1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// Order relation is defined on set of functions. It was made through
13// special function comparison procedure that returns
14// 0 when functions are equal,
15// -1 when Left function is less than right function, and
16// 1 for opposite case. We need total-ordering, so we need to maintain
17// four properties on the functions set:
18// a <= a (reflexivity)
19// if a <= b and b <= a then a = b (antisymmetry)
20// if a <= b and b <= c then a <= c (transitivity).
21// for all a and b: a <= b or b <= a (totality).
22//
23// Comparison iterates through each instruction in each basic block.
24// Functions are kept on binary tree. For each new function F we perform
25// lookup in binary tree.
26// In practice it works the following way:
27// -- We define Function* container class with custom "operator<" (FunctionPtr).
28// -- "FunctionPtr" instances are stored in std::set collection, so every
29//    std::set::insert operation will give you result in log(N) time.
30//
31// When a match is found the functions are folded. If both functions are
32// overridable, we move the functionality into a new internal function and
33// leave two overridable thunks to it.
34//
35//===----------------------------------------------------------------------===//
36//
37// Future work:
38//
39// * virtual functions.
40//
41// Many functions have their address taken by the virtual function table for
42// the object they belong to. However, as long as it's only used for a lookup
43// and call, this is irrelevant, and we'd like to fold such functions.
44//
45// * be smarter about bitcasts.
46//
47// In order to fold functions, we will sometimes add either bitcast instructions
48// or bitcast constant expressions. Unfortunately, this can confound further
49// analysis since the two functions differ where one has a bitcast and the
50// other doesn't. We should learn to look through bitcasts.
51//
52// * Compare complex types with pointer types inside.
53// * Compare cross-reference cases.
54// * Compare complex expressions.
55//
56// All the three issues above could be described as ability to prove that
57// fA == fB == fC == fE == fF == fG in example below:
58//
59//  void fA() {
60//    fB();
61//  }
62//  void fB() {
63//    fA();
64//  }
65//
66//  void fE() {
67//    fF();
68//  }
69//  void fF() {
70//    fG();
71//  }
72//  void fG() {
73//    fE();
74//  }
75//
76// Simplest cross-reference case (fA <--> fB) was implemented in previous
77// versions of MergeFunctions, though it presented only in two function pairs
78// in test-suite (that counts >50k functions)
79// Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
80// could cover much more cases.
81//
82//===----------------------------------------------------------------------===//
83
84#include "llvm/Transforms/IPO.h"
85#include "llvm/ADT/DenseSet.h"
86#include "llvm/ADT/FoldingSet.h"
87#include "llvm/ADT/STLExtras.h"
88#include "llvm/ADT/SmallSet.h"
89#include "llvm/ADT/Statistic.h"
90#include "llvm/IR/CallSite.h"
91#include "llvm/IR/Constants.h"
92#include "llvm/IR/DataLayout.h"
93#include "llvm/IR/IRBuilder.h"
94#include "llvm/IR/InlineAsm.h"
95#include "llvm/IR/Instructions.h"
96#include "llvm/IR/LLVMContext.h"
97#include "llvm/IR/Module.h"
98#include "llvm/IR/Operator.h"
99#include "llvm/IR/ValueHandle.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/CommandLine.h"
102#include "llvm/Support/Debug.h"
103#include "llvm/Support/ErrorHandling.h"
104#include "llvm/Support/raw_ostream.h"
105#include <vector>
106using namespace llvm;
107
108#define DEBUG_TYPE "mergefunc"
109
110STATISTIC(NumFunctionsMerged, "Number of functions merged");
111STATISTIC(NumThunksWritten, "Number of thunks generated");
112STATISTIC(NumAliasesWritten, "Number of aliases generated");
113STATISTIC(NumDoubleWeak, "Number of new functions created");
114
115static cl::opt<unsigned> NumFunctionsForSanityCheck(
116    "mergefunc-sanity",
117    cl::desc("How many functions in module could be used for "
118             "MergeFunctions pass sanity check. "
119             "'0' disables this check. Works only with '-debug' key."),
120    cl::init(0), cl::Hidden);
121
122namespace {
123
124/// FunctionComparator - Compares two functions to determine whether or not
125/// they will generate machine code with the same behaviour. DataLayout is
126/// used if available. The comparator always fails conservatively (erring on the
127/// side of claiming that two functions are different).
128class FunctionComparator {
129public:
130  FunctionComparator(const Function *F1, const Function *F2)
131      : FnL(F1), FnR(F2) {}
132
133  /// Test whether the two functions have equivalent behaviour.
134  int compare();
135
136private:
137  /// Test whether two basic blocks have equivalent behaviour.
138  int compare(const BasicBlock *BBL, const BasicBlock *BBR);
139
140  /// Constants comparison.
141  /// Its analog to lexicographical comparison between hypothetical numbers
142  /// of next format:
143  /// <bitcastability-trait><raw-bit-contents>
144  ///
145  /// 1. Bitcastability.
146  /// Check whether L's type could be losslessly bitcasted to R's type.
147  /// On this stage method, in case when lossless bitcast is not possible
148  /// method returns -1 or 1, thus also defining which type is greater in
149  /// context of bitcastability.
150  /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
151  ///          to the contents comparison.
152  ///          If types differ, remember types comparison result and check
153  ///          whether we still can bitcast types.
154  /// Stage 1: Types that satisfies isFirstClassType conditions are always
155  ///          greater then others.
156  /// Stage 2: Vector is greater then non-vector.
157  ///          If both types are vectors, then vector with greater bitwidth is
158  ///          greater.
159  ///          If both types are vectors with the same bitwidth, then types
160  ///          are bitcastable, and we can skip other stages, and go to contents
161  ///          comparison.
162  /// Stage 3: Pointer types are greater than non-pointers. If both types are
163  ///          pointers of the same address space - go to contents comparison.
164  ///          Different address spaces: pointer with greater address space is
165  ///          greater.
166  /// Stage 4: Types are neither vectors, nor pointers. And they differ.
167  ///          We don't know how to bitcast them. So, we better don't do it,
168  ///          and return types comparison result (so it determines the
169  ///          relationship among constants we don't know how to bitcast).
