X86RegisterInfo.td revision b0269cd2c8d8512ea156a6c6df798faa6c76145c
1//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 Register file, defining the registers themselves,
11// aliases between the registers, and the register classes built out of the
12// registers.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17//  Register definitions...
18//
19let Namespace = "X86" in {
20
21  // Subregister indices.
22  def sub_8bit    : SubRegIndex;
23  def sub_8bit_hi : SubRegIndex;
24  def sub_16bit   : SubRegIndex;
25  def sub_32bit   : SubRegIndex;
26
27  def sub_ss  : SubRegIndex;
28  def sub_sd  : SubRegIndex;
29  def sub_xmm : SubRegIndex;
30
31
32  // In the register alias definitions below, we define which registers alias
33  // which others.  We only specify which registers the small registers alias,
34  // because the register file generator is smart enough to figure out that
35  // AL aliases AX if we tell it that AX aliased AL (for example).
36
37  // Dwarf numbering is different for 32-bit and 64-bit, and there are 
38  // variations by target as well. Currently the first entry is for X86-64, 
39  // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
40  // and debug information on X86-32/Darwin)
41
42  // 8-bit registers
43  // Low registers
44  def AL : Register<"al">, DwarfRegNum<[0, 0, 0]>;
45  def DL : Register<"dl">, DwarfRegNum<[1, 2, 2]>;
46  def CL : Register<"cl">, DwarfRegNum<[2, 1, 1]>;
47  def BL : Register<"bl">, DwarfRegNum<[3, 3, 3]>;
48
49  // X86-64 only
50  def SIL : Register<"sil">, DwarfRegNum<[4, 6, 6]>;
51  def DIL : Register<"dil">, DwarfRegNum<[5, 7, 7]>;
52  def BPL : Register<"bpl">, DwarfRegNum<[6, 4, 5]>;
53  def SPL : Register<"spl">, DwarfRegNum<[7, 5, 4]>;
54  def R8B  : Register<"r8b">,  DwarfRegNum<[8, -2, -2]>;
55  def R9B  : Register<"r9b">,  DwarfRegNum<[9, -2, -2]>;
56  def R10B : Register<"r10b">, DwarfRegNum<[10, -2, -2]>;
57  def R11B : Register<"r11b">, DwarfRegNum<[11, -2, -2]>;
58  def R12B : Register<"r12b">, DwarfRegNum<[12, -2, -2]>;
59  def R13B : Register<"r13b">, DwarfRegNum<[13, -2, -2]>;
60  def R14B : Register<"r14b">, DwarfRegNum<[14, -2, -2]>;
61  def R15B : Register<"r15b">, DwarfRegNum<[15, -2, -2]>;
62
63  // High registers. On x86-64, these cannot be used in any instruction
64  // with a REX prefix.
65  def AH : Register<"ah">, DwarfRegNum<[0, 0, 0]>;
66  def DH : Register<"dh">, DwarfRegNum<[1, 2, 2]>;
67  def CH : Register<"ch">, DwarfRegNum<[2, 1, 1]>;
68  def BH : Register<"bh">, DwarfRegNum<[3, 3, 3]>;
69
70  // 16-bit registers
71  let SubRegIndices = [sub_8bit, sub_8bit_hi] in {
72  def AX : RegisterWithSubRegs<"ax", [AL,AH]>, DwarfRegNum<[0, 0, 0]>;
73  def DX : RegisterWithSubRegs<"dx", [DL,DH]>, DwarfRegNum<[1, 2, 2]>;
74  def CX : RegisterWithSubRegs<"cx", [CL,CH]>, DwarfRegNum<[2, 1, 1]>;
75  def BX : RegisterWithSubRegs<"bx", [BL,BH]>, DwarfRegNum<[3, 3, 3]>;
76  }
77  let SubRegIndices = [sub_8bit] in {
78  def SI : RegisterWithSubRegs<"si", [SIL]>, DwarfRegNum<[4, 6, 6]>;
79  def DI : RegisterWithSubRegs<"di", [DIL]>, DwarfRegNum<[5, 7, 7]>;
80  def BP : RegisterWithSubRegs<"bp", [BPL]>, DwarfRegNum<[6, 4, 5]>;
81  def SP : RegisterWithSubRegs<"sp", [SPL]>, DwarfRegNum<[7, 5, 4]>;
82  }
83  def IP : Register<"ip">, DwarfRegNum<[16]>;
84  
85  // X86-64 only
86  let SubRegIndices = [sub_8bit] in {
87  def R8W  : RegisterWithSubRegs<"r8w", [R8B]>, DwarfRegNum<[8, -2, -2]>;
88  def R9W  : RegisterWithSubRegs<"r9w", [R9B]>, DwarfRegNum<[9, -2, -2]>;
89  def R10W : RegisterWithSubRegs<"r10w", [R10B]>, DwarfRegNum<[10, -2, -2]>;
90  def R11W : RegisterWithSubRegs<"r11w", [R11B]>, DwarfRegNum<[11, -2, -2]>;
91  def R12W : RegisterWithSubRegs<"r12w", [R12B]>, DwarfRegNum<[12, -2, -2]>;
92  def R13W : RegisterWithSubRegs<"r13w", [R13B]>, DwarfRegNum<[13, -2, -2]>;
