidth)
16752    return nullptr;
16753
16754  auto Builder = IRBuilder<>(AI);
16755  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16756  auto SynchScope = AI->getSynchScope();
16757  // We must restrict the ordering to avoid generating loads with Release or
16758  // ReleaseAcquire orderings.
16759  auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
16760  auto Ptr = AI->getPointerOperand();
16761
16762  // Before the load we need a fence. Here is an example lifted from
16763  // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
16764  // is required:
16765  // Thread 0:
16766  //   x.store(1, relaxed);
16767  //   r1 = y.fetch_add(0, release);
16768  // Thread 1:
16769  //   y.fetch_add(42, acquire);
16770  //   r2 = x.load(relaxed);
16771  // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
16772  // lowered to just a load without a fence. A mfence flushes the store buffer,
16773  // making the optimization clearly correct.
16774  // FIXME: it is required if isAtLeastRelease(Order) but it is not clear
16775  // otherwise, we might be able to be more agressive on relaxed idempotent
16776  // rmw. In practice, they do not look useful, so we don't try to be
16777  // especially clever.
16778  if (SynchScope == SingleThread) {
16779    // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
16780    // the IR level, so we must wrap it in an intrinsic.
16781    return nullptr;
16782  } else if (hasMFENCE(*Subtarget)) {
16783    Function *MFence = llvm::Intrinsic::getDeclaration(M,
16784            Intrinsic::x86_sse2_mfence);
16785    Builder.CreateCall(MFence);
16786  } else {
16787    // FIXME: it might make sense to use a locked operation here but on a
16788    // different cache-line to prevent cache-line bouncing. In practice it
16789    // is probably a small win, and x86 processors without mfence are rare
16790    // enough that we do not bother.
16791    return nullptr;
16792  }
16793
16794  // Finally we can emit the atomic load.
16795  LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
16796          AI->getType()->getPrimitiveSizeInBits());
16797  Loaded->setAtomic(Order, SynchScope);
16798  AI->replaceAllUsesWith(Loaded);
16799  AI->eraseFromParent();
16800  return Loaded;
16801}
16802
16803static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
16804                                 SelectionDAG &DAG) {
16805  SDLoc dl(Op);
16806  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
16807    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
16808  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
16809    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
16810
16811  // The only fence that needs an instruction is a sequentially-consistent
16812  // cross-thread fence.
16813  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
16814    if (hasMFENCE(*Subtarget))
16815      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
16816
16817    SDValue Chain = Op.getOperand(0);
16818    SDValue Zero = DAG.getConstant(0, MVT::i32);
16819    SDValue Ops[] = {
16820      DAG.getRegister(X86::ESP, MVT::i32), // Base
16821      DAG.getTargetConstant(1, MVT::i8),   // Scale
16822      DAG.getRegister(0, MVT::i32),        // Index
16823      DAG.getTargetConstant(0, MVT::i32),  // Disp
16824      DAG.getRegister(0, MVT::i32),        // Segment.
16825      Zero,
16826      Chain
16827    };
16828    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
16829    return SDValue(Res, 0);
16830  }
16831
16832  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
16833  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
16834}
16835
16836static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
16837                             SelectionDAG &DAG) {
16838  MVT T = Op.getSimpleValueType();
16839  SDLoc DL(Op);
16840  unsigned Reg = 0;
16841  unsigned size = 0;
16842  switch(T.SimpleTy) {
16843  default: llvm_unreachable("Invalid value type!");
16844  case MVT::i8:  Reg = X86::AL;  size = 1; break;
16845  case MVT::i16: Reg = X86::AX;  size = 2; break;
16846  case MVT::i32: Reg = X86::EAX; size = 4; break;
16847  case MVT::i64:
16848    assert(Subtarget->is64Bit() && "Node not type legal!");
16849    Reg = X86::RAX; size = 8;
16850    break;
16851  }
16852  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
16853                                  Op.getOperand(2), SDValue());
16854  SDValue Ops[] = { cpIn.getValue(0),
16855                    Op.getOperand(1),
16856                    Op.getOperand(3),
16857                    DAG.getTargetConstant(size, MVT::i8),
16858                    cpIn.getValue(1) };
16859  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
16860  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
16861  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
16862                                           Ops, T, MMO);
16863
16864  SDValue cpOut =
16865    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
16866  SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
16867                                      MVT::i32, cpOut.getValue(2));
16868  SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
16869                                DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
16870
16871  DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
16872  DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
16873  DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
16874  return SDValue();
16875}
16876
16877static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
16878                            SelectionDAG &DAG) {
16879  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
16880  MVT DstVT = Op.getSimpleValueType();
16881
16882  if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
16883    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
16884    if (DstVT != MVT::f64)
16885      // This conversion needs to be expanded.
16886      return SDValue();
16887
16888    SDValue InVec = Op->getOperand(0);
16889    SDLoc dl(Op);
16890    unsigned NumElts = SrcVT.getVectorNumElements();
16891    EVT SVT = SrcVT.getVectorElementType();
16892
16893    // Widen the vector in input in the case of MVT::v2i32.
16894    // Example: from MVT::v2i32 to MVT::v4i32.
16895    SmallVector<SDValue, 16> Elts;
16896    for (unsigned i = 0, e = NumElts; i != e; ++i)
16897      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
16898                                 DAG.getIntPtrConstant(i)));
16899
16900    // Explicitly mark the extra elements as Undef.
16901    Elts.append(NumElts, DAG.getUNDEF(SVT));
16902
16903    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
16904    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
16905    SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
16906    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
16907                       DAG.getIntPtrConstant(0));
16908  }
16909
16910  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
16911         Subtarget->hasMMX() && "Unexpected custom BITCAST");
16912  assert((DstVT == MVT::i64 ||
16913          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
16914         "Unexpected custom BITCAST");
16915  // i64 <=> MMX conversions are Legal.
16916  if (SrcVT==MVT::i64 && DstVT.isVector())
16917    return Op;
16918  if (DstVT==MVT::i64 && SrcVT.isVector())
16919    return Op;
16920  // MMX <=> MMX conversions are Legal.
16921  if (SrcVT.isVector() && DstVT.isVector())
16922    return Op;
16923  // All other conversions need to be expanded.
16924  return SDValue();
16925}
16926
16927static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
16928                          SelectionDAG &DAG) {
16929  SDNode *Node = Op.getNode();
16930  SDLoc dl(Node);
16931
16932  Op = Op.getOperand(0);
16933  EVT VT = Op.getValueType();
16934  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16935         "CTPOP lowering only implemented for 128/256-bit wide vector types");
16936
16937  unsigned NumElts = VT.getVectorNumElements();
16938  EVT EltVT = VT.getVectorElementType();
16939  unsigned Len = EltVT.getSizeInBits();
16940
16941  // This is the vectorized version of the "best" algorithm from
16942  // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
16943  // with a minor tweak to use a series of adds + shifts instead of vector
16944  // multiplications. Implemented for the v2i64, v4i64, v4i32, v8i32 types:
16945  //
16946  //  v2i64, v4i64, v4i32 => Only profitable w/ popcnt disabled
16947  //  v8i32 => Always profitable
16948  //
16949  // FIXME: There a couple of possible improvements:
16950  //
16951  // 1) Support for i8 and i16 vectors (needs measurements if popcnt enabled).
16952  // 2) Use strategies from http://wm.ite.pl/articles/sse-popcount.html
16953  //
16954  assert(EltVT.isInteger() && (Len == 32 || Len == 64) && Len % 8 == 0 &&
16955         "CTPOP not implemented for this vector element type.");
16956
16957  // X86 canonicalize ANDs to vXi64, generate the appropriate bitcasts to avoid
16958  // extra legalization.
16959  bool NeedsBitcast = EltVT == MVT::i32;
16960  MVT BitcastVT = VT.is256BitVector() ? MVT::v4i64 : MVT::v2i64;
16961
16962  SDValue Cst55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), EltVT);
16963  SDValue Cst33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), EltVT);
16964  SDValue Cst0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), EltVT);
16965
16966  // v = v - ((v >> 1) & 0x55555555...)
16967  SmallVector<SDValue, 8> Ones(NumElts, DAG.getConstant(1, EltVT));
16968  SDValue OnesV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ones);
16969  SDValue Srl = DAG.getNode(ISD::SRL, dl, VT, Op, OnesV);
16970  if (NeedsBitcast)
16971    Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
16972
16973  SmallVector<SDValue, 8> Mask55(NumElts, Cst55);
16974  SDValue M55 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask55);
16975  if (NeedsBitcast)
16976    M55 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M55);
16977
16978  SDValue And = DAG.getNode(ISD::AND, dl, Srl.getValueType(), Srl, M55);
16979  if (VT != And.getValueType())
16980    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
16981  SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op, And);
16982
16983  // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
16984  SmallVector<SDValue, 8> Mask33(NumElts, Cst33);
16985  SDValue M33 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask33);
16986  SmallVector<SDValue, 8> Twos(NumElts, DAG.getConstant(2, EltVT));
16987  SDValue TwosV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Twos);
16988
16989  Srl = DAG.getNode(ISD::SRL, dl, VT, Sub, TwosV);
16990  if (NeedsBitcast) {
16991    Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
16992    M33 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M33);
16993    Sub = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Sub);
16994  }
16995
16996  SDValue AndRHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Srl, M33);
16997  SDValue AndLHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Sub, M33);
16998  if (VT != AndRHS.getValueType()) {
16999    AndRHS = DAG.getNode(ISD::BITCAST, dl, VT, AndRHS);
17000    AndLHS = DAG.getNode(ISD::BITCAST, dl, VT, AndLHS);
17001  }
17002  SDValue Add = DAG.getNode(ISD::ADD, dl, VT, AndLHS, AndRHS);
17003
17004  // v = (v + (v >> 4)) & 0x0F0F0F0F...
17005  SmallVector<SDValue, 8> Fours(NumElts, DAG.getConstant(4, EltVT));
17006  SDValue FoursV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Fours);
17007  Srl = DAG.getNode(ISD::SRL, dl, VT, Add, FoursV);
17008  Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
17009
17010  SmallVector<SDValue, 8> Mask0F(NumElts, Cst0F);
17011  SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask0F);
17012  if (NeedsBitcast) {
17013    Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
17014    M0F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M0F);
17015  }
17016  And = DAG.getNode(ISD::AND, dl, M0F.getValueType(), Add, M0F);
17017  if (VT != And.getValueType())
17018    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
17019
17020  // The algorithm mentioned above uses:
17021  //    v = (v * 0x01010101...) >> (Len - 8)
17022  //
17023  // Change it to use vector adds + vector shifts which yield faster results on
17024  // Haswell than using vector integer multiplication.
17025  //
17026  // For i32 elements:
17027  //    v = v + (v >> 8)
17028  //    v = v + (v >> 16)
17029  //
17030  // For i64 elements:
17031  //    v = v + (v >> 8)
17032  //    v = v + (v >> 16)
17033  //    v = v + (v >> 32)
17034  //
17035  Add = And;
17036  SmallVector<SDValue, 8> Csts;
17037  for (unsigned i = 8; i <= Len/2; i *= 2) {
17038    Csts.assign(NumElts, DAG.getConstant(i, EltVT));
17039    SDValue CstsV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Csts);
17040    Srl = DAG.getNode(ISD::SRL, dl, VT, Add, CstsV);
17041    Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
17042    Csts.clear();
17043  }
17044
17045  // The result is on the least significant 6-bits on i32 and 7-bits on i64.
17046  SDValue Cst3F = DAG.getConstant(APInt(Len, Len == 32 ? 0x3F : 0x7F), EltVT);
17047  SmallVector<SDValue, 8> Cst3FV(NumElts, Cst3F);
17048  SDValue M3F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Cst3FV);
17049  if (NeedsBitcast) {
17050    Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
17051    M3F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M3F);
17052  }
17053  And = DAG.getNode(ISD::AND, dl, M3F.getValueType(), Add, M3F);
17054  if (VT != And.getValueType())
17055    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
17056
17057  return And;
17058}
17059
17060static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
17061  SDNode *Node = Op.getNode();
17062  SDLoc dl(Node);
17063  EVT T = Node->getValueType(0);
17064  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
17065                              DAG.getConstant(0, T), Node->getOperand(2));
17066  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
17067                       cast<AtomicSDNode>(Node)->getMemoryVT(),
17068                       Node->getOperand(0),
17069                       Node->getOperand(1), negOp,
17070                       cast<AtomicSDNode>(Node)->getMemOperand(),
17071                       cast<AtomicSDNode>(Node)->getOrdering(),
17072                       cast<AtomicSDNode>(Node)->getSynchScope());
17073}
17074
17075static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
17076  SDNode *Node = Op.getNode();
17077  SDLoc dl(Node);
17078  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
17079
17080  // Convert seq_cst store -> xchg
17081  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
17082  // FIXME: On 32-bit, store -> fist or movq would be more efficient
17083  //        (The only way to get a 16-byte store is cmpxchg16b)
17084  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
17085  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
17086      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17087    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
17088                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
17089                                 Node->getOperand(0),
17090                                 Node->getOperand(1), Node->getOperand(2),
17091                                 cast<AtomicSDNode>(Node)->getMemOperand(),
17092                                 cast<AtomicSDNode>(Node)->getOrdering(),
17093                                 cast<AtomicSDNode>(Node)->getSynchScope());
17094    return Swap.getValue(1);
17095  }
17096  // Other atomic stores have a simple pattern.
17097  return Op;
17098}
17099
17100static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
17101  EVT VT = Op.getNode()->getSimpleValueType(0);
17102
17103  // Let legalize expand this if it isn't a legal type yet.
17104  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17105    return SDValue();
17106
17107  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
17108
17109  unsigned Opc;
17110  bool ExtraOp = false;
17111  switch (Op.getOpcode()) {
17112  default: llvm_unreachable("Invalid code");
17113  case ISD::ADDC: Opc = X86ISD::ADD; break;
17114  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
17115  case ISD::SUBC: Opc = X86ISD::SUB; break;
17116  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
17117  }
17118
17119  if (!ExtraOp)
17120    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
17121                       Op.getOperand(1));
17122  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
17123                     Op.getOperand(1), Op.getOperand(2));
17124}
17125
17126static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
17127                            SelectionDAG &DAG) {
17128  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
17129
17130  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
17131  // which returns the values as { float, float } (in XMM0) or
17132  // { double, double } (which is returned in XMM0, XMM1).
17133  SDLoc dl(Op);
17134  SDValue Arg = Op.getOperand(0);
17135  EVT ArgVT = Arg.getValueType();
17136  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
17137
17138  TargetLowering::ArgListTy Args;
17139  TargetLowering::ArgListEntry Entry;
17140
17141  Entry.Node = Arg;
17142  Entry.Ty = ArgTy;
17143  Entry.isSExt = false;
17144  Entry.isZExt = false;
17145  Args.push_back(Entry);
17146
17147  bool isF64 = ArgVT == MVT::f64;
17148  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
17149  // the small struct {f32, f32} is returned in (eax, edx). For f64,
17150  // the results are returned via SRet in memory.
17151  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
17152  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17153  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
17154
17155  Type *RetTy = isF64
17156    ? (Type*)StructType::get(ArgTy, ArgTy, nullptr)
17157    : (Type*)VectorType::get(ArgTy, 4);
17158
17159  TargetLowering::CallLoweringInfo CLI(DAG);
17160  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
17161    .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
17162
17163  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
17164
17165  if (isF64)
17166    // Returned in xmm0 and xmm1.
17167    return CallResult.first;
17168
17169  // Returned in bits 0:31 and 32:64 xmm0.
17170  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
17171                               CallResult.first, DAG.getIntPtrConstant(0));
17172  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
17173                               CallResult.first, DAG.getIntPtrConstant(1));
17174  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
17175  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
17176}
17177
17178/// LowerOperation - Provide custom lowering hooks for some operations.
17179///
17180SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
17181  switch (Op.getOpcode()) {
17182  default: llvm_unreachable("Should not custom lower this!");
17183  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
17184  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
17185    return LowerCMP_SWAP(Op, Subtarget, DAG);
17186  case ISD::CTPOP:              return LowerCTPOP(Op, Subtarget, DAG);
17187  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
17188  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
17189  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
17190  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
17191  case ISD::VECTOR_SHUFFLE:     return lowerVectorShuffle(Op, Subtarget, DAG);
17192  case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
17193  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
17194  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
17195  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
17196  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
17197  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
17198  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
17199  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
17200  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
17201  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
17202  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
17203  case ISD::SHL_PARTS:
17204  case ISD::SRA_PARTS:
17205  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
17206  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
17207  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
17208  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
17209  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
17210  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
17211  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
17212  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
17213  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
17214  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
17215  case ISD::LOAD:               return LowerExtendedLoad(Op, Subtarget, DAG);
17216  case ISD::FABS:
17217  case ISD::FNEG:               return LowerFABSorFNEG(Op, DAG);
17218  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
17219  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
17220  case ISD::SETCC:              return LowerSETCC(Op, DAG);
17221  case ISD::SELECT:             return LowerSELECT(Op, DAG);
17222  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
17223  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
17224  case ISD::VASTART:            return LowerVASTART(Op, DAG);
17225  case ISD::VAARG:              return LowerVAARG(Op, DAG);
17226  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
17227  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG);
17228  case ISD::INTRINSIC_VOID:
17229  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
17230  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
17231  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
17232  case ISD::FRAME_TO_ARGS_OFFSET:
17233                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
17234  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
17235  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
17236  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
17237  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
17238  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
17239  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
17240  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
17241  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
17242  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
17243  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
17244  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
17245  case ISD::UMUL_LOHI:
17246  case ISD::SMUL_LOHI:          return LowerMUL_LOHI(Op, Subtarget, DAG);
17247  case ISD::SRA:
17248  case ISD::SRL:
17249  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
17250  case ISD::SADDO:
17251  case ISD::UADDO:
17252  case ISD::SSUBO:
17253  case ISD::USUBO:
17254  case ISD::SMULO:
17255  case ISD::UMULO:              return LowerXALUO(Op, DAG);
17256  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
17257  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
17258  case ISD::ADDC:
17259  case ISD::ADDE:
17260  case ISD::SUBC:
17261  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
17262  case ISD::ADD:                return LowerADD(Op, DAG);
17263  case ISD::SUB:                return LowerSUB(Op, DAG);
17264  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
17265  }
17266}
17267
17268/// ReplaceNodeResults - Replace a node with an illegal result type
17269/// with a new node built out of custom code.
17270void X86TargetLowering::ReplaceNodeResults(SDNode *N,
17271                                           SmallVectorImpl<SDValue>&Results,
17272                                           SelectionDAG &DAG) const {
17273  SDLoc dl(N);
17274  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17275  switch (N->getOpcode()) {
17276  default:
17277    llvm_unreachable("Do not know how to custom type legalize this operation!");
17278  // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
17279  case X86ISD::FMINC:
17280  case X86ISD::FMIN:
17281  case X86ISD::FMAXC:
17282  case X86ISD::FMAX: {
17283    EVT VT = N->getValueType(0);
17284    if (VT != MVT::v2f32)
17285      llvm_unreachable("Unexpected type (!= v2f32) on FMIN/FMAX.");
17286    SDValue UNDEF = DAG.getUNDEF(VT);
17287    SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
17288                              N->getOperand(0), UNDEF);
17289    SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
17290                              N->getOperand(1), UNDEF);
17291    Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
17292    return;
17293  }
17294  case ISD::SIGN_EXTEND_INREG:
17295  case ISD::ADDC:
17296  case ISD::ADDE:
17297  case ISD::SUBC:
17298  case ISD::SUBE:
17299    // We don't want to expand or promote these.
17300    return;
17301  case ISD::SDIV:
17302  case ISD::UDIV:
17303  case ISD::SREM:
17304  case ISD::UREM:
17305  case ISD::SDIVREM:
17306  case ISD::UDIVREM: {
17307    SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
17308    Results.push_back(V);
17309    return;
17310  }
17311  case ISD::FP_TO_SINT:
17312    // FP_TO_INT*_IN_MEM is not legal for f16 inputs.  Do not convert
17313    // (FP_TO_SINT (load f16)) to FP_TO_INT*.
17314    if (N->getOperand(0).getValueType() == MVT::f16)
17315      break;
17316    // fallthrough
17317  case ISD::FP_TO_UINT: {
17318    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
17319
17320    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
17321      return;
17322
17323    std::pair<SDValue,SDValue> Vals =
17324        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
17325    SDValue FIST = Vals.first, StackSlot = Vals.second;
17326    if (FIST.getNode()) {
17327      EVT VT = N->getValueType(0);
17328      // Return a load from the stack slot.
17329      if (StackSlot.getNode())
17330        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
17331                                      MachinePointerInfo(),
17332                                      false, false, false, 0));
17333      else
17334        Results.push_back(FIST);
17335    }
17336    return;
17337  }
17338  case ISD::UINT_TO_FP: {
17339    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
17340    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
17341        N->getValueType(0) != MVT::v2f32)
17342      return;
17343    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
17344                                 N->getOperand(0));
17345    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
17346                                     MVT::f64);
17347    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
17348    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
17349                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
17350    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
17351    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
17352    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
17353    return;
17354  }
17355  case ISD::FP_ROUND: {
17356    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
17357        return;
17358    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
17359    Results.push_back(V);
17360    return;
17361  }
17362  case ISD::FP_EXTEND: {
17363    // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
17364    // No other ValueType for FP_EXTEND should reach this point.
17365    assert(N->getValueType(0) == MVT::v2f32 &&
17366           "Do not know how to legalize this Node");
17367    return;
17368  }
17369  case ISD::INTRINSIC_W_CHAIN: {
17370    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
17371    switch (IntNo) {
17372    default : llvm_unreachable("Do not know how to custom type "
17373                               "legalize this intrinsic operation!");
17374    case Intrinsic::x86_rdtsc:
17375      return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
17376                                     Results);
17377    case Intrinsic::x86_rdtscp:
17378      return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
17379                                     Results);
17380    case Intrinsic::x86_rdpmc:
17381      return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
17382    }
17383  }
17384  case ISD::READCYCLECOUNTER: {
17385    return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
17386                                   Results);
17387  }
17388  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
17389    EVT T = N->getValueType(0);
17390    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
17391    bool Regs64bit = T == MVT::i128;
17392    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
17393    SDValue cpInL, cpInH;
17394    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
17395                        DAG.getConstant(0, HalfT));
17396    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
17397                        DAG.getConstant(1, HalfT));
17398    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
17399                             Regs64bit ? X86::RAX : X86::EAX,
17400                             cpInL, SDValue());
17401    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
17402                             Regs64bit ? X86::RDX : X86::EDX,
17403                             cpInH, cpInL.getValue(1));
17404    SDValue swapInL, swapInH;
17405    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
17406                          DAG.getConstant(0, HalfT));
17407    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
17408                          DAG.getConstant(1, HalfT));
17409    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
17410                               Regs64bit ? X86::RBX : X86::EBX,
17411                               swapInL, cpInH.getValue(1));
17412    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
17413                               Regs64bit ? X86::RCX : X86::ECX,
17414                               swapInH, swapInL.getValue(1));
17415    SDValue Ops[] = { swapInH.getValue(0),
17416                      N->getOperand(1),
17417                      swapInH.getValue(1) };
17418    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
17419    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
17420    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
17421                                  X86ISD::LCMPXCHG8_DAG;
17422    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
17423    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
17424                                        Regs64bit ? X86::RAX : X86::EAX,
17425                                        HalfT, Result.getValue(1));
17426    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
17427                                        Regs64bit ? X86::RDX : X86::EDX,
17428                                        HalfT, cpOutL.getValue(2));
17429    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
17430
17431    SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
17432                                        MVT::i32, cpOutH.getValue(2));
17433    SDValue Success =
17434        DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
17435                    DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
17436    Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
17437
17438    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
17439    Results.push_back(Success);
17440    Results.push_back(EFLAGS.getValue(1));
17441    return;
17442  }
17443  case ISD::ATOMIC_SWAP:
17444  case ISD::ATOMIC_LOAD_ADD:
17445  case ISD::ATOMIC_LOAD_SUB:
17446  case ISD::ATOMIC_LOAD_AND:
17447  case ISD::ATOMIC_LOAD_OR:
17448  case ISD::ATOMIC_LOAD_XOR:
17449  case ISD::ATOMIC_LOAD_NAND:
17450  case ISD::ATOMIC_LOAD_MIN:
17451  case ISD::ATOMIC_LOAD_MAX:
17452  case ISD::ATOMIC_LOAD_UMIN:
17453  case ISD::ATOMIC_LOAD_UMAX:
17454  case ISD::ATOMIC_LOAD: {
17455    // Delegate to generic TypeLegalization. Situations we can really handle
17456    // should have already been dealt with by AtomicExpandPass.cpp.
17457    break;
17458  }
17459  case ISD::BITCAST: {
17460    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
17461    EVT DstVT = N->getValueType(0);
17462    EVT SrcVT = N->getOperand(0)->getValueType(0);
17463
17464    if (SrcVT != MVT::f64 ||
17465        (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
17466      return;
17467
17468    unsigned NumElts = DstVT.getVectorNumElements();
17469    EVT SVT = DstVT.getVectorElementType();
17470    EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
17471    SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
17472                                   MVT::v2f64, N->getOperand(0));
17473    SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
17474
17475    if (ExperimentalVectorWideningLegalization) {
17476      // If we are legalizing vectors by widening, we already have the desired
17477      // legal vector type, just return it.
17478      Results.push_back(ToVecInt);
17479      return;
17480    }
17481
17482    SmallVector<SDValue, 8> Elts;
17483    for (unsigned i = 0, e = NumElts; i != e; ++i)
17484      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
17485                                   ToVecInt, DAG.getIntPtrConstant(i)));
17486
17487    Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
17488  }
17489  }
17490}
17491
17492const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
17493  switch (Opcode) {
17494  default: return nullptr;
17495  case X86ISD::BSF:                return "X86ISD::BSF";
17496  case X86ISD::BSR:                return "X86ISD::BSR";
17497  case X86ISD::SHLD:               return "X86ISD::SHLD";
17498  case X86ISD::SHRD:               return "X86ISD::SHRD";
17499  case X86ISD::FAND:               return "X86ISD::FAND";
17500  case X86ISD::FANDN:              return "X86ISD::FANDN";
17501  case X86ISD::FOR:                return "X86ISD::FOR";
17502  case X86ISD::FXOR:               return "X86ISD::FXOR";
17503  case X86ISD::FSRL:               return "X86ISD::FSRL";
17504  case X86ISD::FILD:               return "X86ISD::FILD";
17505  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
17506  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
17507  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
17508  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
17509  case X86ISD::FLD:                return "X86ISD::FLD";
17510  case X86ISD::FST:                return "X86ISD::FST";
17511  case X86ISD::CALL:               return "X86ISD::CALL";
17512  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
17513  case X86ISD::RDTSCP_DAG:         return "X86ISD::RDTSCP_DAG";
17514  case X86ISD::RDPMC_DAG:          return "X86ISD::RDPMC_DAG";
17515  case X86ISD::BT:                 return "X86ISD::BT";
17516  case X86ISD::CMP:                return "X86ISD::CMP";
17517  case X86ISD::COMI:               return "X86ISD::COMI";
17518  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
17519  case X86ISD::CMPM:               return "X86ISD::CMPM";
17520  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
17521  case X86ISD::SETCC:              return "X86ISD::SETCC";
17522  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
17523  case X86ISD::FSETCC:             return "X86ISD::FSETCC";
17524  case X86ISD::CMOV:               return "X86ISD::CMOV";
17525  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
17526  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
17527  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
17528  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
17529  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
17530  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
17531  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
17532  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
17533  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
17534  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
17535  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
17536  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
17537  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
17538  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
17539  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
17540  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
17541  case X86ISD::SHRUNKBLEND:        return "X86ISD::SHRUNKBLEND";
17542  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
17543  case X86ISD::HADD:               return "X86ISD::HADD";
17544  case X86ISD::HSUB:               return "X86ISD::HSUB";
17545  case X86ISD::FHADD:              return "X86ISD::FHADD";
17546  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
17547  case X86ISD::UMAX:               return "X86ISD::UMAX";
17548  case X86ISD::UMIN:               return "X86ISD::UMIN";
17549  case X86ISD::SMAX:               return "X86ISD::SMAX";
17550  case X86ISD::SMIN:               return "X86ISD::SMIN";
17551  case X86ISD::FMAX:               return "X86ISD::FMAX";
17552  case X86ISD::FMIN:               return "X86ISD::FMIN";
17553  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
17554  case X86ISD::FMINC:              return "X86ISD::FMINC";
17555  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
17556  case X86ISD::FRCP:               return "X86ISD::FRCP";
17557  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
17558  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
17559  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
17560  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
17561  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
17562  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
17563  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
17564  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
17565  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
17566  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
17567  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
17568  case X86ISD::LCMPXCHG16_DAG:     return "X86ISD::LCMPXCHG16_DAG";
17569  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
17570  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
17571  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
17572  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
17573  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
17574  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
17575  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
17576  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
17577  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
17578  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
17579  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
17580  case X86ISD::VSHL:               return "X86ISD::VSHL";
17581  case X86ISD::VSRL:               return "X86ISD::VSRL";
17582  case X86ISD::VSRA:               return "X86ISD::VSRA";
17583  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
17584  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
17585  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
17586  case X86ISD::CMPP:               return "X86ISD::CMPP";
17587  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
17588  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
17589  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
17590  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
17591  case X86ISD::ADD:                return "X86ISD::ADD";
17592  case X86ISD::SUB:                return "X86ISD::SUB";
17593  case X86ISD::ADC:                return "X86ISD::ADC";
17594  case X86ISD::SBB:                return "X86ISD::SBB";
17595  case X86ISD::SMUL:               return "X86ISD::SMUL";
17596  case X86ISD::UMUL:               return "X86ISD::UMUL";
17597  case X86ISD::SMUL8:              return "X86ISD::SMUL8";
17598  case X86ISD::UMUL8:              return "X86ISD::UMUL8";
17599  case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
17600  case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
17601  case X86ISD::INC:                return "X86ISD::INC";
17602  case X86ISD::DEC:                return "X86ISD::DEC";
17603  case X86ISD::OR:                 return "X86ISD::OR";
17604  case X86ISD::XOR:                return "X86ISD::XOR";
17605  case X86ISD::AND:                return "X86ISD::AND";
17606  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
17607  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
17608  case X86ISD::PTEST:              return "X86ISD::PTEST";
17609  case X86ISD::TESTP:              return "X86ISD::TESTP";
17610  case X86ISD::TESTM:              return "X86ISD::TESTM";
17611  case X86ISD::TESTNM:             return "X86ISD::TESTNM";
17612  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
17613  case X86ISD::PACKSS:             return "X86ISD::PACKSS";
17614  case X86ISD::PACKUS:             return "X86ISD::PACKUS";
17615  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
17616  case X86ISD::VALIGN:             return "X86ISD::VALIGN";
17617  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
17618  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
17619  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
17620  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
17621  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
17622  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
17623  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
17624  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
17625  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
17626  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
17627  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
17628  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
17629  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
17630  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
17631  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
17632  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
17633  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
17634  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
17635  case X86ISD::VEXTRACT:           return "X86ISD::VEXTRACT";
17636  case X86ISD::VPERMILPI:          return "X86ISD::VPERMILPI";
17637  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
17638  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
17639  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
17640  case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3";
17641  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
17642  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
17643  case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
17644  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
17645  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
17646  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
17647  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
17648  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
17649  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
17650  case X86ISD::SAHF:               return "X86ISD::SAHF";
17651  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
17652  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
17653  case X86ISD::FMADD:              return "X86ISD::FMADD";
17654  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
17655  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
17656  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
17657  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
17658  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
17659  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
17660  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
17661  case X86ISD::XTEST:              return "X86ISD::XTEST";
17662  case X86ISD::COMPRESS:           return "X86ISD::COMPRESS";
17663  case X86ISD::EXPAND:             return "X86ISD::EXPAND";
17664  case X86ISD::SELECT:             return "X86ISD::SELECT";
17665  case X86ISD::ADDSUB:             return "X86ISD::ADDSUB";
17666  case X86ISD::RCP28:              return "X86ISD::RCP28";
17667  case X86ISD::RSQRT28:            return "X86ISD::RSQRT28";
17668  case X86ISD::FADD_RND:           return "X86ISD::FADD_RND";
17669  case X86ISD::FSUB_RND:           return "X86ISD::FSUB_RND";
17670  case X86ISD::FMUL_RND:           return "X86ISD::FMUL_RND";
17671  case X86ISD::FDIV_RND:           return "X86ISD::FDIV_RND";
17672  }
17673}
17674
17675// isLegalAddressingMode - Return true if the addressing mode represented
17676// by AM is legal for this target, for a load/store of the specified type.
17677bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
17678                                              Type *Ty) const {
17679  // X86 supports extremely general addressing modes.
17680  CodeModel::Model M = getTargetMachine().getCodeModel();
17681  Reloc::Model R = getTargetMachine().getRelocationModel();
17682
17683  // X86 allows a sign-extended 32-bit immediate field as a displacement.
17684  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
17685    return false;
17686
17687  if (AM.BaseGV) {
17688    unsigned GVFlags =
17689      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
17690
17691    // If a reference to this global requires an extra load, we can't fold it.
17692    if (isGlobalStubReference(GVFlags))
17693      return false;
17694
17695    // If BaseGV requires a register for the PIC base, we cannot also have a
17696    // BaseReg specified.
17697    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
17698      return false;
17699
17700    // If lower 4G is not available, then we must use rip-relative addressing.