170  ///
171  /// Just for clearance, let's see how the set of constants could look
172  /// on single dimension axis:
173  ///
174  /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
175  /// Where: NFCT - Not a FirstClassType
176  ///        FCT - FirstClassTyp:
177  ///
178  /// 2. Compare raw contents.
179  /// It ignores types on this stage and only compares bits from L and R.
180  /// Returns 0, if L and R has equivalent contents.
181  /// -1 or 1 if values are different.
182  /// Pretty trivial:
183  /// 2.1. If contents are numbers, compare numbers.
184  ///    Ints with greater bitwidth are greater. Ints with same bitwidths
185  ///    compared by their contents.
186  /// 2.2. "And so on". Just to avoid discrepancies with comments
187  /// perhaps it would be better to read the implementation itself.
188  /// 3. And again about overall picture. Let's look back at how the ordered set
189  /// of constants will look like:
190  /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
191  ///
192  /// Now look, what could be inside [FCT, "others"], for example:
193  /// [FCT, "others"] =
194  /// [
195  ///   [double 0.1], [double 1.23],
196  ///   [i32 1], [i32 2],
197  ///   { double 1.0 },       ; StructTyID, NumElements = 1
198  ///   { i32 1 },            ; StructTyID, NumElements = 1
199  ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
200  ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
201  /// ]
202  ///
203  /// Let's explain the order. Float numbers will be less than integers, just
204  /// because of cmpType terms: FloatTyID < IntegerTyID.
205  /// Floats (with same fltSemantics) are sorted according to their value.
206  /// Then you can see integers, and they are, like a floats,
207  /// could be easy sorted among each others.
208  /// The structures. Structures are grouped at the tail, again because of their
209  /// TypeID: StructTyID > IntegerTyID > FloatTyID.
210  /// Structures with greater number of elements are greater. Structures with
211  /// greater elements going first are greater.
212  /// The same logic with vectors, arrays and other possible complex types.
213  ///
214  /// Bitcastable constants.
215  /// Let's assume, that some constant, belongs to some group of
216  /// "so-called-equal" values with different types, and at the same time
217  /// belongs to another group of constants with equal types
218  /// and "really" equal values.
219  ///
220  /// Now, prove that this is impossible:
221  ///
222  /// If constant A with type TyA is bitcastable to B with type TyB, then:
223  /// 1. All constants with equal types to TyA, are bitcastable to B. Since
224  ///    those should be vectors (if TyA is vector), pointers
225  ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
226  ///    be equal to TyB.
227  /// 2. All constants with non-equal, but bitcastable types to TyA, are
228  ///    bitcastable to B.
229  ///    Once again, just because we allow it to vectors and pointers only.
230  ///    This statement could be expanded as below:
231  /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
232  ///      vector B, and thus bitcastable to B as well.
233  /// 2.2. All pointers of the same address space, no matter what they point to,
234  ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
235  /// So any constant equal or bitcastable to A is equal or bitcastable to B.
236  /// QED.
237  ///
238  /// In another words, for pointers and vectors, we ignore top-level type and
239  /// look at their particular properties (bit-width for vectors, and
240  /// address space for pointers).
241  /// If these properties are equal - compare their contents.
242  int cmpConstants(const Constant *L, const Constant *R);
243
244  /// Assign or look up previously assigned numbers for the two values, and
245  /// return whether the numbers are equal. Numbers are assigned in the order
246  /// visited.
247  /// Comparison order:
248  /// Stage 0: Value that is function itself is always greater then others.
249  ///          If left and right values are references to their functions, then
250  ///          they are equal.
251  /// Stage 1: Constants are greater than non-constants.
252  ///          If both left and right are constants, then the result of
253  ///          cmpConstants is used as cmpValues result.
254  /// Stage 2: InlineAsm instances are greater than others. If both left and
255  ///          right are InlineAsm instances, InlineAsm* pointers casted to
256  ///          integers and compared as numbers.
257  /// Stage 3: For all other cases we compare order we meet these values in
258  ///          their functions. If right value was met first during scanning,
259  ///          then left value is greater.
260  ///          In another words, we compare serial numbers, for more details
261  ///          see comments for sn_mapL and sn_mapR.
262  int cmpValues(const Value *L, const Value *R);
263
264  /// Compare two Instructions for equivalence, similar to
265  /// Instruction::isSameOperationAs but with modifications to the type
266  /// comparison.
267  /// Stages are listed in "most significant stage first" order:
268  /// On each stage below, we do comparison between some left and right
269  /// operation parts. If parts are non-equal, we assign parts comparison
270  /// result to the operation comparison result and exit from method.
271  /// Otherwise we proceed to the next stage.
272  /// Stages:
273  /// 1. Operations opcodes. Compared as numbers.
274  /// 2. Number of operands.
275  /// 3. Operation types. Compared with cmpType method.
276  /// 4. Compare operation subclass optional data as stream of bytes:
277  /// just convert it to integers and call cmpNumbers.
278  /// 5. Compare in operation operand types with cmpType in
279  /// most significant operand first order.
280  /// 6. Last stage. Check operations for some specific attributes.
281  /// For example, for Load it would be:
282  /// 6.1.Load: volatile (as boolean flag)
283  /// 6.2.Load: alignment (as integer numbers)
284  /// 6.3.Load: synch-scope (as integer numbers)
285  /// 6.4.Load: range metadata (as integer numbers)
286  /// On this stage its better to see the code, since its not more than 10-15
287  /// strings for particular instruction, and could change sometimes.
288  int cmpOperations(const Instruction *L, const Instruction *R) const;
289
290  /// Compare two GEPs for equivalent pointer arithmetic.
291  /// Parts to be compared for each comparison stage,
292  /// most significant stage first:
293  /// 1. Address space. As numbers.
294  /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
295  /// 3. Pointer operand type (using cmpType method).
296  /// 4. Number of operands.
297  /// 5. Compare operands, using cmpValues method.
298  int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
299  int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
300    return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
301  }
302
303  /// cmpType - compares two types,
304  /// defines total ordering among the types set.
