1//===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains logic for simplifying instructions based on information 11// about how they are used. 12// 13//===----------------------------------------------------------------------===// 14 15#include "InstCombineInternal.h" 16#include "llvm/IR/IntrinsicInst.h" 17#include "llvm/IR/PatternMatch.h" 18 19using namespace llvm; 20using namespace llvm::PatternMatch; 21 22#define DEBUG_TYPE "instcombine" 23 24/// ShrinkDemandedConstant - Check to see if the specified operand of the 25/// specified instruction is a constant integer. If so, check to see if there 26/// are any bits set in the constant that are not demanded. If so, shrink the 27/// constant and return true. 28static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 29 APInt Demanded) { 30 assert(I && "No instruction?"); 31 assert(OpNo < I->getNumOperands() && "Operand index too large"); 32 33 // If the operand is not a constant integer, nothing to do. 34 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 35 if (!OpC) return false; 36 37 // If there are no bits set that aren't demanded, nothing to do. 38 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 39 if ((~Demanded & OpC->getValue()) == 0) 40 return false; 41 42 // This instruction is producing bits that are not demanded. Shrink the RHS. 43 Demanded &= OpC->getValue(); 44 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 45 46 // If either 'nsw' or 'nuw' is set and the constant is negative, 47 // removing *any* bits from the constant could make overflow occur. 48 // Remove 'nsw' and 'nuw' from the instruction in this case. 49 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 50 assert(OBO->getOpcode() == Instruction::Add); 51 if (OBO->hasNoSignedWrap() || OBO->hasNoUnsignedWrap()) { 52 if (OpC->getValue().isNegative()) { 53 cast<BinaryOperator>(OBO)->setHasNoSignedWrap(false); 54 cast<BinaryOperator>(OBO)->setHasNoUnsignedWrap(false); 55 } 56 } 57 } 58 59 return true; 60} 61 62 63 64/// SimplifyDemandedInstructionBits - Inst is an integer instruction that 65/// SimplifyDemandedBits knows about. See if the instruction has any 66/// properties that allow us to simplify its operands. 67bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 68 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 69 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 70 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 71 72 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne, 73 0, &Inst); 74 if (!V) return false; 75 if (V == &Inst) return true; 76 ReplaceInstUsesWith(Inst, V); 77 return true; 78} 79 80/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the 81/// specified instruction operand if possible, updating it in place. It returns 82/// true if it made any change and false otherwise. 83bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 84 APInt &KnownZero, APInt &KnownOne, 85 unsigned Depth) { 86 Value *NewVal = 87 SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero, KnownOne, Depth, 88 dyn_cast<Instruction>(U.getUser())); 89 if (!NewVal) return false; 90 U = NewVal; 91 return true; 92} 93 94 95/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler 96/// value based on the demanded bits. When this function is called, it is known 97/// that only the bits set in DemandedMask of the result of V are ever used 98/// downstream. Consequently, depending on the mask and V, it may be possible 99/// to replace V with a constant or one of its operands. In such cases, this 100/// function does the replacement and returns true. In all other cases, it 101/// returns false after analyzing the expression and setting KnownOne and known 102/// to be one in the expression. KnownZero contains all the bits that are known 103/// to be zero in the expression. These are provided to potentially allow the 104/// caller (which might recursively be SimplifyDemandedBits itself) to simplify 105/// the expression. KnownOne and KnownZero always follow the invariant that 106/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that 107/// the bits in KnownOne and KnownZero may only be accurate for those bits set 108/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero 109/// and KnownOne must all be the same. 110/// 111/// This returns null if it did not change anything and it permits no 112/// simplification. This returns V itself if it did some simplification of V's 113/// operands based on the information about what bits are demanded. This returns 114/// some other non-null value if it found out that V is equal to another value 115/// in the context where the specified bits are demanded, but not for all users. 116Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 117 APInt &KnownZero, APInt &KnownOne, 118 unsigned Depth, 119 Instruction *CxtI) { 120 assert(V != nullptr && "Null pointer of Value???"); 121 assert(Depth <= 6 && "Limit Search Depth"); 122 uint32_t BitWidth = DemandedMask.getBitWidth(); 123 Type *VTy = V->getType(); 124 assert( 125 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 126 KnownZero.getBitWidth() == BitWidth && 127 KnownOne.getBitWidth() == BitWidth && 128 "Value *V, DemandedMask, KnownZero and KnownOne " 129 "must have same BitWidth"); 130 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 131 // We know all of the bits for a constant! 132 KnownOne = CI->getValue() & DemandedMask; 133 KnownZero = ~KnownOne & DemandedMask; 134 return nullptr; 135 } 136 if (isa<ConstantPointerNull>(V)) { 137 // We know all of the bits for a constant! 138 KnownOne.clearAllBits(); 139 KnownZero = DemandedMask; 140 return nullptr; 141 } 142 143 KnownZero.clearAllBits(); 144 KnownOne.clearAllBits(); 145 if (DemandedMask == 0) { // Not demanding any bits from V. 146 if (isa<UndefValue>(V)) 147 return nullptr; 148 return UndefValue::get(VTy); 149 } 150 151 if (Depth == 6) // Limit search depth. 