X86RegisterInfo.td revision 6a45d681e53a99b4c4f63e0b1664626a596a8151
1//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes the X86 Register file, defining the registers themselves, 11// aliases between the registers, and the register classes built out of the 12// registers. 13// 14//===----------------------------------------------------------------------===// 15 16//===----------------------------------------------------------------------===// 17// Register definitions... 18// 19let Namespace = "X86" in { 20 21 // Subregister indices. 22 def sub_8bit : SubRegIndex; 23 def sub_8bit_hi : SubRegIndex; 24 def sub_16bit : SubRegIndex; 25 def sub_32bit : SubRegIndex; 26 27 def sub_ss : SubRegIndex; 28 def sub_sd : SubRegIndex; 29 def sub_xmm : SubRegIndex; 30 31 32 // In the register alias definitions below, we define which registers alias 33 // which others. We only specify which registers the small registers alias, 34 // because the register file generator is smart enough to figure out that 35 // AL aliases AX if we tell it that AX aliased AL (for example). 36 37 // Dwarf numbering is different for 32-bit and 64-bit, and there are 38 // variations by target as well. Currently the first entry is for X86-64, 39 // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux 40 // and debug information on X86-32/Darwin) 41 42 // 8-bit registers 43 // Low registers 44 def AL : Register<"al">, DwarfRegNum<[0, 0, 0]>; 45 def DL : Register<"dl">, DwarfRegNum<[1, 2, 2]>; 46 def CL : Register<"cl">, DwarfRegNum<[2, 1, 1]>; 47 def BL : Register<"bl">, DwarfRegNum<[3, 3, 3]>; 48 49 // X86-64 only 50 def SIL : Register<"sil">, DwarfRegNum<[4, 6, 6]>; 51 def DIL : Register<"dil">, DwarfRegNum<[5, 7, 7]>; 52 def BPL : Register<"bpl">, DwarfRegNum<[6, 4, 5]>; 53 def SPL : Register<"spl">, DwarfRegNum<[7, 5, 4]>; 54 def R8B : Register<"r8b">, DwarfRegNum<[8, -2, -2]>; 55 def R9B : Register<"r9b">, DwarfRegNum<[9, -2, -2]>; 56 def R10B : Register<"r10b">, DwarfRegNum<[10, -2, -2]>; 57 def R11B : Register<"r11b">, DwarfRegNum<[11, -2, -2]>; 58 def R12B : Register<"r12b">, DwarfRegNum<[12, -2, -2]>; 59 def R13B : Register<"r13b">, DwarfRegNum<[13, -2, -2]>; 60 def R14B : Register<"r14b">, DwarfRegNum<[14, -2, -2]>; 61 def R15B : Register<"r15b">, DwarfRegNum<[15, -2, -2]>; 62 63 // High registers. On x86-64, these cannot be used in any instruction 64 // with a REX prefix. 65 def AH : Register<"ah">, DwarfRegNum<[0, 0, 0]>; 66 def DH : Register<"dh">, DwarfRegNum<[1, 2, 2]>; 67 def CH : Register<"ch">, DwarfRegNum<[2, 1, 1]>; 68 def BH : Register<"bh">, DwarfRegNum<[3, 3, 3]>; 69 70 // 16-bit registers 71 let SubRegIndices = [sub_8bit, sub_8bit_hi] in { 72 def AX : RegisterWithSubRegs<"ax", [AL,AH]>, DwarfRegNum<[0, 0, 0]>; 73 def DX : RegisterWithSubRegs<"dx", [DL,DH]>, DwarfRegNum<[1, 2, 2]>; 74 def CX : RegisterWithSubRegs<"cx", [CL,CH]>, DwarfRegNum<[2, 1, 1]>; 75 def BX : RegisterWithSubRegs<"bx", [BL,BH]>, DwarfRegNum<[3, 3, 3]>; 76 } 77 let SubRegIndices = [sub_8bit] in { 78 def SI : RegisterWithSubRegs<"si", [SIL]>, DwarfRegNum<[4, 6, 6]>; 79 def DI : RegisterWithSubRegs<"di", [DIL]>, DwarfRegNum<[5, 7, 7]>; 80 def BP : RegisterWithSubRegs<"bp", [BPL]>, DwarfRegNum<[6, 4, 5]>; 81 def SP : RegisterWithSubRegs<"sp", [SPL]>, DwarfRegNum<[7, 5, 4]>; 82 } 83 def IP : Register<"ip">, DwarfRegNum<[16]>; 84 85 // X86-64 only 86 let SubRegIndices = [sub_8bit] in { 87 def R8W : RegisterWithSubRegs<"r8w", [R8B]>, DwarfRegNum<[8, -2, -2]>; 88 def R9W : RegisterWithSubRegs<"r9w", [R9B]>, DwarfRegNum<[9, -2, -2]>; 89 def R10W : RegisterWithSubRegs<"r10w", [R10B]>, DwarfRegNum<[10, -2, -2]>; 90 def R11W : RegisterWithSubRegs<"r11w", [R11B]>, DwarfRegNum<[11, -2, -2]>; 91 def R12W : RegisterWithSubRegs<"r12w", [R12B]>, DwarfRegNum<[12, -2, -2]>; 92 def R13W : RegisterWithSubRegs<"r13w", [R13B]>, DwarfRegNum<[13, -2, -2]>; 93 def R14W : RegisterWithSubRegs<"r14w", [R14B]>, DwarfRegNum<[14, -2, -2]>; 94 def R15W : RegisterWithSubRegs<"r15w", [R15B]>, DwarfRegNum<[15, -2, -2]>; 95 } 96 // 32-bit registers 97 let SubRegIndices = [sub_16bit] in { 98 def EAX : RegisterWithSubRegs<"eax", [AX]>, DwarfRegNum<[0, 