305  ///
306  /// Return values:
307  /// 0 if types are equal,
308  /// -1 if Left is less than Right,
309  /// +1 if Left is greater than Right.
310  ///
311  /// Description:
312  /// Comparison is broken onto stages. Like in lexicographical comparison
313  /// stage coming first has higher priority.
314  /// On each explanation stage keep in mind total ordering properties.
315  ///
316  /// 0. Before comparison we coerce pointer types of 0 address space to
317  /// integer.
318  /// We also don't bother with same type at left and right, so
319  /// just return 0 in this case.
320  ///
321  /// 1. If types are of different kind (different type IDs).
322  ///    Return result of type IDs comparison, treating them as numbers.
323  /// 2. If types are vectors or integers, compare Type* values as numbers.
324  /// 3. Types has same ID, so check whether they belongs to the next group:
325  /// * Void
326  /// * Float
327  /// * Double
328  /// * X86_FP80
329  /// * FP128
330  /// * PPC_FP128
331  /// * Label
332  /// * Metadata
333  /// If so - return 0, yes - we can treat these types as equal only because
334  /// their IDs are same.
335  /// 4. If Left and Right are pointers, return result of address space
336  /// comparison (numbers comparison). We can treat pointer types of same
337  /// address space as equal.
338  /// 5. If types are complex.
339  /// Then both Left and Right are to be expanded and their element types will
340  /// be checked with the same way. If we get Res != 0 on some stage, return it.
341  /// Otherwise return 0.
342  /// 6. For all other cases put llvm_unreachable.
343  int cmpTypes(Type *TyL, Type *TyR) const;
344
345  int cmpNumbers(uint64_t L, uint64_t R) const;
346
347  int cmpAPInts(const APInt &L, const APInt &R) const;
348  int cmpAPFloats(const APFloat &L, const APFloat &R) const;
349  int cmpStrings(StringRef L, StringRef R) const;
350  int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
351
352  // The two functions undergoing comparison.
353  const Function *FnL, *FnR;
354
355  /// Assign serial numbers to values from left function, and values from
356  /// right function.
357  /// Explanation:
358  /// Being comparing functions we need to compare values we meet at left and
359  /// right sides.
360  /// Its easy to sort things out for external values. It just should be
361  /// the same value at left and right.
362  /// But for local values (those were introduced inside function body)
363  /// we have to ensure they were introduced at exactly the same place,
364  /// and plays the same role.
365  /// Let's assign serial number to each value when we meet it first time.
366  /// Values that were met at same place will be with same serial numbers.
367  /// In this case it would be good to explain few points about values assigned
368  /// to BBs and other ways of implementation (see below).
369  ///
370  /// 1. Safety of BB reordering.
371  /// It's safe to change the order of BasicBlocks in function.
372  /// Relationship with other functions and serial numbering will not be
373  /// changed in this case.
374  /// As follows from FunctionComparator::compare(), we do CFG walk: we start
375  /// from the entry, and then take each terminator. So it doesn't matter how in
376  /// fact BBs are ordered in function. And since cmpValues are called during
377  /// this walk, the numbering depends only on how BBs located inside the CFG.
378  /// So the answer is - yes. We will get the same numbering.
379  ///
380  /// 2. Impossibility to use dominance properties of values.
381  /// If we compare two instruction operands: first is usage of local
382  /// variable AL from function FL, and second is usage of local variable AR
383  /// from FR, we could compare their origins and check whether they are
384  /// defined at the same place.
385  /// But, we are still not able to compare operands of PHI nodes, since those
386  /// could be operands from further BBs we didn't scan yet.
387  /// So it's impossible to use dominance properties in general.
388  DenseMap<const Value*, int> sn_mapL, sn_mapR;
389};
390
391class FunctionNode {
392  AssertingVH<Function> F;
393
394public:
395  FunctionNode(Function *F) : F(F) {}
396  Function *getFunc() const { return F; }
397  void release() { F = 0; }
398  bool operator<(const FunctionNode &RHS) const {
399    return (FunctionComparator(F, RHS.getFunc()).compare()) == -1;
400  }
401};
402}
403
404int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
405  if (L < R) return -1;
406  if (L > R) return 1;
407  return 0;
408}
409
410int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
411  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
412    return Res;
413  if (L.ugt(R)) return 1;
414  if (R.ugt(L)) return -1;
415  return 0;
416}
417
418int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
419  if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
420                           (uint64_t)&R.getSemantics()))
421    return Res;
422  return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
423}
424
425int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
426  // Prevent heavy comparison, compare sizes first.
427  if (int Res = cmpNumbers(L.size(), R.size()))
428    return Res;
429
430  // Compare strings lexicographically only when it is necessary: only when
431  // strings are equal in size.
432  return L.compare(R);
433}
434
435int FunctionComparator::cmpAttrs(const AttributeSet L,
436                                 const AttributeSet R) const {
437  if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
438    return Res;
439
440  for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
441    AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
442                           RE = R.end(i);
443    for (; LI != LE && RI != RE; ++LI, ++RI) {
444      Attribute LA = *LI;
445      Attribute RA = *RI;
446      if (LA < RA)
447        return -1;
448      if (RA < LA)
449        return 1;
450    }
451    if (LI != LE)
452      return 1;
453    if (RI != RE)
454      return -1;
455  }
456  return 0;
457}
458
459/// Constants comparison:
460/// 1. Check whether type of L constant could be losslessly bitcasted to R
461/// type.
462/// 2. Compare constant contents.
463/// For more details see declaration comments.
464int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
465
466  Type *TyL = L->getType();
467  Type *TyR = R->getType();
468
469  // Check whether types are bitcastable. This part is just re-factored
470  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
471  // we also pack into result which type is "less" for us.
472  int TypesRes = cmpTypes(TyL, TyR);
473  if (TypesRes != 0) {
474    // Types are different, but check whether we can bitcast them.
475    if (!TyL->isFirstClassType()) {
476      if (TyR->isFirstClassType())
477        return -1;
478      // Neither TyL nor TyR are values of first class type. Return the result
479      // of comparing the types
480      return TypesRes;
481    }
482    if (!TyR->isFirstClassType()) {
483      if (TyL->isFirstClassType())
484        return 1;
485      return TypesRes;
486    }
487
488    // Vector -> Vector conversions are always lossless if the two vector types
489    // have the same size, otherwise not.