152 return nullptr; 153 154 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 155 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 156 157 Instruction *I = dyn_cast<Instruction>(V); 158 if (!I) { 159 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 160 return nullptr; // Only analyze instructions. 161 } 162 163 // If there are multiple uses of this value and we aren't at the root, then 164 // we can't do any simplifications of the operands, because DemandedMask 165 // only reflects the bits demanded by *one* of the users. 166 if (Depth != 0 && !I->hasOneUse()) { 167 // Despite the fact that we can't simplify this instruction in all User's 168 // context, we can at least compute the knownzero/knownone bits, and we can 169 // do simplifications that apply to *just* the one user if we know that 170 // this instruction has a simpler value in that context. 171 if (I->getOpcode() == Instruction::And) { 172 // If either the LHS or the RHS are Zero, the result is zero. 173 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 174 CxtI); 175 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 176 CxtI); 177 178 // If all of the demanded bits are known 1 on one side, return the other. 179 // These bits cannot contribute to the result of the 'and' in this 180 // context. 181 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 182 (DemandedMask & ~LHSKnownZero)) 183 return I->getOperand(0); 184 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 185 (DemandedMask & ~RHSKnownZero)) 186 return I->getOperand(1); 187 188 // If all of the demanded bits in the inputs are known zeros, return zero. 189 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 190 return Constant::getNullValue(VTy); 191 192 } else if (I->getOpcode() == Instruction::Or) { 193 // We can simplify (X|Y) -> X or Y in the user's context if we know that 194 // only bits from X or Y are demanded. 195 196 // If either the LHS or the RHS are One, the result is One. 197 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 198 CxtI); 199 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 200 CxtI); 201 202 // If all of the demanded bits are known zero on one side, return the 203 // other. These bits cannot contribute to the result of the 'or' in this 204 // context. 205 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 206 (DemandedMask & ~LHSKnownOne)) 207 return I->getOperand(0); 208 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 209 (DemandedMask & ~RHSKnownOne)) 210 return I->getOperand(1); 211 212 // If all of the potentially set bits on one side are known to be set on 213 // the other side, just use the 'other' side. 214 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 215 (DemandedMask & (~RHSKnownZero))) 216 return I->getOperand(0); 217 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 218 (DemandedMask & (~LHSKnownZero))) 219 return I->getOperand(1); 220 } else if (I->getOpcode() == Instruction::Xor) { 221 // We can simplify (X^Y) -> X or Y in the user's context if we know that 222 // only bits from X or Y are demanded. 223 224 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 225 CxtI); 226 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 227 CxtI); 228 229 // If all of the demanded bits are known zero on one side, return the 230 // other. 231 if ((DemandedMask & RHSKnownZero) == DemandedMask) 232 return I->getOperand(0); 233 if ((DemandedMask & LHSKnownZero) == DemandedMask) 234 return I->getOperand(1); 235 } 236 237 // Compute the KnownZero/KnownOne bits to simplify things downstream. 238 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 239 return nullptr; 240 } 241 242 // If this is the root being simplified, allow it to have multiple uses, 243 // just set the DemandedMask to all bits so that we can try to simplify the 244 // operands. This allows visitTruncInst (for example) to simplify the 245 // operand of a trunc without duplicating all the logic below. 246 if (Depth == 0 && !V->hasOneUse()) 247 DemandedMask = APInt::getAllOnesValue(BitWidth); 248 249 switch (I->getOpcode()) { 250 default: 251 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 252 break; 253 case Instruction::And: 254 // If either the LHS or the RHS are Zero, the result is zero. 255 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 256 RHSKnownOne, Depth + 1) || 257 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 258 LHSKnownZero, LHSKnownOne, Depth + 1)) 259 return I; 260 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 261 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 262 263 // If the client is only demanding bits that we know, return the known 264 // constant. 265 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)| 266 (RHSKnownOne & LHSKnownOne))) == DemandedMask) 267 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne); 268 269 // If all of the demanded bits are known 1 on one side, return the other. 270 // These bits cannot contribute to the result of the 'and'. 271 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 272 (DemandedMask & ~LHSKnownZero)) 273 return I->getOperand(0); 274 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 275 (DemandedMask & ~RHSKnownZero)) 276 return I->getOperand(1); 277 278 // If all of the demanded bits in the inputs are known zeros, return zero. 279 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 280 return Constant::getNullValue(VTy); 281 282 // If the RHS is a constant, see if we can simplify it. 283 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 284 return I; 285 286 // Output known-1 bits are only known if set in both the LHS & RHS. 287 KnownOne = RHSKnownOne & LHSKnownOne; 288 // Output known-0 are known to be clear if zero in either the LHS | RHS. 289 KnownZero = RHSKnownZero | LHSKnownZero; 290 break; 291 case Instruction::Or: 292 // If either the LHS or the RHS are One, the result is One. 293 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 294 RHSKnownOne, Depth + 1) || 295 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 296 LHSKnownZero, LHSKnownOne, Depth + 1)) 297 return I; 298 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 299 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 300 301 // If the client is only demanding bits that we know, return the known 302 // constant. 