X86RegisterInfo.td revision bed23081860275c79137f65d592920e7991b8198
1//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes the X86 Register file, defining the registers themselves, 11// aliases between the registers, and the register classes built out of the 12// registers. 13// 14//===----------------------------------------------------------------------===// 15 16class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> { 17 let Namespace = "X86"; 18 let HWEncoding = Enc; 19 let SubRegs = subregs; 20} 21 22// Subregister indices. 23let Namespace = "X86" in { 24 def sub_8bit : SubRegIndex<8>; 25 def sub_8bit_hi : SubRegIndex<8, 8>; 26 def sub_16bit : SubRegIndex<16>; 27 def sub_32bit : SubRegIndex<32>; 28 def sub_xmm : SubRegIndex<64>; 29} 30 31//===----------------------------------------------------------------------===// 32// Register definitions... 33// 34 35// In the register alias definitions below, we define which registers alias 36// which others. We only specify which registers the small registers alias, 37// because the register file generator is smart enough to figure out that 38// AL aliases AX if we tell it that AX aliased AL (for example). 39 40// Dwarf numbering is different for 32-bit and 64-bit, and there are 41// variations by target as well. Currently the first entry is for X86-64, 42// second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux 43// and debug information on X86-32/Darwin) 44 45// 8-bit registers 46// Low registers 47def AL : X86Reg<"al", 0>; 48def DL : X86Reg<"dl", 2>; 49def CL : X86Reg<"cl", 1>; 50def BL : X86Reg<"bl", 3>; 51 52// High registers. On x86-64, these cannot be used in any instruction 53// with a REX prefix. 54def AH : X86Reg<"ah", 4>; 55def DH : X86Reg<"dh", 6>; 56def CH : X86Reg<"ch", 5>; 57def BH : X86Reg<"bh", 7>; 58 59// X86-64 only, requires REX. 60let CostPerUse = 1 in { 61def SIL : X86Reg<"sil", 6>; 62def DIL : X86Reg<"dil", 7>; 63def BPL : X86Reg<"bpl", 5>; 64def SPL : X86Reg<"spl", 4>; 65def R8B : X86Reg<"r8b", 8>; 66def R9B : X86Reg<"r9b", 9>; 67def R10B : X86Reg<"r10b", 10>; 68def R11B : X86Reg<"r11b", 11>; 69def R12B : X86Reg<"r12b", 12>; 70def R13B : X86Reg<"r13b", 13>; 71def R14B : X86Reg<"r14b", 14>; 72def R15B : X86Reg<"r15b", 15>; 73} 74 75// 16-bit registers 76let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in { 77def AX : X86Reg<"ax", 0, [AL,AH]>; 78def DX : X86Reg<"dx", 2, [DL,DH]>; 79def CX : X86Reg<"cx", 1, [CL,CH]>; 80def BX : X86Reg<"bx", 3, [BL,BH]>; 81} 82let SubRegIndices = [sub_8bit] in { 83def SI : X86Reg<"si", 6, [SIL]>; 84def DI : X86Reg<"di", 7, [DIL]>; 85def BP : X86Reg<"bp", 5, [BPL]>; 86def SP : X86Reg<"sp", 4, [SPL]>; 87} 88def IP : X86Reg<"ip", 0>; 89 90// X86-64 only, requires REX. 91let SubRegIndices = [sub_8bit], CostPerUse = 1 in { 92def R8W : X86Reg<"r8w", 8, [R8B]>; 93def R9W : X86Reg<"r9w", 9, [R9B]>; 94def R10W : X86Reg<"r10w", 10, [R10B]>; 95def R11W : X86Reg<"r11w", 11, [R11B]>; 96def R12W : X86Reg<"r12w", 12, [R12B]>; 97def R13W : X86Reg<"r13w", 13, [R13B]>; 98def R14W : X86Reg<"r14w", 14, [R14B]>; 99def R15W : X86Reg<"r15w", 15, [R15B]>; 100} 101 102// 32-bit registers 103let SubRegIndices = [sub_16bit] in { 104def EAX : X86Reg<"eax", 0, [AX]>, DwarfRegNum<[-2, 0, 0]>; 105def EDX : X86Reg<"edx", 2, [DX]>, DwarfRegNum<[-2, 2, 2]>; 106def ECX : X86Reg<"ecx", 1, [CX]>, DwarfRegNum<[-2, 1, 1]>; 107def EBX : X86Reg<"ebx", 3, [BX]>, DwarfRegNum<[-2, 3, 3]>; 108def ESI : X86Reg<"esi", 6, [SI]>, DwarfRegNum<[-2, 6, 6]>; 109def EDI : X86Reg<"edi", 7, [DI]>, DwarfRegNum<[-2, 7, 7]>; 110def EBP : X86Reg<"ebp", 5, [BP]>, DwarfRegNum<[-2, 4, 5]>; 111def ESP : X86Reg<"esp", 4, [SP]>, DwarfRegNum<[-2, 5, 4]>; 112def EIP : X86Reg<"eip", 0, [IP]>, DwarfRegNum<[-2, 8, 8]>; 113 114// X86-64 only, requires REX 115let CostPerUse = 1 in { 116def R8D : X86Reg<"r8d", 8, [R8W]>; 117def R9D : X86Reg<"r9d", 9, [R9W]>; 118def R10D : X86Reg<"r10d", 10, [R10W]>; 119def R11D : X86Reg<"r11d", 11, [R11W]>; 120def R12D : X86Reg<"r12d", 12, [R12W]>; 121def R13D : X86Reg<"r13d", 13, [R13W]>; 122def R14D : X86Reg<"r14d", 14, [R14W]>; 123def R15D : X86Reg<"r15d", 15, [R15W]>; 124}} 125 126// 64-bit registers, X86-64 only 127let SubRegIndices = [sub_32bit] in { 128def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>; 129def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>; 