0, 0]>; 99 def EDX : RegisterWithSubRegs<"edx", [DX]>, DwarfRegNum<[1, 2, 2]>; 100 def ECX : RegisterWithSubRegs<"ecx", [CX]>, DwarfRegNum<[2, 1, 1]>; 101 def EBX : RegisterWithSubRegs<"ebx", [BX]>, DwarfRegNum<[3, 3, 3]>; 102 def ESI : RegisterWithSubRegs<"esi", [SI]>, DwarfRegNum<[4, 6, 6]>; 103 def EDI : RegisterWithSubRegs<"edi", [DI]>, DwarfRegNum<[5, 7, 7]>; 104 def EBP : RegisterWithSubRegs<"ebp", [BP]>, DwarfRegNum<[6, 4, 5]>; 105 def ESP : RegisterWithSubRegs<"esp", [SP]>, DwarfRegNum<[7, 5, 4]>; 106 def EIP : RegisterWithSubRegs<"eip", [IP]>, DwarfRegNum<[16, 8, 8]>; 107 108 // X86-64 only 109 def R8D : RegisterWithSubRegs<"r8d", [R8W]>, DwarfRegNum<[8, -2, -2]>; 110 def R9D : RegisterWithSubRegs<"r9d", [R9W]>, DwarfRegNum<[9, -2, -2]>; 111 def R10D : RegisterWithSubRegs<"r10d", [R10W]>, DwarfRegNum<[10, -2, -2]>; 112 def R11D : RegisterWithSubRegs<"r11d", [R11W]>, DwarfRegNum<[11, -2, -2]>; 113 def R12D : RegisterWithSubRegs<"r12d", [R12W]>, DwarfRegNum<[12, -2, -2]>; 114 def R13D : RegisterWithSubRegs<"r13d", [R13W]>, DwarfRegNum<[13, -2, -2]>; 115 def R14D : RegisterWithSubRegs<"r14d", [R14W]>, DwarfRegNum<[14, -2, -2]>; 116 def R15D : RegisterWithSubRegs<"r15d", [R15W]>, DwarfRegNum<[15, -2, -2]>; 117 } 118 119 // 64-bit registers, X86-64 only 120 let SubRegIndices = [sub_32bit] in { 121 def RAX : RegisterWithSubRegs<"rax", [EAX]>, DwarfRegNum<[0, -2, -2]>; 122 def RDX : RegisterWithSubRegs<"rdx", [EDX]>, DwarfRegNum<[1, -2, -2]>; 123 def RCX : RegisterWithSubRegs<"rcx", [ECX]>, DwarfRegNum<[2, -2, -2]>; 124 def RBX : RegisterWithSubRegs<"rbx", [EBX]>, DwarfRegNum<[3, -2, -2]>; 125 def RSI : RegisterWithSubRegs<"rsi", [ESI]>, DwarfRegNum<[4, -2, -2]>; 126 def RDI : RegisterWithSubRegs<"rdi", [EDI]>, DwarfRegNum<[5, -2, -2]>; 127 def RBP : RegisterWithSubRegs<"rbp", [EBP]>, DwarfRegNum<[6, -2, -2]>; 128 def RSP : RegisterWithSubRegs<"rsp", [ESP]>, DwarfRegNum<[7, -2, -2]>; 129 130 def R8 : RegisterWithSubRegs<"r8", [R8D]>, DwarfRegNum<[8, -2, -2]>; 131 def R9 : RegisterWithSubRegs<"r9", [R9D]>, DwarfRegNum<[9, -2, -2]>; 132 def R10 : RegisterWithSubRegs<"r10", [R10D]>, DwarfRegNum<[10, -2, -2]>; 133 def R11 : RegisterWithSubRegs<"r11", [R11D]>, DwarfRegNum<[11, -2, -2]>; 134 def R12 : RegisterWithSubRegs<"r12", [R12D]>, DwarfRegNum<[12, -2, -2]>; 135 def R13 : RegisterWithSubRegs<"r13", [R13D]>, DwarfRegNum<[13, -2, -2]>; 136 def R14 : RegisterWithSubRegs<"r14", [R14D]>, DwarfRegNum<[14, -2, -2]>; 137 def R15 : RegisterWithSubRegs<"r15", [R15D]>, DwarfRegNum<[15, -2, -2]>; 138 def RIP : RegisterWithSubRegs<"rip", [EIP]>, DwarfRegNum<[16, -2, -2]>; 139 } 140 141 // MMX Registers. These are actually aliased to ST0 .. ST7 142 def MM0 : Register<"mm0">, DwarfRegNum<[41, 29, 29]>; 143 def MM1 : Register<"mm1">, DwarfRegNum<[42, 30, 30]>; 144 def MM2 : Register<"mm2">, DwarfRegNum<[43, 31, 31]>; 145 def MM3 : Register<"mm3">, DwarfRegNum<[44, 32, 32]>; 146 def MM4 : Register<"mm4">, DwarfRegNum<[45, 33, 33]>; 147 def MM5 : Register<"mm5">, DwarfRegNum<[46, 34, 34]>; 148 def MM6 : Register<"mm6">, DwarfRegNum<[47, 35, 35]>; 149 def MM7 : Register<"mm7">, DwarfRegNum<[48, 36, 36]>; 150 151 // Pseudo Floating Point registers 152 def FP0 : Register<"fp0">; 153 def FP1 : Register<"fp1">; 154 def FP2 : Register<"fp2">; 155 def FP3 : Register<"fp3">; 156 def FP4 : Register<"fp4">; 157 def FP5 : Register<"fp5">; 158 def FP6 : Register<"fp6">; 159 160 // XMM Registers, used by the various SSE instruction set extensions. 161 // The sub_ss and sub_sd subregs are the same registers with another regclass. 