303 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)| 304 (RHSKnownOne | LHSKnownOne))) == DemandedMask) 305 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne); 306 307 // If all of the demanded bits are known zero on one side, return the other. 308 // These bits cannot contribute to the result of the 'or'. 309 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 310 (DemandedMask & ~LHSKnownOne)) 311 return I->getOperand(0); 312 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 313 (DemandedMask & ~RHSKnownOne)) 314 return I->getOperand(1); 315 316 // If all of the potentially set bits on one side are known to be set on 317 // the other side, just use the 'other' side. 318 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 319 (DemandedMask & (~RHSKnownZero))) 320 return I->getOperand(0); 321 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 322 (DemandedMask & (~LHSKnownZero))) 323 return I->getOperand(1); 324 325 // If the RHS is a constant, see if we can simplify it. 326 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 327 return I; 328 329 // Output known-0 bits are only known if clear in both the LHS & RHS. 330 KnownZero = RHSKnownZero & LHSKnownZero; 331 // Output known-1 are known to be set if set in either the LHS | RHS. 332 KnownOne = RHSKnownOne | LHSKnownOne; 333 break; 334 case Instruction::Xor: { 335 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 336 RHSKnownOne, Depth + 1) || 337 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero, 338 LHSKnownOne, Depth + 1)) 339 return I; 340 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 341 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 342 343 // Output known-0 bits are known if clear or set in both the LHS & RHS. 344 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) | 345 (RHSKnownOne & LHSKnownOne); 346 // Output known-1 are known to be set if set in only one of the LHS, RHS. 347 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) | 348 (RHSKnownOne & LHSKnownZero); 349 350 // If the client is only demanding bits that we know, return the known 351 // constant. 352 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask) 353 return Constant::getIntegerValue(VTy, IKnownOne); 354 355 // If all of the demanded bits are known zero on one side, return the other. 356 // These bits cannot contribute to the result of the 'xor'. 357 if ((DemandedMask & RHSKnownZero) == DemandedMask) 358 return I->getOperand(0); 359 if ((DemandedMask & LHSKnownZero) == DemandedMask) 360 return I->getOperand(1); 361 362 // If all of the demanded bits are known to be zero on one side or the 363 // other, turn this into an *inclusive* or. 364 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 365 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 366 Instruction *Or = 367 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 368 I->getName()); 369 return InsertNewInstWith(Or, *I); 370 } 371 372 // If all of the demanded bits on one side are known, and all of the set 373 // bits on that side are also known to be set on the other side, turn this 374 // into an AND, as we know the bits will be cleared. 375 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 376 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 377 // all known 378 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 379 Constant *AndC = Constant::getIntegerValue(VTy, 380 ~RHSKnownOne & DemandedMask); 381 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 382 return InsertNewInstWith(And, *I); 383 } 384 } 385 386 // If the RHS is a constant, see if we can simplify it. 387 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 388 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 389 return I; 390 391 // If our LHS is an 'and' and if it has one use, and if any of the bits we 392 // are flipping are known to be set, then the xor is just resetting those 393 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 394 // simplifying both of them. 395 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 396 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 397 isa<ConstantInt>(I->getOperand(1)) && 398 isa<ConstantInt>(LHSInst->getOperand(1)) && 399 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 400 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 401 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 402 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 403 404 Constant *AndC = 405 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 406 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 407 InsertNewInstWith(NewAnd, *I); 408 409 Constant *XorC = 410 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 411 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 412 return InsertNewInstWith(NewXor, *I); 413 } 414 415 // Output known-0 bits are known if clear or set in both the LHS & RHS. 416 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 417 // Output known-1 are known to be set if set in only one of the LHS, RHS. 418 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 419 break; 420 } 421 case Instruction::Select: 422 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero, 423 RHSKnownOne, Depth + 1) || 424 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero, 425 LHSKnownOne, Depth + 1)) 426 return I; 427 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 428 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 429 430 // If the operands are constants, see if we can simplify them. 431 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 432 ShrinkDemandedConstant(I, 2, DemandedMask)) 433 return I; 434 435 // Only known if known in both the LHS and RHS. 436 