490    unsigned TyLWidth = 0;
491    unsigned TyRWidth = 0;
492
493    if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
494      TyLWidth = VecTyL->getBitWidth();
495    if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
496      TyRWidth = VecTyR->getBitWidth();
497
498    if (TyLWidth != TyRWidth)
499      return cmpNumbers(TyLWidth, TyRWidth);
500
501    // Zero bit-width means neither TyL nor TyR are vectors.
502    if (!TyLWidth) {
503      PointerType *PTyL = dyn_cast<PointerType>(TyL);
504      PointerType *PTyR = dyn_cast<PointerType>(TyR);
505      if (PTyL && PTyR) {
506        unsigned AddrSpaceL = PTyL->getAddressSpace();
507        unsigned AddrSpaceR = PTyR->getAddressSpace();
508        if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
509          return Res;
510      }
511      if (PTyL)
512        return 1;
513      if (PTyR)
514        return -1;
515
516      // TyL and TyR aren't vectors, nor pointers. We don't know how to
517      // bitcast them.
518      return TypesRes;
519    }
520  }
521
522  // OK, types are bitcastable, now check constant contents.
523
524  if (L->isNullValue() && R->isNullValue())
525    return TypesRes;
526  if (L->isNullValue() && !R->isNullValue())
527    return 1;
528  if (!L->isNullValue() && R->isNullValue())
529    return -1;
530
531  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
532    return Res;
533
534  switch (L->getValueID()) {
535  case Value::UndefValueVal: return TypesRes;
536  case Value::ConstantIntVal: {
537    const APInt &LInt = cast<ConstantInt>(L)->getValue();
538    const APInt &RInt = cast<ConstantInt>(R)->getValue();
539    return cmpAPInts(LInt, RInt);
540  }
541  case Value::ConstantFPVal: {
542    const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
543    const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
544    return cmpAPFloats(LAPF, RAPF);
545  }
546  case Value::ConstantArrayVal: {
547    const ConstantArray *LA = cast<ConstantArray>(L);
548    const ConstantArray *RA = cast<ConstantArray>(R);
549    uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
550    uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
551    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
552      return Res;
553    for (uint64_t i = 0; i < NumElementsL; ++i) {
554      if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
555                                 cast<Constant>(RA->getOperand(i))))
556        return Res;
557    }
558    return 0;
559  }
560  case Value::ConstantStructVal: {
561    const ConstantStruct *LS = cast<ConstantStruct>(L);
562    const ConstantStruct *RS = cast<ConstantStruct>(R);
563    unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
564    unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
565    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
566      return Res;
567    for (unsigned i = 0; i != NumElementsL; ++i) {
568      if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
569                                 cast<Constant>(RS->getOperand(i))))
570        return Res;
571    }
572    return 0;
573  }
574  case Value::ConstantVectorVal: {
575    const ConstantVector *LV = cast<ConstantVector>(L);
576    const ConstantVector *RV = cast<ConstantVector>(R);
577    unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
578    unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
579    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
580      return Res;
581    for (uint64_t i = 0; i < NumElementsL; ++i) {
582      if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
583                                 cast<Constant>(RV->getOperand(i))))
584        return Res;
585    }
586    return 0;
587  }
588  case Value::ConstantExprVal: {
589    const ConstantExpr *LE = cast<ConstantExpr>(L);
590    const ConstantExpr *RE = cast<ConstantExpr>(R);
591    unsigned NumOperandsL = LE->getNumOperands();
592    unsigned NumOperandsR = RE->getNumOperands();
593    if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
594      return Res;
595    for (unsigned i = 0; i < NumOperandsL; ++i) {
596      if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
597                                 cast<Constant>(RE->getOperand(i))))
598        return Res;
599    }
600    return 0;
601  }
602  case Value::FunctionVal:
603  case Value::GlobalVariableVal:
604  case Value::GlobalAliasVal:
605  default: // Unknown constant, cast L and R pointers to numbers and compare.
606    return cmpNumbers((uint64_t)L, (uint64_t)R);
607  }
608}
609
610/// cmpType - compares two types,
611/// defines total ordering among the types set.
612/// See method declaration comments for more details.
613int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
614
615  PointerType *PTyL = dyn_cast<PointerType>(TyL);
616  PointerType *PTyR = dyn_cast<PointerType>(TyR);
617
618  const DataLayout &DL = FnL->getParent()->getDataLayout();
619  if (PTyL && PTyL->getAddressSpace() == 0)
620    TyL = DL.getIntPtrType(TyL);
621  if (PTyR && PTyR->getAddressSpace() == 0)
622    TyR = DL.getIntPtrType(TyR);
623
624  if (TyL == TyR)
625    return 0;
626
627  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
628    return Res;
629
630  switch (TyL->getTypeID()) {
631  default:
632    llvm_unreachable("Unknown type!");
633    // Fall through in Release mode.
634  case Type::IntegerTyID:
635  case Type::VectorTyID:
636    // TyL == TyR would have returned true earlier.
637    return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
638
639  case Type::VoidTyID:
640  case Type::FloatTyID:
641  case Type::DoubleTyID:
642  case Type::X86_FP80TyID:
643  case Type::FP128TyID:
644  case Type::PPC_FP128TyID:
645  case Type::LabelTyID:
646  case Type::MetadataTyID:
647    return 0;
648
649  case Type::PointerTyID: {
650    assert(PTyL && PTyR && "Both types must be pointers here.");
651    return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
652  }
653
654  case Type::StructTyID: {
655    StructType *STyL = cast<StructType>(TyL);
656    StructType *STyR = cast<StructType>(TyR);
657    if (STyL->getNumElements() != STyR->getNumElements())
658      return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
659
660    if (STyL->isPacked() != STyR->isPacked())
661      return cmpNumbers(STyL->isPacked(), STyR->isPacked());
662
663    for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
664      if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
665        return Res;
666    }
667    return 0;
668  }
669
670  case Type::FunctionTyID: {
671    FunctionType *FTyL = cast<FunctionType>(TyL);
672    FunctionType *FTyR = cast<FunctionType>(TyR);
673    if (FTyL->getNumParams() != FTyR->getNumParams())
674      return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
675
676    if (FTyL->isVarArg() != FTyR->isVarArg())
677      return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
678
679    if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
680      return Res;
681
682    for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
683      if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
684        return Res;
685    }
686    return 0;
687  }
688
689  case Type::ArrayTyID: {
690    ArrayType *ATyL = cast<ArrayType>(TyL);
691    ArrayType *ATyR = cast<ArrayType>(TyR);
692    if (ATyL->getNumElements() != ATyR->getNumElements())
693      return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
694    return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
695  }
696  }
697}
698
699// Determine whether the two operations are the same except that pointer-to-A
700// and pointer-to-B are equivalent. This should be kept in sync with
701// Instruction::isSameOperationAs.