93  def R14W : RegisterWithSubRegs<"r14w", [R14B]>, DwarfRegNum<[14, -2, -2]>;
94  def R15W : RegisterWithSubRegs<"r15w", [R15B]>, DwarfRegNum<[15, -2, -2]>;
95  }
96  // 32-bit registers
97  let SubRegIndices = [sub_16bit] in {
98  def EAX : RegisterWithSubRegs<"eax", [AX]>, DwarfRegNum<[0, 0, 0]>;
99  def EDX : RegisterWithSubRegs<"edx", [DX]>, DwarfRegNum<[1, 2, 2]>;
100  def ECX : RegisterWithSubRegs<"ecx", [CX]>, DwarfRegNum<[2, 1, 1]>;
101  def EBX : RegisterWithSubRegs<"ebx", [BX]>, DwarfRegNum<[3, 3, 3]>;
102  def ESI : RegisterWithSubRegs<"esi", [SI]>, DwarfRegNum<[4, 6, 6]>;
103  def EDI : RegisterWithSubRegs<"edi", [DI]>, DwarfRegNum<[5, 7, 7]>;
104  def EBP : RegisterWithSubRegs<"ebp", [BP]>, DwarfRegNum<[6, 4, 5]>;
105  def ESP : RegisterWithSubRegs<"esp", [SP]>, DwarfRegNum<[7, 5, 4]>;
106  def EIP : RegisterWithSubRegs<"eip", [IP]>, DwarfRegNum<[16, 8, 8]>;  
107  
108  // X86-64 only
109  def R8D  : RegisterWithSubRegs<"r8d", [R8W]>, DwarfRegNum<[8, -2, -2]>;
110  def R9D  : RegisterWithSubRegs<"r9d", [R9W]>, DwarfRegNum<[9, -2, -2]>;
111  def R10D : RegisterWithSubRegs<"r10d", [R10W]>, DwarfRegNum<[10, -2, -2]>;
112  def R11D : RegisterWithSubRegs<"r11d", [R11W]>, DwarfRegNum<[11, -2, -2]>;
113  def R12D : RegisterWithSubRegs<"r12d", [R12W]>, DwarfRegNum<[12, -2, -2]>;
114  def R13D : RegisterWithSubRegs<"r13d", [R13W]>, DwarfRegNum<[13, -2, -2]>;
115  def R14D : RegisterWithSubRegs<"r14d", [R14W]>, DwarfRegNum<[14, -2, -2]>;
116  def R15D : RegisterWithSubRegs<"r15d", [R15W]>, DwarfRegNum<[15, -2, -2]>;
117  }
118
119  // 64-bit registers, X86-64 only
120  let SubRegIndices = [sub_32bit] in {
121  def RAX : RegisterWithSubRegs<"rax", [EAX]>, DwarfRegNum<[0, -2, -2]>;
122  def RDX : RegisterWithSubRegs<"rdx", [EDX]>, DwarfRegNum<[1, -2, -2]>;
123  def RCX : RegisterWithSubRegs<"rcx", [ECX]>, DwarfRegNum<[2, -2, -2]>;
124  def RBX : RegisterWithSubRegs<"rbx", [EBX]>, DwarfRegNum<[3, -2, -2]>;
125  def RSI : RegisterWithSubRegs<"rsi", [ESI]>, DwarfRegNum<[4, -2, -2]>;
126  def RDI : RegisterWithSubRegs<"rdi", [EDI]>, DwarfRegNum<[5, -2, -2]>;
127  def RBP : RegisterWithSubRegs<"rbp", [EBP]>, DwarfRegNum<[6, -2, -2]>;
128  def RSP : RegisterWithSubRegs<"rsp", [ESP]>, DwarfRegNum<[7, -2, -2]>;
129
130  def R8  : RegisterWithSubRegs<"r8", [R8D]>, DwarfRegNum<[8, -2, -2]>;
131  def R9  : RegisterWithSubRegs<"r9", [R9D]>, DwarfRegNum<[9, -2, -2]>;
132  def R10 : RegisterWithSubRegs<"r10", [R10D]>, DwarfRegNum<[10, -2, -2]>;
133  def R11 : RegisterWithSubRegs<"r11", [R11D]>, DwarfRegNum<[11, -2, -2]>;
134  def R12 : RegisterWithSubRegs<"r12", [R12D]>, DwarfRegNum<[12, -2, -2]>;
135  def R13 : RegisterWithSubRegs<"r13", [R13D]>, DwarfRegNum<[13, -2, -2]>;
136  def R14 : RegisterWithSubRegs<"r14", [R14D]>, DwarfRegNum<[14, -2, -2]>;
137  def R15 : RegisterWithSubRegs<"r15", [R15D]>, DwarfRegNum<[15, -2, -2]>;
138  def RIP : RegisterWithSubRegs<"rip", [EIP]>,  DwarfRegNum<[16, -2, -2]>;
139  }
140
141  // MMX Registers. These are actually aliased to ST0 .. ST7
142  def MM0 : Register<"mm0">, DwarfRegNum<[41, 29, 29]>;
143  def MM1 : Register<"mm1">, DwarfRegNum<[42, 30, 30]>;
144  def MM2 : Register<"mm2">, DwarfRegNum<[43, 31, 31]>;
145  def MM3 : Register<"mm3">, DwarfRegNum<[44, 32, 32]>;
146  def MM4 : Register<"mm4">, DwarfRegNum<[45, 33, 33]>;
147  def MM5 : Register<"mm5">, DwarfRegNum<[46, 34, 34]>;
148  def MM6 : Register<"mm6">, DwarfRegNum<[47, 35, 35]>;
149  def MM7 : Register<"mm7">, DwarfRegNum<[48, 36, 36]>;
150
151  // Pseudo Floating Point registers
152  def FP0 : Register<"fp0">;
153  def FP1 : Register<"fp1">;
154  def FP2 : Register<"fp2">;
155  def FP3 : Register<"fp3">;
156  def FP4 : Register<"fp4">;
157  def FP5 : Register<"fp5">;
158  def FP6 : Register<"fp6">;
159
160  // XMM Registers, used by the various SSE instruction set extensions.