162 let CompositeIndices = [(sub_ss), (sub_sd)] in { 163 def XMM0: Register<"xmm0">, DwarfRegNum<[17, 21, 21]>; 164 def XMM1: Register<"xmm1">, DwarfRegNum<[18, 22, 22]>; 165 def XMM2: Register<"xmm2">, DwarfRegNum<[19, 23, 23]>; 166 def XMM3: Register<"xmm3">, DwarfRegNum<[20, 24, 24]>; 167 def XMM4: Register<"xmm4">, DwarfRegNum<[21, 25, 25]>; 168 def XMM5: Register<"xmm5">, DwarfRegNum<[22, 26, 26]>; 169 def XMM6: Register<"xmm6">, DwarfRegNum<[23, 27, 27]>; 170 def XMM7: Register<"xmm7">, DwarfRegNum<[24, 28, 28]>; 171 172 // X86-64 only 173 def XMM8: Register<"xmm8">, DwarfRegNum<[25, -2, -2]>; 174 def XMM9: Register<"xmm9">, DwarfRegNum<[26, -2, -2]>; 175 def XMM10: Register<"xmm10">, DwarfRegNum<[27, -2, -2]>; 176 def XMM11: Register<"xmm11">, DwarfRegNum<[28, -2, -2]>; 177 def XMM12: Register<"xmm12">, DwarfRegNum<[29, -2, -2]>; 178 def XMM13: Register<"xmm13">, DwarfRegNum<[30, -2, -2]>; 179 def XMM14: Register<"xmm14">, DwarfRegNum<[31, -2, -2]>; 180 def XMM15: Register<"xmm15">, DwarfRegNum<[32, -2, -2]>; 181 } 182 183 // YMM Registers, used by AVX instructions 184 let SubRegIndices = [sub_xmm] in { 185 def YMM0: RegisterWithSubRegs<"ymm0", [XMM0]>, DwarfRegNum<[17, 21, 21]>; 186 def YMM1: RegisterWithSubRegs<"ymm1", [XMM1]>, DwarfRegNum<[18, 22, 22]>; 187 def YMM2: RegisterWithSubRegs<"ymm2", [XMM2]>, DwarfRegNum<[19, 23, 23]>; 188 def YMM3: RegisterWithSubRegs<"ymm3", [XMM3]>, DwarfRegNum<[20, 24, 24]>; 189 def YMM4: RegisterWithSubRegs<"ymm4", [XMM4]>, DwarfRegNum<[21, 25, 25]>; 190 def YMM5: RegisterWithSubRegs<"ymm5", [XMM5]>, DwarfRegNum<[22, 26, 26]>; 191 def YMM6: RegisterWithSubRegs<"ymm6", [XMM6]>, DwarfRegNum<[23, 27, 27]>; 192 def YMM7: RegisterWithSubRegs<"ymm7", [XMM7]>, DwarfRegNum<[24, 28, 28]>; 193 def YMM8: RegisterWithSubRegs<"ymm8", [XMM8]>, DwarfRegNum<[25, -2, -2]>; 194 def YMM9: RegisterWithSubRegs<"ymm9", [XMM9]>, DwarfRegNum<[26, -2, -2]>; 195 def YMM10: RegisterWithSubRegs<"ymm10", [XMM10]>, DwarfRegNum<[27, -2, -2]>; 196 def YMM11: RegisterWithSubRegs<"ymm11", [XMM11]>, DwarfRegNum<[28, -2, -2]>; 197 def YMM12: RegisterWithSubRegs<"ymm12", [XMM12]>, DwarfRegNum<[29, -2, -2]>; 198 def YMM13: RegisterWithSubRegs<"ymm13", [XMM13]>, DwarfRegNum<[30, -2, -2]>; 199 def YMM14: RegisterWithSubRegs<"ymm14", [XMM14]>, DwarfRegNum<[31, -2, -2]>; 200 def YMM15: RegisterWithSubRegs<"ymm15", [XMM15]>, DwarfRegNum<[32, -2, -2]>; 201 } 202 203 // Floating point stack registers 204 def ST0 : Register<"st(0)">, DwarfRegNum<[33, 12, 11]>; 205 def ST1 : Register<"st(1)">, DwarfRegNum<[34, 13, 12]>; 206 def ST2 : Register<"st(2)">, DwarfRegNum<[35, 14, 13]>; 207 def ST3 : Register<"st(3)">, DwarfRegNum<[36, 15, 14]>; 208 def ST4 : Register<"st(4)">, DwarfRegNum<[37, 16, 15]>; 209 def ST5 : Register<"st(5)">, DwarfRegNum<[38, 17, 16]>; 210 def ST6 : Register<"st(6)">, DwarfRegNum<[39, 18, 17]>; 211 def ST7 : Register<"st(7)">, DwarfRegNum<[40, 19, 18]>; 212 213 // Status flags register 214 def EFLAGS : Register<"flags">; 215 216 // Segment registers 217 def CS : Register<"cs">; 218 def DS : Register<"ds">; 219 def SS : Register<"ss">; 220 def ES : Register<"es">; 221 def FS : Register<"fs">; 222 def GS : Register<"gs">; 223 224 // Debug registers 225 def DR0 : Register<"dr0">; 226 def DR1 : Register<"dr1">; 227 def DR2 : Register<"dr2">; 228 def DR3 : Register<"dr3">; 229 def DR4 : Register<"dr4">; 230 def DR5 : Register<"dr5">; 231 def DR6 : Register<"dr6">; 232 def DR7 : Register<"dr7">; 233 234 // Condition registers 235 def CR0 : Register<"cr0">; 236 def CR1 : Register<"cr1">; 237 def CR2 : Register<"cr2">; 238 def CR3 : Register<"cr3">; 239 def CR4 : Register<"cr4">; 240 def CR5 : Register<"cr5">; 241 def CR6 : Register<"cr6">; 242 def CR7 : Register<"cr7">; 243 def CR8 : Register<"cr8">; 244} 245 246 247//===----------------------------------------------------------------------===// 248// Register Class Definitions... now that we have all of the pieces, define the 249// top-level register classes. The order specified in the register list is 250// implicitly defined to be the register allocation order. 251// 252 253// List call-clobbered registers before callee-save registers. RBX, RBP, (and 254// R12, R13, R14, and R15 for X86-64) are callee-save registers. 255// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and 256// R8B, ... R15B. 257// Allocate R12 and R13 last, as these require an extra byte when 258// encoded in x86_64 instructions. 259// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in 260// 64-bit mode. The main complication is that they cannot be encoded in an 261// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc. 262// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d" 263// cannot be encoded. 