KnownOne = RHSKnownOne & LHSKnownOne; 437 KnownZero = RHSKnownZero & LHSKnownZero; 438 break; 439 case Instruction::Trunc: { 440 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 441 DemandedMask = DemandedMask.zext(truncBf); 442 KnownZero = KnownZero.zext(truncBf); 443 KnownOne = KnownOne.zext(truncBf); 444 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 445 KnownOne, Depth + 1)) 446 return I; 447 DemandedMask = DemandedMask.trunc(BitWidth); 448 KnownZero = KnownZero.trunc(BitWidth); 449 KnownOne = KnownOne.trunc(BitWidth); 450 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 451 break; 452 } 453 case Instruction::BitCast: 454 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 455 return nullptr; // vector->int or fp->int? 456 457 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 458 if (VectorType *SrcVTy = 459 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 460 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 461 // Don't touch a bitcast between vectors of different element counts. 462 return nullptr; 463 } else 464 // Don't touch a scalar-to-vector bitcast. 465 return nullptr; 466 } else if (I->getOperand(0)->getType()->isVectorTy()) 467 // Don't touch a vector-to-scalar bitcast. 468 return nullptr; 469 470 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 471 KnownOne, Depth + 1)) 472 return I; 473 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 474 break; 475 case Instruction::ZExt: { 476 // Compute the bits in the result that are not present in the input. 477 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 478 479 DemandedMask = DemandedMask.trunc(SrcBitWidth); 480 KnownZero = KnownZero.trunc(SrcBitWidth); 481 KnownOne = KnownOne.trunc(SrcBitWidth); 482 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 483 KnownOne, Depth + 1)) 484 return I; 485 DemandedMask = DemandedMask.zext(BitWidth); 486 KnownZero = KnownZero.zext(BitWidth); 487 KnownOne = KnownOne.zext(BitWidth); 488 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 489 // The top bits are known to be zero. 490 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 491 break; 492 } 493 case Instruction::SExt: { 494 // Compute the bits in the result that are not present in the input. 495 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 496 497 APInt InputDemandedBits = DemandedMask & 498 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 499 500 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 501 // If any of the sign extended bits are demanded, we know that the sign 502 // bit is demanded. 503 if ((NewBits & DemandedMask) != 0) 504 InputDemandedBits.setBit(SrcBitWidth-1); 505 506 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 507 KnownZero = KnownZero.trunc(SrcBitWidth); 508 KnownOne = KnownOne.trunc(SrcBitWidth); 509 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero, 510 KnownOne, Depth + 1)) 511 return I; 512 InputDemandedBits = InputDemandedBits.zext(BitWidth); 513 KnownZero = KnownZero.zext(BitWidth); 514 KnownOne = KnownOne.zext(BitWidth); 515 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 516 517 // If the sign bit of the input is known set or clear, then we know the 518 // top bits of the result. 519 520 // If the input sign bit is known zero, or if the NewBits are not demanded 521 // convert this into a zero extension. 522 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 523 // Convert to ZExt cast 524 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 525 return InsertNewInstWith(NewCast, *I); 526 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 527 KnownOne |= NewBits; 528 } 529 break; 530 } 531 case Instruction::Add: { 532 // Figure out what the input bits are. If the top bits of the and result 533 // are not demanded, then the add doesn't demand them from its input 534 // either. 535 unsigned NLZ = DemandedMask.countLeadingZeros(); 536 537 // If there is a constant on the RHS, there are a variety of xformations 538 // we can do. 539 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 540 // If null, this should be simplified elsewhere. Some of the xforms here 541 // won't work if the RHS is zero. 542 if (RHS->isZero()) 543 break; 544 545 // If the top bit of the output is demanded, demand everything from the 546 // input. Otherwise, we demand all the input bits except NLZ top bits. 547 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); 548 549 // Find information about known zero/one bits in the input. 550 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 551 LHSKnownZero, LHSKnownOne, Depth + 1)) 552 return I; 553 554 // If the RHS of the add has bits set that can't affect the input, reduce 555 // the constant. 556 if (ShrinkDemandedConstant(I, 1, InDemandedBits)) 557 return I; 558 559 // Avoid excess work. 560 if (LHSKnownZero == 0 && LHSKnownOne == 0) 561 break; 562 563 // Turn it into OR if input bits are zero. 564 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { 565 Instruction *Or = 566 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 567 I->getName()); 568 return InsertNewInstWith(Or, *I); 569 } 570 571 // We can say something about the output known-zero and known-one bits, 572 // depending on potential carries from the input constant and the 573 // unknowns. For example if the LHS is known to have at most the 0x0F0F0 574 // bits set and the RHS constant is 0x01001, then we know we have a known 575 // one mask of 0x00001 and a known zero mask of 0xE0F0E. 576 577 // To compute this, we first compute the potential carry bits. These are 578 // the bits which may be modified. I'm not aware of a better way to do 579 // this scan. 580 const APInt &RHSVal = RHS->getValue(); 581 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); 582 583 // Now that we know which bits have carries, compute the known-1/0 sets. 584 585 // Bits are known one if they are known zero in one operand and one in the 586 // other, and there is no input carry. 