130def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>; 131def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>; 132def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>; 133def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>; 134def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>; 135def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>; 136 137// These also require REX. 138let CostPerUse = 1 in { 139def R8 : X86Reg<"r8", 8, [R8D]>, DwarfRegNum<[ 8, -2, -2]>; 140def R9 : X86Reg<"r9", 9, [R9D]>, DwarfRegNum<[ 9, -2, -2]>; 141def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>; 142def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>; 143def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>; 144def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>; 145def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>; 146def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>; 147def RIP : X86Reg<"rip", 0, [EIP]>, DwarfRegNum<[16, -2, -2]>; 148}} 149 150// MMX Registers. These are actually aliased to ST0 .. ST7 151def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>; 152def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>; 153def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>; 154def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>; 155def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>; 156def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>; 157def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>; 158def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>; 159 160// Pseudo Floating Point registers 161def FP0 : X86Reg<"fp0", 0>; 162def FP1 : X86Reg<"fp1", 0>; 163def FP2 : X86Reg<"fp2", 0>; 164def FP3 : X86Reg<"fp3", 0>; 165def FP4 : X86Reg<"fp4", 0>; 166def FP5 : X86Reg<"fp5", 0>; 167def FP6 : X86Reg<"fp6", 0>; 168 169// XMM Registers, used by the various SSE instruction set extensions. 170def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>; 171def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>; 172def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>; 173def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>; 174def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>; 175def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>; 176def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>; 177def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>; 178 179// X86-64 only 180let CostPerUse = 1 in { 181def XMM8: X86Reg<"xmm8", 8>, DwarfRegNum<[25, -2, -2]>; 182def XMM9: X86Reg<"xmm9", 9>, DwarfRegNum<[26, -2, -2]>; 183def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>; 184def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>; 185def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>; 186def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>; 187def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>; 188def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>; 189} // CostPerUse 190 191// YMM Registers, used by AVX instructions 192let SubRegIndices = [sub_xmm] in { 193def YMM0: X86Reg<"ymm0", 0, [XMM0]>, DwarfRegAlias<XMM0>; 194def YMM1: X86Reg<"ymm1", 1, [XMM1]>, DwarfRegAlias<XMM1>; 195def YMM2: X86Reg<"ymm2", 2, [XMM2]>, DwarfRegAlias<XMM2>; 196def YMM3: X86Reg<"ymm3", 3, [XMM3]>, DwarfRegAlias<XMM3>; 197def YMM4: X86Reg<"ymm4", 4, [XMM4]>, DwarfRegAlias<XMM4>; 198def YMM5: X86Reg<"ymm5", 5, [XMM5]>, DwarfRegAlias<XMM5>; 199def YMM6: X86Reg<"ymm6", 6, [XMM6]>, DwarfRegAlias<XMM6>; 200def YMM7: X86Reg<"ymm7", 7, [XMM7]>, DwarfRegAlias<XMM7>; 201def YMM8: X86Reg<"ymm8", 8, [XMM8]>, DwarfRegAlias<XMM8>; 202def YMM9: X86Reg<"ymm9", 9, [XMM9]>, DwarfRegAlias<XMM9>; 203def YMM10: X86Reg<"ymm10", 10, [XMM10]>, DwarfRegAlias<XMM10>; 204def YMM11: X86Reg<"ymm11", 11, [XMM11]>, DwarfRegAlias<XMM11>; 205def YMM12: X86Reg<"ymm12", 12, [XMM12]>, DwarfRegAlias<XMM12>; 206def YMM13: X86Reg<"ymm13", 13, [XMM13]>, DwarfRegAlias<XMM13>; 207def YMM14: X86Reg<"ymm14", 14, [XMM14]>, DwarfRegAlias<XMM14>; 208def YMM15: X86Reg<"ymm15", 15, [XMM15]>, DwarfRegAlias<XMM15>; 209} 210 211class STRegister<string n, bits<16> Enc, list<Register> A> : X86Reg<n, Enc> { 212 let Aliases = A; 213} 214 215// Floating point stack registers. These don't map one-to-one to the FP 216// pseudo registers, but we still mark them as aliasing FP registers. That 217// way both kinds can be live without exceeding the stack depth. ST registers 218// are only live around inline assembly. 