264def GR8 : RegisterClass<"X86", [i8], 8, 265 [AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL, 266 R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B]> { 267 let MethodProtos = [{ 268 iterator allocation_order_begin(const MachineFunction &MF) const; 269 iterator allocation_order_end(const MachineFunction &MF) const; 270 }]; 271 let MethodBodies = [{ 272 static const unsigned X86_GR8_AO_64[] = { 273 X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL, 274 X86::R8B, X86::R9B, X86::R10B, X86::R11B, 275 X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B, X86::BPL 276 }; 277 278 GR8Class::iterator 279 GR8Class::allocation_order_begin(const MachineFunction &MF) const { 280 const TargetMachine &TM = MF.getTarget(); 281 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 282 if (Subtarget.is64Bit()) 283 return X86_GR8_AO_64; 284 else 285 return begin(); 286 } 287 288 GR8Class::iterator 289 GR8Class::allocation_order_end(const MachineFunction &MF) const { 290 const TargetMachine &TM = MF.getTarget(); 291 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 292 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 293 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 294 // Does the function dedicate RBP / EBP to being a frame ptr? 295 if (!Subtarget.is64Bit()) 296 // In 32-mode, none of the 8-bit registers aliases EBP or ESP. 297 return begin() + 8; 298 else if (RI->hasFP(MF) || MFI->getReserveFP()) 299 // If so, don't allocate SPL or BPL. 300 return array_endof(X86_GR8_AO_64) - 1; 301 else 302 // If not, just don't allocate SPL. 303 return array_endof(X86_GR8_AO_64); 304 } 305 }]; 306} 307 308def GR16 : RegisterClass<"X86", [i16], 16, 309 [AX, CX, DX, SI, DI, BX, BP, SP, 310 R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W]> { 311 let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi)]; 312 let MethodProtos = [{ 313 iterator allocation_order_begin(const MachineFunction &MF) const; 314 iterator allocation_order_end(const MachineFunction &MF) const; 315 }]; 316 let MethodBodies = [{ 317 static const unsigned X86_GR16_AO_64[] = { 318 X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, 319 X86::R8W, X86::R9W, X86::R10W, X86::R11W, 320 X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W, X86::BP 321 }; 322 323 GR16Class::iterator 324 GR16Class::allocation_order_begin(const MachineFunction &MF) const { 325 const TargetMachine &TM = MF.getTarget(); 326 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 327 if (Subtarget.is64Bit()) 328 return X86_GR16_AO_64; 329 else 330 return begin(); 331 } 332 333 GR16Class::iterator 334 GR16Class::allocation_order_end(const MachineFunction &MF) const { 335 const TargetMachine &TM = MF.getTarget(); 336 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 337 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 338 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 339 if (Subtarget.is64Bit()) { 340 // Does the function dedicate RBP to being a frame ptr? 341 if (RI->hasFP(MF) || MFI->getReserveFP()) 342 // If so, don't allocate SP or BP. 343 return array_endof(X86_GR16_AO_64) - 1; 344 else 345 // If not, just don't allocate SP. 346 return array_endof(X86_GR16_AO_64); 347 } else { 348 // Does the function dedicate EBP to being a frame ptr? 349 if (RI->hasFP(MF) || MFI->getReserveFP()) 350 // If so, don't allocate SP or BP. 351 return begin() + 6; 352 else 353 // If not, just don't allocate SP. 354 return begin() + 7; 355 } 356 } 357 }]; 358} 359 360def GR32 : RegisterClass<"X86", [i32], 32, 361 [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP, 362 R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D]> { 363 let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)]; 364 let MethodProtos = [{ 365 iterator allocation_order_begin(const MachineFunction &MF) const; 366 iterator allocation_order_end(const MachineFunction &MF) const; 367 }]; 368 let MethodBodies = [{ 369 static const unsigned X86_GR32_AO_64[] = { 370 X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, 371 X86::R8D, X86::R9D, X86::R10D, X86::R11D, 372 X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP 373 }; 374 375 GR32Class::iterator 376 GR32Class::allocation_order_begin(const MachineFunction &MF) const { 377 const TargetMachine &TM = MF.getTarget(); 378 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 379 if (Subtarget.is64Bit()) 380 return X86_GR32_AO_64; 381 else 382 return begin(); 383 } 384 385 GR32Class::iterator 386 GR32Class::allocation_order_end(const MachineFunction &MF) const { 387 const TargetMachine &TM = MF.getTarget(); 388 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 389 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 390 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 391 if (Subtarget.is64Bit()) { 392 // Does the function dedicate RBP to being a frame ptr? 393 if (RI->hasFP(MF) || MFI->getReserveFP()) 394 // If so, don't allocate ESP or EBP. 395 return array_endof(X86_GR32_AO_64) - 1; 396 else 397 // If not, just don't allocate ESP. 398 return array_endof(X86_GR32_AO_64); 399 } else { 400 // Does the function dedicate EBP to being a frame ptr? 401 if (RI->hasFP(MF) || MFI->getReserveFP()) 402 // If so, don't allocate ESP or EBP. 403 return begin() + 6; 404 else 405 // If not, just don't allocate ESP. 406 return begin() + 7; 407 } 408 } 409 }]; 410} 411 412// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since 413// RIP isn't really a register and it can't be used anywhere except in an 414// address, but it doesn't cause trouble. 415def GR64 : RegisterClass<"X86", [i64], 64, 416 [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, 417 RBX, R14, R15, R12, R13, RBP, RSP, RIP]> { 418 let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), 419 (GR16 sub_16bit), 420 (GR32 sub_32bit)]; 421 let MethodProtos = [{ 422 iterator allocation_order_end(const MachineFunction &MF) const; 423 }]; 424 let MethodBodies = [{ 425 GR64Class::iterator 426 GR64Class::allocation_order_end(const MachineFunction &MF) const { 427 const TargetMachine &TM = MF.getTarget(); 428 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 429 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 430 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 431 if (!Subtarget.is64Bit()) 432 return begin(); // None of these are allocatable in 32-bit. 433 // Does the function dedicate RBP to being a frame ptr? 434 if (RI->hasFP(MF) || MFI->getReserveFP()) 435 return end()-3; // If so, don't allocate RIP, RSP or RBP 436 else 437 return end()-2; // If not, just don't allocate RIP or RSP 438 } 439 }]; 440} 441 442// Segment registers for use by MOV instructions (and others) that have a 443// segment register as one operand. Always contain a 16-bit segment 444// descriptor. 445def SEGMENT_REG : RegisterClass<"X86", [i16], 16, [CS, DS, SS, ES, FS, GS]> { 446} 447 448// Debug registers. 449def DEBUG_REG : RegisterClass<"X86", [i32], 32, 450 [DR0, DR1, DR2, DR3, DR4, DR5, DR6, DR7]> { 451} 452 453// Control registers. 454def CONTROL_REG : RegisterClass<"X86", [i64], 64, 455 [CR0, CR1, CR2, CR3, CR4, CR5, CR6, CR7, CR8]> { 456} 457 458// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of 459// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d" 460// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers 461// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD, 462// and GR64_ABCD are classes for registers that support 8-bit h-register 463// operations. 464def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, [AL, CL, DL, BL]> { 465} 466def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, [AH, CH, DH, BH]> { 467} 468def GR16_ABCD : RegisterClass<"X86", [i16], 16, [AX, CX, DX, BX]> { 469 let SubRegClasses = [(GR8_ABCD_L sub_8bit), (GR8_ABCD_H sub_8bit_hi)]; 470} 471def GR32_ABCD : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, EBX]> { 472 let SubRegClasses = [(GR8_ABCD_L sub_8bit), 473 (GR8_ABCD_H sub_8bit_hi), 474 (GR16_ABCD sub_16bit)]; 475} 476def GR64_ABCD : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RBX]> { 477 let SubRegClasses = [(GR8_ABCD_L sub_8bit), 478 (GR8_ABCD_H sub_8bit_hi), 479 (GR16_ABCD sub_16bit), 480 (GR32_ABCD sub_32bit)]; 481} 482def GR32_TC : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX]> { 483 let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)]; 484} 485def GR64_TC : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RSI, RDI, 486 R8, R9, R11]> { 487 let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), 488 (GR16 sub_16bit), 489 (GR32_TC sub_32bit)]; 490} 491 492// GR8_NOREX - GR8 registers which do not require a REX prefix. 