587 KnownOne = ((LHSKnownZero & RHSVal) | 588 (LHSKnownOne & ~RHSVal)) & ~CarryBits; 589 590 // Bits are known zero if they are known zero in both operands and there 591 // is no input carry. 592 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; 593 } else { 594 // If the high-bits of this ADD are not demanded, then it does not demand 595 // the high bits of its LHS or RHS. 596 if (DemandedMask[BitWidth-1] == 0) { 597 // Right fill the mask of bits for this ADD to demand the most 598 // significant bit and all those below it. 599 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 600 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 601 LHSKnownZero, LHSKnownOne, Depth + 1) || 602 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 603 LHSKnownZero, LHSKnownOne, Depth + 1)) 604 return I; 605 } 606 } 607 break; 608 } 609 case Instruction::Sub: 610 // If the high-bits of this SUB are not demanded, then it does not demand 611 // the high bits of its LHS or RHS. 612 if (DemandedMask[BitWidth-1] == 0) { 613 // Right fill the mask of bits for this SUB to demand the most 614 // significant bit and all those below it. 615 uint32_t NLZ = DemandedMask.countLeadingZeros(); 616 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 617 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 618 LHSKnownZero, LHSKnownOne, Depth + 1) || 619 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 620 LHSKnownZero, LHSKnownOne, Depth + 1)) 621 return I; 622 } 623 624 // Otherwise just hand the sub off to computeKnownBits to fill in 625 // the known zeros and ones. 626 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 627 628 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 629 // zero. 630 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) { 631 APInt I0 = C0->getValue(); 632 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) { 633 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0); 634 return InsertNewInstWith(Xor, *I); 635 } 636 } 637 break; 638 case Instruction::Shl: 639 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 640 { 641 Value *VarX; ConstantInt *C1; 642 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) { 643 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 644 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask, 645 KnownZero, KnownOne); 646 if (R) 647 return R; 648 } 649 } 650 651 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 652 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 653 654 // If the shift is NUW/NSW, then it does demand the high bits. 655 ShlOperator *IOp = cast<ShlOperator>(I); 656 if (IOp->hasNoSignedWrap()) 657 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 658 else if (IOp->hasNoUnsignedWrap()) 659 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 660 661 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 662 KnownOne, Depth + 1)) 663 return I; 664 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 665 KnownZero <<= ShiftAmt; 666 KnownOne <<= ShiftAmt; 667 // low bits known zero. 668 if (ShiftAmt) 669 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 670 } 671 break; 672 case Instruction::LShr: 673 // For a logical shift right 674 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 675 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 676 677 // Unsigned shift right. 678 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 679 680 // If the shift is exact, then it does demand the low bits (and knows that 681 // they are zero). 682 if (cast<LShrOperator>(I)->isExact()) 683 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 684 685 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 686 KnownOne, Depth + 1)) 687 return I; 688 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 689 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 690 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 691 if (ShiftAmt) { 692 // Compute the new bits that are at the top now. 693 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 694 KnownZero |= HighBits; // high bits known zero. 695 } 696 } 697 break; 698 case Instruction::AShr: 699 // If this is an arithmetic shift right and only the low-bit is set, we can 700 // always convert this into a logical shr, even if the shift amount is 701 // variable. The low bit of the shift cannot be an input sign bit unless 702 // the shift amount is >= the size of the datatype, which is undefined. 703 if (DemandedMask == 1) { 704 // Perform the logical shift right. 705 Instruction *NewVal = BinaryOperator::CreateLShr( 706 I->getOperand(0), I->getOperand(1), I->getName()); 707 return InsertNewInstWith(NewVal, *I); 708 } 709 710 // If the sign bit is the only bit demanded by this ashr, then there is no 711 // need to do it, the shift doesn't change the high bit. 712 if (DemandedMask.isSignBit()) 713 return I->getOperand(0); 714 715 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 716 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 717 718 // Signed shift right. 719 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 720 // If any of the "high bits" are demanded, we should set the sign bit as 721 // demanded. 722 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 723 DemandedMaskIn.setBit(BitWidth-1); 724 725 // If the shift is exact, then it does demand the low bits (and knows that 726 // they are zero). 727 if (cast<AShrOperator>(I)->isExact()) 728 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 729 730 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 731 KnownOne, Depth + 1)) 732 return I; 733 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 734 // Compute the new bits that are at the top now. 735 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 736 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 737 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 738 739 // Handle the sign bits. 740 APInt SignBit(APInt::getSignBit(BitWidth)); 741 // Adjust to where it is now in the mask. 742 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 743 744 // If the input sign bit is known to be zero, or if none of the top bits 745 // are demanded, turn this into an unsigned shift right. 