17701    if ((M != CodeModel::Small || R != Reloc::Static) &&
17702        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
17703      return false;
17704  }
17705
17706  switch (AM.Scale) {
17707  case 0:
17708  case 1:
17709  case 2:
17710  case 4:
17711  case 8:
17712    // These scales always work.
17713    break;
17714  case 3:
17715  case 5:
17716  case 9:
17717    // These scales are formed with basereg+scalereg.  Only accept if there is
17718    // no basereg yet.
17719    if (AM.HasBaseReg)
17720      return false;
17721    break;
17722  default:  // Other stuff never works.
17723    return false;
17724  }
17725
17726  return true;
17727}
17728
17729bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
17730  unsigned Bits = Ty->getScalarSizeInBits();
17731
17732  // 8-bit shifts are always expensive, but versions with a scalar amount aren't
17733  // particularly cheaper than those without.
17734  if (Bits == 8)
17735    return false;
17736
17737  // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
17738  // variable shifts just as cheap as scalar ones.
17739  if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
17740    return false;
17741
17742  // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
17743  // fully general vector.
17744  return true;
17745}
17746
17747bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
17748  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
17749    return false;
17750  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
17751  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
17752  return NumBits1 > NumBits2;
17753}
17754
17755bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
17756  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
17757    return false;
17758
17759  if (!isTypeLegal(EVT::getEVT(Ty1)))
17760    return false;
17761
17762  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
17763
17764  // Assuming the caller doesn't have a zeroext or signext return parameter,
17765  // truncation all the way down to i1 is valid.
17766  return true;
17767}
17768
17769bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
17770  return isInt<32>(Imm);
17771}
17772
17773bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
17774  // Can also use sub to handle negated immediates.
17775  return isInt<32>(Imm);
17776}
17777
17778bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
17779  if (!VT1.isInteger() || !VT2.isInteger())
17780    return false;
17781  unsigned NumBits1 = VT1.getSizeInBits();
17782  unsigned NumBits2 = VT2.getSizeInBits();
17783  return NumBits1 > NumBits2;
17784}
17785
17786bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
17787  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
17788  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
17789}
17790
17791bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
17792  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
17793  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
17794}
17795
17796bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
17797  EVT VT1 = Val.getValueType();
17798  if (isZExtFree(VT1, VT2))
17799    return true;
17800
17801  if (Val.getOpcode() != ISD::LOAD)
17802    return false;
17803
17804  if (!VT1.isSimple() || !VT1.isInteger() ||
17805      !VT2.isSimple() || !VT2.isInteger())
17806    return false;
17807
17808  switch (VT1.getSimpleVT().SimpleTy) {
17809  default: break;
17810  case MVT::i8:
17811  case MVT::i16:
17812  case MVT::i32:
17813    // X86 has 8, 16, and 32-bit zero-extending loads.
17814    return true;
17815  }
17816
17817  return false;
17818}
17819
17820bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; }
17821
17822bool
17823X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
17824  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
17825    return false;
17826
17827  VT = VT.getScalarType();
17828
17829  if (!VT.isSimple())
17830    return false;
17831
17832  switch (VT.getSimpleVT().SimpleTy) {
17833  case MVT::f32:
17834  case MVT::f64:
17835    return true;
17836  default:
17837    break;
17838  }
17839
17840  return false;
17841}
17842
17843bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
17844  // i16 instructions are longer (0x66 prefix) and potentially slower.
17845  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
17846}
17847
17848/// isShuffleMaskLegal - Targets can use this to indicate that they only
17849/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
17850/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
17851/// are assumed to be legal.
17852bool
17853X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
17854                                      EVT VT) const {
17855  if (!VT.isSimple())
17856    return false;
17857
17858  // Very little shuffling can be done for 64-bit vectors right now.
17859  if (VT.getSizeInBits() == 64)
17860    return false;
17861
17862  // We only care that the types being shuffled are legal. The lowering can
17863  // handle any possible shuffle mask that results.
17864  return isTypeLegal(VT.getSimpleVT());
17865}
17866
17867bool
17868X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
17869                                          EVT VT) const {
17870  // Just delegate to the generic legality, clear masks aren't special.
17871  return isShuffleMaskLegal(Mask, VT);
17872}
17873
17874//===----------------------------------------------------------------------===//
17875//                           X86 Scheduler Hooks
17876//===----------------------------------------------------------------------===//
17877
17878/// Utility function to emit xbegin specifying the start of an RTM region.
17879static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
17880                                     const TargetInstrInfo *TII) {
17881  DebugLoc DL = MI->getDebugLoc();
17882
17883  const BasicBlock *BB = MBB->getBasicBlock();
17884  MachineFunction::iterator I = MBB;
17885  ++I;
17886
17887  // For the v = xbegin(), we generate
17888  //
17889  // thisMBB:
17890  //  xbegin sinkMBB
17891  //
17892  // mainMBB:
17893  //  eax = -1
17894  //
17895  // sinkMBB:
17896  //  v = eax
17897
17898  MachineBasicBlock *thisMBB = MBB;
17899  MachineFunction *MF = MBB->getParent();
17900  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
17901  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
17902  MF->insert(I, mainMBB);
17903  MF->insert(I, sinkMBB);
17904
17905  // Transfer the remainder of BB and its successor edges to sinkMBB.
17906  sinkMBB->splice(sinkMBB->begin(), MBB,
17907                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
17908  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
17909
17910  // thisMBB:
17911  //  xbegin sinkMBB
17912  //  # fallthrough to mainMBB
17913  //  # abortion to sinkMBB
17914  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
17915  thisMBB->addSuccessor(mainMBB);
17916  thisMBB->addSuccessor(sinkMBB);
17917
17918  // mainMBB:
17919  //  EAX = -1
17920  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
17921  mainMBB->addSuccessor(sinkMBB);
17922
17923  // sinkMBB:
17924  // EAX is live into the sinkMBB
17925  sinkMBB->addLiveIn(X86::EAX);
17926  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
17927          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
17928    .addReg(X86::EAX);
17929
17930  MI->eraseFromParent();
17931  return sinkMBB;
17932}
17933
17934// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
17935// or XMM0_V32I8 in AVX all of this code can be replaced with that
17936// in the .td file.
17937static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
17938                                       const TargetInstrInfo *TII) {
17939  unsigned Opc;
17940  switch (MI->getOpcode()) {
17941  default: llvm_unreachable("illegal opcode!");
17942  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
17943  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
17944  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
17945  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
17946  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
17947  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
17948  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
17949  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
17950  }
17951
17952  DebugLoc dl = MI->getDebugLoc();
17953  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
17954
17955  unsigned NumArgs = MI->getNumOperands();
17956  for (unsigned i = 1; i < NumArgs; ++i) {
17957    MachineOperand &Op = MI->getOperand(i);
17958    if (!(Op.isReg() && Op.isImplicit()))
17959      MIB.addOperand(Op);
17960  }
17961  if (MI->hasOneMemOperand())
17962    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
17963
17964  BuildMI(*BB, MI, dl,
17965    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
17966    .addReg(X86::XMM0);
17967
17968  MI->eraseFromParent();
17969  return BB;
17970}
17971
17972// FIXME: Custom handling because TableGen doesn't support multiple implicit
17973// defs in an instruction pattern
17974static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
17975                                       const TargetInstrInfo *TII) {
17976  unsigned Opc;
17977  switch (MI->getOpcode()) {
17978  default: llvm_unreachable("illegal opcode!");
17979  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
17980  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
17981  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
17982  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
17983  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
17984  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
17985  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
17986  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
17987  }
17988
17989  DebugLoc dl = MI->getDebugLoc();
17990  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
17991
17992  unsigned NumArgs = MI->getNumOperands(); // remove the results
17993  for (unsigned i = 1; i < NumArgs; ++i) {
17994    MachineOperand &Op = MI->getOperand(i);
17995    if (!(Op.isReg() && Op.isImplicit()))
17996      MIB.addOperand(Op);
17997  }
17998  if (MI->hasOneMemOperand())
17999    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
18000
18001  BuildMI(*BB, MI, dl,
18002    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
18003    .addReg(X86::ECX);
18004
18005  MI->eraseFromParent();
18006  return BB;
18007}
18008
18009static MachineBasicBlock *EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
18010                                      const X86Subtarget *Subtarget) {
18011  DebugLoc dl = MI->getDebugLoc();
18012  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18013  // Address into RAX/EAX, other two args into ECX, EDX.
18014  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
18015  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
18016  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
18017  for (int i = 0; i < X86::AddrNumOperands; ++i)
18018    MIB.addOperand(MI->getOperand(i));
18019
18020  unsigned ValOps = X86::AddrNumOperands;
18021  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
18022    .addReg(MI->getOperand(ValOps).getReg());
18023  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
18024    .addReg(MI->getOperand(ValOps+1).getReg());
18025
18026  // The instruction doesn't actually take any operands though.
18027  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
18028
18029  MI->eraseFromParent(); // The pseudo is gone now.
18030  return BB;
18031}
18032
18033MachineBasicBlock *
18034X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI,
18035                                                 MachineBasicBlock *MBB) const {
18036  // Emit va_arg instruction on X86-64.
18037
18038  // Operands to this pseudo-instruction:
18039  // 0  ) Output        : destination address (reg)
18040  // 1-5) Input         : va_list address (addr, i64mem)
18041  // 6  ) ArgSize       : Size (in bytes) of vararg type
18042  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
18043  // 8  ) Align         : Alignment of type
18044  // 9  ) EFLAGS (implicit-def)
18045
18046  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
18047  static_assert(X86::AddrNumOperands == 5,
18048                "VAARG_64 assumes 5 address operands");
18049
18050  unsigned DestReg = MI->getOperand(0).getReg();
18051  MachineOperand &Base = MI->getOperand(1);
18052  MachineOperand &Scale = MI->getOperand(2);
18053  MachineOperand &Index = MI->getOperand(3);
18054  MachineOperand &Disp = MI->getOperand(4);
18055  MachineOperand &Segment = MI->getOperand(5);
18056  unsigned ArgSize = MI->getOperand(6).getImm();
18057  unsigned ArgMode = MI->getOperand(7).getImm();
18058  unsigned Align = MI->getOperand(8).getImm();
18059
18060  // Memory Reference
18061  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
18062  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
18063  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
18064
18065  // Machine Information
18066  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18067  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
18068  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
18069  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
18070  DebugLoc DL = MI->getDebugLoc();
18071
18072  // struct va_list {
18073  //   i32   gp_offset
18074  //   i32   fp_offset
18075  //   i64   overflow_area (address)
18076  //   i64   reg_save_area (address)
18077  // }
18078  // sizeof(va_list) = 24
18079  // alignment(va_list) = 8
18080
18081  unsigned TotalNumIntRegs = 6;
18082  unsigned TotalNumXMMRegs = 8;
18083  bool UseGPOffset = (ArgMode == 1);
18084  bool UseFPOffset = (ArgMode == 2);
18085  unsigned MaxOffset = TotalNumIntRegs * 8 +
18086                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
18087
18088  /* Align ArgSize to a multiple of 8 */
18089  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
18090  bool NeedsAlign = (Align > 8);
18091
18092  MachineBasicBlock *thisMBB = MBB;
18093  MachineBasicBlock *overflowMBB;
18094  MachineBasicBlock *offsetMBB;
18095  MachineBasicBlock *endMBB;
18096
18097  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
18098  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
18099  unsigned OffsetReg = 0;
18100
18101  if (!UseGPOffset && !UseFPOffset) {
18102    // If we only pull from the overflow region, we don't create a branch.
18103    // We don't need to alter control flow.
18104    OffsetDestReg = 0; // unused
18105    OverflowDestReg = DestReg;
18106
18107    offsetMBB = nullptr;
18108    overflowMBB = thisMBB;
18109    endMBB = thisMBB;
18110  } else {
18111    // First emit code to check if gp_offset (or fp_offset) is below the bound.
18112    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
18113    // If not, pull from overflow_area. (branch to overflowMBB)
18114    //
18115    //       thisMBB
18116    //         |     .
18117    //         |        .
18118    //     offsetMBB   overflowMBB
18119    //         |        .
18120    //         |     .
18121    //        endMBB
18122
18123    // Registers for the PHI in endMBB
18124    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
18125    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
18126
18127    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
18128    MachineFunction *MF = MBB->getParent();
18129    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18130    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18131    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18132
18133    MachineFunction::iterator MBBIter = MBB;
18134    ++MBBIter;
18135
18136    // Insert the new basic blocks
18137    MF->insert(MBBIter, offsetMBB);
18138    MF->insert(MBBIter, overflowMBB);
18139    MF->insert(MBBIter, endMBB);
18140
18141    // Transfer the remainder of MBB and its successor edges to endMBB.
18142    endMBB->splice(endMBB->begin(), thisMBB,
18143                   std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
18144    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
18145
18146    // Make offsetMBB and overflowMBB successors of thisMBB
18147    thisMBB->addSuccessor(offsetMBB);
18148    thisMBB->addSuccessor(overflowMBB);
18149
18150    // endMBB is a successor of both offsetMBB and overflowMBB
18151    offsetMBB->addSuccessor(endMBB);
18152    overflowMBB->addSuccessor(endMBB);
18153
18154    // Load the offset value into a register
18155    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
18156    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
18157      .addOperand(Base)
18158      .addOperand(Scale)
18159      .addOperand(Index)
18160      .addDisp(Disp, UseFPOffset ? 4 : 0)
18161      .addOperand(Segment)
18162      .setMemRefs(MMOBegin, MMOEnd);
18163
18164    // Check if there is enough room left to pull this argument.
18165    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
18166      .addReg(OffsetReg)
18167      .addImm(MaxOffset + 8 - ArgSizeA8);
18168
18169    // Branch to "overflowMBB" if offset >= max
18170    // Fall through to "offsetMBB" otherwise
18171    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
18172      .addMBB(overflowMBB);
18173  }
18174
18175  // In offsetMBB, emit code to use the reg_save_area.
18176  if (offsetMBB) {
18177    assert(OffsetReg != 0);
18178
18179    // Read the reg_save_area address.
18180    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
18181    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
18182      .addOperand(Base)
18183      .addOperand(Scale)
18184      .addOperand(Index)
18185      .addDisp(Disp, 16)
18186      .addOperand(Segment)
18187      .setMemRefs(MMOBegin, MMOEnd);
18188
18189    // Zero-extend the offset
18190    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
18191      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
18192        .addImm(0)
18193        .addReg(OffsetReg)
18194        .addImm(X86::sub_32bit);
18195
18196    // Add the offset to the reg_save_area to get the final address.
18197    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
18198      .addReg(OffsetReg64)
18199      .addReg(RegSaveReg);
18200
18201    // Compute the offset for the next argument
18202    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
18203    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
18204      .addReg(OffsetReg)
18205      .addImm(UseFPOffset ? 16 : 8);
18206
18207    // Store it back into the va_list.
18208    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
18209      .addOperand(Base)
18210      .addOperand(Scale)
18211      .addOperand(Index)
18212      .addDisp(Disp, UseFPOffset ? 4 : 0)
18213      .addOperand(Segment)
18214      .addReg(NextOffsetReg)
18215      .setMemRefs(MMOBegin, MMOEnd);
18216
18217    // Jump to endMBB
18218    BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
18219      .addMBB(endMBB);
18220  }
18221
18222  //
18223  // Emit code to use overflow area
18224  //
18225
18226  // Load the overflow_area address into a register.
18227  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
18228  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
18229    .addOperand(Base)
18230    .addOperand(Scale)
18231    .addOperand(Index)
18232    .addDisp(Disp, 8)
18233    .addOperand(Segment)
18234    .setMemRefs(MMOBegin, MMOEnd);
18235
18236  // If we need to align it, do so. Otherwise, just copy the address
18237  // to OverflowDestReg.
18238  if (NeedsAlign) {
18239    // Align the overflow address
18240    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
18241    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
18242
18243    // aligned_addr = (addr + (align-1)) & ~(align-1)
18244    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
18245      .addReg(OverflowAddrReg)
18246      .addImm(Align-1);
18247
18248    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
18249      .addReg(TmpReg)
18250      .addImm(~(uint64_t)(Align-1));
18251  } else {
18252    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
18253      .addReg(OverflowAddrReg);
18254  }
18255
18256  // Compute the next overflow address after this argument.
18257  // (the overflow address should be kept 8-byte aligned)
18258  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
18259  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
18260    .addReg(OverflowDestReg)
18261    .addImm(ArgSizeA8);
18262
18263  // Store the new overflow address.
18264  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
18265    .addOperand(Base)
18266    .addOperand(Scale)
18267    .addOperand(Index)
18268    .addDisp(Disp, 8)
18269    .addOperand(Segment)
18270    .addReg(NextAddrReg)
18271    .setMemRefs(MMOBegin, MMOEnd);
18272
18273  // If we branched, emit the PHI to the front of endMBB.
18274  if (offsetMBB) {
18275    BuildMI(*endMBB, endMBB->begin(), DL,
18276            TII->get(X86::PHI), DestReg)
18277      .addReg(OffsetDestReg).addMBB(offsetMBB)
18278      .addReg(OverflowDestReg).addMBB(overflowMBB);
18279  }
18280
18281  // Erase the pseudo instruction
18282  MI->eraseFromParent();
18283
18284  return endMBB;
18285}
18286
18287MachineBasicBlock *
18288X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
18289                                                 MachineInstr *MI,
18290                                                 MachineBasicBlock *MBB) const {
18291  // Emit code to save XMM registers to the stack. The ABI says that the
18292  // number of registers to save is given in %al, so it's theoretically
18293  // possible to do an indirect jump trick to avoid saving all of them,
18294  // however this code takes a simpler approach and just executes all
18295  // of the stores if %al is non-zero. It's less code, and it's probably
18296  // easier on the hardware branch predictor, and stores aren't all that
18297  // expensive anyway.
18298
18299  // Create the new basic blocks. One block contains all the XMM stores,
18300  // and one block is the final destination regardless of whether any
18301  // stores were performed.
18302  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
18303  MachineFunction *F = MBB->getParent();
18304  MachineFunction::iterator MBBIter = MBB;
18305  ++MBBIter;
18306  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
18307  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
18308  F->insert(MBBIter, XMMSaveMBB);
18309  F->insert(MBBIter, EndMBB);
18310
18311  // Transfer the remainder of MBB and its successor edges to EndMBB.
18312  EndMBB->splice(EndMBB->begin(), MBB,
18313                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
18314  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
18315
18316  // The original block will now fall through to the XMM save block.
18317  MBB->addSuccessor(XMMSaveMBB);
18318  // The XMMSaveMBB will fall through to the end block.
18319  XMMSaveMBB->addSuccessor(EndMBB);
18320
18321  // Now add the instructions.
18322  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18323  DebugLoc DL = MI->getDebugLoc();
18324
18325  unsigned CountReg = MI->getOperand(0).getReg();
18326  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
18327  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
18328
18329  if (!Subtarget->isTargetWin64()) {
18330    // If %al is 0, branch around the XMM save block.
18331    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
18332    BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
18333    MBB->addSuccessor(EndMBB);
18334  }
18335
18336  // Make sure the last operand is EFLAGS, which gets clobbered by the branch
18337  // that was just emitted, but clearly shouldn't be "saved".
18338  assert((MI->getNumOperands() <= 3 ||
18339          !MI->getOperand(MI->getNumOperands() - 1).isReg() ||
18340          MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
18341         && "Expected last argument to be EFLAGS");
18342  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
18343  // In the XMM save block, save all the XMM argument registers.
18344  for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
18345    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
18346    MachineMemOperand *MMO =
18347      F->getMachineMemOperand(
18348          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
18349        MachineMemOperand::MOStore,
18350        /*Size=*/16, /*Align=*/16);
18351    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
18352      .addFrameIndex(RegSaveFrameIndex)
18353      .addImm(/*Scale=*/1)
18354      .addReg(/*IndexReg=*/0)
18355      .addImm(/*Disp=*/Offset)
18356      .addReg(/*Segment=*/0)
18357      .addReg(MI->getOperand(i).getReg())
18358      .addMemOperand(MMO);
18359  }
18360
18361  MI->eraseFromParent();   // The pseudo instruction is gone now.
18362
18363  return EndMBB;
18364}
18365
18366// The EFLAGS operand of SelectItr might be missing a kill marker
18367// because there were multiple uses of EFLAGS, and ISel didn't know
18368// which to mark. Figure out whether SelectItr should have had a
18369// kill marker, and set it if it should. Returns the correct kill
18370// marker value.
18371static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
18372                                     MachineBasicBlock* BB,
18373                                     const TargetRegisterInfo* TRI) {
18374  // Scan forward through BB for a use/def of EFLAGS.
18375  MachineBasicBlock::iterator miI(std::next(SelectItr));
18376  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
18377    const MachineInstr& mi = *miI;
18378    if (mi.readsRegister(X86::EFLAGS))
18379      return false;
18380    if (mi.definesRegister(X86::EFLAGS))
18381      break; // Should have kill-flag - update below.
18382  }
18383
18384  // If we hit the end of the block, check whether EFLAGS is live into a
18385  // successor.
18386  if (miI == BB->end()) {
18387    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
18388                                          sEnd = BB->succ_end();
18389         sItr != sEnd; ++sItr) {
18390      MachineBasicBlock* succ = *sItr;
18391      if (succ->isLiveIn(X86::EFLAGS))
18392        return false;
18393    }
18394  }
18395
18396  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
18397  // out. SelectMI should have a kill flag on EFLAGS.
18398  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
18399  return true;
18400}
18401
18402MachineBasicBlock *
18403X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
18404                                     MachineBasicBlock *BB) const {
18405  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18406  DebugLoc DL = MI->getDebugLoc();
18407
18408  // To "insert" a SELECT_CC instruction, we actually have to insert the
18409  // diamond control-flow pattern.  The incoming instruction knows the
18410  // destination vreg to set, the condition code register to branch on, the
18411  // true/false values to select between, and a branch opcode to use.
18412  const BasicBlock *LLVM_BB = BB->getBasicBlock();
18413  MachineFunction::iterator It = BB;
18414  ++It;
18415
18416  //  thisMBB:
18417  //  ...
18418  //   TrueVal = ...
18419  //   cmpTY ccX, r1, r2
18420  //   bCC copy1MBB
18421  //   fallthrough --> copy0MBB
18422  MachineBasicBlock *thisMBB = BB;
18423  MachineFunction *F = BB->getParent();
18424
18425  // We also lower double CMOVs:
18426  //   (CMOV (CMOV F, T, cc1), T, cc2)
18427  // to two successives branches.  For that, we look for another CMOV as the
18428  // following instruction.
18429  //
18430  // Without this, we would add a PHI between the two jumps, which ends up
18431  // creating a few copies all around. For instance, for
18432  //
18433  //    (sitofp (zext (fcmp une)))
18434  //
18435  // we would generate:
18436  //
18437  //         ucomiss %xmm1, %xmm0
18438  //         movss  <1.0f>, %xmm0
18439  //         movaps  %xmm0, %xmm1
18440  //         jne     .LBB5_2
18441  //         xorps   %xmm1, %xmm1
18442  // .LBB5_2:
18443  //         jp      .LBB5_4
18444  //         movaps  %xmm1, %xmm0
18445  // .LBB5_4:
18446  //         retq
18447  //
18448  // because this custom-inserter would have generated:
18449  //
18450  //   A
18451  //   | \
18452  //   |  B
18453  //   | /
18454  //   C
18455  //   | \
18456  //   |  D
18457  //   | /
18458  //   E
18459  //
18460  // A: X = ...; Y = ...
18461  // B: empty
18462  // C: Z = PHI [X, A], [Y, B]
18463  // D: empty
18464  // E: PHI [X, C], [Z, D]
18465  //
18466  // If we lower both CMOVs in a single step, we can instead generate:
18467  //
18468  //   A
18469  //   | \
18470  //   |  C
18471  //   | /|
18472  //   |/ |
18473  //   |  |
18474  //   |  D
18475  //   | /
18476  //   E
18477  //
18478  // A: X = ...; Y = ...
18479  // D: empty
18480  // E: PHI [X, A], [X, C], [Y, D]
18481  //
18482  // Which, in our sitofp/fcmp example, gives us something like:
18483  //
18484  //         ucomiss %xmm1, %xmm0
18485  //         movss  <1.0f>, %xmm0
18486  //         jne     .LBB5_4
18487  //         jp      .LBB5_4
18488  //         xorps   %xmm0, %xmm0
18489  // .LBB5_4:
18490  //         retq
18491  //
18492  MachineInstr *NextCMOV = nullptr;
18493  MachineBasicBlock::iterator NextMIIt =
18494      std::next(MachineBasicBlock::iterator(MI));
18495  if (NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() &&
18496      NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() &&
18497      NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg())
18498    NextCMOV = &*NextMIIt;
18499
18500  MachineBasicBlock *jcc1MBB = nullptr;
18501
18502  // If we have a double CMOV, we lower it to two successive branches to
18503  // the same block.  EFLAGS is used by both, so mark it as live in the second.
18504  if (NextCMOV) {
18505    jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB);
18506    F->insert(It, jcc1MBB);
18507    jcc1MBB->addLiveIn(X86::EFLAGS);
18508  }
18509
18510  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
18511  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
18512  F->insert(It, copy0MBB);
18513  F->insert(It, sinkMBB);
18514
18515  // If the EFLAGS register isn't dead in the terminator, then claim that it's
18516  // live into the sink and copy blocks.
18517  const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
18518
18519  MachineInstr *LastEFLAGSUser = NextCMOV ? NextCMOV : MI;
18520  if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) &&
18521      !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) {
18522    copy0MBB->addLiveIn(X86::EFLAGS);
18523    sinkMBB->addLiveIn(X86::EFLAGS);
18524  }
18525
18526  // Transfer the remainder of BB and its successor edges to sinkMBB.
18527  sinkMBB->splice(sinkMBB->begin(), BB,
18528                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
18529  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
18530
18531  // Add the true and fallthrough blocks as its successors.
18532  if (NextCMOV) {
18533    // The fallthrough block may be jcc1MBB, if we have a double CMOV.
18534    BB->addSuccessor(jcc1MBB);
18535
18536    // In that case, jcc1MBB will itself fallthrough the copy0MBB, and
18537    // jump to the sinkMBB.
18538    jcc1MBB->addSuccessor(copy0MBB);
18539    jcc1MBB->addSuccessor(sinkMBB);
18540  } else {
18541    BB->addSuccessor(copy0MBB);
18542  }
18543
18544  // The true block target of the first (or only) branch is always sinkMBB.
18545  BB->addSuccessor(sinkMBB);
18546
18547  // Create the conditional branch instruction.
18548  unsigned Opc =
18549    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
18550  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
18551
18552  if (NextCMOV) {
18553    unsigned Opc2 = X86::GetCondBranchFromCond(
18554        (X86::CondCode)NextCMOV->getOperand(3).getImm());
18555    BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB);
18556  }
18557
18558  //  copy0MBB:
18559  //   %FalseValue = ...
18560  //   # fallthrough to sinkMBB
18561  copy0MBB->addSuccessor(sinkMBB);
18562
18563  //  sinkMBB:
18564  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
18565  //  ...
18566  MachineInstrBuilder MIB =
18567      BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI),
18568              MI->getOperand(0).getReg())
18569          .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
18570          .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
18571
18572  // If we have a double CMOV, the second Jcc provides the same incoming
18573  // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
18574  if (NextCMOV) {
18575    MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB);
18576    // Copy the PHI result to the register defined by the second CMOV.
18577    BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
18578            DL, TII->get(TargetOpcode::COPY), NextCMOV->getOperand(0).getReg())
18579        .addReg(MI->getOperand(0).getReg());
18580    NextCMOV->eraseFromParent();
18581  }
18582
18583  MI->eraseFromParent();   // The pseudo instruction is gone now.
18584  return sinkMBB;
18585}
18586
18587MachineBasicBlock *
18588X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
18589                                        MachineBasicBlock *BB) const {
18590  MachineFunction *MF = BB->getParent();
18591  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18592  DebugLoc DL = MI->getDebugLoc();
18593  const BasicBlock *LLVM_BB = BB->getBasicBlock();
18594
18595  assert(MF->shouldSplitStack());
18596
18597  const bool Is64Bit = Subtarget->is64Bit();
18598  const bool IsLP64 = Subtarget->isTarget64BitLP64();
18599
18600  const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
18601  const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
18602
18603  // BB:
18604  //  ... [Till the alloca]
18605  // If stacklet is not large enough, jump to mallocMBB
18606  //
18607  // bumpMBB:
18608  //  Allocate by subtracting from RSP
18609  //  Jump to continueMBB
18610  //
18611  // mallocMBB:
18612  //  Allocate by call to runtime
18613  //
18614  // continueMBB:
18615  //  ...
18616  //  [rest of original BB]
18617  //
18618
18619  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18620  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18621  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18622
18623  MachineRegisterInfo &MRI = MF->getRegInfo();
18624  const TargetRegisterClass *AddrRegClass =
18625    getRegClassFor(getPointerTy());
18626
18627  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
18628    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
18629    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
18630    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
18631    sizeVReg = MI->getOperand(1).getReg(),
18632    physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP;
18633
18634  MachineFunction::iterator MBBIter = BB;
18635  ++MBBIter;
18636
18637  MF->insert(MBBIter, bumpMBB);
18638  MF->insert(MBBIter, mallocMBB);
18639  MF->insert(MBBIter, continueMBB);
18640
18641  continueMBB->splice(continueMBB->begin(), BB,
18642                      std::next(MachineBasicBlock::iterator(MI)), BB->end());
18643  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
18644
18645  // Add code to the main basic block to check if the stack limit has been hit,
18646  // and if so, jump to mallocMBB otherwise to bumpMBB.
18647  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
18648  BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
18649    .addReg(tmpSPVReg).addReg(sizeVReg);
18650  BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
18651    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
18652    .addReg(SPLimitVReg);
18653  BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
18654
18655  // bumpMBB simply decreases the stack pointer, since we know the current
18656  // stacklet has enough space.
18657  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
18658    .addReg(SPLimitVReg);
18659  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
18660    .addReg(SPLimitVReg);
18661  BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
18662
18663  // Calls into a routine in libgcc to allocate more space from the heap.
18664  const uint32_t *RegMask =
18665      Subtarget->getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
18666  if (IsLP64) {
18667    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
18668      .addReg(sizeVReg);
18669    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
18670      .addExternalSymbol("__morestack_allocate_stack_space")
18671      .addRegMask(RegMask)
18672      .addReg(X86::RDI, RegState::Implicit)
18673      .addReg(X86::RAX, RegState::ImplicitDefine);
18674  } else if (Is64Bit) {
18675    BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
18676      .addReg(sizeVReg);
18677    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
18678      .addExternalSymbol("__morestack_allocate_stack_space")
18679      .addRegMask(RegMask)
18680      .addReg(X86::EDI, RegState::Implicit)
18681      .addReg(X86::EAX, RegState::ImplicitDefine);
18682  } else {
18683    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
18684      .addImm(12);
18685    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
18686    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
18687      .addExternalSymbol("__morestack_allocate_stack_space")
18688      .addRegMask(RegMask)
18689      .addReg(X86::EAX, RegState::ImplicitDefine);
18690  }
18691
18692  if (!Is64Bit)
18693    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
18694      .addImm(16);
18695
18696  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
18697    .addReg(IsLP64 ? X86::RAX : X86::EAX);
18698  BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
18699
18700  // Set up the CFG correctly.
18701  BB->addSuccessor(bumpMBB);
18702  BB->addSuccessor(mallocMBB);
18703  mallocMBB->addSuccessor(continueMBB);
18704  bumpMBB->addSuccessor(continueMBB);
18705
18706  // Take care of the PHI nodes.
18707  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
18708          MI->getOperand(0).getReg())
18709    .addReg(mallocPtrVReg).addMBB(mallocMBB)
18710    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
18711
18712  // Delete the original pseudo instruction.
18713  MI->eraseFromParent();
18714
18715  // And we're done.
18716  return continueMBB;
18717}
18718
18719MachineBasicBlock *
18720X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
18721                                        MachineBasicBlock *BB) const {
18722  DebugLoc DL = MI->getDebugLoc();
18723
18724  assert(!Subtarget->isTargetMachO());
18725
18726  X86FrameLowering::emitStackProbeCall(*BB->getParent(), *BB, MI, DL);
18727
18728  MI->eraseFromParent();   // The pseudo instruction is gone now.
18729  return BB;
18730}
18731
18732MachineBasicBlock *
18733X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
18734                                      MachineBasicBlock *BB) const {
18735  // This is pretty easy.  We're taking the value that we received from
18736  // our load from the relocation, sticking it in either RDI (x86-64)
18737  // or EAX and doing an indirect call.  The return value will then
18738  // be in the normal return register.
18739  MachineFunction *F = BB->getParent();
18740  const X86InstrInfo *TII = Subtarget->getInstrInfo();
18741  DebugLoc DL = MI->getDebugLoc();
18742
18743  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
18744  assert(MI->getOperand(3).isGlobal() && "This should be a global");
18745
18746  // Get a register mask for the lowered call.
18747  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
18748  // proper register mask.