493def GR8_NOREX : RegisterClass<"X86", [i8], 8, 494 [AL, CL, DL, AH, CH, DH, BL, BH]> { 495 let MethodProtos = [{ 496 iterator allocation_order_begin(const MachineFunction &MF) const; 497 iterator allocation_order_end(const MachineFunction &MF) const; 498 }]; 499 let MethodBodies = [{ 500 // In 64-bit mode, it's not safe to blindly allocate H registers. 501 static const unsigned X86_GR8_NOREX_AO_64[] = { 502 X86::AL, X86::CL, X86::DL, X86::BL 503 }; 504 505 GR8_NOREXClass::iterator 506 GR8_NOREXClass::allocation_order_begin(const MachineFunction &MF) const { 507 const TargetMachine &TM = MF.getTarget(); 508 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 509 if (Subtarget.is64Bit()) 510 return X86_GR8_NOREX_AO_64; 511 else 512 return begin(); 513 } 514 515 GR8_NOREXClass::iterator 516 GR8_NOREXClass::allocation_order_end(const MachineFunction &MF) const { 517 const TargetMachine &TM = MF.getTarget(); 518 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 519 if (Subtarget.is64Bit()) 520 return array_endof(X86_GR8_NOREX_AO_64); 521 else 522 return end(); 523 } 524 }]; 525} 526// GR16_NOREX - GR16 registers which do not require a REX prefix. 527def GR16_NOREX : RegisterClass<"X86", [i16], 16, 528 [AX, CX, DX, SI, DI, BX, BP, SP]> { 529 let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi)]; 530 let MethodProtos = [{ 531 iterator allocation_order_end(const MachineFunction &MF) const; 532 }]; 533 let MethodBodies = [{ 534 GR16_NOREXClass::iterator 535 GR16_NOREXClass::allocation_order_end(const MachineFunction &MF) const { 536 const TargetMachine &TM = MF.getTarget(); 537 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 538 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 539 // Does the function dedicate RBP / EBP to being a frame ptr? 540 if (RI->hasFP(MF) || MFI->getReserveFP()) 541 // If so, don't allocate SP or BP. 542 return end() - 2; 543 else 544 // If not, just don't allocate SP. 545 return end() - 1; 546 } 547 }]; 548} 549// GR32_NOREX - GR32 registers which do not require a REX prefix. 550def GR32_NOREX : RegisterClass<"X86", [i32], 32, 551 [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP]> { 552 let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi), 553 (GR16_NOREX sub_16bit)]; 554 let MethodProtos = [{ 555 iterator allocation_order_end(const MachineFunction &MF) const; 556 }]; 557 let MethodBodies = [{ 558 GR32_NOREXClass::iterator 559 GR32_NOREXClass::allocation_order_end(const MachineFunction &MF) const { 560 const TargetMachine &TM = MF.getTarget(); 561 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 562 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 563 // Does the function dedicate RBP / EBP to being a frame ptr? 564 if (RI->hasFP(MF) || MFI->getReserveFP()) 565 // If so, don't allocate ESP or EBP. 566 return end() - 2; 567 else 568 // If not, just don't allocate ESP. 569 return end() - 1; 570 } 571 }]; 572} 573// GR64_NOREX - GR64 registers which do not require a REX prefix. 574def GR64_NOREX : RegisterClass<"X86", [i64], 64, 575 [RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP]> { 576 let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi), 577 (GR16_NOREX sub_16bit), 578 (GR32_NOREX sub_32bit)]; 579 let MethodProtos = [{ 580 iterator allocation_order_end(const MachineFunction &MF) const; 581 }]; 582 let MethodBodies = [{ 583 GR64_NOREXClass::iterator 584 GR64_NOREXClass::allocation_order_end(const MachineFunction &MF) const { 585 const TargetMachine &TM = MF.getTarget(); 586 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 587 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 588 // Does the function dedicate RBP to being a frame ptr? 589 if (RI->hasFP(MF) || MFI->getReserveFP()) 590 // If so, don't allocate RIP, RSP or RBP. 591 return end() - 3; 