702// Read method declaration comments for more details.
703int FunctionComparator::cmpOperations(const Instruction *L,
704                                      const Instruction *R) const {
705  // Differences from Instruction::isSameOperationAs:
706  //  * replace type comparison with calls to isEquivalentType.
707  //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
708  //  * because of the above, we don't test for the tail bit on calls later on
709  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
710    return Res;
711
712  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
713    return Res;
714
715  if (int Res = cmpTypes(L->getType(), R->getType()))
716    return Res;
717
718  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
719                           R->getRawSubclassOptionalData()))
720    return Res;
721
722  // We have two instructions of identical opcode and #operands.  Check to see
723  // if all operands are the same type
724  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
725    if (int Res =
726            cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
727      return Res;
728  }
729
730  // Check special state that is a part of some instructions.
731  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
732    if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
733      return Res;
734    if (int Res =
735            cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
736      return Res;
737    if (int Res =
738            cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
739      return Res;
740    if (int Res =
741            cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
742      return Res;
743    return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range),
744                      (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
745  }
746  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
747    if (int Res =
748            cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
749      return Res;
750    if (int Res =
751            cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
752      return Res;
753    if (int Res =
754            cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
755      return Res;
756    return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
757  }
758  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
759    return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
760  if (const CallInst *CI = dyn_cast<CallInst>(L)) {
761    if (int Res = cmpNumbers(CI->getCallingConv(),
762                             cast<CallInst>(R)->getCallingConv()))
763      return Res;
764    if (int Res =
765            cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
766      return Res;
767    return cmpNumbers(
768        (uint64_t)CI->getMetadata(LLVMContext::MD_range),
769        (uint64_t)cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
770  }
771  if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
772    if (int Res = cmpNumbers(CI->getCallingConv(),
773                             cast<InvokeInst>(R)->getCallingConv()))
774      return Res;
775    if (int Res =
776            cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
777      return Res;
778    return cmpNumbers(
779        (uint64_t)CI->getMetadata(LLVMContext::MD_range),
780        (uint64_t)cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
781  }
782  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
783    ArrayRef<unsigned> LIndices = IVI->getIndices();
784    ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
785    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
786      return Res;
787    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
788      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
789        return Res;
790    }
791  }
792  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
793    ArrayRef<unsigned> LIndices = EVI->getIndices();
794    ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
795    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
796      return Res;
797    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
798      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
799        return Res;
800    }
801  }
802  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
803    if (int Res =
804            cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
805      return Res;
806    return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
807  }
808
809  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
810    if (int Res = cmpNumbers(CXI->isVolatile(),
811                             cast<AtomicCmpXchgInst>(R)->isVolatile()))
812      return Res;
813    if (int Res = cmpNumbers(CXI->isWeak(),
814                             cast<AtomicCmpXchgInst>(R)->isWeak()))
815      return Res;
816    if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
817                             cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
818      return Res;
819    if (int Res = cmpNumbers(CXI->getFailureOrdering(),
820                             cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
821      return Res;
822    return cmpNumbers(CXI->getSynchScope(),
823                      cast<AtomicCmpXchgInst>(R)->getSynchScope());
824  }
825  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
826    if (int Res = cmpNumbers(RMWI->getOperation(),
827                             cast<AtomicRMWInst>(R)->getOperation()))
828      return Res;
829    if (int Res = cmpNumbers(RMWI->isVolatile(),
830                             cast<AtomicRMWInst>(R)->isVolatile()))
831      return Res;
832    if (int Res = cmpNumbers(RMWI->getOrdering(),
833                             cast<AtomicRMWInst>(R)->getOrdering()))
834      return Res;
835    return cmpNumbers(RMWI->getSynchScope(),
836                      cast<AtomicRMWInst>(R)->getSynchScope());
837  }
838  return 0;
839}
840
841// Determine whether two GEP operations perform the same underlying arithmetic.
842// Read method declaration comments for more details.
843int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
844                               const GEPOperator *GEPR) {
845
846  unsigned int ASL = GEPL->getPointerAddressSpace();
847  unsigned int ASR = GEPR->getPointerAddressSpace();
848
849  if (int Res = cmpNumbers(ASL, ASR))
850    return Res;
851
852  // When we have target data, we can reduce the GEP down to the value in bytes
853  // added to the address.
854  const DataLayout &DL = FnL->getParent()->getDataLayout();
855  unsigned BitWidth = DL.getPointerSizeInBits(ASL);
856  APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
857  if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
858      GEPR->accumulateConstantOffset(DL, OffsetR))
859    return cmpAPInts(OffsetL, OffsetR);
860
861  if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
862                           (uint64_t)GEPR->getPointerOperand()->getType()))
863    return Res;
864
865  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
866    return Res;
867
868  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
869    if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
870      return Res;
871  }
872
873  return 0;
874}
875
876/// Compare two values used by the two functions under pair-wise comparison. If
877/// this is the first time the values are seen, they're added to the mapping so
878/// that we will detect mismatches on next use.
879/// See comments in declaration for more details.
880int FunctionComparator::cmpValues(const Value *L, const Value *R) {
881  // Catch self-reference case.