219def ST0 : STRegister<"st(0)", 0, []>, DwarfRegNum<[33, 12, 11]>; 220def ST1 : STRegister<"st(1)", 1, [FP6]>, DwarfRegNum<[34, 13, 12]>; 221def ST2 : STRegister<"st(2)", 2, [FP5]>, DwarfRegNum<[35, 14, 13]>; 222def ST3 : STRegister<"st(3)", 3, [FP4]>, DwarfRegNum<[36, 15, 14]>; 223def ST4 : STRegister<"st(4)", 4, [FP3]>, DwarfRegNum<[37, 16, 15]>; 224def ST5 : STRegister<"st(5)", 5, [FP2]>, DwarfRegNum<[38, 17, 16]>; 225def ST6 : STRegister<"st(6)", 6, [FP1]>, DwarfRegNum<[39, 18, 17]>; 226def ST7 : STRegister<"st(7)", 7, [FP0]>, DwarfRegNum<[40, 19, 18]>; 227 228// Floating-point status word 229def FPSW : X86Reg<"fpsw", 0>; 230 231// Status flags register 232def EFLAGS : X86Reg<"flags", 0>; 233 234// Segment registers 235def CS : X86Reg<"cs", 1>; 236def DS : X86Reg<"ds", 3>; 237def SS : X86Reg<"ss", 2>; 238def ES : X86Reg<"es", 0>; 239def FS : X86Reg<"fs", 4>; 240def GS : X86Reg<"gs", 5>; 241 242// Debug registers 243def DR0 : X86Reg<"dr0", 0>; 244def DR1 : X86Reg<"dr1", 1>; 245def DR2 : X86Reg<"dr2", 2>; 246def DR3 : X86Reg<"dr3", 3>; 247def DR4 : X86Reg<"dr4", 4>; 248def DR5 : X86Reg<"dr5", 5>; 249def DR6 : X86Reg<"dr6", 6>; 250def DR7 : X86Reg<"dr7", 7>; 251 252// Control registers 253def CR0 : X86Reg<"cr0", 0>; 254def CR1 : X86Reg<"cr1", 1>; 255def CR2 : X86Reg<"cr2", 2>; 256def CR3 : X86Reg<"cr3", 3>; 257def CR4 : X86Reg<"cr4", 4>; 258def CR5 : X86Reg<"cr5", 5>; 259def CR6 : X86Reg<"cr6", 6>; 260def CR7 : X86Reg<"cr7", 7>; 261def CR8 : X86Reg<"cr8", 8>; 262def CR9 : X86Reg<"cr9", 9>; 263def CR10 : X86Reg<"cr10", 10>; 264def CR11 : X86Reg<"cr11", 11>; 265def CR12 : X86Reg<"cr12", 12>; 266def CR13 : X86Reg<"cr13", 13>; 267def CR14 : X86Reg<"cr14", 14>; 268def CR15 : X86Reg<"cr15", 15>; 269 270// Pseudo index registers 271def EIZ : X86Reg<"eiz", 4>; 272def RIZ : X86Reg<"riz", 4>; 273 274 275//===----------------------------------------------------------------------===// 276// Register Class Definitions... now that we have all of the pieces, define the 277// top-level register classes. The order specified in the register list is 278// implicitly defined to be the register allocation order. 279// 280 281// List call-clobbered registers before callee-save registers. RBX, RBP, (and 282// R12, R13, R14, and R15 for X86-64) are callee-save registers. 283// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and 284// R8B, ... R15B. 285// Allocate R12 and R13 last, as these require an extra byte when 286// encoded in x86_64 instructions. 287// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in 288// 64-bit mode. The main complication is that they cannot be encoded in an 289// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc. 290// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d" 291// cannot be encoded. 292def GR8 : RegisterClass<"X86", [i8], 8, 293 (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL, 294 R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> { 295 let AltOrders = [(sub GR8, AH, BH, CH, DH)]; 296 let AltOrderSelect = [{ 297 return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit(); 298 }]; 299} 300 301def GR16 : RegisterClass<"X86", [i16], 16, 302 (add AX, CX, DX, SI, DI, BX, BP, SP, 303 R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>; 304 305def GR32 : RegisterClass<"X86", [i32], 32, 306 (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP, 307 R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>; 308 309// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since 310// RIP isn't really a register and it can't be used anywhere except in an 311// address, but it doesn't cause trouble. 312def GR64 : RegisterClass<"X86", [i64], 64, 313 (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, 314 RBX, R14, R15, R12, R13, RBP, RSP, RIP)>; 315 316// Segment registers for use by MOV instructions (and others) that have a 317// segment register as one operand. Always contain a 16-bit segment 318// descriptor. 319def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>; 320 321// Debug registers. 322def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>; 323 324// Control registers. 