1//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 jump, return, call, and related instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15//  Control Flow Instructions.
16//
17
18// Return instructions.
19//
20// The X86retflag return instructions are variadic because we may add ST0 and
21// ST1 arguments when returning values on the x87 stack.
22let isTerminator = 1, isReturn = 1, isBarrier = 1,
23    hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
24  def RETL   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
25                    "ret{l}", [(X86retflag 0)], IIC_RET>, OpSize32,
26                    Requires<[Not64BitMode]>;
27  def RETQ   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
28                    "ret{q}", [(X86retflag 0)], IIC_RET>, OpSize32,
29                    Requires<[In64BitMode]>;
30  def RETW   : I   <0xC3, RawFrm, (outs), (ins),
31                    "ret{w}",
32                    [], IIC_RET>, OpSize16;
33  def RETIL  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
34                    "ret{l}\t$amt",
35                    [(X86retflag timm:$amt)], IIC_RET_IMM>, OpSize32,
36               Requires<[Not64BitMode]>;
37  def RETIQ  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
38                    "ret{q}\t$amt",
39                    [(X86retflag timm:$amt)], IIC_RET_IMM>, OpSize32,
40               Requires<[In64BitMode]>;
41  def RETIW  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
42                    "ret{w}\t$amt",
43                    [], IIC_RET_IMM>, OpSize16;
44  def LRETL  : I   <0xCB, RawFrm, (outs), (ins),
45                    "{l}ret{l|f}", [], IIC_RET>, OpSize32;
46  def LRETQ  : RI  <0xCB, RawFrm, (outs), (ins),
47                    "{l}ret{|f}q", [], IIC_RET>, Requires<[In64BitMode]>;
48  def LRETW  : I   <0xCB, RawFrm, (outs), (ins),
49                    "{l}ret{w|f}", [], IIC_RET>, OpSize16;
50  def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
51                    "{l}ret{l|f}\t$amt", [], IIC_RET>, OpSize32;
52  def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
53                    "{l}ret{|f}q\t$amt", [], IIC_RET>, Requires<[In64BitMode]>;
54  def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
55                    "{l}ret{w|f}\t$amt", [], IIC_RET>, OpSize16;
56}
57
58// Unconditional branches.
59let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
60  def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
61                       "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>;
62  let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
63    def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
64                          "jmp\t$dst", [], IIC_JMP_REL>, OpSize16;
65    def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
66                          "jmp\t$dst", [], IIC_JMP_REL>, OpSize32;
67  }
68}
69
70// Conditional Branches.
71let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
72  multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
73    def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm,
74                       [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>;
75    let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
76      def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm,
77                         [], IIC_Jcc>, OpSize16, TB;
78      def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm,
79                         [], IIC_Jcc>, TB, OpSize32;
80    }
81  }
82}
83
84defm JO  : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
85defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>;
86defm JB  : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
87defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
88defm JE  : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
89defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
90defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
91defm JA  : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
92defm JS  : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
93defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
94defm JP  : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
95defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
96defm JL  : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
97defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
98defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
99defm JG  : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
100
101// jcx/jecx/jrcx instructions.
102let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
103  // These are the 32-bit versions of this instruction for the asmparser.  In
104  // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
105  // jecxz.
106  let Uses = [CX] in
107    def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
108                        "jcxz\t$dst", [], IIC_JCXZ>, AdSize16;
109  let Uses = [ECX] in
110    def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
111                        "jecxz\t$dst", [], IIC_JCXZ>, AdSize32;
112
113  let Uses = [RCX] in
114    def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
115                           "jrcxz\t$dst", [], IIC_JCXZ>, AdSize64;
116}
117
118// Indirect branches
119let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
120  def JMP16r     : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
121                     [(brind GR16:$dst)], IIC_JMP_REG>, Requires<[Not64BitMode]>,
122                   OpSize16, Sched<[WriteJump]>;
123  def JMP16m     : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
124                     [(brind (loadi16 addr:$dst))], IIC_JMP_MEM>,
125                   Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>;
126
127  def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
128                     [(brind GR32:$dst)], IIC_JMP_REG>, Requires<[Not64BitMode]>,
129                   OpSize32, Sched<[WriteJump]>;
130  def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
131                     [(brind (loadi32 addr:$dst))], IIC_JMP_MEM>,
132                   Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>;
133
134  def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
135                     [(brind GR64:$dst)], IIC_JMP_REG>, Requires<[In64BitMode]>,
136                   Sched<[WriteJump]>;
137  def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
138                     [(brind (loadi64 addr:$dst))], IIC_JMP_MEM>,
139                   Requires<[In64BitMode]>, Sched<[WriteJumpLd]>;
140
141  let Predicates = [Not64BitMode] in {
142    def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
143                            (ins i16imm:$off, i16imm:$seg),
144                            "ljmp{w}\t$seg, $off", [],
145                            IIC_JMP_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
146    def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
147                            (ins i32imm:$off, i16imm:$seg),
148                            "ljmp{l}\t$seg, $off", [],
149                            IIC_JMP_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
150  }
151  def FARJMP64   : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst),
152                      "ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>,
153                   Sched<[WriteJump]>;
154
155  def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst),
156                     "ljmp{w}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize16,
157                   Sched<[WriteJumpLd]>;
158  def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst),
159                     "ljmp{l}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize32,
160                   Sched<[WriteJumpLd]>;
161}
162
163
164// Loop instructions
165let SchedRW = [WriteJump] in {
166def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", [], IIC_LOOP>;
167def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", [], IIC_LOOPE>;
168def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", [], IIC_LOOPNE>;
169}
170
171//===----------------------------------------------------------------------===//
172//  Call Instructions...