161  // The sub_ss and sub_sd subregs are the same registers with another regclass.
162  let CompositeIndices = [(sub_ss), (sub_sd)] in {
163  def XMM0: Register<"xmm0">, DwarfRegNum<[17, 21, 21]>;
164  def XMM1: Register<"xmm1">, DwarfRegNum<[18, 22, 22]>;
165  def XMM2: Register<"xmm2">, DwarfRegNum<[19, 23, 23]>;
166  def XMM3: Register<"xmm3">, DwarfRegNum<[20, 24, 24]>;
167  def XMM4: Register<"xmm4">, DwarfRegNum<[21, 25, 25]>;
168  def XMM5: Register<"xmm5">, DwarfRegNum<[22, 26, 26]>;
169  def XMM6: Register<"xmm6">, DwarfRegNum<[23, 27, 27]>;
170  def XMM7: Register<"xmm7">, DwarfRegNum<[24, 28, 28]>;
171
172  // X86-64 only
173  def XMM8:  Register<"xmm8">,  DwarfRegNum<[25, -2, -2]>;
174  def XMM9:  Register<"xmm9">,  DwarfRegNum<[26, -2, -2]>;
175  def XMM10: Register<"xmm10">, DwarfRegNum<[27, -2, -2]>;
176  def XMM11: Register<"xmm11">, DwarfRegNum<[28, -2, -2]>;
177  def XMM12: Register<"xmm12">, DwarfRegNum<[29, -2, -2]>;
178  def XMM13: Register<"xmm13">, DwarfRegNum<[30, -2, -2]>;
179  def XMM14: Register<"xmm14">, DwarfRegNum<[31, -2, -2]>;
180  def XMM15: Register<"xmm15">, DwarfRegNum<[32, -2, -2]>;
181  }
182
183  // YMM Registers, used by AVX instructions
184  let SubRegIndices = [sub_xmm] in {
185  def YMM0: RegisterWithSubRegs<"ymm0", [XMM0]>, DwarfRegNum<[17, 21, 21]>;
186  def YMM1: RegisterWithSubRegs<"ymm1", [XMM1]>, DwarfRegNum<[18, 22, 22]>;
187  def YMM2: RegisterWithSubRegs<"ymm2", [XMM2]>, DwarfRegNum<[19, 23, 23]>;
188  def YMM3: RegisterWithSubRegs<"ymm3", [XMM3]>, DwarfRegNum<[20, 24, 24]>;
189  def YMM4: RegisterWithSubRegs<"ymm4", [XMM4]>, DwarfRegNum<[21, 25, 25]>;
190  def YMM5: RegisterWithSubRegs<"ymm5", [XMM5]>, DwarfRegNum<[22, 26, 26]>;
191  def YMM6: RegisterWithSubRegs<"ymm6", [XMM6]>, DwarfRegNum<[23, 27, 27]>;
192  def YMM7: RegisterWithSubRegs<"ymm7", [XMM7]>, DwarfRegNum<[24, 28, 28]>;
193  def YMM8:  RegisterWithSubRegs<"ymm8", [XMM8]>,  DwarfRegNum<[25, -2, -2]>;
194  def YMM9:  RegisterWithSubRegs<"ymm9", [XMM9]>,  DwarfRegNum<[26, -2, -2]>;
195  def YMM10: RegisterWithSubRegs<"ymm10", [XMM10]>, DwarfRegNum<[27, -2, -2]>;
196  def YMM11: RegisterWithSubRegs<"ymm11", [XMM11]>, DwarfRegNum<[28, -2, -2]>;
197  def YMM12: RegisterWithSubRegs<"ymm12", [XMM12]>, DwarfRegNum<[29, -2, -2]>;
198  def YMM13: RegisterWithSubRegs<"ymm13", [XMM13]>, DwarfRegNum<[30, -2, -2]>;
199  def YMM14: RegisterWithSubRegs<"ymm14", [XMM14]>, DwarfRegNum<[31, -2, -2]>;
200  def YMM15: RegisterWithSubRegs<"ymm15", [XMM15]>, DwarfRegNum<[32, -2, -2]>;
201  }
202
203  // Floating point stack registers
204  def ST0 : Register<"st(0)">, DwarfRegNum<[33, 12, 11]>;
205  def ST1 : Register<"st(1)">, DwarfRegNum<[34, 13, 12]>;
206  def ST2 : Register<"st(2)">, DwarfRegNum<[35, 14, 13]>;
207  def ST3 : Register<"st(3)">, DwarfRegNum<[36, 15, 14]>;
208  def ST4 : Register<"st(4)">, DwarfRegNum<[37, 16, 15]>;
209  def ST5 : Register<"st(5)">, DwarfRegNum<[38, 17, 16]>;
210  def ST6 : Register<"st(6)">, DwarfRegNum<[39, 18, 17]>;
211  def ST7 : Register<"st(7)">, DwarfRegNum<[40, 19, 18]>; 
212
213  // Status flags register
214  def EFLAGS : Register<"flags">;
215
216  // Segment registers
217  def CS : Register<"cs">;
218  def DS : Register<"ds">;
219  def SS : Register<"ss">;
220  def ES : Register<"es">;
221  def FS : Register<"fs">;
222  def GS : Register<"gs">;
223  
224  // Debug registers
225  def DR0 : Register<"dr0">;
226  def DR1 : Register<"dr1">;
227  def DR2 : Register<"dr2">;
228  def DR3 : Register<"dr3">;