882  if (L == FnL) {
883    if (R == FnR)
884      return 0;
885    return -1;
886  }
887  if (R == FnR) {
888    if (L == FnL)
889      return 0;
890    return 1;
891  }
892
893  const Constant *ConstL = dyn_cast<Constant>(L);
894  const Constant *ConstR = dyn_cast<Constant>(R);
895  if (ConstL && ConstR) {
896    if (L == R)
897      return 0;
898    return cmpConstants(ConstL, ConstR);
899  }
900
901  if (ConstL)
902    return 1;
903  if (ConstR)
904    return -1;
905
906  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
907  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
908
909  if (InlineAsmL && InlineAsmR)
910    return cmpNumbers((uint64_t)L, (uint64_t)R);
911  if (InlineAsmL)
912    return 1;
913  if (InlineAsmR)
914    return -1;
915
916  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
917       RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
918
919  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
920}
921// Test whether two basic blocks have equivalent behaviour.
922int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
923  BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
924  BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
925
926  do {
927    if (int Res = cmpValues(InstL, InstR))
928      return Res;
929
930    const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
931    const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
932
933    if (GEPL && !GEPR)
934      return 1;
935    if (GEPR && !GEPL)
936      return -1;
937
938    if (GEPL && GEPR) {
939      if (int Res =
940              cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
941        return Res;
942      if (int Res = cmpGEPs(GEPL, GEPR))
943        return Res;
944    } else {
945      if (int Res = cmpOperations(InstL, InstR))
946        return Res;
947      assert(InstL->getNumOperands() == InstR->getNumOperands());
948
949      for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
950        Value *OpL = InstL->getOperand(i);
951        Value *OpR = InstR->getOperand(i);
952        if (int Res = cmpValues(OpL, OpR))
953          return Res;
954        if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID()))
955          return Res;
956        // TODO: Already checked in cmpOperation
957        if (int Res = cmpTypes(OpL->getType(), OpR->getType()))
958          return Res;
959      }
960    }
961
962    ++InstL, ++InstR;
963  } while (InstL != InstLE && InstR != InstRE);
964
965  if (InstL != InstLE && InstR == InstRE)
966    return 1;
967  if (InstL == InstLE && InstR != InstRE)
968    return -1;
969  return 0;
970}
971
972// Test whether the two functions have equivalent behaviour.
973int FunctionComparator::compare() {
974
975  sn_mapL.clear();
976  sn_mapR.clear();
977
978  if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
979    return Res;
980
981  if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
982    return Res;
983
984  if (FnL->hasGC()) {
985    if (int Res = cmpNumbers((uint64_t)FnL->getGC(), (uint64_t)FnR->getGC()))
986      return Res;
987  }
988
989  if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
990    return Res;
991
992  if (FnL->hasSection()) {
993    if (int Res = cmpStrings(FnL->getSection(), FnR->getSection()))
994      return Res;
995  }
996
997  if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
998    return Res;
999
1000  // TODO: if it's internal and only used in direct calls, we could handle this
1001  // case too.
1002  if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
1003    return Res;
1004
1005  if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
1006    return Res;
1007
1008  assert(FnL->arg_size() == FnR->arg_size() &&
1009         "Identically typed functions have different numbers of args!");
1010
1011  // Visit the arguments so that they get enumerated in the order they're
1012  // passed in.
1013  for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
1014                                    ArgRI = FnR->arg_begin(),
1015                                    ArgLE = FnL->arg_end();
1016       ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
1017    if (cmpValues(ArgLI, ArgRI) != 0)
1018      llvm_unreachable("Arguments repeat!");
1019  }
1020
1021  // We do a CFG-ordered walk since the actual ordering of the blocks in the
1022  // linked list is immaterial. Our walk starts at the entry block for both
1023  // functions, then takes each block from each terminator in order. As an
1024  // artifact, this also means that unreachable blocks are ignored.
1025  SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1026  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
1027
1028  FnLBBs.push_back(&FnL->getEntryBlock());
1029  FnRBBs.push_back(&FnR->getEntryBlock());
1030
1031  VisitedBBs.insert(FnLBBs[0]);
1032  while (!FnLBBs.empty()) {
1033    const BasicBlock *BBL = FnLBBs.pop_back_val();
1034    const BasicBlock *BBR = FnRBBs.pop_back_val();
1035
1036    if (int Res = cmpValues(BBL, BBR))
1037      return Res;
1038
1039    if (int Res = compare(BBL, BBR))
1040      return Res;
1041
1042    const TerminatorInst *TermL = BBL->getTerminator();
1043    const TerminatorInst *TermR = BBR->getTerminator();
1044
1045    assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1046    for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1047      if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1048        continue;
1049
1050      FnLBBs.push_back(TermL->getSuccessor(i));
1051      FnRBBs.push_back(TermR->getSuccessor(i));
1052    }
1053  }
1054  return 0;
1055}
1056
1057namespace {
1058
1059/// MergeFunctions finds functions which will generate identical machine code,
1060/// by considering all pointer types to be equivalent. Once identified,
1061/// MergeFunctions will fold them by replacing a call to one to a call to a
1062/// bitcast of the other.
1063///
1064class MergeFunctions : public ModulePass {
1065public:
1066  static char ID;
1067  MergeFunctions()
1068    : ModulePass(ID), HasGlobalAliases(false) {
1069    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1070  }
1071
1072  bool runOnModule(Module &M) override;
1073
1074private:
1075  typedef std::set<FunctionNode> FnTreeType;
1076
1077  /// A work queue of functions that may have been modified and should be
1078  /// analyzed again.
1079  std::vector<WeakVH> Deferred;
1080
1081  /// Checks the rules of order relation introduced among functions set.
1082  /// Returns true, if sanity check has been passed, and false if failed.
1083  bool doSanityCheck(std::vector<WeakVH> &Worklist);
1084
1085  /// Insert a ComparableFunction into the FnTree, or merge it away if it's
1086  /// equal to one that's already present.
1087  bool insert(Function *NewFunction);
1088
1089  /// Remove a Function from the FnTree and queue it up for a second sweep of
1090  /// analysis.
1091  void remove(Function *F);
1092
1093  /// Find the functions that use this Value and remove them from FnTree and
1094  /// queue the functions.