592 else 593 // If not, just don't allocate RIP or RSP. 594 return end() - 2; 595 } 596 }]; 597} 598 599// GR32_NOSP - GR32 registers except ESP. 600def GR32_NOSP : RegisterClass<"X86", [i32], 32, 601 [EAX, ECX, EDX, ESI, EDI, EBX, EBP, 602 R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D]> { 603 let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)]; 604 let MethodProtos = [{ 605 iterator allocation_order_begin(const MachineFunction &MF) const; 606 iterator allocation_order_end(const MachineFunction &MF) const; 607 }]; 608 let MethodBodies = [{ 609 static const unsigned X86_GR32_NOSP_AO_64[] = { 610 X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, 611 X86::R8D, X86::R9D, X86::R10D, X86::R11D, 612 X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP 613 }; 614 615 GR32_NOSPClass::iterator 616 GR32_NOSPClass::allocation_order_begin(const MachineFunction &MF) const { 617 const TargetMachine &TM = MF.getTarget(); 618 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 619 if (Subtarget.is64Bit()) 620 return X86_GR32_NOSP_AO_64; 621 else 622 return begin(); 623 } 624 625 GR32_NOSPClass::iterator 626 GR32_NOSPClass::allocation_order_end(const MachineFunction &MF) const { 627 const TargetMachine &TM = MF.getTarget(); 628 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 629 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 630 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 631 if (Subtarget.is64Bit()) { 632 // Does the function dedicate RBP to being a frame ptr? 633 if (RI->hasFP(MF) || MFI->getReserveFP()) 634 // If so, don't allocate EBP. 635 return array_endof(X86_GR32_NOSP_AO_64) - 1; 636 else 637 // If not, any reg in this class is ok. 638 return array_endof(X86_GR32_NOSP_AO_64); 639 } else { 640 // Does the function dedicate EBP to being a frame ptr? 641 if (RI->hasFP(MF) || MFI->getReserveFP()) 642 // If so, don't allocate EBP. 643 return begin() + 6; 644 else 645 // If not, any reg in this class is ok. 646 return begin() + 7; 647 } 648 } 649 }]; 650} 651 652// GR64_NOSP - GR64 registers except RSP (and RIP). 653def GR64_NOSP : RegisterClass<"X86", [i64], 64, 654 [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, 655 RBX, R14, R15, R12, R13, RBP]> { 656 let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), 657 (GR16 sub_16bit), 658 (GR32_NOSP sub_32bit)]; 659 let MethodProtos = [{ 660 iterator allocation_order_end(const MachineFunction &MF) const; 661 }]; 662 let MethodBodies = [{ 663 GR64_NOSPClass::iterator 664 GR64_NOSPClass::allocation_order_end(const MachineFunction &MF) const { 665 const TargetMachine &TM = MF.getTarget(); 666 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 667 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 668 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 669 if (!Subtarget.is64Bit()) 670 return begin(); // None of these are allocatable in 32-bit. 671 // Does the function dedicate RBP to being a frame ptr? 672 if (RI->hasFP(MF) || MFI->getReserveFP()) 673 return end()-1; // If so, don't allocate RBP 674 else 675 return end(); // If not, any reg in this class is ok. 676 } 677 }]; 678} 679 680// GR64_NOREX_NOSP - GR64_NOREX registers except RSP. 681def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64, 682 [RAX, RCX, RDX, RSI, RDI, RBX, RBP]> { 683 let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi), 684 (GR16_NOREX sub_16bit), 685 (GR32_NOREX sub_32bit)]; 686 let MethodProtos = [{ 687 iterator allocation_order_end(const MachineFunction &MF) const; 688 }]; 689 let MethodBodies = [{ 690 GR64_NOREX_NOSPClass::iterator 691 GR64_NOREX_NOSPClass::allocation_order_end(const MachineFunction &MF) const 692 { 693 const TargetMachine &TM = MF.getTarget(); 694 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 695 const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 696 // Does the function dedicate RBP to being a frame ptr? 697 if (RI->hasFP(MF) || MFI->getReserveFP()) 698 // If so, don't allocate RBP. 699 return end() - 1; 700 else 701 // If not, any reg in this class is ok. 702 return end(); 703 } 704 }]; 705} 706 707// A class to support the 'A' assembler constraint: EAX then EDX. 708def GR32_AD : RegisterClass<"X86", [i32], 32, [EAX, EDX]> { 709 let SubRegClasses = [(GR8_ABCD_L sub_8bit), 710 (GR8_ABCD_H sub_8bit_hi), 711 (GR16_ABCD sub_16bit)]; 712} 713 714// Scalar SSE2 floating point registers. 