18749  const uint32_t *RegMask =
18750      Subtarget->getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
18751  if (Subtarget->is64Bit()) {
18752    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
18753                                      TII->get(X86::MOV64rm), X86::RDI)
18754    .addReg(X86::RIP)
18755    .addImm(0).addReg(0)
18756    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
18757                      MI->getOperand(3).getTargetFlags())
18758    .addReg(0);
18759    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
18760    addDirectMem(MIB, X86::RDI);
18761    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
18762  } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
18763    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
18764                                      TII->get(X86::MOV32rm), X86::EAX)
18765    .addReg(0)
18766    .addImm(0).addReg(0)
18767    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
18768                      MI->getOperand(3).getTargetFlags())
18769    .addReg(0);
18770    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
18771    addDirectMem(MIB, X86::EAX);
18772    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
18773  } else {
18774    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
18775                                      TII->get(X86::MOV32rm), X86::EAX)
18776    .addReg(TII->getGlobalBaseReg(F))
18777    .addImm(0).addReg(0)
18778    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
18779                      MI->getOperand(3).getTargetFlags())
18780    .addReg(0);
18781    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
18782    addDirectMem(MIB, X86::EAX);
18783    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
18784  }
18785
18786  MI->eraseFromParent(); // The pseudo instruction is gone now.
18787  return BB;
18788}
18789
18790MachineBasicBlock *
18791X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
18792                                    MachineBasicBlock *MBB) const {
18793  DebugLoc DL = MI->getDebugLoc();
18794  MachineFunction *MF = MBB->getParent();
18795  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18796  MachineRegisterInfo &MRI = MF->getRegInfo();
18797
18798  const BasicBlock *BB = MBB->getBasicBlock();
18799  MachineFunction::iterator I = MBB;
18800  ++I;
18801
18802  // Memory Reference
18803  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
18804  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
18805
18806  unsigned DstReg;
18807  unsigned MemOpndSlot = 0;
18808
18809  unsigned CurOp = 0;
18810
18811  DstReg = MI->getOperand(CurOp++).getReg();
18812  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
18813  assert(RC->hasType(MVT::i32) && "Invalid destination!");
18814  unsigned mainDstReg = MRI.createVirtualRegister(RC);
18815  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
18816
18817  MemOpndSlot = CurOp;
18818
18819  MVT PVT = getPointerTy();
18820  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
18821         "Invalid Pointer Size!");
18822
18823  // For v = setjmp(buf), we generate
18824  //
18825  // thisMBB:
18826  //  buf[LabelOffset] = restoreMBB
18827  //  SjLjSetup restoreMBB
18828  //
18829  // mainMBB:
18830  //  v_main = 0
18831  //
18832  // sinkMBB:
18833  //  v = phi(main, restore)
18834  //
18835  // restoreMBB:
18836  //  if base pointer being used, load it from frame
18837  //  v_restore = 1
18838
18839  MachineBasicBlock *thisMBB = MBB;
18840  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
18841  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
18842  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
18843  MF->insert(I, mainMBB);
18844  MF->insert(I, sinkMBB);
18845  MF->push_back(restoreMBB);
18846
18847  MachineInstrBuilder MIB;
18848
18849  // Transfer the remainder of BB and its successor edges to sinkMBB.
18850  sinkMBB->splice(sinkMBB->begin(), MBB,
18851                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
18852  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
18853
18854  // thisMBB:
18855  unsigned PtrStoreOpc = 0;
18856  unsigned LabelReg = 0;
18857  const int64_t LabelOffset = 1 * PVT.getStoreSize();
18858  Reloc::Model RM = MF->getTarget().getRelocationModel();
18859  bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
18860                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
18861
18862  // Prepare IP either in reg or imm.
18863  if (!UseImmLabel) {
18864    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
18865    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
18866    LabelReg = MRI.createVirtualRegister(PtrRC);
18867    if (Subtarget->is64Bit()) {
18868      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
18869              .addReg(X86::RIP)
18870              .addImm(0)
18871              .addReg(0)
18872              .addMBB(restoreMBB)
18873              .addReg(0);
18874    } else {
18875      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
18876      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
18877              .addReg(XII->getGlobalBaseReg(MF))
18878              .addImm(0)
18879              .addReg(0)
18880              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
18881              .addReg(0);
18882    }
18883  } else
18884    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
18885  // Store IP
18886  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
18887  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
18888    if (i == X86::AddrDisp)
18889      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
18890    else
18891      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
18892  }
18893  if (!UseImmLabel)
18894    MIB.addReg(LabelReg);
18895  else
18896    MIB.addMBB(restoreMBB);
18897  MIB.setMemRefs(MMOBegin, MMOEnd);
18898  // Setup
18899  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
18900          .addMBB(restoreMBB);
18901
18902  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
18903  MIB.addRegMask(RegInfo->getNoPreservedMask());
18904  thisMBB->addSuccessor(mainMBB);
18905  thisMBB->addSuccessor(restoreMBB);
18906
18907  // mainMBB:
18908  //  EAX = 0
18909  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
18910  mainMBB->addSuccessor(sinkMBB);
18911
18912  // sinkMBB:
18913  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
18914          TII->get(X86::PHI), DstReg)
18915    .addReg(mainDstReg).addMBB(mainMBB)
18916    .addReg(restoreDstReg).addMBB(restoreMBB);
18917
18918  // restoreMBB:
18919  if (RegInfo->hasBasePointer(*MF)) {
18920    const bool Uses64BitFramePtr =
18921        Subtarget->isTarget64BitLP64() || Subtarget->isTargetNaCl64();
18922    X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
18923    X86FI->setRestoreBasePointer(MF);
18924    unsigned FramePtr = RegInfo->getFrameRegister(*MF);
18925    unsigned BasePtr = RegInfo->getBaseRegister();
18926    unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
18927    addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
18928                 FramePtr, true, X86FI->getRestoreBasePointerOffset())
18929      .setMIFlag(MachineInstr::FrameSetup);
18930  }
18931  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
18932  BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
18933  restoreMBB->addSuccessor(sinkMBB);
18934
18935  MI->eraseFromParent();
18936  return sinkMBB;
18937}
18938
18939MachineBasicBlock *
18940X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
18941                                     MachineBasicBlock *MBB) const {
18942  DebugLoc DL = MI->getDebugLoc();
18943  MachineFunction *MF = MBB->getParent();
18944  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18945  MachineRegisterInfo &MRI = MF->getRegInfo();
18946
18947  // Memory Reference
18948  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
18949  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
18950
18951  MVT PVT = getPointerTy();
18952  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
18953         "Invalid Pointer Size!");
18954
18955  const TargetRegisterClass *RC =
18956    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
18957  unsigned Tmp = MRI.createVirtualRegister(RC);
18958  // Since FP is only updated here but NOT referenced, it's treated as GPR.
18959  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
18960  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
18961  unsigned SP = RegInfo->getStackRegister();
18962
18963  MachineInstrBuilder MIB;
18964
18965  const int64_t LabelOffset = 1 * PVT.getStoreSize();
18966  const int64_t SPOffset = 2 * PVT.getStoreSize();
18967
18968  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
18969  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
18970
18971  // Reload FP
18972  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
18973  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
18974    MIB.addOperand(MI->getOperand(i));
18975  MIB.setMemRefs(MMOBegin, MMOEnd);
18976  // Reload IP
18977  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
18978  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
18979    if (i == X86::AddrDisp)
18980      MIB.addDisp(MI->getOperand(i), LabelOffset);
18981    else
18982      MIB.addOperand(MI->getOperand(i));
18983  }
18984  MIB.setMemRefs(MMOBegin, MMOEnd);
18985  // Reload SP
18986  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
18987  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
18988    if (i == X86::AddrDisp)
18989      MIB.addDisp(MI->getOperand(i), SPOffset);
18990    else
18991      MIB.addOperand(MI->getOperand(i));
18992  }
18993  MIB.setMemRefs(MMOBegin, MMOEnd);
18994  // Jump
18995  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
18996
18997  MI->eraseFromParent();
18998  return MBB;
18999}
19000
19001// Replace 213-type (isel default) FMA3 instructions with 231-type for
19002// accumulator loops. Writing back to the accumulator allows the coalescer
19003// to remove extra copies in the loop.
19004MachineBasicBlock *
19005X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
19006                                 MachineBasicBlock *MBB) const {
19007  MachineOperand &AddendOp = MI->getOperand(3);
19008
19009  // Bail out early if the addend isn't a register - we can't switch these.
19010  if (!AddendOp.isReg())
19011    return MBB;
19012
19013  MachineFunction &MF = *MBB->getParent();
19014  MachineRegisterInfo &MRI = MF.getRegInfo();
19015
19016  // Check whether the addend is defined by a PHI:
19017  assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
19018  MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
19019  if (!AddendDef.isPHI())
19020    return MBB;
19021
19022  // Look for the following pattern:
19023  // loop:
19024  //   %addend = phi [%entry, 0], [%loop, %result]
19025  //   ...
19026  //   %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
19027
19028  // Replace with:
19029  //   loop:
19030  //   %addend = phi [%entry, 0], [%loop, %result]
19031  //   ...
19032  //   %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
19033
19034  for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
19035    assert(AddendDef.getOperand(i).isReg());
19036    MachineOperand PHISrcOp = AddendDef.getOperand(i);
19037    MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
19038    if (&PHISrcInst == MI) {
19039      // Found a matching instruction.
19040      unsigned NewFMAOpc = 0;
19041      switch (MI->getOpcode()) {
19042        case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
19043        case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
19044        case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
19045        case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
19046        case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
19047        case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
19048        case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
19049        case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
19050        case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
19051        case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
19052        case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
19053        case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
19054        case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
19055        case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
19056        case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
19057        case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
19058        case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break;
19059        case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break;
19060        case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break;
19061        case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break;
19062
19063        case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
19064        case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
19065        case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
19066        case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
19067        case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
19068        case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
19069        case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
19070        case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
19071        case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break;
19072        case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break;
19073        case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break;
19074        case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break;
19075        default: llvm_unreachable("Unrecognized FMA variant.");
19076      }
19077
19078      const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
19079      MachineInstrBuilder MIB =
19080        BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
19081        .addOperand(MI->getOperand(0))
19082        .addOperand(MI->getOperand(3))
19083        .addOperand(MI->getOperand(2))
19084        .addOperand(MI->getOperand(1));
19085      MBB->insert(MachineBasicBlock::iterator(MI), MIB);
19086      MI->eraseFromParent();
19087    }
19088  }
19089
19090  return MBB;
19091}
19092
19093MachineBasicBlock *
19094X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
19095                                               MachineBasicBlock *BB) const {
19096  switch (MI->getOpcode()) {
19097  default: llvm_unreachable("Unexpected instr type to insert");
19098  case X86::TAILJMPd64:
19099  case X86::TAILJMPr64:
19100  case X86::TAILJMPm64:
19101  case X86::TAILJMPd64_REX:
19102  case X86::TAILJMPr64_REX:
19103  case X86::TAILJMPm64_REX:
19104    llvm_unreachable("TAILJMP64 would not be touched here.");
19105  case X86::TCRETURNdi64:
19106  case X86::TCRETURNri64:
19107  case X86::TCRETURNmi64:
19108    return BB;
19109  case X86::WIN_ALLOCA:
19110    return EmitLoweredWinAlloca(MI, BB);
19111  case X86::SEG_ALLOCA_32:
19112  case X86::SEG_ALLOCA_64:
19113    return EmitLoweredSegAlloca(MI, BB);
19114  case X86::TLSCall_32:
19115  case X86::TLSCall_64:
19116    return EmitLoweredTLSCall(MI, BB);
19117  case X86::CMOV_GR8:
19118  case X86::CMOV_FR32:
19119  case X86::CMOV_FR64:
19120  case X86::CMOV_V4F32:
19121  case X86::CMOV_V2F64:
19122  case X86::CMOV_V2I64:
19123  case X86::CMOV_V8F32:
19124  case X86::CMOV_V4F64:
19125  case X86::CMOV_V4I64:
19126  case X86::CMOV_V16F32:
19127  case X86::CMOV_V8F64:
19128  case X86::CMOV_V8I64:
19129  case X86::CMOV_GR16:
19130  case X86::CMOV_GR32:
19131  case X86::CMOV_RFP32:
19132  case X86::CMOV_RFP64:
19133  case X86::CMOV_RFP80:
19134    return EmitLoweredSelect(MI, BB);
19135
19136  case X86::FP32_TO_INT16_IN_MEM:
19137  case X86::FP32_TO_INT32_IN_MEM:
19138  case X86::FP32_TO_INT64_IN_MEM:
19139  case X86::FP64_TO_INT16_IN_MEM:
19140  case X86::FP64_TO_INT32_IN_MEM:
19141  case X86::FP64_TO_INT64_IN_MEM:
19142  case X86::FP80_TO_INT16_IN_MEM:
19143  case X86::FP80_TO_INT32_IN_MEM:
19144  case X86::FP80_TO_INT64_IN_MEM: {
19145    MachineFunction *F = BB->getParent();
19146    const TargetInstrInfo *TII = Subtarget->getInstrInfo();
19147    DebugLoc DL = MI->getDebugLoc();
19148
19149    // Change the floating point control register to use "round towards zero"
19150    // mode when truncating to an integer value.
19151    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
19152    addFrameReference(BuildMI(*BB, MI, DL,
19153                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
19154
19155    // Load the old value of the high byte of the control word...
19156    unsigned OldCW =
19157      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
19158    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
19159                      CWFrameIdx);
19160
19161    // Set the high part to be round to zero...
19162    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
19163      .addImm(0xC7F);
19164
19165    // Reload the modified control word now...
19166    addFrameReference(BuildMI(*BB, MI, DL,
19167                              TII->get(X86::FLDCW16m)), CWFrameIdx);
19168
19169    // Restore the memory image of control word to original value
19170    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
19171      .addReg(OldCW);
19172
19173    // Get the X86 opcode to use.
19174    unsigned Opc;
19175    switch (MI->getOpcode()) {
19176    default: llvm_unreachable("illegal opcode!");
19177    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
19178    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
19179    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
19180    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
19181    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
19182    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
19183    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
19184    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
19185    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
19186    }
19187
19188    X86AddressMode AM;
19189    MachineOperand &Op = MI->getOperand(0);
19190    if (Op.isReg()) {
19191      AM.BaseType = X86AddressMode::RegBase;
19192      AM.Base.Reg = Op.getReg();
19193    } else {
19194      AM.BaseType = X86AddressMode::FrameIndexBase;
19195      AM.Base.FrameIndex = Op.getIndex();
19196    }
19197    Op = MI->getOperand(1);
19198    if (Op.isImm())
19199      AM.Scale = Op.getImm();
19200    Op = MI->getOperand(2);
19201    if (Op.isImm())
19202      AM.IndexReg = Op.getImm();
19203    Op = MI->getOperand(3);
19204    if (Op.isGlobal()) {
19205      AM.GV = Op.getGlobal();
19206    } else {
19207      AM.Disp = Op.getImm();
19208    }
19209    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
19210                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
19211
19212    // Reload the original control word now.
19213    addFrameReference(BuildMI(*BB, MI, DL,
19214                              TII->get(X86::FLDCW16m)), CWFrameIdx);
19215
19216    MI->eraseFromParent();   // The pseudo instruction is gone now.
19217    return BB;
19218  }
19219    // String/text processing lowering.
19220  case X86::PCMPISTRM128REG:
19221  case X86::VPCMPISTRM128REG:
19222  case X86::PCMPISTRM128MEM:
19223  case X86::VPCMPISTRM128MEM:
19224  case X86::PCMPESTRM128REG:
19225  case X86::VPCMPESTRM128REG:
19226  case X86::PCMPESTRM128MEM:
19227  case X86::VPCMPESTRM128MEM:
19228    assert(Subtarget->hasSSE42() &&
19229           "Target must have SSE4.2 or AVX features enabled");
19230    return EmitPCMPSTRM(MI, BB, Subtarget->getInstrInfo());
19231
19232  // String/text processing lowering.
19233  case X86::PCMPISTRIREG:
19234  case X86::VPCMPISTRIREG:
19235  case X86::PCMPISTRIMEM:
19236  case X86::VPCMPISTRIMEM:
19237  case X86::PCMPESTRIREG:
19238  case X86::VPCMPESTRIREG:
19239  case X86::PCMPESTRIMEM:
19240  case X86::VPCMPESTRIMEM:
19241    assert(Subtarget->hasSSE42() &&
19242           "Target must have SSE4.2 or AVX features enabled");
19243    return EmitPCMPSTRI(MI, BB, Subtarget->getInstrInfo());
19244
19245  // Thread synchronization.
19246  case X86::MONITOR:
19247    return EmitMonitor(MI, BB, Subtarget);
19248
19249  // xbegin
19250  case X86::XBEGIN:
19251    return EmitXBegin(MI, BB, Subtarget->getInstrInfo());
19252
19253  case X86::VASTART_SAVE_XMM_REGS:
19254    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
19255
19256  case X86::VAARG_64:
19257    return EmitVAARG64WithCustomInserter(MI, BB);
19258
19259  case X86::EH_SjLj_SetJmp32:
19260  case X86::EH_SjLj_SetJmp64:
19261    return emitEHSjLjSetJmp(MI, BB);
19262
19263  case X86::EH_SjLj_LongJmp32:
19264  case X86::EH_SjLj_LongJmp64:
19265    return emitEHSjLjLongJmp(MI, BB);
19266
19267  case TargetOpcode::STATEPOINT:
19268    // As an implementation detail, STATEPOINT shares the STACKMAP format at
19269    // this point in the process.  We diverge later.
19270    return emitPatchPoint(MI, BB);
19271
19272  case TargetOpcode::STACKMAP:
19273  case TargetOpcode::PATCHPOINT:
19274    return emitPatchPoint(MI, BB);
19275
19276  case X86::VFMADDPDr213r:
19277  case X86::VFMADDPSr213r:
19278  case X86::VFMADDSDr213r:
19279  case X86::VFMADDSSr213r:
19280  case X86::VFMSUBPDr213r:
19281  case X86::VFMSUBPSr213r:
19282  case X86::VFMSUBSDr213r:
19283  case X86::VFMSUBSSr213r:
19284  case X86::VFNMADDPDr213r:
19285  case X86::VFNMADDPSr213r:
19286  case X86::VFNMADDSDr213r:
19287  case X86::VFNMADDSSr213r:
19288  case X86::VFNMSUBPDr213r:
19289  case X86::VFNMSUBPSr213r:
19290  case X86::VFNMSUBSDr213r:
19291  case X86::VFNMSUBSSr213r:
19292  case X86::VFMADDSUBPDr213r:
19293  case X86::VFMADDSUBPSr213r:
19294  case X86::VFMSUBADDPDr213r:
19295  case X86::VFMSUBADDPSr213r:
19296  case X86::VFMADDPDr213rY:
19297  case X86::VFMADDPSr213rY:
19298  case X86::VFMSUBPDr213rY:
19299  case X86::VFMSUBPSr213rY:
19300  case X86::VFNMADDPDr213rY:
19301  case X86::VFNMADDPSr213rY:
19302  case X86::VFNMSUBPDr213rY:
19303  case X86::VFNMSUBPSr213rY:
19304  case X86::VFMADDSUBPDr213rY:
19305  case X86::VFMADDSUBPSr213rY:
19306  case X86::VFMSUBADDPDr213rY:
19307  case X86::VFMSUBADDPSr213rY:
19308    return emitFMA3Instr(MI, BB);
19309  }
19310}
19311
19312//===----------------------------------------------------------------------===//
19313//                           X86 Optimization Hooks
19314//===----------------------------------------------------------------------===//
19315
19316void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
19317                                                      APInt &KnownZero,
19318                                                      APInt &KnownOne,
19319                                                      const SelectionDAG &DAG,
19320                                                      unsigned Depth) const {
19321  unsigned BitWidth = KnownZero.getBitWidth();
19322  unsigned Opc = Op.getOpcode();
19323  assert((Opc >= ISD::BUILTIN_OP_END ||
19324          Opc == ISD::INTRINSIC_WO_CHAIN ||
19325          Opc == ISD::INTRINSIC_W_CHAIN ||
19326          Opc == ISD::INTRINSIC_VOID) &&
19327         "Should use MaskedValueIsZero if you don't know whether Op"
19328         " is a target node!");
19329
19330  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
19331  switch (Opc) {
19332  default: break;
19333  case X86ISD::ADD:
19334  case X86ISD::SUB:
19335  case X86ISD::ADC:
19336  case X86ISD::SBB:
19337  case X86ISD::SMUL:
19338  case X86ISD::UMUL:
19339  case X86ISD::INC:
19340  case X86ISD::DEC:
19341  case X86ISD::OR:
19342  case X86ISD::XOR:
19343  case X86ISD::AND:
19344    // These nodes' second result is a boolean.
19345    if (Op.getResNo() == 0)
19346      break;
19347    // Fallthrough
19348  case X86ISD::SETCC:
19349    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
19350    break;
19351  case ISD::INTRINSIC_WO_CHAIN: {
19352    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
19353    unsigned NumLoBits = 0;
19354    switch (IntId) {
19355    default: break;
19356    case Intrinsic::x86_sse_movmsk_ps:
19357    case Intrinsic::x86_avx_movmsk_ps_256:
19358    case Intrinsic::x86_sse2_movmsk_pd:
19359    case Intrinsic::x86_avx_movmsk_pd_256:
19360    case Intrinsic::x86_mmx_pmovmskb:
19361    case Intrinsic::x86_sse2_pmovmskb_128:
19362    case Intrinsic::x86_avx2_pmovmskb: {
19363      // High bits of movmskp{s|d}, pmovmskb are known zero.
19364      switch (IntId) {
19365        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
19366        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
19367        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
19368        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
19369        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
19370        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
19371        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
19372        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
19373      }
19374      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
19375      break;
19376    }
19377    }
19378    break;
19379  }
19380  }
19381}
19382
19383unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
19384  SDValue Op,
19385  const SelectionDAG &,
19386  unsigned Depth) const {
19387  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
19388  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
19389    return Op.getValueType().getScalarType().getSizeInBits();
19390
19391  // Fallback case.
19392  return 1;
19393}
19394
19395/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
19396/// node is a GlobalAddress + offset.
19397bool X86TargetLowering::isGAPlusOffset(SDNode *N,
19398                                       const GlobalValue* &GA,
19399                                       int64_t &Offset) const {
19400  if (N->getOpcode() == X86ISD::Wrapper) {
19401    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
19402      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
19403      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
19404      return true;
19405    }
19406  }
19407  return TargetLowering::isGAPlusOffset(N, GA, Offset);
19408}
19409
19410/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
19411/// same as extracting the high 128-bit part of 256-bit vector and then
19412/// inserting the result into the low part of a new 256-bit vector
19413static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
19414  EVT VT = SVOp->getValueType(0);
19415  unsigned NumElems = VT.getVectorNumElements();
19416
19417  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
19418  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
19419    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
19420        SVOp->getMaskElt(j) >= 0)
19421      return false;
19422
19423  return true;
19424}
19425
19426/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
19427/// same as extracting the low 128-bit part of 256-bit vector and then
19428/// inserting the result into the high part of a new 256-bit vector
19429static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
19430  EVT VT = SVOp->getValueType(0);
19431  unsigned NumElems = VT.getVectorNumElements();
19432
19433  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
19434  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
19435    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
19436        SVOp->getMaskElt(j) >= 0)
19437      return false;
19438
19439  return true;
19440}
19441
19442/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
19443static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
19444                                        TargetLowering::DAGCombinerInfo &DCI,
19445                                        const X86Subtarget* Subtarget) {
19446  SDLoc dl(N);
19447  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
19448  SDValue V1 = SVOp->getOperand(0);
19449  SDValue V2 = SVOp->getOperand(1);
19450  EVT VT = SVOp->getValueType(0);
19451  unsigned NumElems = VT.getVectorNumElements();
19452
19453  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
19454      V2.getOpcode() == ISD::CONCAT_VECTORS) {
19455    //
19456    //                   0,0,0,...
19457    //                      |
19458    //    V      UNDEF    BUILD_VECTOR    UNDEF
19459    //     \      /           \           /
19460    //  CONCAT_VECTOR         CONCAT_VECTOR
19461    //         \                  /
19462    //          \                /
19463    //          RESULT: V + zero extended
19464    //
19465    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
19466        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
19467        V1.getOperand(1).getOpcode() != ISD::UNDEF)
19468      return SDValue();
19469
19470    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
19471      return SDValue();
19472
19473    // To match the shuffle mask, the first half of the mask should
19474    // be exactly the first vector, and all the rest a splat with the
19475    // first element of the second one.
19476    for (unsigned i = 0; i != NumElems/2; ++i)
19477      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
19478          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
19479        return SDValue();
19480
19481    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
19482    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
19483      if (Ld->hasNUsesOfValue(1, 0)) {
19484        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
19485        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
19486        SDValue ResNode =
19487          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
19488                                  Ld->getMemoryVT(),
19489                                  Ld->getPointerInfo(),
19490                                  Ld->getAlignment(),
19491                                  false/*isVolatile*/, true/*ReadMem*/,
19492                                  false/*WriteMem*/);
19493
19494        // Make sure the newly-created LOAD is in the same position as Ld in
19495        // terms of dependency. We create a TokenFactor for Ld and ResNode,
19496        // and update uses of Ld's output chain to use the TokenFactor.
19497        if (Ld->hasAnyUseOfValue(1)) {
19498          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
19499                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
19500          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
19501          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
19502                                 SDValue(ResNode.getNode(), 1));
19503        }
19504
19505        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
19506      }
19507    }
19508
19509    // Emit a zeroed vector and insert the desired subvector on its
19510    // first half.
19511    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
19512    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
19513    return DCI.CombineTo(N, InsV);
19514  }
19515
19516  //===--------------------------------------------------------------------===//
19517  // Combine some shuffles into subvector extracts and inserts:
19518  //
19519
19520  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
19521  if (isShuffleHigh128VectorInsertLow(SVOp)) {
19522    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
19523    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
19524    return DCI.CombineTo(N, InsV);
19525  }
19526
19527  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
19528  if (isShuffleLow128VectorInsertHigh(SVOp)) {
19529    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
19530    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
19531    return DCI.CombineTo(N, InsV);
19532  }
19533
19534  return SDValue();
19535}
19536
19537/// \brief Combine an arbitrary chain of shuffles into a single instruction if
19538/// possible.
19539///
19540/// This is the leaf of the recursive combinine below. When we have found some
19541/// chain of single-use x86 shuffle instructions and accumulated the combined
19542/// shuffle mask represented by them, this will try to pattern match that mask
19543/// into either a single instruction if there is a special purpose instruction
19544/// for this operation, or into a PSHUFB instruction which is a fully general
19545/// instruction but should only be used to replace chains over a certain depth.
19546static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
19547                                   int Depth, bool HasPSHUFB, SelectionDAG &DAG,
19548                                   TargetLowering::DAGCombinerInfo &DCI,
19549                                   const X86Subtarget *Subtarget) {
19550  assert(!Mask.empty() && "Cannot combine an empty shuffle mask!");
19551
19552  // Find the operand that enters the chain. Note that multiple uses are OK
19553  // here, we're not going to remove the operand we find.
19554  SDValue Input = Op.getOperand(0);
19555  while (Input.getOpcode() == ISD::BITCAST)
19556    Input = Input.getOperand(0);
19557
19558  MVT VT = Input.getSimpleValueType();
19559  MVT RootVT = Root.getSimpleValueType();
19560  SDLoc DL(Root);
19561
19562  // Just remove no-op shuffle masks.
19563  if (Mask.size() == 1) {
19564    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Input),
19565                  /*AddTo*/ true);
19566    return true;
19567  }
19568
19569  // Use the float domain if the operand type is a floating point type.
19570  bool FloatDomain = VT.isFloatingPoint();
19571
19572  // For floating point shuffles, we don't have free copies in the shuffle
19573  // instructions or the ability to load as part of the instruction, so
19574  // canonicalize their shuffles to UNPCK or MOV variants.
19575  //
19576  // Note that even with AVX we prefer the PSHUFD form of shuffle for integer
19577  // vectors because it can have a load folded into it that UNPCK cannot. This
19578  // doesn't preclude something switching to the shorter encoding post-RA.
19579  //
19580  // FIXME: Should teach these routines about AVX vector widths.
19581  if (FloatDomain && VT.getSizeInBits() == 128) {
19582    if (Mask.equals({0, 0}) || Mask.equals({1, 1})) {
19583      bool Lo = Mask.equals({0, 0});
19584      unsigned Shuffle;
19585      MVT ShuffleVT;
19586      // Check if we have SSE3 which will let us use MOVDDUP. That instruction
19587      // is no slower than UNPCKLPD but has the option to fold the input operand
19588      // into even an unaligned memory load.
19589      if (Lo && Subtarget->hasSSE3()) {
19590        Shuffle = X86ISD::MOVDDUP;
19591        ShuffleVT = MVT::v2f64;
19592      } else {
19593        // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller
19594        // than the UNPCK variants.
19595        Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS;
19596        ShuffleVT = MVT::v4f32;
19597      }
19598      if (Depth == 1 && Root->getOpcode() == Shuffle)
19599        return false; // Nothing to do!
19600      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
19601      DCI.AddToWorklist(Op.getNode());
19602      if (Shuffle == X86ISD::MOVDDUP)
19603        Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
19604      else
19605        Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
19606      DCI.AddToWorklist(Op.getNode());
19607      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19608                    /*AddTo*/ true);
19609      return true;
19610    }
19611    if (Subtarget->hasSSE3() &&
19612        (Mask.equals({0, 0, 2, 2}) || Mask.equals({1, 1, 3, 3}))) {
19613      bool Lo = Mask.equals({0, 0, 2, 2});
19614      unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP;
19615      MVT ShuffleVT = MVT::v4f32;
19616      if (Depth == 1 && Root->getOpcode() == Shuffle)
19617        return false; // Nothing to do!
19618      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
19619      DCI.AddToWorklist(Op.getNode());
19620      Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
19621      DCI.AddToWorklist(Op.getNode());
19622      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19623                    /*AddTo*/ true);
19624      return true;
19625    }
19626    if (Mask.equals({0, 0, 1, 1}) || Mask.equals({2, 2, 3, 3})) {
19627      bool Lo = Mask.equals({0, 0, 1, 1});
19628      unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
19629      MVT ShuffleVT = MVT::v4f32;
19630      if (Depth == 1 && Root->getOpcode() == Shuffle)
19631        return false; // Nothing to do!
19632      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
19633      DCI.AddToWorklist(Op.getNode());
19634      Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
19635      DCI.AddToWorklist(Op.getNode());
19636      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19637                    /*AddTo*/ true);
19638      return true;
19639    }
19640  }
19641
19642  // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK
19643  // variants as none of these have single-instruction variants that are
19644  // superior to the UNPCK formulation.
19645  if (!FloatDomain && VT.getSizeInBits() == 128 &&
19646      (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
19647       Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) ||
19648       Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}) ||
19649       Mask.equals(
19650           {8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}))) {
19651    bool Lo = Mask[0] == 0;
19652    unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
19653    if (Depth == 1 && Root->getOpcode() == Shuffle)
19654      return false; // Nothing to do!
19655    MVT ShuffleVT;
19656    switch (Mask.size()) {
19657    case 8:
19658      ShuffleVT = MVT::v8i16;
19659      break;
19660    case 16:
19661      ShuffleVT = MVT::v16i8;
19662      break;
19663    default:
19664      llvm_unreachable("Impossible mask size!");
19665    };
19666    Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
19667    DCI.AddToWorklist(Op.getNode());
19668    Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
19669    DCI.AddToWorklist(Op.getNode());
19670    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19671                  /*AddTo*/ true);
19672    return true;
19673  }
19674
19675  // Don't try to re-form single instruction chains under any circumstances now
19676  // that we've done encoding canonicalization for them.
19677  if (Depth < 2)
19678    return false;
19679
19680  // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we
19681  // can replace them with a single PSHUFB instruction profitably. Intel's
19682  // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but
19683  // in practice PSHUFB tends to be *very* fast so we're more aggressive.
19684  if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) {
19685    SmallVector<SDValue, 16> PSHUFBMask;
19686    int NumBytes = VT.getSizeInBits() / 8;
19687    int Ratio = NumBytes / Mask.size();
19688    for (int i = 0; i < NumBytes; ++i) {
19689      if (Mask[i / Ratio] == SM_SentinelUndef) {
19690        PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
19691        continue;
19692      }
19693      int M = Mask[i / Ratio] != SM_SentinelZero
19694                  ? Ratio * Mask[i / Ratio] + i % Ratio
19695                  : 255;
19696      PSHUFBMask.push_back(DAG.getConstant(M, MVT::i8));
19697    }
19698    MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
19699    Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Input);
19700    DCI.AddToWorklist(Op.getNode());
19701    SDValue PSHUFBMaskOp =
19702        DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask);
19703    DCI.AddToWorklist(PSHUFBMaskOp.getNode());
19704    Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp);
19705    DCI.AddToWorklist(Op.getNode());
19706    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19707                  /*AddTo*/ true);
19708    return true;
19709  }
19710
19711  // Failed to find any combines.
19712  return false;
19713}
19714
19715/// \brief Fully generic combining of x86 shuffle instructions.
19716///
19717/// This should be the last combine run over the x86 shuffle instructions. Once
19718/// they have been fully optimized, this will recursively consider all chains
19719/// of single-use shuffle instructions, build a generic model of the cumulative
19720/// shuffle operation, and check for simpler instructions which implement this
19721/// operation. We use this primarily for two purposes:
19722///
19723/// 1) Collapse generic shuffles to specialized single instructions when
19724///    equivalent. In most cases, this is just an encoding size win, but
19725///    sometimes we will collapse multiple generic shuffles into a single
19726///    special-purpose shuffle.
19727/// 2) Look for sequences of shuffle instructions with 3 or more total
19728///    instructions, and replace them with the slightly more expensive SSSE3
19729///    PSHUFB instruction if available. We do this as the last combining step
19730///    to ensure we avoid using PSHUFB if we can implement the shuffle with
19731///    a suitable short sequence of other instructions. The PHUFB will either
19732///    use a register or have to read from memory and so is slightly (but only
19733///    slightly) more expensive than the other shuffle instructions.