325def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>; 326 327// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of 328// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d" 329// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers 330// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD, 331// and GR64_ABCD are classes for registers that support 8-bit h-register 332// operations. 333def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>; 334def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>; 335def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>; 336def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>; 337def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>; 338def GR32_TC : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)>; 339def GR64_TC : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI, 340 R8, R9, R11, RIP)>; 341def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, 342 R8, R9, R11)>; 343 344// GR8_NOREX - GR8 registers which do not require a REX prefix. 345def GR8_NOREX : RegisterClass<"X86", [i8], 8, 346 (add AL, CL, DL, AH, CH, DH, BL, BH)> { 347 let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)]; 348 let AltOrderSelect = [{ 349 return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit(); 350 }]; 351} 352// GR16_NOREX - GR16 registers which do not require a REX prefix. 353def GR16_NOREX : RegisterClass<"X86", [i16], 16, 354 (add AX, CX, DX, SI, DI, BX, BP, SP)>; 355// GR32_NOREX - GR32 registers which do not require a REX prefix. 356def GR32_NOREX : RegisterClass<"X86", [i32], 32, 357 (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>; 358// GR64_NOREX - GR64 registers which do not require a REX prefix. 359def GR64_NOREX : RegisterClass<"X86", [i64], 64, 360 (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>; 361 362// GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit 363// mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs 364// to clear upper 32-bits of RAX so is not a NOP. 365def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)>; 366 367// GR32_NOSP - GR32 registers except ESP. 368def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>; 369 370// GR64_NOSP - GR64 registers except RSP (and RIP). 371def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>; 372 373// GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except 374// ESP. 375def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32, 376 (and GR32_NOREX, GR32_NOSP)>; 377 378// GR64_NOREX_NOSP - GR64_NOREX registers except RSP. 379def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64, 380 (and GR64_NOREX, GR64_NOSP)>; 381 382// A class to support the 'A' assembler constraint: EAX then EDX. 383def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>; 384 385// Scalar SSE2 floating point registers. 386def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>; 387 388def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>; 389 390 391// FIXME: This sets up the floating point register files as though they are f64 392// values, though they really are f80 values. This will cause us to spill 393// values as 64-bit quantities instead of 80-bit quantities, which is much much 394// faster on common hardware. In reality, this should be controlled by a 395// command line option or something. 396 397def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>; 398def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>; 399def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>; 400 401// Floating point stack registers (these are not allocatable by the 402// register allocator - the floating point stackifier is responsible 403// for transforming FPn allocations to STn registers) 404def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> { 405 let isAllocatable = 0; 406} 407 408// Generic vector registers: VR64 and VR128. 409def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>; 410def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 411 128, (add FR32)>; 412def VR256 : RegisterClass<"X86", [v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 413 256, (sequence "YMM%u", 0, 15)>; 414 415// Status flags registers. 416def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> { 417 let CopyCost = -1; // Don't allow copying of status registers. 418 let isAllocatable = 0; 419} 420def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> { 421 let CopyCost = -1; // Don't allow copying of status registers. 422 let isAllocatable = 0; 423} 424