715def FR32 : RegisterClass<"X86", [f32], 32, 716 [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 717 XMM8, XMM9, XMM10, XMM11, 718 XMM12, XMM13, XMM14, XMM15]> { 719 let MethodProtos = [{ 720 iterator allocation_order_end(const MachineFunction &MF) const; 721 }]; 722 let MethodBodies = [{ 723 FR32Class::iterator 724 FR32Class::allocation_order_end(const MachineFunction &MF) const { 725 const TargetMachine &TM = MF.getTarget(); 726 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 727 if (!Subtarget.is64Bit()) 728 return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode. 729 else 730 return end(); 731 } 732 }]; 733} 734 735def FR64 : RegisterClass<"X86", [f64], 64, 736 [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 737 XMM8, XMM9, XMM10, XMM11, 738 XMM12, XMM13, XMM14, XMM15]> { 739 let MethodProtos = [{ 740 iterator allocation_order_end(const MachineFunction &MF) const; 741 }]; 742 let MethodBodies = [{ 743 FR64Class::iterator 744 FR64Class::allocation_order_end(const MachineFunction &MF) const { 745 const TargetMachine &TM = MF.getTarget(); 746 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 747 if (!Subtarget.is64Bit()) 748 return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode. 749 else 750 return end(); 751 } 752 }]; 753} 754 755 756// FIXME: This sets up the floating point register files as though they are f64 757// values, though they really are f80 values. This will cause us to spill 758// values as 64-bit quantities instead of 80-bit quantities, which is much much 759// faster on common hardware. In reality, this should be controlled by a 760// command line option or something. 761 762def RFP32 : RegisterClass<"X86",[f32], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>; 763def RFP64 : RegisterClass<"X86",[f64], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>; 764def RFP80 : RegisterClass<"X86",[f80], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>; 765 766// Floating point stack registers (these are not allocatable by the 767// register allocator - the floating point stackifier is responsible 768// for transforming FPn allocations to STn registers) 769def RST : RegisterClass<"X86", [f80, f64, f32], 32, 770 [ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> { 771 let MethodProtos = [{ 772 iterator allocation_order_end(const MachineFunction &MF) const; 773 }]; 774 let MethodBodies = [{ 775 RSTClass::iterator 776 RSTClass::allocation_order_end(const MachineFunction &MF) const { 777 return begin(); 778 } 779 }]; 780} 781 782// Generic vector registers: VR64 and VR128. 783def VR64 : RegisterClass<"X86", [v8i8, v4i16, v2i32, v1i64, v2f32], 64, 784 [MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7]>; 785def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128, 786 [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 787 XMM8, XMM9, XMM10, XMM11, 788 XMM12, XMM13, XMM14, XMM15]> { 789 let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd)]; 790 791 let MethodProtos = [{ 792 iterator allocation_order_end(const MachineFunction &MF) const; 793 }]; 794 let MethodBodies = [{ 795 VR128Class::iterator 796 VR128Class::allocation_order_end(const MachineFunction &MF) const { 797 const TargetMachine &TM = MF.getTarget(); 798 const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); 799 if (!Subtarget.is64Bit()) 800 return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode. 801 else 802 return end(); 803 } 804 }]; 805} 806def VR256 : RegisterClass<"X86", [ v8i32, v4i64, v8f32, v4f64],256, 807 [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, 808 YMM8, YMM9, YMM10, YMM11, 809 YMM12, YMM13, YMM14, YMM15]> { 810 let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd), (VR128 sub_xmm)]; 811} 812 813// Status flags registers. 814def CCR : RegisterClass<"X86", [i32], 32, [EFLAGS]> { 815 let CopyCost = -1; // Don't allow copying of status registers. 816} 817