19734///
19735/// Because this is inherently a quadratic operation (for each shuffle in
19736/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
19737/// This should never be an issue in practice as the shuffle lowering doesn't
19738/// produce sequences of more than 8 instructions.
19739///
19740/// FIXME: We will currently miss some cases where the redundant shuffling
19741/// would simplify under the threshold for PSHUFB formation because of
19742/// combine-ordering. To fix this, we should do the redundant instruction
19743/// combining in this recursive walk.
19744static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
19745                                          ArrayRef<int> RootMask,
19746                                          int Depth, bool HasPSHUFB,
19747                                          SelectionDAG &DAG,
19748                                          TargetLowering::DAGCombinerInfo &DCI,
19749                                          const X86Subtarget *Subtarget) {
19750  // Bound the depth of our recursive combine because this is ultimately
19751  // quadratic in nature.
19752  if (Depth > 8)
19753    return false;
19754
19755  // Directly rip through bitcasts to find the underlying operand.
19756  while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse())
19757    Op = Op.getOperand(0);
19758
19759  MVT VT = Op.getSimpleValueType();
19760  if (!VT.isVector())
19761    return false; // Bail if we hit a non-vector.
19762
19763  assert(Root.getSimpleValueType().isVector() &&
19764         "Shuffles operate on vector types!");
19765  assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
19766         "Can only combine shuffles of the same vector register size.");
19767
19768  if (!isTargetShuffle(Op.getOpcode()))
19769    return false;
19770  SmallVector<int, 16> OpMask;
19771  bool IsUnary;
19772  bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary);
19773  // We only can combine unary shuffles which we can decode the mask for.
19774  if (!HaveMask || !IsUnary)
19775    return false;
19776
19777  assert(VT.getVectorNumElements() == OpMask.size() &&
19778         "Different mask size from vector size!");
19779  assert(((RootMask.size() > OpMask.size() &&
19780           RootMask.size() % OpMask.size() == 0) ||
19781          (OpMask.size() > RootMask.size() &&
19782           OpMask.size() % RootMask.size() == 0) ||
19783          OpMask.size() == RootMask.size()) &&
19784         "The smaller number of elements must divide the larger.");
19785  int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
19786  int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
19787  assert(((RootRatio == 1 && OpRatio == 1) ||
19788          (RootRatio == 1) != (OpRatio == 1)) &&
19789         "Must not have a ratio for both incoming and op masks!");
19790
19791  SmallVector<int, 16> Mask;
19792  Mask.reserve(std::max(OpMask.size(), RootMask.size()));
19793
19794  // Merge this shuffle operation's mask into our accumulated mask. Note that
19795  // this shuffle's mask will be the first applied to the input, followed by the
19796  // root mask to get us all the way to the root value arrangement. The reason
19797  // for this order is that we are recursing up the operation chain.
19798  for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
19799    int RootIdx = i / RootRatio;
19800    if (RootMask[RootIdx] < 0) {
19801      // This is a zero or undef lane, we're done.
19802      Mask.push_back(RootMask[RootIdx]);
19803      continue;
19804    }
19805
19806    int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
19807    int OpIdx = RootMaskedIdx / OpRatio;
19808    if (OpMask[OpIdx] < 0) {
19809      // The incoming lanes are zero or undef, it doesn't matter which ones we
19810      // are using.
19811      Mask.push_back(OpMask[OpIdx]);
19812      continue;
19813    }
19814
19815    // Ok, we have non-zero lanes, map them through.
19816    Mask.push_back(OpMask[OpIdx] * OpRatio +
19817                   RootMaskedIdx % OpRatio);
19818  }
19819
19820  // See if we can recurse into the operand to combine more things.
19821  switch (Op.getOpcode()) {
19822    case X86ISD::PSHUFB:
19823      HasPSHUFB = true;
19824    case X86ISD::PSHUFD:
19825    case X86ISD::PSHUFHW:
19826    case X86ISD::PSHUFLW:
19827      if (Op.getOperand(0).hasOneUse() &&
19828          combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
19829                                        HasPSHUFB, DAG, DCI, Subtarget))
19830        return true;
19831      break;
19832
19833    case X86ISD::UNPCKL:
19834    case X86ISD::UNPCKH:
19835      assert(Op.getOperand(0) == Op.getOperand(1) && "We only combine unary shuffles!");
19836      // We can't check for single use, we have to check that this shuffle is the only user.
19837      if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
19838          combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
19839                                        HasPSHUFB, DAG, DCI, Subtarget))
19840          return true;
19841      break;
19842  }
19843
19844  // Minor canonicalization of the accumulated shuffle mask to make it easier
19845  // to match below. All this does is detect masks with squential pairs of
19846  // elements, and shrink them to the half-width mask. It does this in a loop
19847  // so it will reduce the size of the mask to the minimal width mask which
19848  // performs an equivalent shuffle.
19849  SmallVector<int, 16> WidenedMask;
19850  while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
19851    Mask = std::move(WidenedMask);
19852    WidenedMask.clear();
19853  }
19854
19855  return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI,
19856                                Subtarget);
19857}
19858
19859/// \brief Get the PSHUF-style mask from PSHUF node.
19860///
19861/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
19862/// PSHUF-style masks that can be reused with such instructions.
19863static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
19864  MVT VT = N.getSimpleValueType();
19865  SmallVector<int, 4> Mask;
19866  bool IsUnary;
19867  bool HaveMask = getTargetShuffleMask(N.getNode(), VT, Mask, IsUnary);
19868  (void)HaveMask;
19869  assert(HaveMask);
19870
19871  // If we have more than 128-bits, only the low 128-bits of shuffle mask
19872  // matter. Check that the upper masks are repeats and remove them.
19873  if (VT.getSizeInBits() > 128) {
19874    int LaneElts = 128 / VT.getScalarSizeInBits();
19875#ifndef NDEBUG
19876    for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
19877      for (int j = 0; j < LaneElts; ++j)
19878        assert(Mask[j] == Mask[i * LaneElts + j] - LaneElts &&
19879               "Mask doesn't repeat in high 128-bit lanes!");
19880#endif
19881    Mask.resize(LaneElts);
19882  }
19883
19884  switch (N.getOpcode()) {
19885  case X86ISD::PSHUFD:
19886    return Mask;
19887  case X86ISD::PSHUFLW:
19888    Mask.resize(4);
19889    return Mask;
19890  case X86ISD::PSHUFHW:
19891    Mask.erase(Mask.begin(), Mask.begin() + 4);
19892    for (int &M : Mask)
19893      M -= 4;
19894    return Mask;
19895  default:
19896    llvm_unreachable("No valid shuffle instruction found!");
19897  }
19898}
19899
19900/// \brief Search for a combinable shuffle across a chain ending in pshufd.
19901///
19902/// We walk up the chain and look for a combinable shuffle, skipping over
19903/// shuffles that we could hoist this shuffle's transformation past without
19904/// altering anything.
19905static SDValue
19906combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
19907                             SelectionDAG &DAG,
19908                             TargetLowering::DAGCombinerInfo &DCI) {
19909  assert(N.getOpcode() == X86ISD::PSHUFD &&
19910         "Called with something other than an x86 128-bit half shuffle!");
19911  SDLoc DL(N);
19912
19913  // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
19914  // of the shuffles in the chain so that we can form a fresh chain to replace
19915  // this one.
19916  SmallVector<SDValue, 8> Chain;
19917  SDValue V = N.getOperand(0);
19918  for (; V.hasOneUse(); V = V.getOperand(0)) {
19919    switch (V.getOpcode()) {
19920    default:
19921      return SDValue(); // Nothing combined!
19922
19923    case ISD::BITCAST:
19924      // Skip bitcasts as we always know the type for the target specific
19925      // instructions.
19926      continue;
19927
19928    case X86ISD::PSHUFD:
19929      // Found another dword shuffle.
19930      break;
19931
19932    case X86ISD::PSHUFLW:
19933      // Check that the low words (being shuffled) are the identity in the
19934      // dword shuffle, and the high words are self-contained.
19935      if (Mask[0] != 0 || Mask[1] != 1 ||
19936          !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
19937        return SDValue();
19938
19939      Chain.push_back(V);
19940      continue;
19941
19942    case X86ISD::PSHUFHW:
19943      // Check that the high words (being shuffled) are the identity in the
19944      // dword shuffle, and the low words are self-contained.
19945      if (Mask[2] != 2 || Mask[3] != 3 ||
19946          !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
19947        return SDValue();
19948
19949      Chain.push_back(V);
19950      continue;
19951
19952    case X86ISD::UNPCKL:
19953    case X86ISD::UNPCKH:
19954      // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
19955      // shuffle into a preceding word shuffle.
19956      if (V.getSimpleValueType().getScalarType() != MVT::i8 &&
19957          V.getSimpleValueType().getScalarType() != MVT::i16)
19958        return SDValue();
19959
19960      // Search for a half-shuffle which we can combine with.
19961      unsigned CombineOp =
19962          V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
19963      if (V.getOperand(0) != V.getOperand(1) ||
19964          !V->isOnlyUserOf(V.getOperand(0).getNode()))
19965        return SDValue();
19966      Chain.push_back(V);
19967      V = V.getOperand(0);
19968      do {
19969        switch (V.getOpcode()) {
19970        default:
19971          return SDValue(); // Nothing to combine.
19972
19973        case X86ISD::PSHUFLW:
19974        case X86ISD::PSHUFHW:
19975          if (V.getOpcode() == CombineOp)
19976            break;
19977
19978          Chain.push_back(V);
19979
19980          // Fallthrough!
19981        case ISD::BITCAST:
19982          V = V.getOperand(0);
19983          continue;
19984        }
19985        break;
19986      } while (V.hasOneUse());
19987      break;
19988    }
19989    // Break out of the loop if we break out of the switch.
19990    break;
19991  }
19992
19993  if (!V.hasOneUse())
19994    // We fell out of the loop without finding a viable combining instruction.
19995    return SDValue();
19996
19997  // Merge this node's mask and our incoming mask.
19998  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
19999  for (int &M : Mask)
20000    M = VMask[M];
20001  V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
20002                  getV4X86ShuffleImm8ForMask(Mask, DAG));
20003
20004  // Rebuild the chain around this new shuffle.
20005  while (!Chain.empty()) {
20006    SDValue W = Chain.pop_back_val();
20007
20008    if (V.getValueType() != W.getOperand(0).getValueType())
20009      V = DAG.getNode(ISD::BITCAST, DL, W.getOperand(0).getValueType(), V);
20010
20011    switch (W.getOpcode()) {
20012    default:
20013      llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
20014
20015    case X86ISD::UNPCKL:
20016    case X86ISD::UNPCKH:
20017      V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
20018      break;
20019
20020    case X86ISD::PSHUFD:
20021    case X86ISD::PSHUFLW:
20022    case X86ISD::PSHUFHW:
20023      V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
20024      break;
20025    }
20026  }
20027  if (V.getValueType() != N.getValueType())
20028    V = DAG.getNode(ISD::BITCAST, DL, N.getValueType(), V);
20029
20030  // Return the new chain to replace N.
20031  return V;
20032}
20033
20034/// \brief Search for a combinable shuffle across a chain ending in pshuflw or pshufhw.
20035///
20036/// We walk up the chain, skipping shuffles of the other half and looking
20037/// through shuffles which switch halves trying to find a shuffle of the same
20038/// pair of dwords.
20039static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
20040                                        SelectionDAG &DAG,
20041                                        TargetLowering::DAGCombinerInfo &DCI) {
20042  assert(
20043      (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
20044      "Called with something other than an x86 128-bit half shuffle!");
20045  SDLoc DL(N);
20046  unsigned CombineOpcode = N.getOpcode();
20047
20048  // Walk up a single-use chain looking for a combinable shuffle.
20049  SDValue V = N.getOperand(0);
20050  for (; V.hasOneUse(); V = V.getOperand(0)) {
20051    switch (V.getOpcode()) {
20052    default:
20053      return false; // Nothing combined!
20054
20055    case ISD::BITCAST:
20056      // Skip bitcasts as we always know the type for the target specific
20057      // instructions.
20058      continue;
20059
20060    case X86ISD::PSHUFLW:
20061    case X86ISD::PSHUFHW:
20062      if (V.getOpcode() == CombineOpcode)
20063        break;
20064
20065      // Other-half shuffles are no-ops.
20066      continue;
20067    }
20068    // Break out of the loop if we break out of the switch.
20069    break;
20070  }
20071
20072  if (!V.hasOneUse())
20073    // We fell out of the loop without finding a viable combining instruction.
20074    return false;
20075
20076  // Combine away the bottom node as its shuffle will be accumulated into
20077  // a preceding shuffle.
20078  DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
20079
20080  // Record the old value.
20081  SDValue Old = V;
20082
20083  // Merge this node's mask and our incoming mask (adjusted to account for all
20084  // the pshufd instructions encountered).
20085  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
20086  for (int &M : Mask)
20087    M = VMask[M];
20088  V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
20089                  getV4X86ShuffleImm8ForMask(Mask, DAG));
20090
20091  // Check that the shuffles didn't cancel each other out. If not, we need to
20092  // combine to the new one.
20093  if (Old != V)
20094    // Replace the combinable shuffle with the combined one, updating all users
20095    // so that we re-evaluate the chain here.
20096    DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
20097
20098  return true;
20099}
20100
20101/// \brief Try to combine x86 target specific shuffles.
20102static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
20103                                           TargetLowering::DAGCombinerInfo &DCI,
20104                                           const X86Subtarget *Subtarget) {
20105  SDLoc DL(N);
20106  MVT VT = N.getSimpleValueType();
20107  SmallVector<int, 4> Mask;
20108
20109  switch (N.getOpcode()) {
20110  case X86ISD::PSHUFD:
20111  case X86ISD::PSHUFLW:
20112  case X86ISD::PSHUFHW:
20113    Mask = getPSHUFShuffleMask(N);
20114    assert(Mask.size() == 4);
20115    break;
20116  default:
20117    return SDValue();
20118  }
20119
20120  // Nuke no-op shuffles that show up after combining.
20121  if (isNoopShuffleMask(Mask))
20122    return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
20123
20124  // Look for simplifications involving one or two shuffle instructions.
20125  SDValue V = N.getOperand(0);
20126  switch (N.getOpcode()) {
20127  default:
20128    break;
20129  case X86ISD::PSHUFLW:
20130  case X86ISD::PSHUFHW:
20131    assert(VT.getScalarType() == MVT::i16 && "Bad word shuffle type!");
20132
20133    if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
20134      return SDValue(); // We combined away this shuffle, so we're done.
20135
20136    // See if this reduces to a PSHUFD which is no more expensive and can
20137    // combine with more operations. Note that it has to at least flip the
20138    // dwords as otherwise it would have been removed as a no-op.
20139    if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
20140      int DMask[] = {0, 1, 2, 3};
20141      int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
20142      DMask[DOffset + 0] = DOffset + 1;
20143      DMask[DOffset + 1] = DOffset + 0;
20144      MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
20145      V = DAG.getNode(ISD::BITCAST, DL, DVT, V);
20146      DCI.AddToWorklist(V.getNode());
20147      V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
20148                      getV4X86ShuffleImm8ForMask(DMask, DAG));
20149      DCI.AddToWorklist(V.getNode());
20150      return DAG.getNode(ISD::BITCAST, DL, VT, V);
20151    }
20152
20153    // Look for shuffle patterns which can be implemented as a single unpack.
20154    // FIXME: This doesn't handle the location of the PSHUFD generically, and
20155    // only works when we have a PSHUFD followed by two half-shuffles.
20156    if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
20157        (V.getOpcode() == X86ISD::PSHUFLW ||
20158         V.getOpcode() == X86ISD::PSHUFHW) &&
20159        V.getOpcode() != N.getOpcode() &&
20160        V.hasOneUse()) {
20161      SDValue D = V.getOperand(0);
20162      while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
20163        D = D.getOperand(0);
20164      if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
20165        SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
20166        SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
20167        int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
20168        int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
20169        int WordMask[8];
20170        for (int i = 0; i < 4; ++i) {
20171          WordMask[i + NOffset] = Mask[i] + NOffset;
20172          WordMask[i + VOffset] = VMask[i] + VOffset;
20173        }
20174        // Map the word mask through the DWord mask.
20175        int MappedMask[8];
20176        for (int i = 0; i < 8; ++i)
20177          MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
20178        if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
20179            makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
20180          // We can replace all three shuffles with an unpack.
20181          V = DAG.getNode(ISD::BITCAST, DL, VT, D.getOperand(0));
20182          DCI.AddToWorklist(V.getNode());
20183          return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
20184                                                : X86ISD::UNPCKH,
20185                             DL, VT, V, V);
20186        }
20187      }
20188    }
20189
20190    break;
20191
20192  case X86ISD::PSHUFD:
20193    if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
20194      return NewN;
20195
20196    break;
20197  }
20198
20199  return SDValue();
20200}
20201
20202/// \brief Try to combine a shuffle into a target-specific add-sub node.
20203///
20204/// We combine this directly on the abstract vector shuffle nodes so it is
20205/// easier to generically match. We also insert dummy vector shuffle nodes for
20206/// the operands which explicitly discard the lanes which are unused by this
20207/// operation to try to flow through the rest of the combiner the fact that
20208/// they're unused.
20209static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) {
20210  SDLoc DL(N);
20211  EVT VT = N->getValueType(0);
20212
20213  // We only handle target-independent shuffles.
20214  // FIXME: It would be easy and harmless to use the target shuffle mask
20215  // extraction tool to support more.
20216  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
20217    return SDValue();
20218
20219  auto *SVN = cast<ShuffleVectorSDNode>(N);
20220  ArrayRef<int> Mask = SVN->getMask();
20221  SDValue V1 = N->getOperand(0);
20222  SDValue V2 = N->getOperand(1);
20223
20224  // We require the first shuffle operand to be the SUB node, and the second to
20225  // be the ADD node.
20226  // FIXME: We should support the commuted patterns.
20227  if (V1->getOpcode() != ISD::FSUB || V2->getOpcode() != ISD::FADD)
20228    return SDValue();
20229
20230  // If there are other uses of these operations we can't fold them.
20231  if (!V1->hasOneUse() || !V2->hasOneUse())
20232    return SDValue();
20233
20234  // Ensure that both operations have the same operands. Note that we can
20235  // commute the FADD operands.
20236  SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
20237  if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
20238      (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
20239    return SDValue();
20240
20241  // We're looking for blends between FADD and FSUB nodes. We insist on these
20242  // nodes being lined up in a specific expected pattern.
20243  if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
20244        isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) ||
20245        isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15})))
20246    return SDValue();
20247
20248  // Only specific types are legal at this point, assert so we notice if and
20249  // when these change.
20250  assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 ||
20251          VT == MVT::v4f64) &&
20252         "Unknown vector type encountered!");
20253
20254  return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS);
20255}
20256
20257/// PerformShuffleCombine - Performs several different shuffle combines.
20258static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
20259                                     TargetLowering::DAGCombinerInfo &DCI,
20260                                     const X86Subtarget *Subtarget) {
20261  SDLoc dl(N);
20262  SDValue N0 = N->getOperand(0);
20263  SDValue N1 = N->getOperand(1);
20264  EVT VT = N->getValueType(0);
20265
20266  // Don't create instructions with illegal types after legalize types has run.
20267  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20268  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
20269    return SDValue();
20270
20271  // If we have legalized the vector types, look for blends of FADD and FSUB
20272  // nodes that we can fuse into an ADDSUB node.
20273  if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3())
20274    if (SDValue AddSub = combineShuffleToAddSub(N, DAG))
20275      return AddSub;
20276
20277  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
20278  if (Subtarget->hasFp256() && VT.is256BitVector() &&
20279      N->getOpcode() == ISD::VECTOR_SHUFFLE)
20280    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
20281
20282  // During Type Legalization, when promoting illegal vector types,
20283  // the backend might introduce new shuffle dag nodes and bitcasts.
20284  //
20285  // This code performs the following transformation:
20286  // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
20287  //       (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
20288  //
20289  // We do this only if both the bitcast and the BINOP dag nodes have
20290  // one use. Also, perform this transformation only if the new binary
20291  // operation is legal. This is to avoid introducing dag nodes that
20292  // potentially need to be further expanded (or custom lowered) into a
20293  // less optimal sequence of dag nodes.
20294  if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
20295      N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() &&
20296      N0.getOpcode() == ISD::BITCAST) {
20297    SDValue BC0 = N0.getOperand(0);
20298    EVT SVT = BC0.getValueType();
20299    unsigned Opcode = BC0.getOpcode();
20300    unsigned NumElts = VT.getVectorNumElements();
20301
20302    if (BC0.hasOneUse() && SVT.isVector() &&
20303        SVT.getVectorNumElements() * 2 == NumElts &&
20304        TLI.isOperationLegal(Opcode, VT)) {
20305      bool CanFold = false;
20306      switch (Opcode) {
20307      default : break;
20308      case ISD::ADD :
20309      case ISD::FADD :
20310      case ISD::SUB :
20311      case ISD::FSUB :
20312      case ISD::MUL :
20313      case ISD::FMUL :
20314        CanFold = true;
20315      }
20316
20317      unsigned SVTNumElts = SVT.getVectorNumElements();
20318      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
20319      for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
20320        CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
20321      for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
20322        CanFold = SVOp->getMaskElt(i) < 0;
20323
20324      if (CanFold) {
20325        SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0));
20326        SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1));
20327        SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
20328        return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
20329      }
20330    }
20331  }
20332
20333  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
20334  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
20335  // consecutive, non-overlapping, and in the right order.
20336  SmallVector<SDValue, 16> Elts;
20337  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
20338    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
20339
20340  SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
20341  if (LD.getNode())
20342    return LD;
20343
20344  if (isTargetShuffle(N->getOpcode())) {
20345    SDValue Shuffle =
20346        PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
20347    if (Shuffle.getNode())
20348      return Shuffle;
20349
20350    // Try recursively combining arbitrary sequences of x86 shuffle
20351    // instructions into higher-order shuffles. We do this after combining
20352    // specific PSHUF instruction sequences into their minimal form so that we
20353    // can evaluate how many specialized shuffle instructions are involved in
20354    // a particular chain.
20355    SmallVector<int, 1> NonceMask; // Just a placeholder.
20356    NonceMask.push_back(0);
20357    if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask,
20358                                      /*Depth*/ 1, /*HasPSHUFB*/ false, DAG,
20359                                      DCI, Subtarget))
20360      return SDValue(); // This routine will use CombineTo to replace N.
20361  }
20362
20363  return SDValue();
20364}
20365
20366/// PerformTruncateCombine - Converts truncate operation to
20367/// a sequence of vector shuffle operations.
20368/// It is possible when we truncate 256-bit vector to 128-bit vector
20369static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
20370                                      TargetLowering::DAGCombinerInfo &DCI,
20371                                      const X86Subtarget *Subtarget)  {
20372  return SDValue();
20373}
20374
20375/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
20376/// specific shuffle of a load can be folded into a single element load.
20377/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
20378/// shuffles have been custom lowered so we need to handle those here.
20379static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
20380                                         TargetLowering::DAGCombinerInfo &DCI) {
20381  if (DCI.isBeforeLegalizeOps())
20382    return SDValue();
20383
20384  SDValue InVec = N->getOperand(0);
20385  SDValue EltNo = N->getOperand(1);
20386
20387  if (!isa<ConstantSDNode>(EltNo))
20388    return SDValue();
20389
20390  EVT OriginalVT = InVec.getValueType();
20391
20392  if (InVec.getOpcode() == ISD::BITCAST) {
20393    // Don't duplicate a load with other uses.
20394    if (!InVec.hasOneUse())
20395      return SDValue();
20396    EVT BCVT = InVec.getOperand(0).getValueType();
20397    if (BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
20398      return SDValue();
20399    InVec = InVec.getOperand(0);
20400  }
20401
20402  EVT CurrentVT = InVec.getValueType();
20403
20404  if (!isTargetShuffle(InVec.getOpcode()))
20405    return SDValue();
20406
20407  // Don't duplicate a load with other uses.
20408  if (!InVec.hasOneUse())
20409    return SDValue();
20410
20411  SmallVector<int, 16> ShuffleMask;
20412  bool UnaryShuffle;
20413  if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(),
20414                            ShuffleMask, UnaryShuffle))
20415    return SDValue();
20416
20417  // Select the input vector, guarding against out of range extract vector.
20418  unsigned NumElems = CurrentVT.getVectorNumElements();
20419  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
20420  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
20421  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
20422                                         : InVec.getOperand(1);
20423
20424  // If inputs to shuffle are the same for both ops, then allow 2 uses
20425  unsigned AllowedUses = InVec.getNumOperands() > 1 &&
20426                         InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
20427
20428  if (LdNode.getOpcode() == ISD::BITCAST) {
20429    // Don't duplicate a load with other uses.
20430    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
20431      return SDValue();
20432
20433    AllowedUses = 1; // only allow 1 load use if we have a bitcast
20434    LdNode = LdNode.getOperand(0);
20435  }
20436
20437  if (!ISD::isNormalLoad(LdNode.getNode()))
20438    return SDValue();
20439
20440  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
20441
20442  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
20443    return SDValue();
20444
20445  EVT EltVT = N->getValueType(0);
20446  // If there's a bitcast before the shuffle, check if the load type and
20447  // alignment is valid.
20448  unsigned Align = LN0->getAlignment();
20449  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20450  unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment(
20451      EltVT.getTypeForEVT(*DAG.getContext()));
20452
20453  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
20454    return SDValue();
20455
20456  // All checks match so transform back to vector_shuffle so that DAG combiner
20457  // can finish the job
20458  SDLoc dl(N);
20459
20460  // Create shuffle node taking into account the case that its a unary shuffle
20461  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT)
20462                                   : InVec.getOperand(1);
20463  Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
20464                                 InVec.getOperand(0), Shuffle,
20465                                 &ShuffleMask[0]);
20466  Shuffle = DAG.getNode(ISD::BITCAST, dl, OriginalVT, Shuffle);
20467  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
20468                     EltNo);
20469}
20470
20471/// \brief Detect bitcasts between i32 to x86mmx low word. Since MMX types are
20472/// special and don't usually play with other vector types, it's better to
20473/// handle them early to be sure we emit efficient code by avoiding
20474/// store-load conversions.
20475static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG) {
20476  if (N->getValueType(0) != MVT::x86mmx ||
20477      N->getOperand(0)->getOpcode() != ISD::BUILD_VECTOR ||
20478      N->getOperand(0)->getValueType(0) != MVT::v2i32)
20479    return SDValue();
20480
20481  SDValue V = N->getOperand(0);
20482  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
20483  if (C && C->getZExtValue() == 0 && V.getOperand(0).getValueType() == MVT::i32)
20484    return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(V.getOperand(0)),
20485                       N->getValueType(0), V.getOperand(0));
20486
20487  return SDValue();
20488}
20489
20490/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
20491/// generation and convert it from being a bunch of shuffles and extracts
20492/// into a somewhat faster sequence. For i686, the best sequence is apparently
20493/// storing the value and loading scalars back, while for x64 we should
20494/// use 64-bit extracts and shifts.
20495static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
20496                                         TargetLowering::DAGCombinerInfo &DCI) {
20497  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
20498  if (NewOp.getNode())
20499    return NewOp;
20500
20501  SDValue InputVector = N->getOperand(0);
20502
20503  // Detect mmx to i32 conversion through a v2i32 elt extract.
20504  if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
20505      N->getValueType(0) == MVT::i32 &&
20506      InputVector.getValueType() == MVT::v2i32) {
20507
20508    // The bitcast source is a direct mmx result.
20509    SDValue MMXSrc = InputVector.getNode()->getOperand(0);
20510    if (MMXSrc.getValueType() == MVT::x86mmx)
20511      return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
20512                         N->getValueType(0),
20513                         InputVector.getNode()->getOperand(0));
20514
20515    // The mmx is indirect: (i64 extract_elt (v1i64 bitcast (x86mmx ...))).
20516    SDValue MMXSrcOp = MMXSrc.getOperand(0);
20517    if (MMXSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT && MMXSrc.hasOneUse() &&
20518        MMXSrc.getValueType() == MVT::i64 && MMXSrcOp.hasOneUse() &&
20519        MMXSrcOp.getOpcode() == ISD::BITCAST &&
20520        MMXSrcOp.getValueType() == MVT::v1i64 &&
20521        MMXSrcOp.getOperand(0).getValueType() == MVT::x86mmx)
20522      return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
20523                         N->getValueType(0),
20524                         MMXSrcOp.getOperand(0));
20525  }
20526
20527  // Only operate on vectors of 4 elements, where the alternative shuffling
20528  // gets to be more expensive.
20529  if (InputVector.getValueType() != MVT::v4i32)
20530    return SDValue();
20531
20532  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
20533  // single use which is a sign-extend or zero-extend, and all elements are
20534  // used.
20535  SmallVector<SDNode *, 4> Uses;
20536  unsigned ExtractedElements = 0;
20537  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
20538       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
20539    if (UI.getUse().getResNo() != InputVector.getResNo())
20540      return SDValue();
20541
20542    SDNode *Extract = *UI;
20543    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
20544      return SDValue();
20545
20546    if (Extract->getValueType(0) != MVT::i32)
20547      return SDValue();
20548    if (!Extract->hasOneUse())
20549      return SDValue();
20550    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
20551        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
20552      return SDValue();
20553    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
20554      return SDValue();
20555
20556    // Record which element was extracted.
20557    ExtractedElements |=
20558      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
20559
20560    Uses.push_back(Extract);
20561  }
20562
20563  // If not all the elements were used, this may not be worthwhile.
20564  if (ExtractedElements != 15)
20565    return SDValue();
20566
20567  // Ok, we've now decided to do the transformation.
20568  // If 64-bit shifts are legal, use the extract-shift sequence,
20569  // otherwise bounce the vector off the cache.
20570  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20571  SDValue Vals[4];
20572  SDLoc dl(InputVector);
20573
20574  if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
20575    SDValue Cst = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, InputVector);
20576    EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy();
20577    SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
20578      DAG.getConstant(0, VecIdxTy));
20579    SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
20580      DAG.getConstant(1, VecIdxTy));
20581
20582    SDValue ShAmt = DAG.getConstant(32,
20583      DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64));
20584    Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
20585    Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
20586      DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt));
20587    Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf);
20588    Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
20589      DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt));
20590  } else {
20591    // Store the value to a temporary stack slot.
20592    SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
20593    SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
20594      MachinePointerInfo(), false, false, 0);
20595
20596    EVT ElementType = InputVector.getValueType().getVectorElementType();
20597    unsigned EltSize = ElementType.getSizeInBits() / 8;
20598
20599    // Replace each use (extract) with a load of the appropriate element.
20600    for (unsigned i = 0; i < 4; ++i) {
20601      uint64_t Offset = EltSize * i;
20602      SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
20603
20604      SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
20605                                       StackPtr, OffsetVal);
20606
20607      // Load the scalar.
20608      Vals[i] = DAG.getLoad(ElementType, dl, Ch,
20609                            ScalarAddr, MachinePointerInfo(),
20610                            false, false, false, 0);
20611
20612    }
20613  }
20614
20615  // Replace the extracts
20616  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
20617    UE = Uses.end(); UI != UE; ++UI) {
20618    SDNode *Extract = *UI;
20619
20620    SDValue Idx = Extract->getOperand(1);
20621    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
20622    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]);
20623  }
20624
20625  // The replacement was made in place; don't return anything.
20626  return SDValue();
20627}
20628
20629/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
20630static std::pair<unsigned, bool>
20631matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
20632                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
20633  if (!VT.isVector())
20634    return std::make_pair(0, false);
20635
20636  bool NeedSplit = false;
20637  switch (VT.getSimpleVT().SimpleTy) {
20638  default: return std::make_pair(0, false);
20639  case MVT::v4i64:
20640  case MVT::v2i64:
20641    if (!Subtarget->hasVLX())
20642      return std::make_pair(0, false);
20643    break;
20644  case MVT::v64i8:
20645  case MVT::v32i16:
20646    if (!Subtarget->hasBWI())
20647      return std::make_pair(0, false);
20648    break;
20649  case MVT::v16i32:
20650  case MVT::v8i64:
20651    if (!Subtarget->hasAVX512())
20652      return std::make_pair(0, false);
20653    break;
20654  case MVT::v32i8:
20655  case MVT::v16i16:
20656  case MVT::v8i32:
20657    if (!Subtarget->hasAVX2())
20658      NeedSplit = true;
20659    if (!Subtarget->hasAVX())
20660      return std::make_pair(0, false);
20661    break;
20662  case MVT::v16i8:
20663  case MVT::v8i16:
20664  case MVT::v4i32:
20665    if (!Subtarget->hasSSE2())
20666      return std::make_pair(0, false);
20667  }
20668
20669  // SSE2 has only a small subset of the operations.
20670  bool hasUnsigned = Subtarget->hasSSE41() ||
20671                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
20672  bool hasSigned = Subtarget->hasSSE41() ||
20673                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
20674
20675  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
20676
20677  unsigned Opc = 0;
20678  // Check for x CC y ? x : y.
20679  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
20680      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
20681    switch (CC) {
20682    default: break;
20683    case ISD::SETULT:
20684    case ISD::SETULE:
20685      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
20686    case ISD::SETUGT:
20687    case ISD::SETUGE:
20688      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
20689    case ISD::SETLT:
20690    case ISD::SETLE:
20691      Opc = hasSigned ? X86ISD::SMIN : 0; break;
20692    case ISD::SETGT:
20693    case ISD::SETGE:
20694      Opc = hasSigned ? X86ISD::SMAX : 0; break;
20695    }
20696  // Check for x CC y ? y : x -- a min/max with reversed arms.