746 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 747 (HighBits & ~DemandedMask) == HighBits) { 748 // Perform the logical shift right. 749 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0), 750 SA, I->getName()); 751 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact()); 752 return InsertNewInstWith(NewVal, *I); 753 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 754 KnownOne |= HighBits; 755 } 756 } 757 break; 758 case Instruction::SRem: 759 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 760 // X % -1 demands all the bits because we don't want to introduce 761 // INT_MIN % -1 (== undef) by accident. 762 if (Rem->isAllOnesValue()) 763 break; 764 APInt RA = Rem->getValue().abs(); 765 if (RA.isPowerOf2()) { 766 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 767 return I->getOperand(0); 768 769 APInt LowBits = RA - 1; 770 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 771 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero, 772 LHSKnownOne, Depth + 1)) 773 return I; 774 775 // The low bits of LHS are unchanged by the srem. 776 KnownZero = LHSKnownZero & LowBits; 777 KnownOne = LHSKnownOne & LowBits; 778 779 // If LHS is non-negative or has all low bits zero, then the upper bits 780 // are all zero. 781 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 782 KnownZero |= ~LowBits; 783 784 // If LHS is negative and not all low bits are zero, then the upper bits 785 // are all one. 786 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 787 KnownOne |= ~LowBits; 788 789 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 790 } 791 } 792 793 // The sign bit is the LHS's sign bit, except when the result of the 794 // remainder is zero. 795 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 796 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 797 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 798 CxtI); 799 // If it's known zero, our sign bit is also zero. 800 if (LHSKnownZero.isNegative()) 801 KnownZero.setBit(KnownZero.getBitWidth() - 1); 802 } 803 break; 804 case Instruction::URem: { 805 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 806 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 807 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2, 808 KnownOne2, Depth + 1) || 809 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2, 810 KnownOne2, Depth + 1)) 811 return I; 812 813 unsigned Leaders = KnownZero2.countLeadingOnes(); 814 Leaders = std::max(Leaders, 815 KnownZero2.countLeadingOnes()); 816 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 817 break; 818 } 819 case Instruction::Call: 820 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 821 switch (II->getIntrinsicID()) { 822 default: break; 823 case Intrinsic::bswap: { 824 // If the only bits demanded come from one byte of the bswap result, 825 // just shift the input byte into position to eliminate the bswap. 826 unsigned NLZ = DemandedMask.countLeadingZeros(); 827 unsigned NTZ = DemandedMask.countTrailingZeros(); 828 829 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 830 // we need all the bits down to bit 8. Likewise, round NLZ. If we 831 // have 14 leading zeros, round to 8. 832 NLZ &= ~7; 833 NTZ &= ~7; 834 // If we need exactly one byte, we can do this transformation. 835 if (BitWidth-NLZ-NTZ == 8) { 836 unsigned ResultBit = NTZ; 837 unsigned InputBit = BitWidth-NTZ-8; 838 839 // Replace this with either a left or right shift to get the byte into 840 // the right place. 841 Instruction *NewVal; 842 if (InputBit > ResultBit) 843 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 844 ConstantInt::get(I->getType(), InputBit-ResultBit)); 845 else 846 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 847 ConstantInt::get(I->getType(), ResultBit-InputBit)); 848 NewVal->takeName(I); 849 return InsertNewInstWith(NewVal, *I); 850 } 851 852 // TODO: Could compute known zero/one bits based on the input. 853 break; 854 } 855 case Intrinsic::x86_sse42_crc32_64_64: 856 KnownZero = APInt::getHighBitsSet(64, 32); 857 return nullptr; 858 } 859 } 860 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 861 break; 862 } 863 864 // If the client is only demanding bits that we know, return the known 865 // constant. 866 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 867 return Constant::getIntegerValue(VTy, KnownOne); 868 return nullptr; 869} 870 871/// Helper routine of SimplifyDemandedUseBits. It tries to simplify 872/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 873/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 874/// of "C2-C1". 875/// 876/// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 877/// ..., bn}, without considering the specific value X is holding. 878/// This transformation is legal iff one of following conditions is hold: 879/// 1) All the bit in S are 0, in this case E1 == E2. 880/// 2) We don't care those bits in S, per the input DemandedMask. 881/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 882/// rest bits. 883/// 884/// Currently we only test condition 2). 885/// 886/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 887/// not successful. 888Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr, 889 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) { 890 891 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue(); 892 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue(); 893 if (!ShlOp1 || !ShrOp1) 894 return nullptr; // Noop. 895 896 Value *VarX = Shr->getOperand(0); 897 Type *Ty = VarX->getType(); 898 unsigned BitWidth = Ty->getIntegerBitWidth(); 899 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 900 return nullptr; // Undef. 