1095  void removeUsers(Value *V);
1096
1097  /// Replace all direct calls of Old with calls of New. Will bitcast New if
1098  /// necessary to make types match.
1099  void replaceDirectCallers(Function *Old, Function *New);
1100
1101  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1102  /// be converted into a thunk. In either case, it should never be visited
1103  /// again.
1104  void mergeTwoFunctions(Function *F, Function *G);
1105
1106  /// Replace G with a thunk or an alias to F. Deletes G.
1107  void writeThunkOrAlias(Function *F, Function *G);
1108
1109  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1110  /// of G with bitcast(F). Deletes G.
1111  void writeThunk(Function *F, Function *G);
1112
1113  /// Replace G with an alias to F. Deletes G.
1114  void writeAlias(Function *F, Function *G);
1115
1116  /// The set of all distinct functions. Use the insert() and remove() methods
1117  /// to modify it.
1118  FnTreeType FnTree;
1119
1120  /// Whether or not the target supports global aliases.
1121  bool HasGlobalAliases;
1122};
1123
1124}  // end anonymous namespace
1125
1126char MergeFunctions::ID = 0;
1127INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1128
1129ModulePass *llvm::createMergeFunctionsPass() {
1130  return new MergeFunctions();
1131}
1132
1133bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
1134  if (const unsigned Max = NumFunctionsForSanityCheck) {
1135    unsigned TripleNumber = 0;
1136    bool Valid = true;
1137
1138    dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
1139
1140    unsigned i = 0;
1141    for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
1142         I != E && i < Max; ++I, ++i) {
1143      unsigned j = i;
1144      for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
1145        Function *F1 = cast<Function>(*I);
1146        Function *F2 = cast<Function>(*J);
1147        int Res1 = FunctionComparator(F1, F2).compare();
1148        int Res2 = FunctionComparator(F2, F1).compare();
1149
1150        // If F1 <= F2, then F2 >= F1, otherwise report failure.
1151        if (Res1 != -Res2) {
1152          dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
1153                 << "\n";
1154          F1->dump();
1155          F2->dump();
1156          Valid = false;
1157        }
1158
1159        if (Res1 == 0)
1160          continue;
1161
1162        unsigned k = j;
1163        for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
1164             ++k, ++K, ++TripleNumber) {
1165          if (K == J)
1166            continue;
1167
1168          Function *F3 = cast<Function>(*K);
1169          int Res3 = FunctionComparator(F1, F3).compare();
1170          int Res4 = FunctionComparator(F2, F3).compare();
1171
1172          bool Transitive = true;
1173
1174          if (Res1 != 0 && Res1 == Res4) {
1175            // F1 > F2, F2 > F3 => F1 > F3
1176            Transitive = Res3 == Res1;
1177          } else if (Res3 != 0 && Res3 == -Res4) {
1178            // F1 > F3, F3 > F2 => F1 > F2
1179            Transitive = Res3 == Res1;
1180          } else if (Res4 != 0 && -Res3 == Res4) {
1181            // F2 > F3, F3 > F1 => F2 > F1
1182            Transitive = Res4 == -Res1;
1183          }
1184
1185          if (!Transitive) {
1186            dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
1187                   << TripleNumber << "\n";
1188            dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
1189                   << Res4 << "\n";
1190            F1->dump();
1191            F2->dump();
1192            F3->dump();
1193            Valid = false;
1194          }
1195        }
1196      }
1197    }
1198
1199    dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
1200    return Valid;
1201  }
1202  return true;
1203}
1204
1205bool MergeFunctions::runOnModule(Module &M) {
1206  bool Changed = false;
1207
1208  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1209    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
1210      Deferred.push_back(WeakVH(I));
1211  }
1212
1213  do {
1214    std::vector<WeakVH> Worklist;
1215    Deferred.swap(Worklist);
1216
1217    DEBUG(doSanityCheck(Worklist));
1218
1219    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1220    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1221
1222    // Insert only strong functions and merge them. Strong function merging
1223    // always deletes one of them.
1224    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1225           E = Worklist.end(); I != E; ++I) {
1226      if (!*I) continue;
1227      Function *F = cast<Function>(*I);
1228      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1229          !F->mayBeOverridden()) {
1230        Changed |= insert(F);
1231      }
1232    }
1233
1234    // Insert only weak functions and merge them. By doing these second we
1235    // create thunks to the strong function when possible. When two weak
1236    // functions are identical, we create a new strong function with two weak
1237    // weak thunks to it which are identical but not mergable.
1238    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1239           E = Worklist.end(); I != E; ++I) {
1240      if (!*I) continue;
1241      Function *F = cast<Function>(*I);
1242      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1243          F->mayBeOverridden()) {
1244        Changed |= insert(F);
1245      }
1246    }
1247    DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
1248  } while (!Deferred.empty());
1249
1250  FnTree.clear();
1251
1252  return Changed;
1253}
1254
1255// Replace direct callers of Old with New.
1256void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1257  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1258  for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1259    Use *U = &*UI;
1260    ++UI;
1261    CallSite CS(U->getUser());
1262    if (CS && CS.isCallee(U)) {
1263      remove(CS.getInstruction()->getParent()->getParent());
1264      U->set(BitcastNew);
1265    }
1266  }
1267}
1268
1269// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
1270void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1271  if (HasGlobalAliases && G->hasUnnamedAddr()) {
1272    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1273        G->hasWeakLinkage()) {
1274      writeAlias(F, G);
1275      return;
1276    }
1277  }
1278
1279  writeThunk(F, G);
1280}
1281
1282// Helper for writeThunk,
1283// Selects proper bitcast operation,
1284// but a bit simpler then CastInst::getCastOpcode.
1285static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
1286  Type *SrcTy = V->getType();
1287  if (SrcTy->isStructTy()) {
1288    assert(DestTy->isStructTy());
1289    assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1290    Value *Result = UndefValue::get(DestTy);
1291    for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1292      Value *Element = createCast(
1293          Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
1294          DestTy->getStructElementType(I));
1295
1296      Result =
1297          Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
1298    }
1299    return Result;
1300  }
1301  assert(!DestTy->isStructTy());
1302  if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1303    return Builder.CreateIntToPtr(V, DestTy);
1304  else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1305    return Builder.CreatePtrToInt(V, DestTy);
1306  else
1307    return Builder.CreateBitCast(V, DestTy);
1308}
1309
1310// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1311// of G with bitcast(F). Deletes G.