20697  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
20698             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
20699    switch (CC) {
20700    default: break;
20701    case ISD::SETULT:
20702    case ISD::SETULE:
20703      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
20704    case ISD::SETUGT:
20705    case ISD::SETUGE:
20706      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
20707    case ISD::SETLT:
20708    case ISD::SETLE:
20709      Opc = hasSigned ? X86ISD::SMAX : 0; break;
20710    case ISD::SETGT:
20711    case ISD::SETGE:
20712      Opc = hasSigned ? X86ISD::SMIN : 0; break;
20713    }
20714  }
20715
20716  return std::make_pair(Opc, NeedSplit);
20717}
20718
20719static SDValue
20720transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
20721                                      const X86Subtarget *Subtarget) {
20722  SDLoc dl(N);
20723  SDValue Cond = N->getOperand(0);
20724  SDValue LHS = N->getOperand(1);
20725  SDValue RHS = N->getOperand(2);
20726
20727  if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
20728    SDValue CondSrc = Cond->getOperand(0);
20729    if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
20730      Cond = CondSrc->getOperand(0);
20731  }
20732
20733  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
20734    return SDValue();
20735
20736  // A vselect where all conditions and data are constants can be optimized into
20737  // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
20738  if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
20739      ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
20740    return SDValue();
20741
20742  unsigned MaskValue = 0;
20743  if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
20744    return SDValue();
20745
20746  MVT VT = N->getSimpleValueType(0);
20747  unsigned NumElems = VT.getVectorNumElements();
20748  SmallVector<int, 8> ShuffleMask(NumElems, -1);
20749  for (unsigned i = 0; i < NumElems; ++i) {
20750    // Be sure we emit undef where we can.
20751    if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
20752      ShuffleMask[i] = -1;
20753    else
20754      ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
20755  }
20756
20757  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20758  if (!TLI.isShuffleMaskLegal(ShuffleMask, VT))
20759    return SDValue();
20760  return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
20761}
20762
20763/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
20764/// nodes.
20765static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
20766                                    TargetLowering::DAGCombinerInfo &DCI,
20767                                    const X86Subtarget *Subtarget) {
20768  SDLoc DL(N);
20769  SDValue Cond = N->getOperand(0);
20770  // Get the LHS/RHS of the select.
20771  SDValue LHS = N->getOperand(1);
20772  SDValue RHS = N->getOperand(2);
20773  EVT VT = LHS.getValueType();
20774  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20775
20776  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
20777  // instructions match the semantics of the common C idiom x<y?x:y but not
20778  // x<=y?x:y, because of how they handle negative zero (which can be
20779  // ignored in unsafe-math mode).
20780  // We also try to create v2f32 min/max nodes, which we later widen to v4f32.
20781  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
20782      VT != MVT::f80 && (TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
20783      (Subtarget->hasSSE2() ||
20784       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
20785    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
20786
20787    unsigned Opcode = 0;
20788    // Check for x CC y ? x : y.
20789    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
20790        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
20791      switch (CC) {
20792      default: break;
20793      case ISD::SETULT:
20794        // Converting this to a min would handle NaNs incorrectly, and swapping
20795        // the operands would cause it to handle comparisons between positive
20796        // and negative zero incorrectly.
20797        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
20798          if (!DAG.getTarget().Options.UnsafeFPMath &&
20799              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
20800            break;
20801          std::swap(LHS, RHS);
20802        }
20803        Opcode = X86ISD::FMIN;
20804        break;
20805      case ISD::SETOLE:
20806        // Converting this to a min would handle comparisons between positive
20807        // and negative zero incorrectly.
20808        if (!DAG.getTarget().Options.UnsafeFPMath &&
20809            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
20810          break;
20811        Opcode = X86ISD::FMIN;
20812        break;
20813      case ISD::SETULE:
20814        // Converting this to a min would handle both negative zeros and NaNs
20815        // incorrectly, but we can swap the operands to fix both.
20816        std::swap(LHS, RHS);
20817      case ISD::SETOLT:
20818      case ISD::SETLT:
20819      case ISD::SETLE:
20820        Opcode = X86ISD::FMIN;
20821        break;
20822
20823      case ISD::SETOGE:
20824        // Converting this to a max would handle comparisons between positive
20825        // and negative zero incorrectly.
20826        if (!DAG.getTarget().Options.UnsafeFPMath &&
20827            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
20828          break;
20829        Opcode = X86ISD::FMAX;
20830        break;
20831      case ISD::SETUGT:
20832        // Converting this to a max would handle NaNs incorrectly, and swapping
20833        // the operands would cause it to handle comparisons between positive
20834        // and negative zero incorrectly.
20835        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
20836          if (!DAG.getTarget().Options.UnsafeFPMath &&
20837              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
20838            break;
20839          std::swap(LHS, RHS);
20840        }
20841        Opcode = X86ISD::FMAX;
20842        break;
20843      case ISD::SETUGE:
20844        // Converting this to a max would handle both negative zeros and NaNs
20845        // incorrectly, but we can swap the operands to fix both.
20846        std::swap(LHS, RHS);
20847      case ISD::SETOGT:
20848      case ISD::SETGT:
20849      case ISD::SETGE:
20850        Opcode = X86ISD::FMAX;
20851        break;
20852      }
20853    // Check for x CC y ? y : x -- a min/max with reversed arms.
20854    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
20855               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
20856      switch (CC) {
20857      default: break;
20858      case ISD::SETOGE:
20859        // Converting this to a min would handle comparisons between positive
20860        // and negative zero incorrectly, and swapping the operands would
20861        // cause it to handle NaNs incorrectly.
20862        if (!DAG.getTarget().Options.UnsafeFPMath &&
20863            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
20864          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
20865            break;
20866          std::swap(LHS, RHS);
20867        }
20868        Opcode = X86ISD::FMIN;
20869        break;
20870      case ISD::SETUGT:
20871        // Converting this to a min would handle NaNs incorrectly.
20872        if (!DAG.getTarget().Options.UnsafeFPMath &&
20873            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
20874          break;
20875        Opcode = X86ISD::FMIN;
20876        break;
20877      case ISD::SETUGE:
20878        // Converting this to a min would handle both negative zeros and NaNs
20879        // incorrectly, but we can swap the operands to fix both.
20880        std::swap(LHS, RHS);
20881      case ISD::SETOGT:
20882      case ISD::SETGT:
20883      case ISD::SETGE:
20884        Opcode = X86ISD::FMIN;
20885        break;
20886
20887      case ISD::SETULT:
20888        // Converting this to a max would handle NaNs incorrectly.
20889        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
20890          break;
20891        Opcode = X86ISD::FMAX;
20892        break;
20893      case ISD::SETOLE:
20894        // Converting this to a max would handle comparisons between positive
20895        // and negative zero incorrectly, and swapping the operands would
20896        // cause it to handle NaNs incorrectly.
20897        if (!DAG.getTarget().Options.UnsafeFPMath &&
20898            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
20899          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
20900            break;
20901          std::swap(LHS, RHS);
20902        }
20903        Opcode = X86ISD::FMAX;
20904        break;
20905      case ISD::SETULE:
20906        // Converting this to a max would handle both negative zeros and NaNs
20907        // incorrectly, but we can swap the operands to fix both.
20908        std::swap(LHS, RHS);
20909      case ISD::SETOLT:
20910      case ISD::SETLT:
20911      case ISD::SETLE:
20912        Opcode = X86ISD::FMAX;
20913        break;
20914      }
20915    }
20916
20917    if (Opcode)
20918      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
20919  }
20920
20921  EVT CondVT = Cond.getValueType();
20922  if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
20923      CondVT.getVectorElementType() == MVT::i1) {
20924    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
20925    // lowering on KNL. In this case we convert it to
20926    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
20927    // The same situation for all 128 and 256-bit vectors of i8 and i16.
20928    // Since SKX these selects have a proper lowering.
20929    EVT OpVT = LHS.getValueType();
20930    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
20931        (OpVT.getVectorElementType() == MVT::i8 ||
20932         OpVT.getVectorElementType() == MVT::i16) &&
20933        !(Subtarget->hasBWI() && Subtarget->hasVLX())) {
20934      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
20935      DCI.AddToWorklist(Cond.getNode());
20936      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
20937    }
20938  }
20939  // If this is a select between two integer constants, try to do some
20940  // optimizations.
20941  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
20942    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
20943      // Don't do this for crazy integer types.
20944      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
20945        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
20946        // so that TrueC (the true value) is larger than FalseC.
20947        bool NeedsCondInvert = false;
20948
20949        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
20950            // Efficiently invertible.
20951            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
20952             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
20953              isa<ConstantSDNode>(Cond.getOperand(1))))) {
20954          NeedsCondInvert = true;
20955          std::swap(TrueC, FalseC);
20956        }
20957
20958        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
20959        if (FalseC->getAPIntValue() == 0 &&
20960            TrueC->getAPIntValue().isPowerOf2()) {
20961          if (NeedsCondInvert) // Invert the condition if needed.
20962            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
20963                               DAG.getConstant(1, Cond.getValueType()));
20964
20965          // Zero extend the condition if needed.
20966          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
20967
20968          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
20969          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
20970                             DAG.getConstant(ShAmt, MVT::i8));
20971        }
20972
20973        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
20974        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
20975          if (NeedsCondInvert) // Invert the condition if needed.
20976            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
20977                               DAG.getConstant(1, Cond.getValueType()));
20978
20979          // Zero extend the condition if needed.
20980          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
20981                             FalseC->getValueType(0), Cond);
20982          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
20983                             SDValue(FalseC, 0));
20984        }
20985
20986        // Optimize cases that will turn into an LEA instruction.  This requires
20987        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
20988        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
20989          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
20990          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
20991
20992          bool isFastMultiplier = false;
20993          if (Diff < 10) {
20994            switch ((unsigned char)Diff) {
20995              default: break;
20996              case 1:  // result = add base, cond
20997              case 2:  // result = lea base(    , cond*2)
20998              case 3:  // result = lea base(cond, cond*2)
20999              case 4:  // result = lea base(    , cond*4)
21000              case 5:  // result = lea base(cond, cond*4)
21001              case 8:  // result = lea base(    , cond*8)
21002              case 9:  // result = lea base(cond, cond*8)
21003                isFastMultiplier = true;
21004                break;
21005            }
21006          }
21007
21008          if (isFastMultiplier) {
21009            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
21010            if (NeedsCondInvert) // Invert the condition if needed.
21011              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
21012                                 DAG.getConstant(1, Cond.getValueType()));
21013
21014            // Zero extend the condition if needed.
21015            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
21016                               Cond);
21017            // Scale the condition by the difference.
21018            if (Diff != 1)
21019              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
21020                                 DAG.getConstant(Diff, Cond.getValueType()));
21021
21022            // Add the base if non-zero.
21023            if (FalseC->getAPIntValue() != 0)
21024              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
21025                                 SDValue(FalseC, 0));
21026            return Cond;
21027          }
21028        }
21029      }
21030  }
21031
21032  // Canonicalize max and min:
21033  // (x > y) ? x : y -> (x >= y) ? x : y
21034  // (x < y) ? x : y -> (x <= y) ? x : y
21035  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
21036  // the need for an extra compare
21037  // against zero. e.g.
21038  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
21039  // subl   %esi, %edi
21040  // testl  %edi, %edi
21041  // movl   $0, %eax
21042  // cmovgl %edi, %eax
21043  // =>
21044  // xorl   %eax, %eax
21045  // subl   %esi, $edi
21046  // cmovsl %eax, %edi
21047  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
21048      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
21049      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
21050    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
21051    switch (CC) {
21052    default: break;
21053    case ISD::SETLT:
21054    case ISD::SETGT: {
21055      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
21056      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
21057                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
21058      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
21059    }
21060    }
21061  }
21062
21063  // Early exit check
21064  if (!TLI.isTypeLegal(VT))
21065    return SDValue();
21066
21067  // Match VSELECTs into subs with unsigned saturation.
21068  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
21069      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
21070      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
21071       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
21072    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
21073
21074    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
21075    // left side invert the predicate to simplify logic below.
21076    SDValue Other;
21077    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
21078      Other = RHS;
21079      CC = ISD::getSetCCInverse(CC, true);
21080    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
21081      Other = LHS;
21082    }
21083
21084    if (Other.getNode() && Other->getNumOperands() == 2 &&
21085        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
21086      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
21087      SDValue CondRHS = Cond->getOperand(1);
21088
21089      // Look for a general sub with unsigned saturation first.
21090      // x >= y ? x-y : 0 --> subus x, y
21091      // x >  y ? x-y : 0 --> subus x, y
21092      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
21093          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
21094        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
21095
21096      if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
21097        if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
21098          if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
21099            if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
21100              // If the RHS is a constant we have to reverse the const
21101              // canonicalization.
21102              // x > C-1 ? x+-C : 0 --> subus x, C
21103              if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
21104                  CondRHSConst->getAPIntValue() ==
21105                      (-OpRHSConst->getAPIntValue() - 1))
21106                return DAG.getNode(
21107                    X86ISD::SUBUS, DL, VT, OpLHS,
21108                    DAG.getConstant(-OpRHSConst->getAPIntValue(), VT));
21109
21110          // Another special case: If C was a sign bit, the sub has been
21111          // canonicalized into a xor.
21112          // FIXME: Would it be better to use computeKnownBits to determine
21113          //        whether it's safe to decanonicalize the xor?
21114          // x s< 0 ? x^C : 0 --> subus x, C
21115          if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
21116              ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
21117              OpRHSConst->getAPIntValue().isSignBit())
21118            // Note that we have to rebuild the RHS constant here to ensure we
21119            // don't rely on particular values of undef lanes.
21120            return DAG.getNode(
21121                X86ISD::SUBUS, DL, VT, OpLHS,
21122                DAG.getConstant(OpRHSConst->getAPIntValue(), VT));
21123        }
21124    }
21125  }
21126
21127  // Try to match a min/max vector operation.
21128  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
21129    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
21130    unsigned Opc = ret.first;
21131    bool NeedSplit = ret.second;
21132
21133    if (Opc && NeedSplit) {
21134      unsigned NumElems = VT.getVectorNumElements();
21135      // Extract the LHS vectors
21136      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
21137      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
21138
21139      // Extract the RHS vectors
21140      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
21141      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
21142
21143      // Create min/max for each subvector
21144      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
21145      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
21146
21147      // Merge the result
21148      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
21149    } else if (Opc)
21150      return DAG.getNode(Opc, DL, VT, LHS, RHS);
21151  }
21152
21153  // Simplify vector selection if condition value type matches vselect
21154  // operand type
21155  if (N->getOpcode() == ISD::VSELECT && CondVT == VT) {
21156    assert(Cond.getValueType().isVector() &&
21157           "vector select expects a vector selector!");
21158
21159    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
21160    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
21161
21162    // Try invert the condition if true value is not all 1s and false value
21163    // is not all 0s.
21164    if (!TValIsAllOnes && !FValIsAllZeros &&
21165        // Check if the selector will be produced by CMPP*/PCMP*
21166        Cond.getOpcode() == ISD::SETCC &&
21167        // Check if SETCC has already been promoted
21168        TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT) {
21169      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
21170      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
21171
21172      if (TValIsAllZeros || FValIsAllOnes) {
21173        SDValue CC = Cond.getOperand(2);
21174        ISD::CondCode NewCC =
21175          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
21176                               Cond.getOperand(0).getValueType().isInteger());
21177        Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
21178        std::swap(LHS, RHS);
21179        TValIsAllOnes = FValIsAllOnes;
21180        FValIsAllZeros = TValIsAllZeros;
21181      }
21182    }
21183
21184    if (TValIsAllOnes || FValIsAllZeros) {
21185      SDValue Ret;
21186
21187      if (TValIsAllOnes && FValIsAllZeros)
21188        Ret = Cond;
21189      else if (TValIsAllOnes)
21190        Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
21191                          DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
21192      else if (FValIsAllZeros)
21193        Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
21194                          DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
21195
21196      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
21197    }
21198  }
21199
21200  // We should generate an X86ISD::BLENDI from a vselect if its argument
21201  // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
21202  // constants. This specific pattern gets generated when we split a
21203  // selector for a 512 bit vector in a machine without AVX512 (but with
21204  // 256-bit vectors), during legalization:
21205  //
21206  // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
21207  //
21208  // Iff we find this pattern and the build_vectors are built from
21209  // constants, we translate the vselect into a shuffle_vector that we
21210  // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
21211  if ((N->getOpcode() == ISD::VSELECT ||
21212       N->getOpcode() == X86ISD::SHRUNKBLEND) &&
21213      !DCI.isBeforeLegalize()) {
21214    SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
21215    if (Shuffle.getNode())
21216      return Shuffle;
21217  }
21218
21219  // If this is a *dynamic* select (non-constant condition) and we can match
21220  // this node with one of the variable blend instructions, restructure the
21221  // condition so that the blends can use the high bit of each element and use
21222  // SimplifyDemandedBits to simplify the condition operand.
21223  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
21224      !DCI.isBeforeLegalize() &&
21225      !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
21226    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
21227
21228    // Don't optimize vector selects that map to mask-registers.
21229    if (BitWidth == 1)
21230      return SDValue();
21231
21232    // We can only handle the cases where VSELECT is directly legal on the
21233    // subtarget. We custom lower VSELECT nodes with constant conditions and
21234    // this makes it hard to see whether a dynamic VSELECT will correctly
21235    // lower, so we both check the operation's status and explicitly handle the
21236    // cases where a *dynamic* blend will fail even though a constant-condition
21237    // blend could be custom lowered.
21238    // FIXME: We should find a better way to handle this class of problems.
21239    // Potentially, we should combine constant-condition vselect nodes
21240    // pre-legalization into shuffles and not mark as many types as custom
21241    // lowered.
21242    if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
21243      return SDValue();
21244    // FIXME: We don't support i16-element blends currently. We could and
21245    // should support them by making *all* the bits in the condition be set
21246    // rather than just the high bit and using an i8-element blend.
21247    if (VT.getScalarType() == MVT::i16)
21248      return SDValue();
21249    // Dynamic blending was only available from SSE4.1 onward.
21250    if (VT.getSizeInBits() == 128 && !Subtarget->hasSSE41())
21251      return SDValue();
21252    // Byte blends are only available in AVX2
21253    if (VT.getSizeInBits() == 256 && VT.getScalarType() == MVT::i8 &&
21254        !Subtarget->hasAVX2())
21255      return SDValue();
21256
21257    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
21258    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
21259
21260    APInt KnownZero, KnownOne;
21261    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
21262                                          DCI.isBeforeLegalizeOps());
21263    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
21264        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
21265                                 TLO)) {
21266      // If we changed the computation somewhere in the DAG, this change
21267      // will affect all users of Cond.
21268      // Make sure it is fine and update all the nodes so that we do not
21269      // use the generic VSELECT anymore. Otherwise, we may perform
21270      // wrong optimizations as we messed up with the actual expectation
21271      // for the vector boolean values.
21272      if (Cond != TLO.Old) {
21273        // Check all uses of that condition operand to check whether it will be
21274        // consumed by non-BLEND instructions, which may depend on all bits are
21275        // set properly.
21276        for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
21277             I != E; ++I)
21278          if (I->getOpcode() != ISD::VSELECT)
21279            // TODO: Add other opcodes eventually lowered into BLEND.
21280            return SDValue();
21281
21282        // Update all the users of the condition, before committing the change,
21283        // so that the VSELECT optimizations that expect the correct vector
21284        // boolean value will not be triggered.
21285        for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
21286             I != E; ++I)
21287          DAG.ReplaceAllUsesOfValueWith(
21288              SDValue(*I, 0),
21289              DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0),
21290                          Cond, I->getOperand(1), I->getOperand(2)));
21291        DCI.CommitTargetLoweringOpt(TLO);
21292        return SDValue();
21293      }
21294      // At this point, only Cond is changed. Change the condition
21295      // just for N to keep the opportunity to optimize all other
21296      // users their own way.
21297      DAG.ReplaceAllUsesOfValueWith(
21298          SDValue(N, 0),
21299          DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0),
21300                      TLO.New, N->getOperand(1), N->getOperand(2)));
21301      return SDValue();
21302    }
21303  }
21304
21305  return SDValue();
21306}
21307
21308// Check whether a boolean test is testing a boolean value generated by
21309// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
21310// code.
21311//
21312// Simplify the following patterns:
21313// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
21314// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
21315// to (Op EFLAGS Cond)
21316//
21317// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
21318// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
21319// to (Op EFLAGS !Cond)
21320//
21321// where Op could be BRCOND or CMOV.
21322//
21323static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
21324  // Quit if not CMP and SUB with its value result used.
21325  if (Cmp.getOpcode() != X86ISD::CMP &&
21326      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
21327      return SDValue();
21328
21329  // Quit if not used as a boolean value.
21330  if (CC != X86::COND_E && CC != X86::COND_NE)
21331    return SDValue();
21332
21333  // Check CMP operands. One of them should be 0 or 1 and the other should be
21334  // an SetCC or extended from it.
21335  SDValue Op1 = Cmp.getOperand(0);
21336  SDValue Op2 = Cmp.getOperand(1);
21337
21338  SDValue SetCC;
21339  const ConstantSDNode* C = nullptr;
21340  bool needOppositeCond = (CC == X86::COND_E);
21341  bool checkAgainstTrue = false; // Is it a comparison against 1?
21342
21343  if ((C = dyn_cast<ConstantSDNode>(Op1)))
21344    SetCC = Op2;
21345  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
21346    SetCC = Op1;
21347  else // Quit if all operands are not constants.
21348    return SDValue();
21349
21350  if (C->getZExtValue() == 1) {
21351    needOppositeCond = !needOppositeCond;
21352    checkAgainstTrue = true;
21353  } else if (C->getZExtValue() != 0)
21354    // Quit if the constant is neither 0 or 1.
21355    return SDValue();
21356
21357  bool truncatedToBoolWithAnd = false;
21358  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
21359  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
21360         SetCC.getOpcode() == ISD::TRUNCATE ||
21361         SetCC.getOpcode() == ISD::AND) {
21362    if (SetCC.getOpcode() == ISD::AND) {
21363      int OpIdx = -1;
21364      ConstantSDNode *CS;
21365      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
21366          CS->getZExtValue() == 1)
21367        OpIdx = 1;
21368      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
21369          CS->getZExtValue() == 1)
21370        OpIdx = 0;
21371      if (OpIdx == -1)
21372        break;
21373      SetCC = SetCC.getOperand(OpIdx);
21374      truncatedToBoolWithAnd = true;
21375    } else
21376      SetCC = SetCC.getOperand(0);
21377  }
21378
21379  switch (SetCC.getOpcode()) {
21380  case X86ISD::SETCC_CARRY:
21381    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
21382    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
21383    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
21384    // truncated to i1 using 'and'.
21385    if (checkAgainstTrue && !truncatedToBoolWithAnd)
21386      break;
21387    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
21388           "Invalid use of SETCC_CARRY!");
21389    // FALL THROUGH
21390  case X86ISD::SETCC:
21391    // Set the condition code or opposite one if necessary.
21392    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
21393    if (needOppositeCond)
21394      CC = X86::GetOppositeBranchCondition(CC);
21395    return SetCC.getOperand(1);
21396  case X86ISD::CMOV: {
21397    // Check whether false/true value has canonical one, i.e. 0 or 1.
21398    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
21399    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
21400    // Quit if true value is not a constant.
21401    if (!TVal)
21402      return SDValue();
21403    // Quit if false value is not a constant.
21404    if (!FVal) {
21405      SDValue Op = SetCC.getOperand(0);
21406      // Skip 'zext' or 'trunc' node.
21407      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
21408          Op.getOpcode() == ISD::TRUNCATE)
21409        Op = Op.getOperand(0);
21410      // A special case for rdrand/rdseed, where 0 is set if false cond is
21411      // found.
21412      if ((Op.getOpcode() != X86ISD::RDRAND &&
21413           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
21414        return SDValue();
21415    }
21416    // Quit if false value is not the constant 0 or 1.
21417    bool FValIsFalse = true;
21418    if (FVal && FVal->getZExtValue() != 0) {
21419      if (FVal->getZExtValue() != 1)
21420        return SDValue();
21421      // If FVal is 1, opposite cond is needed.
21422      needOppositeCond = !needOppositeCond;
21423      FValIsFalse = false;
21424    }
21425    // Quit if TVal is not the constant opposite of FVal.
21426    if (FValIsFalse && TVal->getZExtValue() != 1)
21427      return SDValue();
21428    if (!FValIsFalse && TVal->getZExtValue() != 0)
21429      return SDValue();
21430    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
21431    if (needOppositeCond)
21432      CC = X86::GetOppositeBranchCondition(CC);
21433    return SetCC.getOperand(3);
21434  }
21435  }
21436
21437  return SDValue();
21438}
21439
21440/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
21441/// Match:
21442///   (X86or (X86setcc) (X86setcc))
21443///   (X86cmp (and (X86setcc) (X86setcc)), 0)
21444static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
21445                                           X86::CondCode &CC1, SDValue &Flags,
21446                                           bool &isAnd) {
21447  if (Cond->getOpcode() == X86ISD::CMP) {
21448    ConstantSDNode *CondOp1C = dyn_cast<ConstantSDNode>(Cond->getOperand(1));
21449    if (!CondOp1C || !CondOp1C->isNullValue())
21450      return false;
21451
21452    Cond = Cond->getOperand(0);
21453  }
21454
21455  isAnd = false;
21456
21457  SDValue SetCC0, SetCC1;
21458  switch (Cond->getOpcode()) {
21459  default: return false;
21460  case ISD::AND:
21461  case X86ISD::AND:
21462    isAnd = true;
21463    // fallthru
21464  case ISD::OR:
21465  case X86ISD::OR:
21466    SetCC0 = Cond->getOperand(0);
21467    SetCC1 = Cond->getOperand(1);
21468    break;
21469  };
21470
21471  // Make sure we have SETCC nodes, using the same flags value.
21472  if (SetCC0.getOpcode() != X86ISD::SETCC ||
21473      SetCC1.getOpcode() != X86ISD::SETCC ||
21474      SetCC0->getOperand(1) != SetCC1->getOperand(1))
21475    return false;
21476
21477  CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
21478  CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
21479  Flags = SetCC0->getOperand(1);
21480  return true;
21481}
21482
21483/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
21484static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
21485                                  TargetLowering::DAGCombinerInfo &DCI,
21486                                  const X86Subtarget *Subtarget) {
21487  SDLoc DL(N);
21488
21489  // If the flag operand isn't dead, don't touch this CMOV.
21490  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
21491    return SDValue();
21492
21493  SDValue FalseOp = N->getOperand(0);
21494  SDValue TrueOp = N->getOperand(1);
21495  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
21496  SDValue Cond = N->getOperand(3);
21497
21498  if (CC == X86::COND_E || CC == X86::COND_NE) {
21499    switch (Cond.getOpcode()) {
21500    default: break;
21501    case X86ISD::BSR:
21502    case X86ISD::BSF:
21503      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
21504      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
21505        return (CC == X86::COND_E) ? FalseOp : TrueOp;
21506    }
21507  }
21508
21509  SDValue Flags;
21510
21511  Flags = checkBoolTestSetCCCombine(Cond, CC);
21512  if (Flags.getNode() &&
21513      // Extra check as FCMOV only supports a subset of X86 cond.
21514      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
21515    SDValue Ops[] = { FalseOp, TrueOp,
21516                      DAG.getConstant(CC, MVT::i8), Flags };
21517    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
21518  }
21519
21520  // If this is a select between two integer constants, try to do some
21521  // optimizations.  Note that the operands are ordered the opposite of SELECT
21522  // operands.
21523  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
21524    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
21525      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
21526      // larger than FalseC (the false value).
21527      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
21528        CC = X86::GetOppositeBranchCondition(CC);
21529        std::swap(TrueC, FalseC);
21530        std::swap(TrueOp, FalseOp);
21531      }
21532
21533      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
21534      // This is efficient for any integer data type (including i8/i16) and
21535      // shift amount.
21536      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
21537        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
21538                           DAG.getConstant(CC, MVT::i8), Cond);
21539
21540        // Zero extend the condition if needed.
21541        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
21542
21543        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
21544        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
21545                           DAG.getConstant(ShAmt, MVT::i8));
21546        if (N->getNumValues() == 2)  // Dead flag value?
21547          return DCI.CombineTo(N, Cond, SDValue());
21548        return Cond;
21549      }
21550
21551      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
21552      // for any integer data type, including i8/i16.
21553      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
21554        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
21555                           DAG.getConstant(CC, MVT::i8), Cond);
21556
21557        // Zero extend the condition if needed.
21558        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
21559                           FalseC->getValueType(0), Cond);
21560        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
21561                           SDValue(FalseC, 0));
21562
21563        if (N->getNumValues() == 2)  // Dead flag value?
21564          return DCI.CombineTo(N, Cond, SDValue());
21565        return Cond;
21566      }
21567
21568      // Optimize cases that will turn into an LEA instruction.  This requires
21569      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
21570      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
21571        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
21572        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
21573
21574        bool isFastMultiplier = false;
21575        if (Diff < 10) {
21576          switch ((unsigned char)Diff) {
21577          default: break;
21578          case 1:  // result = add base, cond
21579          case 2:  // result = lea base(    , cond*2)
21580          case 3:  // result = lea base(cond, cond*2)
21581          case 4:  // result = lea base(    , cond*4)
21582          case 5:  // result = lea base(cond, cond*4)
21583          case 8:  // result = lea base(    , cond*8)
21584          case 9:  // result = lea base(cond, cond*8)
21585            isFastMultiplier = true;
21586            break;
21587          }
21588        }
21589
21590        if (isFastMultiplier) {
21591          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
21592          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
21593                             DAG.getConstant(CC, MVT::i8), Cond);
21594          // Zero extend the condition if needed.
21595          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
21596                             Cond);
21597          // Scale the condition by the difference.
21598          if (Diff != 1)
21599            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
21600                               DAG.getConstant(Diff, Cond.getValueType()));
21601
21602          // Add the base if non-zero.
21603          if (FalseC->getAPIntValue() != 0)
21604            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
21605                               SDValue(FalseC, 0));
21606          if (N->getNumValues() == 2)  // Dead flag value?
21607            return DCI.CombineTo(N, Cond, SDValue());
21608          return Cond;
21609        }
21610      }
21611    }
21612  }
21613
21614  // Handle these cases:
21615  //   (select (x != c), e, c) -> select (x != c), e, x),
21616  //   (select (x == c), c, e) -> select (x == c), x, e)
21617  // where the c is an integer constant, and the "select" is the combination
21618  // of CMOV and CMP.
21619  //
21620  // The rationale for this change is that the conditional-move from a constant
21621  // needs two instructions, however, conditional-move from a register needs
21622  // only one instruction.
21623  //
21624  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
21625  //  some instruction-combining opportunities. This opt needs to be
21626  //  postponed as late as possible.
21627  //
21628  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
21629    // the DCI.xxxx conditions are provided to postpone the optimization as
21630    // late as possible.
21631
21632    ConstantSDNode *CmpAgainst = nullptr;
21633    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
21634        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
21635        !isa<ConstantSDNode>(Cond.getOperand(0))) {
21636
21637      if (CC == X86::COND_NE &&
21638          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
21639        CC = X86::GetOppositeBranchCondition(CC);
21640        std::swap(TrueOp, FalseOp);
21641      }
21642
21643      if (CC == X86::COND_E &&
21644          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
21645        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
21646                          DAG.getConstant(CC, MVT::i8), Cond };
21647        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
21648      }
21649    }
21650  }
21651
21652  // Fold and/or of setcc's to double CMOV:
21653  //   (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
21654  //   (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
21655  //
21656  // This combine lets us generate:
21657  //   cmovcc1 (jcc1 if we don't have CMOV)
21658  //   cmovcc2 (same)
21659  // instead of:
21660  //   setcc1
21661  //   setcc2
21662  //   and/or
21663  //   cmovne (jne if we don't have CMOV)
21664  // When we can't use the CMOV instruction, it might increase branch
21665  // mispredicts.
21666  // When we can use CMOV, or when there is no mispredict, this improves
21667  // throughput and reduces register pressure.
21668  //
21669  if (CC == X86::COND_NE) {
21670    SDValue Flags;
21671    X86::CondCode CC0, CC1;
21672    bool isAndSetCC;
21673    if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
21674      if (isAndSetCC) {
21675        std::swap(FalseOp, TrueOp);
21676        CC0 = X86::GetOppositeBranchCondition(CC0);
21677        CC1 = X86::GetOppositeBranchCondition(CC1);
21678      }
21679
21680      SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, MVT::i8),
21681        Flags};
21682      SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps);
21683      SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, MVT::i8), Flags};
21684      SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
21685      DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1));
21686      return CMOV;
21687    }
21688  }
21689
21690  return SDValue();
21691}
21692
21693static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
21694                                                const X86Subtarget *Subtarget) {
21695  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
21696  switch (IntNo) {
21697  default: return SDValue();
21698  // SSE/AVX/AVX2 blend intrinsics.
21699  case Intrinsic::x86_avx2_pblendvb:
21700    // Don't try to simplify this intrinsic if we don't have AVX2.
21701    if (!Subtarget->hasAVX2())
21702      return SDValue();
21703    // FALL-THROUGH
21704  case Intrinsic::x86_avx_blendv_pd_256:
21705  case Intrinsic::x86_avx_blendv_ps_256:
21706    // Don't try to simplify this intrinsic if we don't have AVX.