901 902 unsigned ShlAmt = ShlOp1.getZExtValue(); 903 unsigned ShrAmt = ShrOp1.getZExtValue(); 904 905 KnownOne.clearAllBits(); 906 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1); 907 KnownZero &= DemandedMask; 908 909 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 910 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 911 912 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 913 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 914 (BitMask1.ashr(ShrAmt) << ShlAmt); 915 916 if (ShrAmt <= ShlAmt) { 917 BitMask2 <<= (ShlAmt - ShrAmt); 918 } else { 919 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 920 BitMask2.ashr(ShrAmt - ShlAmt); 921 } 922 923 // Check if condition-2 (see the comment to this function) is satified. 924 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 925 if (ShrAmt == ShlAmt) 926 return VarX; 927 928 if (!Shr->hasOneUse()) 929 return nullptr; 930 931 BinaryOperator *New; 932 if (ShrAmt < ShlAmt) { 933 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 934 New = BinaryOperator::CreateShl(VarX, Amt); 935 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 936 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 937 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 938 } else { 939 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 940 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 941 BinaryOperator::CreateAShr(VarX, Amt); 942 if (cast<BinaryOperator>(Shr)->isExact()) 943 New->setIsExact(true); 944 } 945 946 return InsertNewInstWith(New, *Shl); 947 } 948 949 return nullptr; 950} 951 952/// SimplifyDemandedVectorElts - The specified value produces a vector with 953/// any number of elements. DemandedElts contains the set of elements that are 954/// actually used by the caller. This method analyzes which elements of the 955/// operand are undef and returns that information in UndefElts. 956/// 957/// If the information about demanded elements can be used to simplify the 958/// operation, the operation is simplified, then the resultant value is 959/// returned. This returns null if no change was made. 960Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 961 APInt &UndefElts, 962 unsigned Depth) { 963 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 964 APInt EltMask(APInt::getAllOnesValue(VWidth)); 965 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 966 967 if (isa<UndefValue>(V)) { 968 // If the entire vector is undefined, just return this info. 969 UndefElts = EltMask; 970 return nullptr; 971 } 972 973 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 974 UndefElts = EltMask; 975 return UndefValue::get(V->getType()); 976 } 977 978 UndefElts = 0; 979 980 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 981 if (Constant *C = dyn_cast<Constant>(V)) { 982 // Check if this is identity. If so, return 0 since we are not simplifying 983 // anything. 984 if (DemandedElts.isAllOnesValue()) 985 return nullptr; 986 987 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 988 Constant *Undef = UndefValue::get(EltTy); 989 990 SmallVector<Constant*, 16> Elts; 991 for (unsigned i = 0; i != VWidth; ++i) { 992 if (!DemandedElts[i]) { // If not demanded, set to undef. 993 Elts.push_back(Undef); 994 UndefElts.setBit(i); 995 continue; 996 } 997 998 Constant *Elt = C->getAggregateElement(i); 999 if (!Elt) return nullptr; 1000 1001 if (isa<UndefValue>(Elt)) { // Already undef. 1002 Elts.push_back(Undef); 1003 UndefElts.setBit(i); 1004 } else { // Otherwise, defined. 1005 Elts.push_back(Elt); 1006 } 1007 } 1008 1009 // If we changed the constant, return it. 1010 Constant *NewCV = ConstantVector::get(Elts); 1011 return NewCV != C ? NewCV : nullptr; 1012 } 1013 1014 // Limit search depth. 1015 if (Depth == 10) 1016 return nullptr; 1017 1018 // If multiple users are using the root value, proceed with 1019 // simplification conservatively assuming that all elements 1020 // are needed. 1021 if (!V->hasOneUse()) { 1022 // Quit if we find multiple users of a non-root value though. 1023 // They'll be handled when it's their turn to be visited by 1024 // the main instcombine process. 1025 if (Depth != 0) 1026 // TODO: Just compute the UndefElts information recursively. 1027 return nullptr; 1028 1029 // Conservatively assume that all elements are needed. 1030 DemandedElts = EltMask; 1031 } 1032 1033 Instruction *I = dyn_cast<Instruction>(V); 1034 if (!I) return nullptr; // Only analyze instructions. 1035 1036 bool MadeChange = false; 1037 APInt UndefElts2(VWidth, 0); 1038 Value *TmpV; 1039 switch (I->getOpcode()) { 1040 default: break; 1041 1042 case Instruction::InsertElement: { 1043 // If this is a variable index, we don't know which element it overwrites. 1044 // demand exactly the same input as we produce. 1045 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1046 if (!Idx) { 1047 // Note that we can't propagate undef elt info, because we don't know 1048 // which elt is getting updated. 1049 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1050 UndefElts2, Depth + 1); 1051 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1052 break; 1053 } 1054 1055 // If this is inserting an element that isn't demanded, remove this 1056 // insertelement. 1057 unsigned IdxNo = Idx->getZExtValue(); 1058 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1059 Worklist.Add(I); 1060 return I->getOperand(0); 1061 } 1062 1063 // Otherwise, the element inserted overwrites whatever was there, so the 1064 // input demanded set is simpler than the output set. 1065 APInt DemandedElts2 = DemandedElts; 1066 DemandedElts2.clearBit(IdxNo); 1067 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1068 UndefElts, Depth + 1); 1069 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1070 1071 // The inserted element is defined. 