229  def DR4 : Register<"dr4">;
230  def DR5 : Register<"dr5">;
231  def DR6 : Register<"dr6">;
232  def DR7 : Register<"dr7">;
233  
234  // Control registers
235  def CR0 : Register<"cr0">;
236  def CR1 : Register<"cr1">;
237  def CR2 : Register<"cr2">;
238  def CR3 : Register<"cr3">;
239  def CR4 : Register<"cr4">;
240  def CR5 : Register<"cr5">;
241  def CR6 : Register<"cr6">;
242  def CR7 : Register<"cr7">;
243  def CR8 : Register<"cr8">;
244  def CR9 : Register<"cr9">;
245  def CR10 : Register<"cr10">;
246  def CR11 : Register<"cr11">;
247  def CR12 : Register<"cr12">;
248  def CR13 : Register<"cr13">;
249  def CR14 : Register<"cr14">;
250  def CR15 : Register<"cr15">;
251
252  // Pseudo index registers
253  def EIZ : Register<"eiz">;
254  def RIZ : Register<"riz">;
255}
256
257
258//===----------------------------------------------------------------------===//
259// Register Class Definitions... now that we have all of the pieces, define the
260// top-level register classes.  The order specified in the register list is
261// implicitly defined to be the register allocation order.
262//
263
264// List call-clobbered registers before callee-save registers. RBX, RBP, (and 
265// R12, R13, R14, and R15 for X86-64) are callee-save registers.
266// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
267// R8B, ... R15B. 
268// Allocate R12 and R13 last, as these require an extra byte when
269// encoded in x86_64 instructions.
270// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
271// 64-bit mode. The main complication is that they cannot be encoded in an
272// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
273// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
274// cannot be encoded.
275def GR8 : RegisterClass<"X86", [i8],  8,
276                        [AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
277                         R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B]> {
278  let MethodProtos = [{
279    iterator allocation_order_begin(const MachineFunction &MF) const;
280    iterator allocation_order_end(const MachineFunction &MF) const;
281  }];
282  let MethodBodies = [{
283    static const unsigned X86_GR8_AO_64[] = {
284      X86::AL,   X86::CL,   X86::DL,   X86::SIL, X86::DIL,
285      X86::R8B,  X86::R9B,  X86::R10B, X86::R11B,
286      X86::BL,   X86::R14B, X86::R15B, X86::R12B, X86::R13B, X86::BPL
287    };
288
289    GR8Class::iterator
290    GR8Class::allocation_order_begin(const MachineFunction &MF) const {
291      const TargetMachine &TM = MF.getTarget();
292      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
293      if (Subtarget.is64Bit())
294        return X86_GR8_AO_64;
295      else
296        return begin();
297    }
298
299    GR8Class::iterator
300    GR8Class::allocation_order_end(const MachineFunction &MF) const {
301      const TargetMachine &TM = MF.getTarget();
302      const TargetRegisterInfo *RI = TM.getRegisterInfo();
303      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
304      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
305      // Does the function dedicate RBP / EBP to being a frame ptr?
306      if (!Subtarget.is64Bit())
307        // In 32-mode, none of the 8-bit registers aliases EBP or ESP.
308        return begin() + 8;
309      else if (RI->hasFP(MF) || MFI->getReserveFP())
310        // If so, don't allocate SPL or BPL.
311        return array_endof(X86_GR8_AO_64) - 1;
312      else
313        // If not, just don't allocate SPL.