21707    if (!Subtarget->hasAVX())
21708      return SDValue();
21709    // FALL-THROUGH
21710  case Intrinsic::x86_sse41_blendvps:
21711  case Intrinsic::x86_sse41_blendvpd:
21712  case Intrinsic::x86_sse41_pblendvb: {
21713    SDValue Op0 = N->getOperand(1);
21714    SDValue Op1 = N->getOperand(2);
21715    SDValue Mask = N->getOperand(3);
21716
21717    // Don't try to simplify this intrinsic if we don't have SSE4.1.
21718    if (!Subtarget->hasSSE41())
21719      return SDValue();
21720
21721    // fold (blend A, A, Mask) -> A
21722    if (Op0 == Op1)
21723      return Op0;
21724    // fold (blend A, B, allZeros) -> A
21725    if (ISD::isBuildVectorAllZeros(Mask.getNode()))
21726      return Op0;
21727    // fold (blend A, B, allOnes) -> B
21728    if (ISD::isBuildVectorAllOnes(Mask.getNode()))
21729      return Op1;
21730
21731    // Simplify the case where the mask is a constant i32 value.
21732    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
21733      if (C->isNullValue())
21734        return Op0;
21735      if (C->isAllOnesValue())
21736        return Op1;
21737    }
21738
21739    return SDValue();
21740  }
21741
21742  // Packed SSE2/AVX2 arithmetic shift immediate intrinsics.
21743  case Intrinsic::x86_sse2_psrai_w:
21744  case Intrinsic::x86_sse2_psrai_d:
21745  case Intrinsic::x86_avx2_psrai_w:
21746  case Intrinsic::x86_avx2_psrai_d:
21747  case Intrinsic::x86_sse2_psra_w:
21748  case Intrinsic::x86_sse2_psra_d:
21749  case Intrinsic::x86_avx2_psra_w:
21750  case Intrinsic::x86_avx2_psra_d: {
21751    SDValue Op0 = N->getOperand(1);
21752    SDValue Op1 = N->getOperand(2);
21753    EVT VT = Op0.getValueType();
21754    assert(VT.isVector() && "Expected a vector type!");
21755
21756    if (isa<BuildVectorSDNode>(Op1))
21757      Op1 = Op1.getOperand(0);
21758
21759    if (!isa<ConstantSDNode>(Op1))
21760      return SDValue();
21761
21762    EVT SVT = VT.getVectorElementType();
21763    unsigned SVTBits = SVT.getSizeInBits();
21764
21765    ConstantSDNode *CND = cast<ConstantSDNode>(Op1);
21766    const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue());
21767    uint64_t ShAmt = C.getZExtValue();
21768
21769    // Don't try to convert this shift into a ISD::SRA if the shift
21770    // count is bigger than or equal to the element size.
21771    if (ShAmt >= SVTBits)
21772      return SDValue();
21773
21774    // Trivial case: if the shift count is zero, then fold this
21775    // into the first operand.
21776    if (ShAmt == 0)
21777      return Op0;
21778
21779    // Replace this packed shift intrinsic with a target independent
21780    // shift dag node.
21781    SDValue Splat = DAG.getConstant(C, VT);
21782    return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat);
21783  }
21784  }
21785}
21786
21787/// PerformMulCombine - Optimize a single multiply with constant into two
21788/// in order to implement it with two cheaper instructions, e.g.
21789/// LEA + SHL, LEA + LEA.
21790static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
21791                                 TargetLowering::DAGCombinerInfo &DCI) {
21792  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
21793    return SDValue();
21794
21795  EVT VT = N->getValueType(0);
21796  if (VT != MVT::i64 && VT != MVT::i32)
21797    return SDValue();
21798
21799  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
21800  if (!C)
21801    return SDValue();
21802  uint64_t MulAmt = C->getZExtValue();
21803  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
21804    return SDValue();
21805
21806  uint64_t MulAmt1 = 0;
21807  uint64_t MulAmt2 = 0;
21808  if ((MulAmt % 9) == 0) {
21809    MulAmt1 = 9;
21810    MulAmt2 = MulAmt / 9;
21811  } else if ((MulAmt % 5) == 0) {
21812    MulAmt1 = 5;
21813    MulAmt2 = MulAmt / 5;
21814  } else if ((MulAmt % 3) == 0) {
21815    MulAmt1 = 3;
21816    MulAmt2 = MulAmt / 3;
21817  }
21818  if (MulAmt2 &&
21819      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
21820    SDLoc DL(N);
21821
21822    if (isPowerOf2_64(MulAmt2) &&
21823        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
21824      // If second multiplifer is pow2, issue it first. We want the multiply by
21825      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
21826      // is an add.
21827      std::swap(MulAmt1, MulAmt2);
21828
21829    SDValue NewMul;
21830    if (isPowerOf2_64(MulAmt1))
21831      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
21832                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
21833    else
21834      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
21835                           DAG.getConstant(MulAmt1, VT));
21836
21837    if (isPowerOf2_64(MulAmt2))
21838      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
21839                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
21840    else
21841      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
21842                           DAG.getConstant(MulAmt2, VT));
21843
21844    // Do not add new nodes to DAG combiner worklist.
21845    DCI.CombineTo(N, NewMul, false);
21846  }
21847  return SDValue();
21848}
21849
21850static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
21851  SDValue N0 = N->getOperand(0);
21852  SDValue N1 = N->getOperand(1);
21853  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
21854  EVT VT = N0.getValueType();
21855
21856  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
21857  // since the result of setcc_c is all zero's or all ones.
21858  if (VT.isInteger() && !VT.isVector() &&
21859      N1C && N0.getOpcode() == ISD::AND &&
21860      N0.getOperand(1).getOpcode() == ISD::Constant) {
21861    SDValue N00 = N0.getOperand(0);
21862    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
21863        ((N00.getOpcode() == ISD::ANY_EXTEND ||
21864          N00.getOpcode() == ISD::ZERO_EXTEND) &&
21865         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
21866      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
21867      APInt ShAmt = N1C->getAPIntValue();
21868      Mask = Mask.shl(ShAmt);
21869      if (Mask != 0)
21870        return DAG.getNode(ISD::AND, SDLoc(N), VT,
21871                           N00, DAG.getConstant(Mask, VT));
21872    }
21873  }
21874
21875  // Hardware support for vector shifts is sparse which makes us scalarize the
21876  // vector operations in many cases. Also, on sandybridge ADD is faster than
21877  // shl.
21878  // (shl V, 1) -> add V,V
21879  if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
21880    if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
21881      assert(N0.getValueType().isVector() && "Invalid vector shift type");
21882      // We shift all of the values by one. In many cases we do not have
21883      // hardware support for this operation. This is better expressed as an ADD
21884      // of two values.
21885      if (N1SplatC->getZExtValue() == 1)
21886        return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
21887    }
21888
21889  return SDValue();
21890}
21891
21892/// \brief Returns a vector of 0s if the node in input is a vector logical
21893/// shift by a constant amount which is known to be bigger than or equal
21894/// to the vector element size in bits.
21895static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
21896                                      const X86Subtarget *Subtarget) {
21897  EVT VT = N->getValueType(0);
21898
21899  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
21900      (!Subtarget->hasInt256() ||
21901       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
21902    return SDValue();
21903
21904  SDValue Amt = N->getOperand(1);
21905  SDLoc DL(N);
21906  if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
21907    if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
21908      APInt ShiftAmt = AmtSplat->getAPIntValue();
21909      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
21910
21911      // SSE2/AVX2 logical shifts always return a vector of 0s
21912      // if the shift amount is bigger than or equal to
21913      // the element size. The constant shift amount will be
21914      // encoded as a 8-bit immediate.
21915      if (ShiftAmt.trunc(8).uge(MaxAmount))
21916        return getZeroVector(VT, Subtarget, DAG, DL);
21917    }
21918
21919  return SDValue();
21920}
21921
21922/// PerformShiftCombine - Combine shifts.
21923static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
21924                                   TargetLowering::DAGCombinerInfo &DCI,
21925                                   const X86Subtarget *Subtarget) {
21926  if (N->getOpcode() == ISD::SHL) {
21927    SDValue V = PerformSHLCombine(N, DAG);
21928    if (V.getNode()) return V;
21929  }
21930
21931  if (N->getOpcode() != ISD::SRA) {
21932    // Try to fold this logical shift into a zero vector.
21933    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
21934    if (V.getNode()) return V;
21935  }
21936
21937  return SDValue();
21938}
21939
21940// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
21941// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
21942// and friends.  Likewise for OR -> CMPNEQSS.
21943static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
21944                            TargetLowering::DAGCombinerInfo &DCI,
21945                            const X86Subtarget *Subtarget) {
21946  unsigned opcode;
21947
21948  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
21949  // we're requiring SSE2 for both.
21950  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
21951    SDValue N0 = N->getOperand(0);
21952    SDValue N1 = N->getOperand(1);
21953    SDValue CMP0 = N0->getOperand(1);
21954    SDValue CMP1 = N1->getOperand(1);
21955    SDLoc DL(N);
21956
21957    // The SETCCs should both refer to the same CMP.
21958    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
21959      return SDValue();
21960
21961    SDValue CMP00 = CMP0->getOperand(0);
21962    SDValue CMP01 = CMP0->getOperand(1);
21963    EVT     VT    = CMP00.getValueType();
21964
21965    if (VT == MVT::f32 || VT == MVT::f64) {
21966      bool ExpectingFlags = false;
21967      // Check for any users that want flags:
21968      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
21969           !ExpectingFlags && UI != UE; ++UI)
21970        switch (UI->getOpcode()) {
21971        default:
21972        case ISD::BR_CC:
21973        case ISD::BRCOND:
21974        case ISD::SELECT:
21975          ExpectingFlags = true;
21976          break;
21977        case ISD::CopyToReg:
21978        case ISD::SIGN_EXTEND:
21979        case ISD::ZERO_EXTEND:
21980        case ISD::ANY_EXTEND:
21981          break;
21982        }
21983
21984      if (!ExpectingFlags) {
21985        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
21986        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
21987
21988        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
21989          X86::CondCode tmp = cc0;
21990          cc0 = cc1;
21991          cc1 = tmp;
21992        }
21993
21994        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
21995            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
21996          // FIXME: need symbolic constants for these magic numbers.
21997          // See X86ATTInstPrinter.cpp:printSSECC().
21998          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
21999          if (Subtarget->hasAVX512()) {
22000            SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
22001                                         CMP01, DAG.getConstant(x86cc, MVT::i8));
22002            if (N->getValueType(0) != MVT::i1)
22003              return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
22004                                 FSetCC);
22005            return FSetCC;
22006          }
22007          SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
22008                                              CMP00.getValueType(), CMP00, CMP01,
22009                                              DAG.getConstant(x86cc, MVT::i8));
22010
22011          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
22012          MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
22013
22014          if (is64BitFP && !Subtarget->is64Bit()) {
22015            // On a 32-bit target, we cannot bitcast the 64-bit float to a
22016            // 64-bit integer, since that's not a legal type. Since
22017            // OnesOrZeroesF is all ones of all zeroes, we don't need all the
22018            // bits, but can do this little dance to extract the lowest 32 bits
22019            // and work with those going forward.
22020            SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
22021                                           OnesOrZeroesF);
22022            SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
22023                                           Vector64);
22024            OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
22025                                        Vector32, DAG.getIntPtrConstant(0));
22026            IntVT = MVT::i32;
22027          }
22028
22029          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF);
22030          SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
22031                                      DAG.getConstant(1, IntVT));
22032          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
22033          return OneBitOfTruth;
22034        }
22035      }
22036    }
22037  }
22038  return SDValue();
22039}
22040
22041/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
22042/// so it can be folded inside ANDNP.
22043static bool CanFoldXORWithAllOnes(const SDNode *N) {
22044  EVT VT = N->getValueType(0);
22045
22046  // Match direct AllOnes for 128 and 256-bit vectors
22047  if (ISD::isBuildVectorAllOnes(N))
22048    return true;
22049
22050  // Look through a bit convert.
22051  if (N->getOpcode() == ISD::BITCAST)
22052    N = N->getOperand(0).getNode();
22053
22054  // Sometimes the operand may come from a insert_subvector building a 256-bit
22055  // allones vector
22056  if (VT.is256BitVector() &&
22057      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
22058    SDValue V1 = N->getOperand(0);
22059    SDValue V2 = N->getOperand(1);
22060
22061    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
22062        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
22063        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
22064        ISD::isBuildVectorAllOnes(V2.getNode()))
22065      return true;
22066  }
22067
22068  return false;
22069}
22070
22071// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
22072// register. In most cases we actually compare or select YMM-sized registers
22073// and mixing the two types creates horrible code. This method optimizes
22074// some of the transition sequences.
22075static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
22076                                 TargetLowering::DAGCombinerInfo &DCI,
22077                                 const X86Subtarget *Subtarget) {
22078  EVT VT = N->getValueType(0);
22079  if (!VT.is256BitVector())
22080    return SDValue();
22081
22082  assert((N->getOpcode() == ISD::ANY_EXTEND ||
22083          N->getOpcode() == ISD::ZERO_EXTEND ||
22084          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
22085
22086  SDValue Narrow = N->getOperand(0);
22087  EVT NarrowVT = Narrow->getValueType(0);
22088  if (!NarrowVT.is128BitVector())
22089    return SDValue();
22090
22091  if (Narrow->getOpcode() != ISD::XOR &&
22092      Narrow->getOpcode() != ISD::AND &&
22093      Narrow->getOpcode() != ISD::OR)
22094    return SDValue();
22095
22096  SDValue N0  = Narrow->getOperand(0);
22097  SDValue N1  = Narrow->getOperand(1);
22098  SDLoc DL(Narrow);
22099
22100  // The Left side has to be a trunc.
22101  if (N0.getOpcode() != ISD::TRUNCATE)
22102    return SDValue();
22103
22104  // The type of the truncated inputs.
22105  EVT WideVT = N0->getOperand(0)->getValueType(0);
22106  if (WideVT != VT)
22107    return SDValue();
22108
22109  // The right side has to be a 'trunc' or a constant vector.
22110  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
22111  ConstantSDNode *RHSConstSplat = nullptr;
22112  if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
22113    RHSConstSplat = RHSBV->getConstantSplatNode();
22114  if (!RHSTrunc && !RHSConstSplat)
22115    return SDValue();
22116
22117  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22118
22119  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
22120    return SDValue();
22121
22122  // Set N0 and N1 to hold the inputs to the new wide operation.
22123  N0 = N0->getOperand(0);
22124  if (RHSConstSplat) {
22125    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
22126                     SDValue(RHSConstSplat, 0));
22127    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
22128    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
22129  } else if (RHSTrunc) {
22130    N1 = N1->getOperand(0);
22131  }
22132
22133  // Generate the wide operation.
22134  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
22135  unsigned Opcode = N->getOpcode();
22136  switch (Opcode) {
22137  case ISD::ANY_EXTEND:
22138    return Op;
22139  case ISD::ZERO_EXTEND: {
22140    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
22141    APInt Mask = APInt::getAllOnesValue(InBits);
22142    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
22143    return DAG.getNode(ISD::AND, DL, VT,
22144                       Op, DAG.getConstant(Mask, VT));
22145  }
22146  case ISD::SIGN_EXTEND:
22147    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
22148                       Op, DAG.getValueType(NarrowVT));
22149  default:
22150    llvm_unreachable("Unexpected opcode");
22151  }
22152}
22153
22154static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG,
22155                                 TargetLowering::DAGCombinerInfo &DCI,
22156                                 const X86Subtarget *Subtarget) {
22157  SDValue N0 = N->getOperand(0);
22158  SDValue N1 = N->getOperand(1);
22159  SDLoc DL(N);
22160
22161  // A vector zext_in_reg may be represented as a shuffle,
22162  // feeding into a bitcast (this represents anyext) feeding into
22163  // an and with a mask.
22164  // We'd like to try to combine that into a shuffle with zero
22165  // plus a bitcast, removing the and.
22166  if (N0.getOpcode() != ISD::BITCAST ||
22167      N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE)
22168    return SDValue();
22169
22170  // The other side of the AND should be a splat of 2^C, where C
22171  // is the number of bits in the source type.
22172  if (N1.getOpcode() == ISD::BITCAST)
22173    N1 = N1.getOperand(0);
22174  if (N1.getOpcode() != ISD::BUILD_VECTOR)
22175    return SDValue();
22176  BuildVectorSDNode *Vector = cast<BuildVectorSDNode>(N1);
22177
22178  ShuffleVectorSDNode *Shuffle = cast<ShuffleVectorSDNode>(N0.getOperand(0));
22179  EVT SrcType = Shuffle->getValueType(0);
22180
22181  // We expect a single-source shuffle
22182  if (Shuffle->getOperand(1)->getOpcode() != ISD::UNDEF)
22183    return SDValue();
22184
22185  unsigned SrcSize = SrcType.getScalarSizeInBits();
22186
22187  APInt SplatValue, SplatUndef;
22188  unsigned SplatBitSize;
22189  bool HasAnyUndefs;
22190  if (!Vector->isConstantSplat(SplatValue, SplatUndef,
22191                                SplatBitSize, HasAnyUndefs))
22192    return SDValue();
22193
22194  unsigned ResSize = N1.getValueType().getScalarSizeInBits();
22195  // Make sure the splat matches the mask we expect
22196  if (SplatBitSize > ResSize ||
22197      (SplatValue + 1).exactLogBase2() != (int)SrcSize)
22198    return SDValue();
22199
22200  // Make sure the input and output size make sense
22201  if (SrcSize >= ResSize || ResSize % SrcSize)
22202    return SDValue();
22203
22204  // We expect a shuffle of the form <0, u, u, u, 1, u, u, u...>
22205  // The number of u's between each two values depends on the ratio between
22206  // the source and dest type.
22207  unsigned ZextRatio = ResSize / SrcSize;
22208  bool IsZext = true;
22209  for (unsigned i = 0; i < SrcType.getVectorNumElements(); ++i) {
22210    if (i % ZextRatio) {
22211      if (Shuffle->getMaskElt(i) > 0) {
22212        // Expected undef
22213        IsZext = false;
22214        break;
22215      }
22216    } else {
22217      if (Shuffle->getMaskElt(i) != (int)(i / ZextRatio)) {
22218        // Expected element number
22219        IsZext = false;
22220        break;
22221      }
22222    }
22223  }
22224
22225  if (!IsZext)
22226    return SDValue();
22227
22228  // Ok, perform the transformation - replace the shuffle with
22229  // a shuffle of the form <0, k, k, k, 1, k, k, k> with zero
22230  // (instead of undef) where the k elements come from the zero vector.
22231  SmallVector<int, 8> Mask;
22232  unsigned NumElems = SrcType.getVectorNumElements();
22233  for (unsigned i = 0; i < NumElems; ++i)
22234    if (i % ZextRatio)
22235      Mask.push_back(NumElems);
22236    else
22237      Mask.push_back(i / ZextRatio);
22238
22239  SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL,
22240    Shuffle->getOperand(0), DAG.getConstant(0, SrcType), Mask);
22241  return DAG.getNode(ISD::BITCAST, DL,  N0.getValueType(), NewShuffle);
22242}
22243
22244static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
22245                                 TargetLowering::DAGCombinerInfo &DCI,
22246                                 const X86Subtarget *Subtarget) {
22247  if (DCI.isBeforeLegalizeOps())
22248    return SDValue();
22249
22250  if (SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget))
22251    return Zext;
22252
22253  if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget))
22254    return R;
22255
22256  EVT VT = N->getValueType(0);
22257  SDValue N0 = N->getOperand(0);
22258  SDValue N1 = N->getOperand(1);
22259  SDLoc DL(N);
22260
22261  // Create BEXTR instructions
22262  // BEXTR is ((X >> imm) & (2**size-1))
22263  if (VT == MVT::i32 || VT == MVT::i64) {
22264    // Check for BEXTR.
22265    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
22266        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
22267      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
22268      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
22269      if (MaskNode && ShiftNode) {
22270        uint64_t Mask = MaskNode->getZExtValue();
22271        uint64_t Shift = ShiftNode->getZExtValue();
22272        if (isMask_64(Mask)) {
22273          uint64_t MaskSize = countPopulation(Mask);
22274          if (Shift + MaskSize <= VT.getSizeInBits())
22275            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
22276                               DAG.getConstant(Shift | (MaskSize << 8), VT));
22277        }
22278      }
22279    } // BEXTR
22280
22281    return SDValue();
22282  }
22283
22284  // Want to form ANDNP nodes:
22285  // 1) In the hopes of then easily combining them with OR and AND nodes
22286  //    to form PBLEND/PSIGN.
22287  // 2) To match ANDN packed intrinsics
22288  if (VT != MVT::v2i64 && VT != MVT::v4i64)
22289    return SDValue();
22290
22291  // Check LHS for vnot
22292  if (N0.getOpcode() == ISD::XOR &&
22293      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
22294      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
22295    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
22296
22297  // Check RHS for vnot
22298  if (N1.getOpcode() == ISD::XOR &&
22299      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
22300      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
22301    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
22302
22303  return SDValue();
22304}
22305
22306static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
22307                                TargetLowering::DAGCombinerInfo &DCI,
22308                                const X86Subtarget *Subtarget) {
22309  if (DCI.isBeforeLegalizeOps())
22310    return SDValue();
22311
22312  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
22313  if (R.getNode())
22314    return R;
22315
22316  SDValue N0 = N->getOperand(0);
22317  SDValue N1 = N->getOperand(1);
22318  EVT VT = N->getValueType(0);
22319
22320  // look for psign/blend
22321  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
22322    if (!Subtarget->hasSSSE3() ||
22323        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
22324      return SDValue();
22325
22326    // Canonicalize pandn to RHS
22327    if (N0.getOpcode() == X86ISD::ANDNP)
22328      std::swap(N0, N1);
22329    // or (and (m, y), (pandn m, x))
22330    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
22331      SDValue Mask = N1.getOperand(0);
22332      SDValue X    = N1.getOperand(1);
22333      SDValue Y;
22334      if (N0.getOperand(0) == Mask)
22335        Y = N0.getOperand(1);
22336      if (N0.getOperand(1) == Mask)
22337        Y = N0.getOperand(0);
22338
22339      // Check to see if the mask appeared in both the AND and ANDNP and
22340      if (!Y.getNode())
22341        return SDValue();
22342
22343      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
22344      // Look through mask bitcast.
22345      if (Mask.getOpcode() == ISD::BITCAST)
22346        Mask = Mask.getOperand(0);
22347      if (X.getOpcode() == ISD::BITCAST)
22348        X = X.getOperand(0);
22349      if (Y.getOpcode() == ISD::BITCAST)
22350        Y = Y.getOperand(0);
22351
22352      EVT MaskVT = Mask.getValueType();
22353
22354      // Validate that the Mask operand is a vector sra node.
22355      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
22356      // there is no psrai.b
22357      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
22358      unsigned SraAmt = ~0;
22359      if (Mask.getOpcode() == ISD::SRA) {
22360        if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
22361          if (auto *AmtConst = AmtBV->getConstantSplatNode())
22362            SraAmt = AmtConst->getZExtValue();
22363      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
22364        SDValue SraC = Mask.getOperand(1);
22365        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
22366      }
22367      if ((SraAmt + 1) != EltBits)
22368        return SDValue();
22369
22370      SDLoc DL(N);
22371
22372      // Now we know we at least have a plendvb with the mask val.  See if
22373      // we can form a psignb/w/d.
22374      // psign = x.type == y.type == mask.type && y = sub(0, x);
22375      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
22376          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
22377          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
22378        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
22379               "Unsupported VT for PSIGN");
22380        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
22381        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
22382      }
22383      // PBLENDVB only available on SSE 4.1
22384      if (!Subtarget->hasSSE41())
22385        return SDValue();
22386
22387      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
22388
22389      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
22390      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
22391      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
22392      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
22393      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
22394    }
22395  }
22396
22397  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
22398    return SDValue();
22399
22400  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
22401  MachineFunction &MF = DAG.getMachineFunction();
22402  bool OptForSize =
22403      MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
22404
22405  // SHLD/SHRD instructions have lower register pressure, but on some
22406  // platforms they have higher latency than the equivalent
22407  // series of shifts/or that would otherwise be generated.
22408  // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
22409  // have higher latencies and we are not optimizing for size.
22410  if (!OptForSize && Subtarget->isSHLDSlow())
22411    return SDValue();
22412
22413  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
22414    std::swap(N0, N1);
22415  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
22416    return SDValue();
22417  if (!N0.hasOneUse() || !N1.hasOneUse())
22418    return SDValue();
22419
22420  SDValue ShAmt0 = N0.getOperand(1);
22421  if (ShAmt0.getValueType() != MVT::i8)
22422    return SDValue();
22423  SDValue ShAmt1 = N1.getOperand(1);
22424  if (ShAmt1.getValueType() != MVT::i8)
22425    return SDValue();
22426  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
22427    ShAmt0 = ShAmt0.getOperand(0);
22428  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
22429    ShAmt1 = ShAmt1.getOperand(0);
22430
22431  SDLoc DL(N);
22432  unsigned Opc = X86ISD::SHLD;
22433  SDValue Op0 = N0.getOperand(0);
22434  SDValue Op1 = N1.getOperand(0);
22435  if (ShAmt0.getOpcode() == ISD::SUB) {
22436    Opc = X86ISD::SHRD;
22437    std::swap(Op0, Op1);
22438    std::swap(ShAmt0, ShAmt1);
22439  }
22440
22441  unsigned Bits = VT.getSizeInBits();
22442  if (ShAmt1.getOpcode() == ISD::SUB) {
22443    SDValue Sum = ShAmt1.getOperand(0);
22444    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
22445      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
22446      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
22447        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
22448      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
22449        return DAG.getNode(Opc, DL, VT,
22450                           Op0, Op1,
22451                           DAG.getNode(ISD::TRUNCATE, DL,
22452                                       MVT::i8, ShAmt0));
22453    }
22454  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
22455    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
22456    if (ShAmt0C &&
22457        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
22458      return DAG.getNode(Opc, DL, VT,
22459                         N0.getOperand(0), N1.getOperand(0),
22460                         DAG.getNode(ISD::TRUNCATE, DL,
22461                                       MVT::i8, ShAmt0));
22462  }
22463
22464  return SDValue();
22465}
22466
22467// Generate NEG and CMOV for integer abs.
22468static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
22469  EVT VT = N->getValueType(0);
22470
22471  // Since X86 does not have CMOV for 8-bit integer, we don't convert
22472  // 8-bit integer abs to NEG and CMOV.
22473  if (VT.isInteger() && VT.getSizeInBits() == 8)
22474    return SDValue();
22475
22476  SDValue N0 = N->getOperand(0);
22477  SDValue N1 = N->getOperand(1);
22478  SDLoc DL(N);
22479
22480  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
22481  // and change it to SUB and CMOV.
22482  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
22483      N0.getOpcode() == ISD::ADD &&
22484      N0.getOperand(1) == N1 &&
22485      N1.getOpcode() == ISD::SRA &&
22486      N1.getOperand(0) == N0.getOperand(0))
22487    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
22488      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
22489        // Generate SUB & CMOV.
22490        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
22491                                  DAG.getConstant(0, VT), N0.getOperand(0));
22492
22493        SDValue Ops[] = { N0.getOperand(0), Neg,
22494                          DAG.getConstant(X86::COND_GE, MVT::i8),
22495                          SDValue(Neg.getNode(), 1) };
22496        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
22497      }
22498  return SDValue();
22499}
22500
22501// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
22502static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
22503                                 TargetLowering::DAGCombinerInfo &DCI,
22504                                 const X86Subtarget *Subtarget) {
22505  if (DCI.isBeforeLegalizeOps())
22506    return SDValue();
22507
22508  if (Subtarget->hasCMov()) {
22509    SDValue RV = performIntegerAbsCombine(N, DAG);
22510    if (RV.getNode())
22511      return RV;
22512  }
22513
22514  return SDValue();
22515}
22516
22517/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
22518static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
22519                                  TargetLowering::DAGCombinerInfo &DCI,
22520                                  const X86Subtarget *Subtarget) {
22521  LoadSDNode *Ld = cast<LoadSDNode>(N);
22522  EVT RegVT = Ld->getValueType(0);
22523  EVT MemVT = Ld->getMemoryVT();
22524  SDLoc dl(Ld);
22525  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22526
22527  // For chips with slow 32-byte unaligned loads, break the 32-byte operation
22528  // into two 16-byte operations.
22529  ISD::LoadExtType Ext = Ld->getExtensionType();
22530  unsigned Alignment = Ld->getAlignment();
22531  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
22532  if (RegVT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
22533      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
22534    unsigned NumElems = RegVT.getVectorNumElements();
22535    if (NumElems < 2)
22536      return SDValue();
22537
22538    SDValue Ptr = Ld->getBasePtr();
22539    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
22540
22541    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
22542                                  NumElems/2);
22543    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
22544                                Ld->getPointerInfo(), Ld->isVolatile(),
22545                                Ld->isNonTemporal(), Ld->isInvariant(),
22546                                Alignment);
22547    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
22548    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
22549                                Ld->getPointerInfo(), Ld->isVolatile(),
22550                                Ld->isNonTemporal(), Ld->isInvariant(),
22551                                std::min(16U, Alignment));
22552    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
22553                             Load1.getValue(1),
22554                             Load2.getValue(1));
22555
22556    SDValue NewVec = DAG.getUNDEF(RegVT);
22557    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
22558    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
22559    return DCI.CombineTo(N, NewVec, TF, true);
22560  }
22561
22562  return SDValue();
22563}
22564
22565/// PerformMLOADCombine - Resolve extending loads
22566static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
22567                                   TargetLowering::DAGCombinerInfo &DCI,
22568                                   const X86Subtarget *Subtarget) {
22569  MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
22570  if (Mld->getExtensionType() != ISD::SEXTLOAD)
22571    return SDValue();
22572
22573  EVT VT = Mld->getValueType(0);
22574  unsigned NumElems = VT.getVectorNumElements();
22575  EVT LdVT = Mld->getMemoryVT();
22576  SDLoc dl(Mld);
22577
22578  assert(LdVT != VT && "Cannot extend to the same type");
22579  unsigned ToSz = VT.getVectorElementType().getSizeInBits();
22580  unsigned FromSz = LdVT.getVectorElementType().getSizeInBits();
22581  // From, To sizes and ElemCount must be pow of two
22582  assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
22583    "Unexpected size for extending masked load");
22584
22585  unsigned SizeRatio  = ToSz / FromSz;
22586  assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits());
22587
22588  // Create a type on which we perform the shuffle
22589  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
22590          LdVT.getScalarType(), NumElems*SizeRatio);
22591  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
22592
22593  // Convert Src0 value
22594  SDValue WideSrc0 = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mld->getSrc0());
22595  if (Mld->getSrc0().getOpcode() != ISD::UNDEF) {
22596    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
22597    for (unsigned i = 0; i != NumElems; ++i)
22598      ShuffleVec[i] = i * SizeRatio;
22599
22600    // Can't shuffle using an illegal type.
22601    assert (DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT)
22602	    && "WideVecVT should be legal");
22603    WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
22604                                    DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
22605  }
22606  // Prepare the new mask
22607  SDValue NewMask;
22608  SDValue Mask = Mld->getMask();
22609  if (Mask.getValueType() == VT) {
22610    // Mask and original value have the same type
22611    NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask);
22612    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
22613    for (unsigned i = 0; i != NumElems; ++i)
22614      ShuffleVec[i] = i * SizeRatio;
22615    for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
22616      ShuffleVec[i] = NumElems*SizeRatio;
22617    NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
22618                                   DAG.getConstant(0, WideVecVT),
22619                                   &ShuffleVec[0]);
22620  }
22621  else {
22622    assert(Mask.getValueType().getVectorElementType() == MVT::i1);
22623    unsigned WidenNumElts = NumElems*SizeRatio;
22624    unsigned MaskNumElts = VT.getVectorNumElements();
22625    EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1,
22626                                     WidenNumElts);
22627
22628    unsigned NumConcat = WidenNumElts / MaskNumElts;
22629    SmallVector<SDValue, 16> Ops(NumConcat);
22630    SDValue ZeroVal = DAG.getConstant(0, Mask.getValueType());
22631    Ops[0] = Mask;
22632    for (unsigned i = 1; i != NumConcat; ++i)
22633      Ops[i] = ZeroVal;
22634
22635    NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
22636  }
22637
22638  SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(),
22639                                     Mld->getBasePtr(), NewMask, WideSrc0,
22640                                     Mld->getMemoryVT(), Mld->getMemOperand(),
22641                                     ISD::NON_EXTLOAD);
22642  SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd);
22643  return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true);
22644
22645}
22646/// PerformMSTORECombine - Resolve truncating stores
22647static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
22648                                    const X86Subtarget *Subtarget) {
22649  MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
22650  if (!Mst->isTruncatingStore())
22651    return SDValue();
22652
22653  EVT VT = Mst->getValue().getValueType();
22654  unsigned NumElems = VT.getVectorNumElements();
22655  EVT StVT = Mst->getMemoryVT();
22656  SDLoc dl(Mst);
22657
22658  assert(StVT != VT && "Cannot truncate to the same type");
22659  unsigned FromSz = VT.getVectorElementType().getSizeInBits();
22660  unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
22661
22662  // From, To sizes and ElemCount must be pow of two
22663  assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
22664    "Unexpected size for truncating masked store");
22665  // We are going to use the original vector elt for storing.
22666  // Accumulated smaller vector elements must be a multiple of the store size.