1312void MergeFunctions::writeThunk(Function *F, Function *G) {
1313  if (!G->mayBeOverridden()) {
1314    // Redirect direct callers of G to F.
1315    replaceDirectCallers(G, F);
1316  }
1317
1318  // If G was internal then we may have replaced all uses of G with F. If so,
1319  // stop here and delete G. There's no need for a thunk.
1320  if (G->hasLocalLinkage() && G->use_empty()) {
1321    G->eraseFromParent();
1322    return;
1323  }
1324
1325  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1326                                    G->getParent());
1327  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1328  IRBuilder<false> Builder(BB);
1329
1330  SmallVector<Value *, 16> Args;
1331  unsigned i = 0;
1332  FunctionType *FFTy = F->getFunctionType();
1333  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
1334       AI != AE; ++AI) {
1335    Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
1336    ++i;
1337  }
1338
1339  CallInst *CI = Builder.CreateCall(F, Args);
1340  CI->setTailCall();
1341  CI->setCallingConv(F->getCallingConv());
1342  if (NewG->getReturnType()->isVoidTy()) {
1343    Builder.CreateRetVoid();
1344  } else {
1345    Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1346  }
1347
1348  NewG->copyAttributesFrom(G);
1349  NewG->takeName(G);
1350  removeUsers(G);
1351  G->replaceAllUsesWith(NewG);
1352  G->eraseFromParent();
1353
1354  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1355  ++NumThunksWritten;
1356}
1357
1358// Replace G with an alias to F and delete G.
1359void MergeFunctions::writeAlias(Function *F, Function *G) {
1360  PointerType *PTy = G->getType();
1361  auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
1362                                 G->getLinkage(), "", F);
1363  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1364  GA->takeName(G);
1365  GA->setVisibility(G->getVisibility());
1366  removeUsers(G);
1367  G->replaceAllUsesWith(GA);
1368  G->eraseFromParent();
1369
1370  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1371  ++NumAliasesWritten;
1372}
1373
1374// Merge two equivalent functions. Upon completion, Function G is deleted.
1375void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1376  if (F->mayBeOverridden()) {
1377    assert(G->mayBeOverridden());
1378
1379    if (HasGlobalAliases) {
1380      // Make them both thunks to the same internal function.
1381      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1382                                     F->getParent());
1383      H->copyAttributesFrom(F);
1384      H->takeName(F);
1385      removeUsers(F);
1386      F->replaceAllUsesWith(H);
1387
1388      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1389
1390      writeAlias(F, G);
1391      writeAlias(F, H);
1392
1393      F->setAlignment(MaxAlignment);
1394      F->setLinkage(GlobalValue::PrivateLinkage);
1395    } else {
1396      // We can't merge them. Instead, pick one and update all direct callers
1397      // to call it and hope that we improve the instruction cache hit rate.
1398      replaceDirectCallers(G, F);
1399    }
1400
1401    ++NumDoubleWeak;
1402  } else {
1403    writeThunkOrAlias(F, G);
1404  }
1405
1406  ++NumFunctionsMerged;
1407}
1408
1409// Insert a ComparableFunction into the FnTree, or merge it away if equal to one
1410// that was already inserted.
1411bool MergeFunctions::insert(Function *NewFunction) {
1412  std::pair<FnTreeType::iterator, bool> Result =
1413      FnTree.insert(FunctionNode(NewFunction));
1414
1415  if (Result.second) {
1416    DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
1417    return false;
1418  }
1419
1420  const FunctionNode &OldF = *Result.first;
1421
1422  // Don't merge tiny functions, since it can just end up making the function
1423  // larger.
1424  // FIXME: Should still merge them if they are unnamed_addr and produce an
1425  // alias.
1426  if (NewFunction->size() == 1) {
1427    if (NewFunction->front().size() <= 2) {
1428      DEBUG(dbgs() << NewFunction->getName()
1429                   << " is to small to bother merging\n");
1430      return false;
1431    }
1432  }
1433
1434  // Never thunk a strong function to a weak function.
1435  assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
1436
1437  DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
1438               << " == " << NewFunction->getName() << '\n');
1439
1440  Function *DeleteF = NewFunction;
1441  mergeTwoFunctions(OldF.getFunc(), DeleteF);
1442  return true;
1443}
1444
1445// Remove a function from FnTree. If it was already in FnTree, add
1446// it to Deferred so that we'll look at it in the next round.
1447void MergeFunctions::remove(Function *F) {
1448  // We need to make sure we remove F, not a function "equal" to F per the
1449  // function equality comparator.
1450  FnTreeType::iterator found = FnTree.find(FunctionNode(F));
1451  size_t Erased = 0;
1452  if (found != FnTree.end() && found->getFunc() == F) {
1453    Erased = 1;
1454    FnTree.erase(found);
1455  }
1456
1457  if (Erased) {
1458    DEBUG(dbgs() << "Removed " << F->getName()
1459                 << " from set and deferred it.\n");
1460    Deferred.push_back(F);
1461  }
1462}
1463
1464// For each instruction used by the value, remove() the function that contains
1465// the instruction. This should happen right before a call to RAUW.
1466void MergeFunctions::removeUsers(Value *V) {
1467  std::vector<Value *> Worklist;
1468  Worklist.push_back(V);
1469  while (!Worklist.empty()) {
1470    Value *V = Worklist.back();
1471    Worklist.pop_back();
1472
1473    for (User *U : V->users()) {
1474      if (Instruction *I = dyn_cast<Instruction>(U)) {
1475        remove(I->getParent()->getParent());
1476      } else if (isa<GlobalValue>(U)) {
1477        // do nothing
1478      } else if (Constant *C = dyn_cast<Constant>(U)) {
1479        for (User *UU : C->users())
1480          Worklist.push_back(UU);
1481      }
1482    }
1483  }
1484}
1485