314        return array_endof(X86_GR8_AO_64);
315    }
316  }];
317}
318
319def GR16 : RegisterClass<"X86", [i16], 16,
320                         [AX, CX, DX, SI, DI, BX, BP, SP,
321                          R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W]> {
322  let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi)];
323  let MethodProtos = [{
324    iterator allocation_order_begin(const MachineFunction &MF) const;
325    iterator allocation_order_end(const MachineFunction &MF) const;
326  }];
327  let MethodBodies = [{
328    static const unsigned X86_GR16_AO_64[] = {
329      X86::AX,  X86::CX,   X86::DX,   X86::SI,   X86::DI,
330      X86::R8W, X86::R9W,  X86::R10W, X86::R11W,
331      X86::BX, X86::R14W, X86::R15W,  X86::R12W, X86::R13W, X86::BP
332    };
333
334    GR16Class::iterator
335    GR16Class::allocation_order_begin(const MachineFunction &MF) const {
336      const TargetMachine &TM = MF.getTarget();
337      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
338      if (Subtarget.is64Bit())
339        return X86_GR16_AO_64;
340      else
341        return begin();
342    }
343
344    GR16Class::iterator
345    GR16Class::allocation_order_end(const MachineFunction &MF) const {
346      const TargetMachine &TM = MF.getTarget();
347      const TargetRegisterInfo *RI = TM.getRegisterInfo();
348      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
349      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
350      if (Subtarget.is64Bit()) {
351        // Does the function dedicate RBP to being a frame ptr?
352        if (RI->hasFP(MF) || MFI->getReserveFP())
353          // If so, don't allocate SP or BP.
354          return array_endof(X86_GR16_AO_64) - 1;
355        else
356          // If not, just don't allocate SP.
357          return array_endof(X86_GR16_AO_64);
358      } else {
359        // Does the function dedicate EBP to being a frame ptr?
360        if (RI->hasFP(MF) || MFI->getReserveFP())
361          // If so, don't allocate SP or BP.
362          return begin() + 6;
363        else
364          // If not, just don't allocate SP.
365          return begin() + 7;
366      }
367    }
368  }];
369}
370
371def GR32 : RegisterClass<"X86", [i32], 32,
372                         [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
373                          R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D]> {
374  let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
375  let MethodProtos = [{
376    iterator allocation_order_begin(const MachineFunction &MF) const;
377    iterator allocation_order_end(const MachineFunction &MF) const;
378  }];
379  let MethodBodies = [{
380    static const unsigned X86_GR32_AO_64[] = {
381      X86::EAX, X86::ECX,  X86::EDX,  X86::ESI,  X86::EDI,
382      X86::R8D, X86::R9D,  X86::R10D, X86::R11D,
383      X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP
384    };
385
386    GR32Class::iterator
387    GR32Class::allocation_order_begin(const MachineFunction &MF) const {
388      const TargetMachine &TM = MF.getTarget();
389      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
390      if (Subtarget.is64Bit())
391        return X86_GR32_AO_64;
392      else
393        return begin();
394    }
395
396    GR32Class::iterator
397    GR32Class::allocation_order_end(const MachineFunction &MF) const {
398      const TargetMachine &TM = MF.getTarget();
399      const TargetRegisterInfo *RI = TM.getRegisterInfo();
400      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
401      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
402      if (Subtarget.is64Bit()) {
403        // Does the function dedicate RBP to being a frame ptr?
404        if (RI->hasFP(MF) || MFI->getReserveFP())
405          // If so, don't allocate ESP or EBP.
406          return array_endof(X86_GR32_AO_64) - 1;
407        else
408          // If not, just don't allocate ESP.
409          return array_endof(X86_GR32_AO_64);
410      } else {
411        // Does the function dedicate EBP to being a frame ptr?
412        if (RI->hasFP(MF) || MFI->getReserveFP())
413          // If so, don't allocate ESP or EBP.
414          return begin() + 6;
415        else
416          // If not, just don't allocate ESP.
417          return begin() + 7;
418      }
419    }
420  }];
421}
422
423// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
424// RIP isn't really a register and it can't be used anywhere except in an
425// address, but it doesn't cause trouble.
426def GR64 : RegisterClass<"X86", [i64], 64,
427                         [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
428                          RBX, R14, R15, R12, R13, RBP, RSP, RIP]> {
429  let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
430                       (GR16 sub_16bit),
431                       (GR32 sub_32bit)];
432  let MethodProtos = [{
433    iterator allocation_order_end(const MachineFunction &MF) const;
434  }];
435  let MethodBodies = [{
436    GR64Class::iterator
437    GR64Class::allocation_order_end(const MachineFunction &MF) const {
438      const TargetMachine &TM = MF.getTarget();
439      const TargetRegisterInfo *RI = TM.getRegisterInfo();
440      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
441      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
442      if (!Subtarget.is64Bit())
443        return begin();  // None of these are allocatable in 32-bit.
444      // Does the function dedicate RBP to being a frame ptr?
445      if (RI->hasFP(MF) || MFI->getReserveFP())
446        return end()-3;  // If so, don't allocate RIP, RSP or RBP
447      else
448        return end()-2;  // If not, just don't allocate RIP or RSP
449    }
450  }];
451}
452
453// Segment registers for use by MOV instructions (and others) that have a
454//   segment register as one operand.  Always contain a 16-bit segment
455//   descriptor.