173//
174let isCall = 1 in
175  // All calls clobber the non-callee saved registers. ESP is marked as
176  // a use to prevent stack-pointer assignments that appear immediately
177  // before calls from potentially appearing dead. Uses for argument
178  // registers are added manually.
179  let Uses = [ESP] in {
180    def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
181                           (outs), (ins i32imm_pcrel:$dst),
182                           "call{l}\t$dst", [], IIC_CALL_RI>, OpSize32,
183                      Requires<[Not64BitMode]>, Sched<[WriteJump]>;
184    let hasSideEffects = 0 in
185      def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
186                             (outs), (ins i16imm_pcrel:$dst),
187                             "call{w}\t$dst", [], IIC_CALL_RI>, OpSize16,
188                        Sched<[WriteJump]>;
189    def CALL16r     : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
190                        "call{w}\t{*}$dst", [(X86call GR16:$dst)], IIC_CALL_RI>,
191                      OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
192    def CALL16m     : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
193                        "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))],
194                        IIC_CALL_MEM>, OpSize16,
195                      Requires<[Not64BitMode,FavorMemIndirectCall]>,
196                      Sched<[WriteJumpLd]>;
197    def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
198                        "call{l}\t{*}$dst", [(X86call GR32:$dst)], IIC_CALL_RI>,
199                      OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
200    def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
201                        "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))],
202                        IIC_CALL_MEM>, OpSize32,
203                      Requires<[Not64BitMode,FavorMemIndirectCall]>,
204                      Sched<[WriteJumpLd]>;
205
206    let Predicates = [Not64BitMode] in {
207      def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
208                               (ins i16imm:$off, i16imm:$seg),
209                               "lcall{w}\t$seg, $off", [],
210                               IIC_CALL_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
211      def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
212                               (ins i32imm:$off, i16imm:$seg),
213                               "lcall{l}\t$seg, $off", [],
214                               IIC_CALL_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
215    }
216
217    def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst),
218                        "lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize16,
219                      Sched<[WriteJumpLd]>;
220    def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst),
221                        "lcall{l}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize32,
222                      Sched<[WriteJumpLd]>;
223  }
224
225
226// Tail call stuff.
227
228let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
229    isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
230  let Uses = [ESP] in {
231  def TCRETURNdi : PseudoI<(outs),
232                     (ins i32imm_pcrel:$dst, i32imm:$offset), []>;
233  def TCRETURNri : PseudoI<(outs),
234                     (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
235  let mayLoad = 1 in
236  def TCRETURNmi : PseudoI<(outs),
237                     (ins i32mem_TC:$dst, i32imm:$offset), []>;
238
239  // FIXME: The should be pseudo instructions that are lowered when going to
240  // mcinst.
241  def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
242                           (ins i32imm_pcrel:$dst),
243                           "jmp\t$dst",
244                           [], IIC_JMP_REL>;
245  def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
246                   "", [], IIC_JMP_REG>;  // FIXME: Remove encoding when JIT is dead.
247  let mayLoad = 1 in
248  def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
249                   "jmp{l}\t{*}$dst", [], IIC_JMP_MEM>;
250}
251
252
253//===----------------------------------------------------------------------===//
254//  Call Instructions...
255//
256
257// RSP is marked as a use to prevent stack-pointer assignments that appear
258// immediately before calls from potentially appearing dead. Uses for argument
259// registers are added manually.
260let isCall = 1, Uses = [RSP], SchedRW = [WriteJump] in {
261  // NOTE: this pattern doesn't match "X86call imm", because we do not know
262  // that the offset between an arbitrary immediate and the call will fit in
263  // the 32-bit pcrel field that we have.
264  def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
265                        (outs), (ins i64i32imm_pcrel:$dst),
266                        "call{q}\t$dst", [], IIC_CALL_RI>, OpSize32,
267                      Requires<[In64BitMode]>;
268  def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
269                        "call{q}\t{*}$dst", [(X86call GR64:$dst)],
270                        IIC_CALL_RI>,
271                      Requires<[In64BitMode]>;
272  def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
273                        "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))],
274                        IIC_CALL_MEM>,
275                      Requires<[In64BitMode,FavorMemIndirectCall]>;
276
277  def FARCALL64   : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst),
278                       "lcall{q}\t{*}$dst", [], IIC_CALL_FAR_MEM>;
279}
280
281let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
282    isCodeGenOnly = 1, Uses = [RSP], usesCustomInserter = 1,
283    SchedRW = [WriteJump] in {
284  def TCRETURNdi64 : PseudoI<(outs),
285                      (ins i64i32imm_pcrel:$dst, i32imm:$offset),
286                      []>;
287  def TCRETURNri64 : PseudoI<(outs),
288                      (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
289  let mayLoad = 1 in
290  def TCRETURNmi64 : PseudoI<(outs),
291                       (ins i64mem_TC:$dst, i32imm:$offset), []>;
292
293  def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst),
294                   "jmp\t$dst", [], IIC_JMP_REL>;
295  def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
296                     "jmp{q}\t{*}$dst", [], IIC_JMP_MEM>;
297
298  let mayLoad = 1 in
299  def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
300                     "jmp{q}\t{*}$dst", [], IIC_JMP_MEM>;
301
302  // Win64 wants jumps leaving the function to have a REX_W prefix.
303  let hasREX_WPrefix = 1 in {
304    def TAILJMPd64_REX : Ii32PCRel<0xE9, RawFrm, (outs),
305                                   (ins i64i32imm_pcrel:$dst),
306                                   "rex64 jmp\t$dst", [], IIC_JMP_REL>;
307    def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
308                           "rex64 jmp{q}\t{*}$dst", [], IIC_JMP_MEM>;
309
310    let mayLoad = 1 in
311    def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
312                           "rex64 jmp{q}\t{*}$dst", [], IIC_JMP_MEM>;
313  }
314}
315