22667  assert (((NumElems * FromSz) % ToSz) == 0 &&
22668          "Unexpected ratio for truncating masked store");
22669
22670  unsigned SizeRatio  = FromSz / ToSz;
22671  assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
22672
22673  // Create a type on which we perform the shuffle
22674  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
22675          StVT.getScalarType(), NumElems*SizeRatio);
22676
22677  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
22678
22679  SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mst->getValue());
22680  SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
22681  for (unsigned i = 0; i != NumElems; ++i)
22682    ShuffleVec[i] = i * SizeRatio;
22683
22684  // Can't shuffle using an illegal type.
22685  assert (DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT)
22686	  && "WideVecVT should be legal");
22687
22688  SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
22689                                        DAG.getUNDEF(WideVecVT),
22690                                        &ShuffleVec[0]);
22691
22692  SDValue NewMask;
22693  SDValue Mask = Mst->getMask();
22694  if (Mask.getValueType() == VT) {
22695    // Mask and original value have the same type
22696    NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask);
22697    for (unsigned i = 0; i != NumElems; ++i)
22698      ShuffleVec[i] = i * SizeRatio;
22699    for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
22700      ShuffleVec[i] = NumElems*SizeRatio;
22701    NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
22702                                   DAG.getConstant(0, WideVecVT),
22703                                   &ShuffleVec[0]);
22704  }
22705  else {
22706    assert(Mask.getValueType().getVectorElementType() == MVT::i1);
22707    unsigned WidenNumElts = NumElems*SizeRatio;
22708    unsigned MaskNumElts = VT.getVectorNumElements();
22709    EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1,
22710                                     WidenNumElts);
22711
22712    unsigned NumConcat = WidenNumElts / MaskNumElts;
22713    SmallVector<SDValue, 16> Ops(NumConcat);
22714    SDValue ZeroVal = DAG.getConstant(0, Mask.getValueType());
22715    Ops[0] = Mask;
22716    for (unsigned i = 1; i != NumConcat; ++i)
22717      Ops[i] = ZeroVal;
22718
22719    NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
22720  }
22721
22722  return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal, Mst->getBasePtr(),
22723                            NewMask, StVT, Mst->getMemOperand(), false);
22724}
22725/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
22726static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
22727                                   const X86Subtarget *Subtarget) {
22728  StoreSDNode *St = cast<StoreSDNode>(N);
22729  EVT VT = St->getValue().getValueType();
22730  EVT StVT = St->getMemoryVT();
22731  SDLoc dl(St);
22732  SDValue StoredVal = St->getOperand(1);
22733  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22734
22735  // If we are saving a concatenation of two XMM registers and 32-byte stores
22736  // are slow, such as on Sandy Bridge, perform two 16-byte stores.
22737  unsigned Alignment = St->getAlignment();
22738  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
22739  if (VT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
22740      StVT == VT && !IsAligned) {
22741    unsigned NumElems = VT.getVectorNumElements();
22742    if (NumElems < 2)
22743      return SDValue();
22744
22745    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
22746    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
22747
22748    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
22749    SDValue Ptr0 = St->getBasePtr();
22750    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
22751
22752    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
22753                                St->getPointerInfo(), St->isVolatile(),
22754                                St->isNonTemporal(), Alignment);
22755    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
22756                                St->getPointerInfo(), St->isVolatile(),
22757                                St->isNonTemporal(),
22758                                std::min(16U, Alignment));
22759    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
22760  }
22761
22762  // Optimize trunc store (of multiple scalars) to shuffle and store.
22763  // First, pack all of the elements in one place. Next, store to memory
22764  // in fewer chunks.
22765  if (St->isTruncatingStore() && VT.isVector()) {
22766    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22767    unsigned NumElems = VT.getVectorNumElements();
22768    assert(StVT != VT && "Cannot truncate to the same type");
22769    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
22770    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
22771
22772    // From, To sizes and ElemCount must be pow of two
22773    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
22774    // We are going to use the original vector elt for storing.
22775    // Accumulated smaller vector elements must be a multiple of the store size.
22776    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
22777
22778    unsigned SizeRatio  = FromSz / ToSz;
22779
22780    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
22781
22782    // Create a type on which we perform the shuffle
22783    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
22784            StVT.getScalarType(), NumElems*SizeRatio);
22785
22786    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
22787
22788    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
22789    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
22790    for (unsigned i = 0; i != NumElems; ++i)
22791      ShuffleVec[i] = i * SizeRatio;
22792
22793    // Can't shuffle using an illegal type.
22794    if (!TLI.isTypeLegal(WideVecVT))
22795      return SDValue();
22796
22797    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
22798                                         DAG.getUNDEF(WideVecVT),
22799                                         &ShuffleVec[0]);
22800    // At this point all of the data is stored at the bottom of the
22801    // register. We now need to save it to mem.
22802
22803    // Find the largest store unit
22804    MVT StoreType = MVT::i8;
22805    for (MVT Tp : MVT::integer_valuetypes()) {
22806      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
22807        StoreType = Tp;
22808    }
22809
22810    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
22811    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
22812        (64 <= NumElems * ToSz))
22813      StoreType = MVT::f64;
22814
22815    // Bitcast the original vector into a vector of store-size units
22816    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
22817            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
22818    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
22819    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
22820    SmallVector<SDValue, 8> Chains;
22821    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
22822                                        TLI.getPointerTy());
22823    SDValue Ptr = St->getBasePtr();
22824
22825    // Perform one or more big stores into memory.
22826    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
22827      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
22828                                   StoreType, ShuffWide,
22829                                   DAG.getIntPtrConstant(i));
22830      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
22831                                St->getPointerInfo(), St->isVolatile(),
22832                                St->isNonTemporal(), St->getAlignment());
22833      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
22834      Chains.push_back(Ch);
22835    }
22836
22837    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
22838  }
22839
22840  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
22841  // the FP state in cases where an emms may be missing.
22842  // A preferable solution to the general problem is to figure out the right
22843  // places to insert EMMS.  This qualifies as a quick hack.
22844
22845  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
22846  if (VT.getSizeInBits() != 64)
22847    return SDValue();
22848
22849  const Function *F = DAG.getMachineFunction().getFunction();
22850  bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat);
22851  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
22852                     && Subtarget->hasSSE2();
22853  if ((VT.isVector() ||
22854       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
22855      isa<LoadSDNode>(St->getValue()) &&
22856      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
22857      St->getChain().hasOneUse() && !St->isVolatile()) {
22858    SDNode* LdVal = St->getValue().getNode();
22859    LoadSDNode *Ld = nullptr;
22860    int TokenFactorIndex = -1;
22861    SmallVector<SDValue, 8> Ops;
22862    SDNode* ChainVal = St->getChain().getNode();
22863    // Must be a store of a load.  We currently handle two cases:  the load
22864    // is a direct child, and it's under an intervening TokenFactor.  It is
22865    // possible to dig deeper under nested TokenFactors.
22866    if (ChainVal == LdVal)
22867      Ld = cast<LoadSDNode>(St->getChain());
22868    else if (St->getValue().hasOneUse() &&
22869             ChainVal->getOpcode() == ISD::TokenFactor) {
22870      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
22871        if (ChainVal->getOperand(i).getNode() == LdVal) {
22872          TokenFactorIndex = i;
22873          Ld = cast<LoadSDNode>(St->getValue());
22874        } else
22875          Ops.push_back(ChainVal->getOperand(i));
22876      }
22877    }
22878
22879    if (!Ld || !ISD::isNormalLoad(Ld))
22880      return SDValue();
22881
22882    // If this is not the MMX case, i.e. we are just turning i64 load/store
22883    // into f64 load/store, avoid the transformation if there are multiple
22884    // uses of the loaded value.
22885    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
22886      return SDValue();
22887
22888    SDLoc LdDL(Ld);
22889    SDLoc StDL(N);
22890    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
22891    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
22892    // pair instead.
22893    if (Subtarget->is64Bit() || F64IsLegal) {
22894      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
22895      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
22896                                  Ld->getPointerInfo(), Ld->isVolatile(),
22897                                  Ld->isNonTemporal(), Ld->isInvariant(),
22898                                  Ld->getAlignment());
22899      SDValue NewChain = NewLd.getValue(1);
22900      if (TokenFactorIndex != -1) {
22901        Ops.push_back(NewChain);
22902        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
22903      }
22904      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
22905                          St->getPointerInfo(),
22906                          St->isVolatile(), St->isNonTemporal(),
22907                          St->getAlignment());
22908    }
22909
22910    // Otherwise, lower to two pairs of 32-bit loads / stores.
22911    SDValue LoAddr = Ld->getBasePtr();
22912    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
22913                                 DAG.getConstant(4, MVT::i32));
22914
22915    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
22916                               Ld->getPointerInfo(),
22917                               Ld->isVolatile(), Ld->isNonTemporal(),
22918                               Ld->isInvariant(), Ld->getAlignment());
22919    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
22920                               Ld->getPointerInfo().getWithOffset(4),
22921                               Ld->isVolatile(), Ld->isNonTemporal(),
22922                               Ld->isInvariant(),
22923                               MinAlign(Ld->getAlignment(), 4));
22924
22925    SDValue NewChain = LoLd.getValue(1);
22926    if (TokenFactorIndex != -1) {
22927      Ops.push_back(LoLd);
22928      Ops.push_back(HiLd);
22929      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
22930    }
22931
22932    LoAddr = St->getBasePtr();
22933    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
22934                         DAG.getConstant(4, MVT::i32));
22935
22936    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
22937                                St->getPointerInfo(),
22938                                St->isVolatile(), St->isNonTemporal(),
22939                                St->getAlignment());
22940    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
22941                                St->getPointerInfo().getWithOffset(4),
22942                                St->isVolatile(),
22943                                St->isNonTemporal(),
22944                                MinAlign(St->getAlignment(), 4));
22945    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
22946  }
22947  return SDValue();
22948}
22949
22950/// Return 'true' if this vector operation is "horizontal"
22951/// and return the operands for the horizontal operation in LHS and RHS.  A
22952/// horizontal operation performs the binary operation on successive elements
22953/// of its first operand, then on successive elements of its second operand,
22954/// returning the resulting values in a vector.  For example, if
22955///   A = < float a0, float a1, float a2, float a3 >
22956/// and
22957///   B = < float b0, float b1, float b2, float b3 >
22958/// then the result of doing a horizontal operation on A and B is
22959///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
22960/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
22961/// A horizontal-op B, for some already available A and B, and if so then LHS is
22962/// set to A, RHS to B, and the routine returns 'true'.
22963/// Note that the binary operation should have the property that if one of the
22964/// operands is UNDEF then the result is UNDEF.
22965static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
22966  // Look for the following pattern: if
22967  //   A = < float a0, float a1, float a2, float a3 >
22968  //   B = < float b0, float b1, float b2, float b3 >
22969  // and
22970  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
22971  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
22972  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
22973  // which is A horizontal-op B.
22974
22975  // At least one of the operands should be a vector shuffle.
22976  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
22977      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
22978    return false;
22979
22980  MVT VT = LHS.getSimpleValueType();
22981
22982  assert((VT.is128BitVector() || VT.is256BitVector()) &&
22983         "Unsupported vector type for horizontal add/sub");
22984
22985  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
22986  // operate independently on 128-bit lanes.
22987  unsigned NumElts = VT.getVectorNumElements();
22988  unsigned NumLanes = VT.getSizeInBits()/128;
22989  unsigned NumLaneElts = NumElts / NumLanes;
22990  assert((NumLaneElts % 2 == 0) &&
22991         "Vector type should have an even number of elements in each lane");
22992  unsigned HalfLaneElts = NumLaneElts/2;
22993
22994  // View LHS in the form
22995  //   LHS = VECTOR_SHUFFLE A, B, LMask
22996  // If LHS is not a shuffle then pretend it is the shuffle
22997  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
22998  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
22999  // type VT.
23000  SDValue A, B;
23001  SmallVector<int, 16> LMask(NumElts);
23002  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
23003    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
23004      A = LHS.getOperand(0);
23005    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
23006      B = LHS.getOperand(1);
23007    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
23008    std::copy(Mask.begin(), Mask.end(), LMask.begin());
23009  } else {
23010    if (LHS.getOpcode() != ISD::UNDEF)
23011      A = LHS;
23012    for (unsigned i = 0; i != NumElts; ++i)
23013      LMask[i] = i;
23014  }
23015
23016  // Likewise, view RHS in the form
23017  //   RHS = VECTOR_SHUFFLE C, D, RMask
23018  SDValue C, D;
23019  SmallVector<int, 16> RMask(NumElts);
23020  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
23021    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
23022      C = RHS.getOperand(0);
23023    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
23024      D = RHS.getOperand(1);
23025    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
23026    std::copy(Mask.begin(), Mask.end(), RMask.begin());
23027  } else {
23028    if (RHS.getOpcode() != ISD::UNDEF)
23029      C = RHS;
23030    for (unsigned i = 0; i != NumElts; ++i)
23031      RMask[i] = i;
23032  }
23033
23034  // Check that the shuffles are both shuffling the same vectors.
23035  if (!(A == C && B == D) && !(A == D && B == C))
23036    return false;
23037
23038  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
23039  if (!A.getNode() && !B.getNode())
23040    return false;
23041
23042  // If A and B occur in reverse order in RHS, then "swap" them (which means
23043  // rewriting the mask).
23044  if (A != C)
23045    ShuffleVectorSDNode::commuteMask(RMask);
23046
23047  // At this point LHS and RHS are equivalent to
23048  //   LHS = VECTOR_SHUFFLE A, B, LMask
23049  //   RHS = VECTOR_SHUFFLE A, B, RMask
23050  // Check that the masks correspond to performing a horizontal operation.
23051  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
23052    for (unsigned i = 0; i != NumLaneElts; ++i) {
23053      int LIdx = LMask[i+l], RIdx = RMask[i+l];
23054
23055      // Ignore any UNDEF components.
23056      if (LIdx < 0 || RIdx < 0 ||
23057          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
23058          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
23059        continue;
23060
23061      // Check that successive elements are being operated on.  If not, this is
23062      // not a horizontal operation.
23063      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
23064      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
23065      if (!(LIdx == Index && RIdx == Index + 1) &&
23066          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
23067        return false;
23068    }
23069  }
23070
23071  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
23072  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
23073  return true;
23074}
23075
23076/// Do target-specific dag combines on floating point adds.
23077static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
23078                                  const X86Subtarget *Subtarget) {
23079  EVT VT = N->getValueType(0);
23080  SDValue LHS = N->getOperand(0);
23081  SDValue RHS = N->getOperand(1);
23082
23083  // Try to synthesize horizontal adds from adds of shuffles.
23084  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
23085       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
23086      isHorizontalBinOp(LHS, RHS, true))
23087    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
23088  return SDValue();
23089}
23090
23091/// Do target-specific dag combines on floating point subs.
23092static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
23093                                  const X86Subtarget *Subtarget) {
23094  EVT VT = N->getValueType(0);
23095  SDValue LHS = N->getOperand(0);
23096  SDValue RHS = N->getOperand(1);
23097
23098  // Try to synthesize horizontal subs from subs of shuffles.
23099  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
23100       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
23101      isHorizontalBinOp(LHS, RHS, false))
23102    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
23103  return SDValue();
23104}
23105
23106/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
23107static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
23108  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
23109
23110  // F[X]OR(0.0, x) -> x
23111  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23112    if (C->getValueAPF().isPosZero())
23113      return N->getOperand(1);
23114
23115  // F[X]OR(x, 0.0) -> x
23116  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23117    if (C->getValueAPF().isPosZero())
23118      return N->getOperand(0);
23119  return SDValue();
23120}
23121
23122/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
23123static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
23124  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
23125
23126  // Only perform optimizations if UnsafeMath is used.
23127  if (!DAG.getTarget().Options.UnsafeFPMath)
23128    return SDValue();
23129
23130  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
23131  // into FMINC and FMAXC, which are Commutative operations.
23132  unsigned NewOp = 0;
23133  switch (N->getOpcode()) {
23134    default: llvm_unreachable("unknown opcode");
23135    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
23136    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
23137  }
23138
23139  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
23140                     N->getOperand(0), N->getOperand(1));
23141}
23142
23143/// Do target-specific dag combines on X86ISD::FAND nodes.
23144static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
23145  // FAND(0.0, x) -> 0.0
23146  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23147    if (C->getValueAPF().isPosZero())
23148      return N->getOperand(0);
23149
23150  // FAND(x, 0.0) -> 0.0
23151  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23152    if (C->getValueAPF().isPosZero())
23153      return N->getOperand(1);
23154
23155  return SDValue();
23156}
23157
23158/// Do target-specific dag combines on X86ISD::FANDN nodes
23159static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
23160  // FANDN(0.0, x) -> x
23161  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23162    if (C->getValueAPF().isPosZero())
23163      return N->getOperand(1);
23164
23165  // FANDN(x, 0.0) -> 0.0
23166  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23167    if (C->getValueAPF().isPosZero())
23168      return N->getOperand(1);
23169
23170  return SDValue();
23171}
23172
23173static SDValue PerformBTCombine(SDNode *N,
23174                                SelectionDAG &DAG,
23175                                TargetLowering::DAGCombinerInfo &DCI) {
23176  // BT ignores high bits in the bit index operand.
23177  SDValue Op1 = N->getOperand(1);
23178  if (Op1.hasOneUse()) {
23179    unsigned BitWidth = Op1.getValueSizeInBits();
23180    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
23181    APInt KnownZero, KnownOne;
23182    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
23183                                          !DCI.isBeforeLegalizeOps());
23184    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23185    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
23186        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
23187      DCI.CommitTargetLoweringOpt(TLO);
23188  }
23189  return SDValue();
23190}
23191
23192static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
23193  SDValue Op = N->getOperand(0);
23194  if (Op.getOpcode() == ISD::BITCAST)
23195    Op = Op.getOperand(0);
23196  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
23197  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
23198      VT.getVectorElementType().getSizeInBits() ==
23199      OpVT.getVectorElementType().getSizeInBits()) {
23200    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
23201  }
23202  return SDValue();
23203}
23204
23205static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
23206                                               const X86Subtarget *Subtarget) {
23207  EVT VT = N->getValueType(0);
23208  if (!VT.isVector())
23209    return SDValue();
23210
23211  SDValue N0 = N->getOperand(0);
23212  SDValue N1 = N->getOperand(1);
23213  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
23214  SDLoc dl(N);
23215
23216  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
23217  // both SSE and AVX2 since there is no sign-extended shift right
23218  // operation on a vector with 64-bit elements.
23219  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
23220  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
23221  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
23222      N0.getOpcode() == ISD::SIGN_EXTEND)) {
23223    SDValue N00 = N0.getOperand(0);
23224
23225    // EXTLOAD has a better solution on AVX2,
23226    // it may be replaced with X86ISD::VSEXT node.
23227    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
23228      if (!ISD::isNormalLoad(N00.getNode()))
23229        return SDValue();
23230
23231    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
23232        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
23233                                  N00, N1);
23234      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
23235    }
23236  }
23237  return SDValue();
23238}
23239
23240static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
23241                                  TargetLowering::DAGCombinerInfo &DCI,
23242                                  const X86Subtarget *Subtarget) {
23243  SDValue N0 = N->getOperand(0);
23244  EVT VT = N->getValueType(0);
23245
23246  // (i8,i32 sext (sdivrem (i8 x, i8 y)) ->
23247  // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y)
23248  // This exposes the sext to the sdivrem lowering, so that it directly extends
23249  // from AH (which we otherwise need to do contortions to access).
23250  if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 &&
23251      N0.getValueType() == MVT::i8 && VT == MVT::i32) {
23252    SDLoc dl(N);
23253    SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
23254    SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, dl, NodeTys,
23255                            N0.getOperand(0), N0.getOperand(1));
23256    DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
23257    return R.getValue(1);
23258  }
23259
23260  if (!DCI.isBeforeLegalizeOps())
23261    return SDValue();
23262
23263  if (!Subtarget->hasFp256())
23264    return SDValue();
23265
23266  if (VT.isVector() && VT.getSizeInBits() == 256) {
23267    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
23268    if (R.getNode())
23269      return R;
23270  }
23271
23272  return SDValue();
23273}
23274
23275static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
23276                                 const X86Subtarget* Subtarget) {
23277  SDLoc dl(N);
23278  EVT VT = N->getValueType(0);
23279
23280  // Let legalize expand this if it isn't a legal type yet.
23281  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
23282    return SDValue();
23283
23284  EVT ScalarVT = VT.getScalarType();
23285  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
23286      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
23287    return SDValue();
23288
23289  SDValue A = N->getOperand(0);
23290  SDValue B = N->getOperand(1);
23291  SDValue C = N->getOperand(2);
23292
23293  bool NegA = (A.getOpcode() == ISD::FNEG);
23294  bool NegB = (B.getOpcode() == ISD::FNEG);
23295  bool NegC = (C.getOpcode() == ISD::FNEG);
23296
23297  // Negative multiplication when NegA xor NegB
23298  bool NegMul = (NegA != NegB);
23299  if (NegA)
23300    A = A.getOperand(0);
23301  if (NegB)
23302    B = B.getOperand(0);
23303  if (NegC)
23304    C = C.getOperand(0);
23305
23306  unsigned Opcode;
23307  if (!NegMul)
23308    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
23309  else
23310    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
23311
23312  return DAG.getNode(Opcode, dl, VT, A, B, C);
23313}
23314
23315static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
23316                                  TargetLowering::DAGCombinerInfo &DCI,
23317                                  const X86Subtarget *Subtarget) {
23318  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
23319  //           (and (i32 x86isd::setcc_carry), 1)
23320  // This eliminates the zext. This transformation is necessary because
23321  // ISD::SETCC is always legalized to i8.
23322  SDLoc dl(N);
23323  SDValue N0 = N->getOperand(0);
23324  EVT VT = N->getValueType(0);
23325
23326  if (N0.getOpcode() == ISD::AND &&
23327      N0.hasOneUse() &&
23328      N0.getOperand(0).hasOneUse()) {
23329    SDValue N00 = N0.getOperand(0);
23330    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
23331      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
23332      if (!C || C->getZExtValue() != 1)
23333        return SDValue();
23334      return DAG.getNode(ISD::AND, dl, VT,
23335                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
23336                                     N00.getOperand(0), N00.getOperand(1)),
23337                         DAG.getConstant(1, VT));
23338    }
23339  }
23340
23341  if (N0.getOpcode() == ISD::TRUNCATE &&
23342      N0.hasOneUse() &&
23343      N0.getOperand(0).hasOneUse()) {
23344    SDValue N00 = N0.getOperand(0);
23345    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
23346      return DAG.getNode(ISD::AND, dl, VT,
23347                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
23348                                     N00.getOperand(0), N00.getOperand(1)),
23349                         DAG.getConstant(1, VT));
23350    }
23351  }
23352  if (VT.is256BitVector()) {
23353    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
23354    if (R.getNode())
23355      return R;
23356  }
23357
23358  // (i8,i32 zext (udivrem (i8 x, i8 y)) ->
23359  // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y)
23360  // This exposes the zext to the udivrem lowering, so that it directly extends
23361  // from AH (which we otherwise need to do contortions to access).
23362  if (N0.getOpcode() == ISD::UDIVREM &&
23363      N0.getResNo() == 1 && N0.getValueType() == MVT::i8 &&
23364      (VT == MVT::i32 || VT == MVT::i64)) {
23365    SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
23366    SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys,
23367                            N0.getOperand(0), N0.getOperand(1));
23368    DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
23369    return R.getValue(1);
23370  }
23371
23372  return SDValue();
23373}
23374
23375// Optimize x == -y --> x+y == 0
23376//          x != -y --> x+y != 0
23377static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
23378                                      const X86Subtarget* Subtarget) {
23379  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
23380  SDValue LHS = N->getOperand(0);
23381  SDValue RHS = N->getOperand(1);
23382  EVT VT = N->getValueType(0);
23383  SDLoc DL(N);
23384
23385  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
23386    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
23387      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
23388        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N), LHS.getValueType(), RHS,
23389                                   LHS.getOperand(1));
23390        return DAG.getSetCC(SDLoc(N), N->getValueType(0), addV,
23391                            DAG.getConstant(0, addV.getValueType()), CC);
23392      }
23393  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
23394    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
23395      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
23396        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N), RHS.getValueType(), LHS,
23397                                   RHS.getOperand(1));
23398        return DAG.getSetCC(SDLoc(N), N->getValueType(0), addV,
23399                            DAG.getConstant(0, addV.getValueType()), CC);
23400      }
23401
23402  if (VT.getScalarType() == MVT::i1 &&
23403      (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
23404    bool IsSEXT0 =
23405        (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
23406        (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
23407    bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
23408
23409    if (!IsSEXT0 || !IsVZero1) {
23410      // Swap the operands and update the condition code.
23411      std::swap(LHS, RHS);
23412      CC = ISD::getSetCCSwappedOperands(CC);
23413
23414      IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
23415                (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
23416      IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
23417    }
23418
23419    if (IsSEXT0 && IsVZero1) {
23420      assert(VT == LHS.getOperand(0).getValueType() &&
23421             "Uexpected operand type");
23422      if (CC == ISD::SETGT)
23423        return DAG.getConstant(0, VT);
23424      if (CC == ISD::SETLE)
23425        return DAG.getConstant(1, VT);
23426      if (CC == ISD::SETEQ || CC == ISD::SETGE)
23427        return DAG.getNOT(DL, LHS.getOperand(0), VT);
23428
23429      assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
23430             "Unexpected condition code!");
23431      return LHS.getOperand(0);
23432    }
23433  }
23434
23435  return SDValue();
23436}
23437
23438static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index,
23439                                         SelectionDAG &DAG) {
23440  SDLoc dl(Load);
23441  MVT VT = Load->getSimpleValueType(0);
23442  MVT EVT = VT.getVectorElementType();
23443  SDValue Addr = Load->getOperand(1);
23444  SDValue NewAddr = DAG.getNode(
23445      ISD::ADD, dl, Addr.getSimpleValueType(), Addr,
23446      DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType()));
23447
23448  SDValue NewLoad =
23449      DAG.getLoad(EVT, dl, Load->getChain(), NewAddr,
23450                  DAG.getMachineFunction().getMachineMemOperand(
23451                      Load->getMemOperand(), 0, EVT.getStoreSize()));
23452  return NewLoad;
23453}
23454
23455static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG,
23456                                      const X86Subtarget *Subtarget) {
23457  SDLoc dl(N);
23458  MVT VT = N->getOperand(1)->getSimpleValueType(0);
23459  assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
23460         "X86insertps is only defined for v4x32");
23461
23462  SDValue Ld = N->getOperand(1);
23463  if (MayFoldLoad(Ld)) {
23464    // Extract the countS bits from the immediate so we can get the proper
23465    // address when narrowing the vector load to a specific element.
23466    // When the second source op is a memory address, insertps doesn't use
23467    // countS and just gets an f32 from that address.
23468    unsigned DestIndex =
23469        cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6;
23470
23471    Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG);
23472
23473    // Create this as a scalar to vector to match the instruction pattern.
23474    SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
23475    // countS bits are ignored when loading from memory on insertps, which
23476    // means we don't need to explicitly set them to 0.
23477    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
23478                       LoadScalarToVector, N->getOperand(2));
23479  }
23480  return SDValue();
23481}
23482
23483static SDValue PerformBLENDICombine(SDNode *N, SelectionDAG &DAG) {
23484  SDValue V0 = N->getOperand(0);
23485  SDValue V1 = N->getOperand(1);
23486  SDLoc DL(N);
23487  EVT VT = N->getValueType(0);
23488
23489  // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector
23490  // operands and changing the mask to 1. This saves us a bunch of
23491  // pattern-matching possibilities related to scalar math ops in SSE/AVX.
23492  // x86InstrInfo knows how to commute this back after instruction selection
23493  // if it would help register allocation.
23494
23495  // TODO: If optimizing for size or a processor that doesn't suffer from
23496  // partial register update stalls, this should be transformed into a MOVSD
23497  // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD.
23498
23499  if (VT == MVT::v2f64)
23500    if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2)))
23501      if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) {
23502        SDValue NewMask = DAG.getConstant(1, MVT::i8);
23503        return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask);
23504      }
23505
23506  return SDValue();
23507}
23508
23509// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
23510// as "sbb reg,reg", since it can be extended without zext and produces
23511// an all-ones bit which is more useful than 0/1 in some cases.
23512static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
23513                               MVT VT) {
23514  if (VT == MVT::i8)
23515    return DAG.getNode(ISD::AND, DL, VT,
23516                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
23517                                   DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
23518                       DAG.getConstant(1, VT));
23519  assert (VT == MVT::i1 && "Unexpected type for SECCC node");
23520  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
23521                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
23522                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS));
23523}
23524
23525// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
23526static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
23527                                   TargetLowering::DAGCombinerInfo &DCI,
23528                                   const X86Subtarget *Subtarget) {
23529  SDLoc DL(N);
23530  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
23531  SDValue EFLAGS = N->getOperand(1);
23532
23533  if (CC == X86::COND_A) {
23534    // Try to convert COND_A into COND_B in an attempt to facilitate
23535    // materializing "setb reg".
23536    //
23537    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
23538    // cannot take an immediate as its first operand.
23539    //
23540    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
23541        EFLAGS.getValueType().isInteger() &&
23542        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
23543      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
23544                                   EFLAGS.getNode()->getVTList(),
23545                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
23546      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
23547      return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
23548    }
23549  }
23550
23551  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
23552  // a zext and produces an all-ones bit which is more useful than 0/1 in some
23553  // cases.
23554  if (CC == X86::COND_B)
23555    return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
23556
23557  SDValue Flags;
23558
23559  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
23560  if (Flags.getNode()) {
23561    SDValue Cond = DAG.getConstant(CC, MVT::i8);
23562    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
23563  }
23564
23565  return SDValue();
23566}
23567
23568// Optimize branch condition evaluation.
23569//
23570static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
23571                                    TargetLowering::DAGCombinerInfo &DCI,
23572                                    const X86Subtarget *Subtarget) {
23573  SDLoc DL(N);
23574  SDValue Chain = N->getOperand(0);
23575  SDValue Dest = N->getOperand(1);
23576  SDValue EFLAGS = N->getOperand(3);
23577  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
23578
23579  SDValue Flags;
23580
23581  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
23582  if (Flags.getNode()) {
23583    SDValue Cond = DAG.getConstant(CC, MVT::i8);
23584    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
23585                       Flags);
23586  }
23587
23588  return SDValue();
23589}
23590
23591static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
23592                                                         SelectionDAG &DAG) {
23593  // Take advantage of vector comparisons producing 0 or -1 in each lane to
23594  // optimize away operation when it's from a constant.
23595  //
23596  // The general transformation is:
23597  //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
23598  //       AND(VECTOR_CMP(x,y), constant2)
23599  //    constant2 = UNARYOP(constant)
23600
23601  // Early exit if this isn't a vector operation, the operand of the
23602  // unary operation isn't a bitwise AND, or if the sizes of the operations
23603  // aren't the same.
23604  EVT VT = N->getValueType(0);
23605  if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
23606      N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
23607      VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
23608    return SDValue();
23609
23610  // Now check that the other operand of the AND is a constant. We could
23611  // make the transformation for non-constant splats as well, but it's unclear
23612  // that would be a benefit as it would not eliminate any operations, just
23613  // perform one more step in scalar code before moving to the vector unit.
23614  if (BuildVectorSDNode *BV =
23615          dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
23616    // Bail out if the vector isn't a constant.
23617    if (!BV->isConstant())
23618      return SDValue();
23619
23620    // Everything checks out. Build up the new and improved node.
23621    SDLoc DL(N);
23622    EVT IntVT = BV->getValueType(0);
23623    // Create a new constant of the appropriate type for the transformed
23624    // DAG.
23625    SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
23626    // The AND node needs bitcasts to/from an integer vector type around it.
23627    SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
23628    SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
23629                                 N->getOperand(0)->getOperand(0), MaskConst);
23630    SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
23631    return Res;
23632  }
23633
23634  return SDValue();
23635}
23636
23637static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
23638                                        const X86Subtarget *Subtarget) {
23639  // First try to optimize away the conversion entirely when it's
23640  // conditionally from a constant. Vectors only.
23641  SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
23642  if (Res != SDValue())
23643    return Res;
23644
23645  // Now move on to more general possibilities.
23646  SDValue Op0 = N->getOperand(0);
23647  EVT InVT = Op0->getValueType(0);
23648
23649  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
23650  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
23651    SDLoc dl(N);
23652    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
23653    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
23654    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
23655  }
23656
23657  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
23658  // a 32-bit target where SSE doesn't support i64->FP operations.
23659  if (Op0.getOpcode() == ISD::LOAD) {
23660    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
23661    EVT VT = Ld->getValueType(0);
23662
23663    // This transformation is not supported if the result type is f16
23664    if (N->getValueType(0) == MVT::f16)
23665      return SDValue();
23666
23667    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
23668        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
23669        !Subtarget->is64Bit() && VT == MVT::i64) {
23670      SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD(
23671          SDValue(N, 0), Ld->getValueType(0), Ld->getChain(), Op0, DAG);
23672      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
23673      return FILDChain;
23674    }
23675  }
23676  return SDValue();
23677}
23678
23679// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
23680static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
23681                                 X86TargetLowering::DAGCombinerInfo &DCI) {
23682  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
23683  // the result is either zero or one (depending on the input carry bit).
23684  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
23685  if (X86::isZeroNode(N->getOperand(0)) &&
23686      X86::isZeroNode(N->getOperand(1)) &&
23687      // We don't have a good way to replace an EFLAGS use, so only do this when
23688      // dead right now.