456def SEGMENT_REG : RegisterClass<"X86", [i16], 16, [CS, DS, SS, ES, FS, GS]>;
457
458// Debug registers.
459def DEBUG_REG : RegisterClass<"X86", [i32], 32,
460                              [DR0, DR1, DR2, DR3, DR4, DR5, DR6, DR7]>;
461
462// Control registers.
463def CONTROL_REG : RegisterClass<"X86", [i64], 64,
464                                [CR0, CR1, CR2, CR3, CR4, CR5, CR6, CR7, CR8,
465                                 CR9, CR10, CR11, CR12, CR13, CR14, CR15]>;
466
467// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
468// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
469// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
470// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
471// and GR64_ABCD are classes for registers that support 8-bit h-register
472// operations.
473def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, [AL, CL, DL, BL]>;
474def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, [AH, CH, DH, BH]>;
475def GR16_ABCD : RegisterClass<"X86", [i16], 16, [AX, CX, DX, BX]> {
476  let SubRegClasses = [(GR8_ABCD_L sub_8bit), (GR8_ABCD_H sub_8bit_hi)];
477}
478def GR32_ABCD : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, EBX]> {
479  let SubRegClasses = [(GR8_ABCD_L sub_8bit),
480                       (GR8_ABCD_H sub_8bit_hi),
481                       (GR16_ABCD sub_16bit)];
482}
483def GR64_ABCD : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RBX]> {
484  let SubRegClasses = [(GR8_ABCD_L sub_8bit),
485                       (GR8_ABCD_H sub_8bit_hi),
486                       (GR16_ABCD sub_16bit),
487                       (GR32_ABCD sub_32bit)];
488}
489def GR32_TC   : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX]> {
490  let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
491}
492def GR64_TC   : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RSI, RDI,
493                                                 R8, R9, R11]> {
494  let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
495                       (GR16 sub_16bit),
496                       (GR32_TC sub_32bit)];
497}
498
499// GR8_NOREX - GR8 registers which do not require a REX prefix.
500def GR8_NOREX : RegisterClass<"X86", [i8], 8,
501                              [AL, CL, DL, AH, CH, DH, BL, BH]> {
502  let MethodProtos = [{
503    iterator allocation_order_begin(const MachineFunction &MF) const;
504    iterator allocation_order_end(const MachineFunction &MF) const;
505  }];
506  let MethodBodies = [{
507    // In 64-bit mode, it's not safe to blindly allocate H registers.
508    static const unsigned X86_GR8_NOREX_AO_64[] = {
509      X86::AL, X86::CL, X86::DL, X86::BL
510    };
511
512    GR8_NOREXClass::iterator
513    GR8_NOREXClass::allocation_order_begin(const MachineFunction &MF) const {
514      const TargetMachine &TM = MF.getTarget();
515      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
516      if (Subtarget.is64Bit())
517        return X86_GR8_NOREX_AO_64;
518      else
519        return begin();
520    }
521
522    GR8_NOREXClass::iterator
523    GR8_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
524      const TargetMachine &TM = MF.getTarget();
525      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
526      if (Subtarget.is64Bit())
527        return array_endof(X86_GR8_NOREX_AO_64);
528      else
529        return end();
530    }
531  }];
532}
533// GR16_NOREX - GR16 registers which do not require a REX prefix.
534def GR16_NOREX : RegisterClass<"X86", [i16], 16,
535                               [AX, CX, DX, SI, DI, BX, BP, SP]> {
536  let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi)];
537  let MethodProtos = [{
538    iterator allocation_order_end(const MachineFunction &MF) const;
539  }];
540  let MethodBodies = [{
541    GR16_NOREXClass::iterator
542    GR16_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
543      const TargetMachine &TM = MF.getTarget();
544      const TargetRegisterInfo *RI = TM.getRegisterInfo();
545      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
546      // Does the function dedicate RBP / EBP to being a frame ptr?
547      if (RI->hasFP(MF) || MFI->getReserveFP())
548        // If so, don't allocate SP or BP.
549        return end() - 2;
550      else
551        // If not, just don't allocate SP.
552        return end() - 1;
553    }
554  }];
555}
556// GR32_NOREX - GR32 registers which do not require a REX prefix.
557def GR32_NOREX : RegisterClass<"X86", [i32], 32,
558                               [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP]> {
559  let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
560                       (GR16_NOREX sub_16bit)];
561  let MethodProtos = [{
562    iterator allocation_order_end(const MachineFunction &MF) const;
563  }];
564  let MethodBodies = [{
565    GR32_NOREXClass::iterator
566    GR32_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
567      const TargetMachine &TM = MF.getTarget();
568      const TargetRegisterInfo *RI = TM.getRegisterInfo();
569      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
570      // Does the function dedicate RBP / EBP to being a frame ptr?
571      if (RI->hasFP(MF) || MFI->getReserveFP())
572        // If so, don't allocate ESP or EBP.
573        return end() - 2;
574      else
575        // If not, just don't allocate ESP.
576        return end() - 1;
577    }
578  }];
579}
580// GR64_NOREX - GR64 registers which do not require a REX prefix.
581def GR64_NOREX : RegisterClass<"X86", [i64], 64,
582                               [RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP]> {
583  let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
584                       (GR16_NOREX sub_16bit),
585                       (GR32_NOREX sub_32bit)];
586  let MethodProtos = [{
587    iterator allocation_order_end(const MachineFunction &MF) const;
588  }];
589  let MethodBodies = [{
590    GR64_NOREXClass::iterator
591    GR64_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
592      const TargetMachine &TM = MF.getTarget();
593      const TargetRegisterInfo *RI = TM.getRegisterInfo();
594      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
595      // Does the function dedicate RBP to being a frame ptr?
596      if (RI->hasFP(MF) || MFI->getReserveFP())
597        // If so, don't allocate RIP, RSP or RBP.
598        return end() - 3;
599      else
600        // If not, just don't allocate RIP or RSP.
601        return end() - 2;
602    }
603  }];
604}
605
606// GR32_NOSP - GR32 registers except ESP.
607def GR32_NOSP : RegisterClass<"X86", [i32], 32,
608                              [EAX, ECX, EDX, ESI, EDI, EBX, EBP,
609                               R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D]> {
610  let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
611  let MethodProtos = [{
612    iterator allocation_order_begin(const MachineFunction &MF) const;
613    iterator allocation_order_end(const MachineFunction &MF) const;
614  }];
615  let MethodBodies = [{
616    static const unsigned X86_GR32_NOSP_AO_64[] = {
617      X86::EAX, X86::ECX,  X86::EDX,  X86::ESI,  X86::EDI,
618      X86::R8D, X86::R9D,  X86::R10D, X86::R11D,
619      X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP
620    };
621
622    GR32_NOSPClass::iterator
623    GR32_NOSPClass::allocation_order_begin(const MachineFunction &MF) const {
624      const TargetMachine &TM = MF.getTarget();
625      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
626      if (Subtarget.is64Bit())
627        return X86_GR32_NOSP_AO_64;
628      else
629        return begin();
630    }
631
632    GR32_NOSPClass::iterator
633    GR32_NOSPClass::allocation_order_end(const MachineFunction &MF) const {
634      const TargetMachine &TM = MF.getTarget();
635      const TargetRegisterInfo *RI = TM.getRegisterInfo();
636      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
637      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
638      if (Subtarget.is64Bit()) {
639        // Does the function dedicate RBP to being a frame ptr?
640        if (RI->hasFP(MF) || MFI->getReserveFP())
641          // If so, don't allocate EBP.
642          return array_endof(X86_GR32_NOSP_AO_64) - 1;
643        else
644          // If not, any reg in this class is ok.
645          return array_endof(X86_GR32_NOSP_AO_64);
646      } else {
647        // Does the function dedicate EBP to being a frame ptr?
648        if (RI->hasFP(MF) || MFI->getReserveFP())
649          // If so, don't allocate EBP.
650          return begin() + 6;
651        else
652          // If not, any reg in this class is ok.
653          return begin() + 7;
654      }
655    }
656  }];
657}
658
659// GR64_NOSP - GR64 registers except RSP (and RIP).
660def GR64_NOSP : RegisterClass<"X86", [i64], 64,
661                              [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
662                               RBX, R14, R15, R12, R13, RBP]> {
663  let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
664                       (GR16 sub_16bit),
665                       (GR32_NOSP sub_32bit)];
666  let MethodProtos = [{
667    iterator allocation_order_end(const MachineFunction &MF) const;
668  }];
669  let MethodBodies = [{
670    GR64_NOSPClass::iterator
671    GR64_NOSPClass::allocation_order_end(const MachineFunction &MF) const {
672      const TargetMachine &TM = MF.getTarget();
673      const TargetRegisterInfo *RI = TM.getRegisterInfo();
674      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
675      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
676      if (!Subtarget.is64Bit())
677        return begin();  // None of these are allocatable in 32-bit.
678      // Does the function dedicate RBP to being a frame ptr?
679      if (RI->hasFP(MF) || MFI->getReserveFP())
680        return end()-1;  // If so, don't allocate RBP
681      else
682        return end();  // If not, any reg in this class is ok.
683    }
684  }];
685}
686
687// GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
688def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
689                                    [RAX, RCX, RDX, RSI, RDI, RBX, RBP]> {
690  let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
691                       (GR16_NOREX sub_16bit),
692                       (GR32_NOREX sub_32bit)];
693  let MethodProtos = [{
694    iterator allocation_order_end(const MachineFunction &MF) const;
695  }];
696  let MethodBodies = [{
697    GR64_NOREX_NOSPClass::iterator
698    GR64_NOREX_NOSPClass::allocation_order_end(const MachineFunction &MF) const
699  {
700      const TargetMachine &TM = MF.getTarget();
701      const TargetRegisterInfo *RI = TM.getRegisterInfo();
702      const X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
703      // Does the function dedicate RBP to being a frame ptr?