23689      SDValue(N, 1).use_empty()) {
23690    SDLoc DL(N);
23691    EVT VT = N->getValueType(0);
23692    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
23693    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
23694                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
23695                                           DAG.getConstant(X86::COND_B,MVT::i8),
23696                                           N->getOperand(2)),
23697                               DAG.getConstant(1, VT));
23698    return DCI.CombineTo(N, Res1, CarryOut);
23699  }
23700
23701  return SDValue();
23702}
23703
23704// fold (add Y, (sete  X, 0)) -> adc  0, Y
23705//      (add Y, (setne X, 0)) -> sbb -1, Y
23706//      (sub (sete  X, 0), Y) -> sbb  0, Y
23707//      (sub (setne X, 0), Y) -> adc -1, Y
23708static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
23709  SDLoc DL(N);
23710
23711  // Look through ZExts.
23712  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
23713  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
23714    return SDValue();
23715
23716  SDValue SetCC = Ext.getOperand(0);
23717  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
23718    return SDValue();
23719
23720  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
23721  if (CC != X86::COND_E && CC != X86::COND_NE)
23722    return SDValue();
23723
23724  SDValue Cmp = SetCC.getOperand(1);
23725  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
23726      !X86::isZeroNode(Cmp.getOperand(1)) ||
23727      !Cmp.getOperand(0).getValueType().isInteger())
23728    return SDValue();
23729
23730  SDValue CmpOp0 = Cmp.getOperand(0);
23731  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
23732                               DAG.getConstant(1, CmpOp0.getValueType()));
23733
23734  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
23735  if (CC == X86::COND_NE)
23736    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
23737                       DL, OtherVal.getValueType(), OtherVal,
23738                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
23739  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
23740                     DL, OtherVal.getValueType(), OtherVal,
23741                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
23742}
23743
23744/// PerformADDCombine - Do target-specific dag combines on integer adds.
23745static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
23746                                 const X86Subtarget *Subtarget) {
23747  EVT VT = N->getValueType(0);
23748  SDValue Op0 = N->getOperand(0);
23749  SDValue Op1 = N->getOperand(1);
23750
23751  // Try to synthesize horizontal adds from adds of shuffles.
23752  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
23753       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
23754      isHorizontalBinOp(Op0, Op1, true))
23755    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
23756
23757  return OptimizeConditionalInDecrement(N, DAG);
23758}
23759
23760static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
23761                                 const X86Subtarget *Subtarget) {
23762  SDValue Op0 = N->getOperand(0);
23763  SDValue Op1 = N->getOperand(1);
23764
23765  // X86 can't encode an immediate LHS of a sub. See if we can push the
23766  // negation into a preceding instruction.
23767  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
23768    // If the RHS of the sub is a XOR with one use and a constant, invert the
23769    // immediate. Then add one to the LHS of the sub so we can turn
23770    // X-Y -> X+~Y+1, saving one register.
23771    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
23772        isa<ConstantSDNode>(Op1.getOperand(1))) {
23773      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
23774      EVT VT = Op0.getValueType();
23775      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
23776                                   Op1.getOperand(0),
23777                                   DAG.getConstant(~XorC, VT));
23778      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
23779                         DAG.getConstant(C->getAPIntValue()+1, VT));
23780    }
23781  }
23782
23783  // Try to synthesize horizontal adds from adds of shuffles.
23784  EVT VT = N->getValueType(0);
23785  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
23786       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
23787      isHorizontalBinOp(Op0, Op1, true))
23788    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
23789
23790  return OptimizeConditionalInDecrement(N, DAG);
23791}
23792
23793/// performVZEXTCombine - Performs build vector combines
23794static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
23795                                   TargetLowering::DAGCombinerInfo &DCI,
23796                                   const X86Subtarget *Subtarget) {
23797  SDLoc DL(N);
23798  MVT VT = N->getSimpleValueType(0);
23799  SDValue Op = N->getOperand(0);
23800  MVT OpVT = Op.getSimpleValueType();
23801  MVT OpEltVT = OpVT.getVectorElementType();
23802  unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements();
23803
23804  // (vzext (bitcast (vzext (x)) -> (vzext x)
23805  SDValue V = Op;
23806  while (V.getOpcode() == ISD::BITCAST)
23807    V = V.getOperand(0);
23808
23809  if (V != Op && V.getOpcode() == X86ISD::VZEXT) {
23810    MVT InnerVT = V.getSimpleValueType();
23811    MVT InnerEltVT = InnerVT.getVectorElementType();
23812
23813    // If the element sizes match exactly, we can just do one larger vzext. This
23814    // is always an exact type match as vzext operates on integer types.
23815    if (OpEltVT == InnerEltVT) {
23816      assert(OpVT == InnerVT && "Types must match for vzext!");
23817      return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
23818    }
23819
23820    // The only other way we can combine them is if only a single element of the
23821    // inner vzext is used in the input to the outer vzext.
23822    if (InnerEltVT.getSizeInBits() < InputBits)
23823      return SDValue();
23824
23825    // In this case, the inner vzext is completely dead because we're going to
23826    // only look at bits inside of the low element. Just do the outer vzext on
23827    // a bitcast of the input to the inner.
23828    return DAG.getNode(X86ISD::VZEXT, DL, VT,
23829                       DAG.getNode(ISD::BITCAST, DL, OpVT, V));
23830  }
23831
23832  // Check if we can bypass extracting and re-inserting an element of an input
23833  // vector. Essentialy:
23834  // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
23835  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
23836      V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
23837      V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
23838    SDValue ExtractedV = V.getOperand(0);
23839    SDValue OrigV = ExtractedV.getOperand(0);
23840    if (auto *ExtractIdx = dyn_cast<ConstantSDNode>(ExtractedV.getOperand(1)))
23841      if (ExtractIdx->getZExtValue() == 0) {
23842        MVT OrigVT = OrigV.getSimpleValueType();
23843        // Extract a subvector if necessary...
23844        if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
23845          int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
23846          OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
23847                                    OrigVT.getVectorNumElements() / Ratio);
23848          OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
23849                              DAG.getIntPtrConstant(0));
23850        }
23851        Op = DAG.getNode(ISD::BITCAST, DL, OpVT, OrigV);
23852        return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
23853      }
23854  }
23855
23856  return SDValue();
23857}
23858
23859SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
23860                                             DAGCombinerInfo &DCI) const {
23861  SelectionDAG &DAG = DCI.DAG;
23862  switch (N->getOpcode()) {
23863  default: break;
23864  case ISD::EXTRACT_VECTOR_ELT:
23865    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
23866  case ISD::VSELECT:
23867  case ISD::SELECT:
23868  case X86ISD::SHRUNKBLEND:
23869    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
23870  case ISD::BITCAST:        return PerformBITCASTCombine(N, DAG);
23871  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
23872  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
23873  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
23874  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
23875  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
23876  case ISD::SHL:
23877  case ISD::SRA:
23878  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
23879  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
23880  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
23881  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
23882  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
23883  case ISD::MLOAD:          return PerformMLOADCombine(N, DAG, DCI, Subtarget);
23884  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
23885  case ISD::MSTORE:         return PerformMSTORECombine(N, DAG, Subtarget);
23886  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, Subtarget);
23887  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
23888  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
23889  case X86ISD::FXOR:
23890  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
23891  case X86ISD::FMIN:
23892  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
23893  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
23894  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
23895  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
23896  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
23897  case ISD::ANY_EXTEND:
23898  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
23899  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
23900  case ISD::SIGN_EXTEND_INREG:
23901    return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
23902  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
23903  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG, Subtarget);
23904  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
23905  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
23906  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
23907  case X86ISD::SHUFP:       // Handle all target specific shuffles
23908  case X86ISD::PALIGNR:
23909  case X86ISD::UNPCKH:
23910  case X86ISD::UNPCKL:
23911  case X86ISD::MOVHLPS:
23912  case X86ISD::MOVLHPS:
23913  case X86ISD::PSHUFB:
23914  case X86ISD::PSHUFD:
23915  case X86ISD::PSHUFHW:
23916  case X86ISD::PSHUFLW:
23917  case X86ISD::MOVSS:
23918  case X86ISD::MOVSD:
23919  case X86ISD::VPERMILPI:
23920  case X86ISD::VPERM2X128:
23921  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
23922  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
23923  case ISD::INTRINSIC_WO_CHAIN:
23924    return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget);
23925  case X86ISD::INSERTPS: {
23926    if (getTargetMachine().getOptLevel() > CodeGenOpt::None)
23927      return PerformINSERTPSCombine(N, DAG, Subtarget);
23928    break;
23929  }
23930  case X86ISD::BLENDI:    return PerformBLENDICombine(N, DAG);
23931  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DAG, Subtarget);
23932  }
23933
23934  return SDValue();
23935}
23936
23937/// isTypeDesirableForOp - Return true if the target has native support for
23938/// the specified value type and it is 'desirable' to use the type for the
23939/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
23940/// instruction encodings are longer and some i16 instructions are slow.
23941bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
23942  if (!isTypeLegal(VT))
23943    return false;
23944  if (VT != MVT::i16)
23945    return true;
23946
23947  switch (Opc) {
23948  default:
23949    return true;
23950  case ISD::LOAD:
23951  case ISD::SIGN_EXTEND:
23952  case ISD::ZERO_EXTEND:
23953  case ISD::ANY_EXTEND:
23954  case ISD::SHL:
23955  case ISD::SRL:
23956  case ISD::SUB:
23957  case ISD::ADD:
23958  case ISD::MUL:
23959  case ISD::AND:
23960  case ISD::OR:
23961  case ISD::XOR:
23962    return false;
23963  }
23964}
23965
23966/// IsDesirableToPromoteOp - This method query the target whether it is
23967/// beneficial for dag combiner to promote the specified node. If true, it
23968/// should return the desired promotion type by reference.
23969bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
23970  EVT VT = Op.getValueType();
23971  if (VT != MVT::i16)
23972    return false;
23973
23974  bool Promote = false;
23975  bool Commute = false;
23976  switch (Op.getOpcode()) {
23977  default: break;
23978  case ISD::LOAD: {
23979    LoadSDNode *LD = cast<LoadSDNode>(Op);
23980    // If the non-extending load has a single use and it's not live out, then it
23981    // might be folded.
23982    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
23983                                                     Op.hasOneUse()*/) {
23984      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
23985             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
23986        // The only case where we'd want to promote LOAD (rather then it being
23987        // promoted as an operand is when it's only use is liveout.
23988        if (UI->getOpcode() != ISD::CopyToReg)
23989          return false;
23990      }
23991    }
23992    Promote = true;
23993    break;
23994  }
23995  case ISD::SIGN_EXTEND:
23996  case ISD::ZERO_EXTEND:
23997  case ISD::ANY_EXTEND:
23998    Promote = true;
23999    break;
24000  case ISD::SHL:
24001  case ISD::SRL: {
24002    SDValue N0 = Op.getOperand(0);
24003    // Look out for (store (shl (load), x)).
24004    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
24005      return false;
24006    Promote = true;
24007    break;
24008  }
24009  case ISD::ADD:
24010  case ISD::MUL:
24011  case ISD::AND:
24012  case ISD::OR:
24013  case ISD::XOR:
24014    Commute = true;
24015    // fallthrough
24016  case ISD::SUB: {
24017    SDValue N0 = Op.getOperand(0);
24018    SDValue N1 = Op.getOperand(1);
24019    if (!Commute && MayFoldLoad(N1))
24020      return false;
24021    // Avoid disabling potential load folding opportunities.
24022    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
24023      return false;
24024    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
24025      return false;
24026    Promote = true;
24027  }
24028  }
24029
24030  PVT = MVT::i32;
24031  return Promote;
24032}
24033
24034//===----------------------------------------------------------------------===//
24035//                           X86 Inline Assembly Support
24036//===----------------------------------------------------------------------===//
24037
24038// Helper to match a string separated by whitespace.
24039static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
24040  S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
24041
24042  for (StringRef Piece : Pieces) {
24043    if (!S.startswith(Piece)) // Check if the piece matches.
24044      return false;
24045
24046    S = S.substr(Piece.size());
24047    StringRef::size_type Pos = S.find_first_not_of(" \t");
24048    if (Pos == 0) // We matched a prefix.
24049      return false;
24050
24051    S = S.substr(Pos);
24052  }
24053
24054  return S.empty();
24055}
24056
24057static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
24058
24059  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
24060    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
24061        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
24062        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
24063
24064      if (AsmPieces.size() == 3)
24065        return true;
24066      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
24067        return true;
24068    }
24069  }
24070  return false;
24071}
24072
24073bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
24074  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
24075
24076  std::string AsmStr = IA->getAsmString();
24077
24078  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
24079  if (!Ty || Ty->getBitWidth() % 16 != 0)
24080    return false;
24081
24082  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
24083  SmallVector<StringRef, 4> AsmPieces;
24084  SplitString(AsmStr, AsmPieces, ";\n");
24085
24086  switch (AsmPieces.size()) {
24087  default: return false;
24088  case 1:
24089    // FIXME: this should verify that we are targeting a 486 or better.  If not,
24090    // we will turn this bswap into something that will be lowered to logical
24091    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
24092    // lower so don't worry about this.
24093    // bswap $0
24094    if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
24095        matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
24096        matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
24097        matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
24098        matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
24099        matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
24100      // No need to check constraints, nothing other than the equivalent of
24101      // "=r,0" would be valid here.
24102      return IntrinsicLowering::LowerToByteSwap(CI);
24103    }
24104
24105    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
24106    if (CI->getType()->isIntegerTy(16) &&
24107        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
24108        (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
24109         matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
24110      AsmPieces.clear();
24111      const std::string &ConstraintsStr = IA->getConstraintString();
24112      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
24113      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
24114      if (clobbersFlagRegisters(AsmPieces))
24115        return IntrinsicLowering::LowerToByteSwap(CI);
24116    }
24117    break;
24118  case 3:
24119    if (CI->getType()->isIntegerTy(32) &&
24120        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
24121        matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
24122        matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
24123        matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
24124      AsmPieces.clear();
24125      const std::string &ConstraintsStr = IA->getConstraintString();
24126      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
24127      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
24128      if (clobbersFlagRegisters(AsmPieces))
24129        return IntrinsicLowering::LowerToByteSwap(CI);
24130    }
24131
24132    if (CI->getType()->isIntegerTy(64)) {
24133      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
24134      if (Constraints.size() >= 2 &&
24135          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
24136          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
24137        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
24138        if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
24139            matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
24140            matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
24141          return IntrinsicLowering::LowerToByteSwap(CI);
24142      }
24143    }
24144    break;
24145  }
24146  return false;
24147}
24148
24149/// getConstraintType - Given a constraint letter, return the type of
24150/// constraint it is for this target.
24151X86TargetLowering::ConstraintType
24152X86TargetLowering::getConstraintType(const std::string &Constraint) const {
24153  if (Constraint.size() == 1) {
24154    switch (Constraint[0]) {
24155    case 'R':
24156    case 'q':
24157    case 'Q':
24158    case 'f':
24159    case 't':
24160    case 'u':
24161    case 'y':
24162    case 'x':
24163    case 'Y':
24164    case 'l':
24165      return C_RegisterClass;
24166    case 'a':
24167    case 'b':
24168    case 'c':
24169    case 'd':
24170    case 'S':
24171    case 'D':
24172    case 'A':
24173      return C_Register;
24174    case 'I':
24175    case 'J':
24176    case 'K':
24177    case 'L':
24178    case 'M':
24179    case 'N':
24180    case 'G':
24181    case 'C':
24182    case 'e':
24183    case 'Z':
24184      return C_Other;
24185    default:
24186      break;
24187    }
24188  }
24189  return TargetLowering::getConstraintType(Constraint);
24190}
24191
24192/// Examine constraint type and operand type and determine a weight value.
24193/// This object must already have been set up with the operand type
24194/// and the current alternative constraint selected.
24195TargetLowering::ConstraintWeight
24196  X86TargetLowering::getSingleConstraintMatchWeight(
24197    AsmOperandInfo &info, const char *constraint) const {
24198  ConstraintWeight weight = CW_Invalid;
24199  Value *CallOperandVal = info.CallOperandVal;
24200    // If we don't have a value, we can't do a match,
24201    // but allow it at the lowest weight.
24202  if (!CallOperandVal)
24203    return CW_Default;
24204  Type *type = CallOperandVal->getType();
24205  // Look at the constraint type.
24206  switch (*constraint) {
24207  default:
24208    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
24209  case 'R':
24210  case 'q':
24211  case 'Q':
24212  case 'a':
24213  case 'b':
24214  case 'c':
24215  case 'd':
24216  case 'S':
24217  case 'D':
24218  case 'A':
24219    if (CallOperandVal->getType()->isIntegerTy())
24220      weight = CW_SpecificReg;
24221    break;
24222  case 'f':
24223  case 't':
24224  case 'u':
24225    if (type->isFloatingPointTy())
24226      weight = CW_SpecificReg;
24227    break;
24228  case 'y':
24229    if (type->isX86_MMXTy() && Subtarget->hasMMX())
24230      weight = CW_SpecificReg;
24231    break;
24232  case 'x':
24233  case 'Y':
24234    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
24235        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
24236      weight = CW_Register;
24237    break;
24238  case 'I':
24239    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
24240      if (C->getZExtValue() <= 31)
24241        weight = CW_Constant;
24242    }
24243    break;
24244  case 'J':
24245    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24246      if (C->getZExtValue() <= 63)
24247        weight = CW_Constant;
24248    }
24249    break;
24250  case 'K':
24251    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24252      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
24253        weight = CW_Constant;
24254    }
24255    break;
24256  case 'L':
24257    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24258      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
24259        weight = CW_Constant;
24260    }
24261    break;
24262  case 'M':
24263    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24264      if (C->getZExtValue() <= 3)
24265        weight = CW_Constant;
24266    }
24267    break;
24268  case 'N':
24269    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24270      if (C->getZExtValue() <= 0xff)
24271        weight = CW_Constant;
24272    }
24273    break;
24274  case 'G':
24275  case 'C':
24276    if (isa<ConstantFP>(CallOperandVal)) {
24277      weight = CW_Constant;
24278    }
24279    break;
24280  case 'e':
24281    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24282      if ((C->getSExtValue() >= -0x80000000LL) &&
24283          (C->getSExtValue() <= 0x7fffffffLL))
24284        weight = CW_Constant;
24285    }
24286    break;
24287  case 'Z':
24288    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24289      if (C->getZExtValue() <= 0xffffffff)
24290        weight = CW_Constant;
24291    }
24292    break;
24293  }
24294  return weight;
24295}
24296
24297/// LowerXConstraint - try to replace an X constraint, which matches anything,
24298/// with another that has more specific requirements based on the type of the
24299/// corresponding operand.
24300const char *X86TargetLowering::
24301LowerXConstraint(EVT ConstraintVT) const {
24302  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
24303  // 'f' like normal targets.
24304  if (ConstraintVT.isFloatingPoint()) {
24305    if (Subtarget->hasSSE2())
24306      return "Y";
24307    if (Subtarget->hasSSE1())
24308      return "x";
24309  }
24310
24311  return TargetLowering::LowerXConstraint(ConstraintVT);
24312}
24313
24314/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
24315/// vector.  If it is invalid, don't add anything to Ops.
24316void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
24317                                                     std::string &Constraint,
24318                                                     std::vector<SDValue>&Ops,
24319                                                     SelectionDAG &DAG) const {
24320  SDValue Result;
24321
24322  // Only support length 1 constraints for now.
24323  if (Constraint.length() > 1) return;
24324
24325  char ConstraintLetter = Constraint[0];
24326  switch (ConstraintLetter) {
24327  default: break;
24328  case 'I':
24329    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24330      if (C->getZExtValue() <= 31) {
24331        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24332        break;
24333      }
24334    }
24335    return;
24336  case 'J':
24337    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24338      if (C->getZExtValue() <= 63) {
24339        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24340        break;
24341      }
24342    }
24343    return;
24344  case 'K':
24345    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24346      if (isInt<8>(C->getSExtValue())) {
24347        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24348        break;
24349      }
24350    }
24351    return;
24352  case 'L':
24353    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24354      if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
24355          (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) {
24356        Result = DAG.getTargetConstant(C->getSExtValue(), Op.getValueType());
24357        break;
24358      }
24359    }
24360    return;
24361  case 'M':
24362    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24363      if (C->getZExtValue() <= 3) {
24364        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24365        break;
24366      }
24367    }
24368    return;
24369  case 'N':
24370    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24371      if (C->getZExtValue() <= 255) {
24372        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24373        break;
24374      }
24375    }
24376    return;
24377  case 'O':
24378    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24379      if (C->getZExtValue() <= 127) {
24380        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24381        break;
24382      }
24383    }
24384    return;
24385  case 'e': {
24386    // 32-bit signed value
24387    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24388      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
24389                                           C->getSExtValue())) {
24390        // Widen to 64 bits here to get it sign extended.
24391        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
24392        break;
24393      }
24394    // FIXME gcc accepts some relocatable values here too, but only in certain
24395    // memory models; it's complicated.
24396    }
24397    return;
24398  }
24399  case 'Z': {
24400    // 32-bit unsigned value
24401    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24402      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
24403                                           C->getZExtValue())) {
24404        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24405        break;
24406      }
24407    }
24408    // FIXME gcc accepts some relocatable values here too, but only in certain
24409    // memory models; it's complicated.
24410    return;
24411  }
24412  case 'i': {
24413    // Literal immediates are always ok.
24414    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
24415      // Widen to 64 bits here to get it sign extended.
24416      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
24417      break;
24418    }
24419
24420    // In any sort of PIC mode addresses need to be computed at runtime by
24421    // adding in a register or some sort of table lookup.  These can't
24422    // be used as immediates.
24423    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
24424      return;
24425
24426    // If we are in non-pic codegen mode, we allow the address of a global (with
24427    // an optional displacement) to be used with 'i'.
24428    GlobalAddressSDNode *GA = nullptr;
24429    int64_t Offset = 0;
24430
24431    // Match either (GA), (GA+C), (GA+C1+C2), etc.
24432    while (1) {
24433      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
24434        Offset += GA->getOffset();
24435        break;
24436      } else if (Op.getOpcode() == ISD::ADD) {
24437        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
24438          Offset += C->getZExtValue();
24439          Op = Op.getOperand(0);
24440          continue;
24441        }
24442      } else if (Op.getOpcode() == ISD::SUB) {
24443        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
24444          Offset += -C->getZExtValue();
24445          Op = Op.getOperand(0);
24446          continue;
24447        }
24448      }
24449
24450      // Otherwise, this isn't something we can handle, reject it.
24451      return;
24452    }
24453
24454    const GlobalValue *GV = GA->getGlobal();
24455    // If we require an extra load to get this address, as in PIC mode, we
24456    // can't accept it.
24457    if (isGlobalStubReference(
24458            Subtarget->ClassifyGlobalReference(GV, DAG.getTarget())))
24459      return;
24460
24461    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
24462                                        GA->getValueType(0), Offset);
24463    break;
24464  }
24465  }
24466
24467  if (Result.getNode()) {
24468    Ops.push_back(Result);
24469    return;
24470  }
24471  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
24472}
24473
24474std::pair<unsigned, const TargetRegisterClass *>
24475X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
24476                                                const std::string &Constraint,
24477                                                MVT VT) const {
24478  // First, see if this is a constraint that directly corresponds to an LLVM
24479  // register class.
24480  if (Constraint.size() == 1) {
24481    // GCC Constraint Letters
24482    switch (Constraint[0]) {
24483    default: break;
24484      // TODO: Slight differences here in allocation order and leaving
24485      // RIP in the class. Do they matter any more here than they do
24486      // in the normal allocation?
24487    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
24488      if (Subtarget->is64Bit()) {
24489        if (VT == MVT::i32 || VT == MVT::f32)
24490          return std::make_pair(0U, &X86::GR32RegClass);
24491        if (VT == MVT::i16)
24492          return std::make_pair(0U, &X86::GR16RegClass);
24493        if (VT == MVT::i8 || VT == MVT::i1)
24494          return std::make_pair(0U, &X86::GR8RegClass);
24495        if (VT == MVT::i64 || VT == MVT::f64)
24496          return std::make_pair(0U, &X86::GR64RegClass);
24497        break;
24498      }
24499      // 32-bit fallthrough
24500    case 'Q':   // Q_REGS
24501      if (VT == MVT::i32 || VT == MVT::f32)
24502        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
24503      if (VT == MVT::i16)
24504        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
24505      if (VT == MVT::i8 || VT == MVT::i1)
24506        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
24507      if (VT == MVT::i64)
24508        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
24509      break;
24510    case 'r':   // GENERAL_REGS
24511    case 'l':   // INDEX_REGS
24512      if (VT == MVT::i8 || VT == MVT::i1)
24513        return std::make_pair(0U, &X86::GR8RegClass);
24514      if (VT == MVT::i16)
24515        return std::make_pair(0U, &X86::GR16RegClass);
24516      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
24517        return std::make_pair(0U, &X86::GR32RegClass);
24518      return std::make_pair(0U, &X86::GR64RegClass);
24519    case 'R':   // LEGACY_REGS
24520      if (VT == MVT::i8 || VT == MVT::i1)
24521        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
24522      if (VT == MVT::i16)
24523        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
24524      if (VT == MVT::i32 || !Subtarget->is64Bit())
24525        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
24526      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
24527    case 'f':  // FP Stack registers.
24528      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
24529      // value to the correct fpstack register class.
24530      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
24531        return std::make_pair(0U, &X86::RFP32RegClass);
24532      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
24533        return std::make_pair(0U, &X86::RFP64RegClass);
24534      return std::make_pair(0U, &X86::RFP80RegClass);
24535    case 'y':   // MMX_REGS if MMX allowed.
24536      if (!Subtarget->hasMMX()) break;
24537      return std::make_pair(0U, &X86::VR64RegClass);
24538    case 'Y':   // SSE_REGS if SSE2 allowed
24539      if (!Subtarget->hasSSE2()) break;
24540      // FALL THROUGH.
24541    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
24542      if (!Subtarget->hasSSE1()) break;
24543
24544      switch (VT.SimpleTy) {
24545      default: break;
24546      // Scalar SSE types.
24547      case MVT::f32:
24548      case MVT::i32:
24549        return std::make_pair(0U, &X86::FR32RegClass);
24550      case MVT::f64:
24551      case MVT::i64:
24552        return std::make_pair(0U, &X86::FR64RegClass);
24553      // Vector types.
24554      case MVT::v16i8:
24555      case MVT::v8i16:
24556      case MVT::v4i32:
24557      case MVT::v2i64:
24558      case MVT::v4f32:
24559      case MVT::v2f64:
24560        return std::make_pair(0U, &X86::VR128RegClass);
24561      // AVX types.
24562      case MVT::v32i8:
24563      case MVT::v16i16:
24564      case MVT::v8i32:
24565      case MVT::v4i64:
24566      case MVT::v8f32:
24567      case MVT::v4f64:
24568        return std::make_pair(0U, &X86::VR256RegClass);
24569      case MVT::v8f64:
24570      case MVT::v16f32:
24571      case MVT::v16i32:
24572      case MVT::v8i64:
24573        return std::make_pair(0U, &X86::VR512RegClass);
24574      }
24575      break;
24576    }
24577  }
24578
24579  // Use the default implementation in TargetLowering to convert the register
24580  // constraint into a member of a register class.
24581  std::pair<unsigned, const TargetRegisterClass*> Res;
24582  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
24583
24584  // Not found as a standard register?
24585  if (!Res.second) {
24586    // Map st(0) -> st(7) -> ST0
24587    if (Constraint.size() == 7 && Constraint[0] == '{' &&
24588        tolower(Constraint[1]) == 's' &&
24589        tolower(Constraint[2]) == 't' &&
24590        Constraint[3] == '(' &&
24591        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
24592        Constraint[5] == ')' &&
24593        Constraint[6] == '}') {
24594
24595      Res.first = X86::FP0+Constraint[4]-'0';
24596      Res.second = &X86::RFP80RegClass;
24597      return Res;
24598    }
24599
24600    // GCC allows "st(0)" to be called just plain "st".
24601    if (StringRef("{st}").equals_lower(Constraint)) {
24602      Res.first = X86::FP0;
24603      Res.second = &X86::RFP80RegClass;
24604      return Res;
24605    }
24606
24607    // flags -> EFLAGS
24608    if (StringRef("{flags}").equals_lower(Constraint)) {
24609      Res.first = X86::EFLAGS;
24610      Res.second = &X86::CCRRegClass;
24611      return Res;
24612    }
24613
24614    // 'A' means EAX + EDX.
24615    if (Constraint == "A") {
24616      Res.first = X86::EAX;
24617      Res.second = &X86::GR32_ADRegClass;
24618      return Res;
24619    }
24620    return Res;
24621  }
24622
24623  // Otherwise, check to see if this is a register class of the wrong value
24624  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
24625  // turn into {ax},{dx}.
24626  if (Res.second->hasType(VT))
24627    return Res;   // Correct type already, nothing to do.
24628
24629  // All of the single-register GCC register classes map their values onto
24630  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
24631  // really want an 8-bit or 32-bit register, map to the appropriate register
24632  // class and return the appropriate register.
24633  if (Res.second == &X86::GR16RegClass) {
24634    if (VT == MVT::i8 || VT == MVT::i1) {
24635      unsigned DestReg = 0;
24636      switch (Res.first) {
24637      default: break;
24638      case X86::AX: DestReg = X86::AL; break;
24639      case X86::DX: DestReg = X86::DL; break;
24640      case X86::CX: DestReg = X86::CL; break;
24641      case X86::BX: DestReg = X86::BL; break;
24642      }
24643      if (DestReg) {
24644        Res.first = DestReg;
24645        Res.second = &X86::GR8RegClass;
24646      }
24647    } else if (VT == MVT::i32 || VT == MVT::f32) {
24648      unsigned DestReg = 0;
24649      switch (Res.first) {
24650      default: break;
24651      case X86::AX: DestReg = X86::EAX; break;
24652      case X86::DX: DestReg = X86::EDX; break;
24653      case X86::CX: DestReg = X86::ECX; break;
24654      case X86::BX: DestReg = X86::EBX; break;
24655      case X86::SI: DestReg = X86::ESI; break;
24656      case X86::DI: DestReg = X86::EDI; break;
24657      case X86::BP: DestReg = X86::EBP; break;
24658      case X86::SP: DestReg = X86::ESP; break;
24659      }
24660      if (DestReg) {
24661        Res.first = DestReg;
24662        Res.second = &X86::GR32RegClass;
24663      }
24664    } else if (VT == MVT::i64 || VT == MVT::f64) {
24665      unsigned DestReg = 0;
24666      switch (Res.first) {
24667      default: break;
24668      case X86::AX: DestReg = X86::RAX; break;
24669      case X86::DX: DestReg = X86::RDX; break;
24670      case X86::CX: DestReg = X86::RCX; break;
24671      case X86::BX: DestReg = X86::RBX; break;
24672      case X86::SI: DestReg = X86::RSI; break;
24673      case X86::DI: DestReg = X86::RDI; break;
24674      case X86::BP: DestReg = X86::RBP; break;
24675      case X86::SP: DestReg = X86::RSP; break;
24676      }
24677      if (DestReg) {
24678        Res.first = DestReg;
24679        Res.second = &X86::GR64RegClass;
24680      }
24681    }
24682  } else if (Res.second == &X86::FR32RegClass ||
24683             Res.second == &X86::FR64RegClass ||
24684             Res.second == &X86::VR128RegClass ||
24685             Res.second == &X86::VR256RegClass ||
24686             Res.second == &X86::FR32XRegClass ||
24687             Res.second == &X86::FR64XRegClass ||
24688             Res.second == &X86::VR128XRegClass ||
24689             Res.second == &X86::VR256XRegClass ||
24690             Res.second == &X86::VR512RegClass) {
24691    // Handle references to XMM physical registers that got mapped into the
24692    // wrong class.  This can happen with constraints like {xmm0} where the
24693    // target independent register mapper will just pick the first match it can
24694    // find, ignoring the required type.
24695
24696    if (VT == MVT::f32 || VT == MVT::i32)
24697      Res.second = &X86::FR32RegClass;
24698    else if (VT == MVT::f64 || VT == MVT::i64)
24699      Res.second = &X86::FR64RegClass;
24700    else if (X86::VR128RegClass.hasType(VT))
24701      Res.second = &X86::VR128RegClass;
24702    else if (X86::VR256RegClass.hasType(VT))
24703      Res.second = &X86::VR256RegClass;
24704    else if (X86::VR512RegClass.hasType(VT))
24705      Res.second = &X86::VR512RegClass;
24706  }
24707
24708  return Res;
24709}
24710
24711int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
24712                                            Type *Ty) const {
24713  // Scaling factors are not free at all.
24714  // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
24715  // will take 2 allocations in the out of order engine instead of 1
24716  // for plain addressing mode, i.e. inst (reg1).
24717  // E.g.,
24718  // vaddps (%rsi,%drx), %ymm0, %ymm1
24719  // Requires two allocations (one for the load, one for the computation)
24720  // whereas:
24721  // vaddps (%rsi), %ymm0, %ymm1
24722  // Requires just 1 allocation, i.e., freeing allocations for other operations
24723  // and having less micro operations to execute.
24724  //
24725  // For some X86 architectures, this is even worse because for instance for
24726  // stores, the complex addressing mode forces the instruction to use the
24727  // "load" ports instead of the dedicated "store" port.
24728  // E.g., on Haswell:
24729  // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
24730  // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
24731  if (isLegalAddressingMode(AM, Ty))
24732    // Scale represents reg2 * scale, thus account for 1
24733    // as soon as we use a second register.
24734    return AM.Scale != 0;
24735  return -1;
24736}
24737
24738bool X86TargetLowering::isTargetFTOL() const {
24739  return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit();
24740}
24741