704      if (RI->hasFP(MF) || MFI->getReserveFP())
705        // If so, don't allocate RBP.
706        return end() - 1;
707      else
708        // If not, any reg in this class is ok.
709        return end();
710    }
711  }];
712}
713
714// A class to support the 'A' assembler constraint: EAX then EDX.
715def GR32_AD : RegisterClass<"X86", [i32], 32, [EAX, EDX]> {
716  let SubRegClasses = [(GR8_ABCD_L sub_8bit),
717                       (GR8_ABCD_H sub_8bit_hi),
718                       (GR16_ABCD sub_16bit)];
719}
720
721// Scalar SSE2 floating point registers.
722def FR32 : RegisterClass<"X86", [f32], 32,
723                         [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
724                          XMM8, XMM9, XMM10, XMM11,
725                          XMM12, XMM13, XMM14, XMM15]> {
726  let MethodProtos = [{
727    iterator allocation_order_end(const MachineFunction &MF) const;
728  }];
729  let MethodBodies = [{
730    FR32Class::iterator
731    FR32Class::allocation_order_end(const MachineFunction &MF) const {
732      const TargetMachine &TM = MF.getTarget();
733      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
734      if (!Subtarget.is64Bit())
735        return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
736      else
737        return end();
738    }
739  }];
740}
741
742def FR64 : RegisterClass<"X86", [f64], 64,
743                         [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
744                          XMM8, XMM9, XMM10, XMM11,
745                          XMM12, XMM13, XMM14, XMM15]> {
746  let MethodProtos = [{
747    iterator allocation_order_end(const MachineFunction &MF) const;
748  }];
749  let MethodBodies = [{
750    FR64Class::iterator
751    FR64Class::allocation_order_end(const MachineFunction &MF) const {
752      const TargetMachine &TM = MF.getTarget();
753      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
754      if (!Subtarget.is64Bit())
755        return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
756      else
757        return end();
758    }
759  }];
760}
761
762
763// FIXME: This sets up the floating point register files as though they are f64
764// values, though they really are f80 values.  This will cause us to spill
765// values as 64-bit quantities instead of 80-bit quantities, which is much much
766// faster on common hardware.  In reality, this should be controlled by a
767// command line option or something.
768
769def RFP32 : RegisterClass<"X86",[f32], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
770def RFP64 : RegisterClass<"X86",[f64], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
771def RFP80 : RegisterClass<"X86",[f80], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
772
773// Floating point stack registers (these are not allocatable by the
774// register allocator - the floating point stackifier is responsible
775// for transforming FPn allocations to STn registers)
776def RST : RegisterClass<"X86", [f80, f64, f32], 32,
777                        [ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> {
778    let MethodProtos = [{
779    iterator allocation_order_end(const MachineFunction &MF) const;
780  }];
781  let MethodBodies = [{
782    RSTClass::iterator
783    RSTClass::allocation_order_end(const MachineFunction &MF) const {
784      return begin();
785    }
786  }];
787}
788
789// Generic vector registers: VR64 and VR128.
790def VR64: RegisterClass<"X86", [x86mmx], 64,
791                          [MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7]>;
792def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128,
793                          [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
794                           XMM8, XMM9, XMM10, XMM11,
795                           XMM12, XMM13, XMM14, XMM15]> {
796  let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd)];
797
798  let MethodProtos = [{
799    iterator allocation_order_end(const MachineFunction &MF) const;
800  }];
801  let MethodBodies = [{
802    VR128Class::iterator
803    VR128Class::allocation_order_end(const MachineFunction &MF) const {
804      const TargetMachine &TM = MF.getTarget();
805      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
806      if (!Subtarget.is64Bit())
807        return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
808      else
809        return end();
810    }
811  }];
812}
813
814def VR256 : RegisterClass<"X86", [v32i8, v8i32, v4i64, v8f32, v4f64], 256,
815                          [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
816                           YMM8, YMM9, YMM10, YMM11,
817                           YMM12, YMM13, YMM14, YMM15]> {
818  let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd), (VR128 sub_xmm)];
819
820  let MethodProtos = [{
821    iterator allocation_order_end(const MachineFunction &MF) const;
822  }];
823  let MethodBodies = [{
824    VR256Class::iterator
825    VR256Class::allocation_order_end(const MachineFunction &MF) const {
826      const TargetMachine &TM = MF.getTarget();
827      const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
828      if (!Subtarget.is64Bit())
829        return end()-8; // Only YMM0 to YMM7 are available in 32-bit mode.
830      else
831        return end();
832    }
833  }];
834}
835
836// Status flags registers.
837def CCR : RegisterClass<"X86", [i32], 32, [EFLAGS]> {
838  let CopyCost = -1;  // Don't allow copying of status registers.
839
840  // EFLAGS is not allocatable.
841  let MethodProtos = [{
842    iterator allocation_order_end(const MachineFunction &MF) const;
843  }];
844  let MethodBodies = [{
845    CCRClass::iterator
846    CCRClass::allocation_order_end(const MachineFunction &MF) const {
847      return allocation_order_begin(MF);
848    }
849  }];
850}
851