1072 UndefElts.clearBit(IdxNo); 1073 break; 1074 } 1075 case Instruction::ShuffleVector: { 1076 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1077 uint64_t LHSVWidth = 1078 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 1079 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1080 for (unsigned i = 0; i < VWidth; i++) { 1081 if (DemandedElts[i]) { 1082 unsigned MaskVal = Shuffle->getMaskValue(i); 1083 if (MaskVal != -1u) { 1084 assert(MaskVal < LHSVWidth * 2 && 1085 "shufflevector mask index out of range!"); 1086 if (MaskVal < LHSVWidth) 1087 LeftDemanded.setBit(MaskVal); 1088 else 1089 RightDemanded.setBit(MaskVal - LHSVWidth); 1090 } 1091 } 1092 } 1093 1094 APInt UndefElts4(LHSVWidth, 0); 1095 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1096 UndefElts4, Depth + 1); 1097 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1098 1099 APInt UndefElts3(LHSVWidth, 0); 1100 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1101 UndefElts3, Depth + 1); 1102 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1103 1104 bool NewUndefElts = false; 1105 for (unsigned i = 0; i < VWidth; i++) { 1106 unsigned MaskVal = Shuffle->getMaskValue(i); 1107 if (MaskVal == -1u) { 1108 UndefElts.setBit(i); 1109 } else if (!DemandedElts[i]) { 1110 NewUndefElts = true; 1111 UndefElts.setBit(i); 1112 } else if (MaskVal < LHSVWidth) { 1113 if (UndefElts4[MaskVal]) { 1114 NewUndefElts = true; 1115 UndefElts.setBit(i); 1116 } 1117 } else { 1118 if (UndefElts3[MaskVal - LHSVWidth]) { 1119 NewUndefElts = true; 1120 UndefElts.setBit(i); 1121 } 1122 } 1123 } 1124 1125 if (NewUndefElts) { 1126 // Add additional discovered undefs. 1127 SmallVector<Constant*, 16> Elts; 1128 for (unsigned i = 0; i < VWidth; ++i) { 1129 if (UndefElts[i]) 1130 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1131 else 1132 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1133 Shuffle->getMaskValue(i))); 1134 } 1135 I->setOperand(2, ConstantVector::get(Elts)); 1136 MadeChange = true; 1137 } 1138 break; 1139 } 1140 case Instruction::Select: { 1141 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1142 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1143 for (unsigned i = 0; i < VWidth; i++) { 1144 if (CV->getAggregateElement(i)->isNullValue()) 1145 LeftDemanded.clearBit(i); 1146 else 1147 RightDemanded.clearBit(i); 1148 } 1149 } 1150 1151 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, 1152 Depth + 1); 1153 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1154 1155 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1156 UndefElts2, Depth + 1); 1157 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1158 1159 // Output elements are undefined if both are undefined. 1160 UndefElts &= UndefElts2; 1161 break; 1162 } 1163 case Instruction::BitCast: { 1164 // Vector->vector casts only. 1165 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1166 if (!VTy) break; 1167 unsigned InVWidth = VTy->getNumElements(); 1168 APInt InputDemandedElts(InVWidth, 0); 1169 unsigned Ratio; 1170 1171 if (VWidth == InVWidth) { 1172 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1173 // elements as are demanded of us. 1174 Ratio = 1; 1175 InputDemandedElts = DemandedElts; 1176 } else if (VWidth > InVWidth) { 1177 // Untested so far. 1178 break; 1179 1180 // If there are more elements in the result than there are in the source, 1181 // then an input element is live if any of the corresponding output 1182 // elements are live. 1183 Ratio = VWidth/InVWidth; 1184 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1185 if (DemandedElts[OutIdx]) 1186 InputDemandedElts.setBit(OutIdx/Ratio); 1187 } 1188 } else { 1189 // Untested so far. 1190 break; 1191 1192 // If there are more elements in the source than there are in the result, 1193 // then an input element is live if the corresponding output element is 1194 // live. 1195 Ratio = InVWidth/VWidth; 1196 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1197 if (DemandedElts[InIdx/Ratio]) 1198 InputDemandedElts.setBit(InIdx); 1199 } 1200 1201 // div/rem demand all inputs, because they don't want divide by zero. 1202 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1203 UndefElts2, Depth + 1); 1204 if (TmpV) { 1205 I->setOperand(0, TmpV); 1206 MadeChange = true; 1207 } 1208 1209 UndefElts = UndefElts2; 1210 if (VWidth > InVWidth) { 1211 llvm_unreachable("Unimp"); 1212 // If there are more elements in the result than there are in the source, 1213 // then an output element is undef if the corresponding input element is 1214 // undef. 1215 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1216 if (UndefElts2[OutIdx/Ratio]) 1217 UndefElts.setBit(OutIdx); 1218 } else if (VWidth < InVWidth) { 1219 llvm_unreachable("Unimp"); 1220 // If there are more elements in the source than there are in the result, 1221 // then a result element is undef if all of the corresponding input 1222 // elements are undef. 1223 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. 1224 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1225 if (!UndefElts2[InIdx]) // Not undef? 1226 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit. 1227 } 1228 break; 1229 } 1230 case Instruction::And: 1231 case Instruction::Or: 1232 case Instruction::Xor: 1233 case Instruction::Add: 1234 case Instruction::Sub: 1235 case Instruction::Mul: 1236 // div/rem demand all inputs, because they don't want divide by zero. 1237 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1238 Depth + 1); 1239 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1240 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1241 UndefElts2, Depth + 1); 1242 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1243 1244 // Output elements are undefined if both are undefined. Consider things 1245 // like undef&0. The result is known zero, not undef. 1246 UndefElts &= UndefElts2; 1247 break; 1248 case Instruction::FPTrunc: 1249 case Instruction::FPExt: 1250 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1251 Depth + 1); 1252 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1253 break; 1254 1255 case Instruction::Call: { 1256 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1257 if (!II) break; 1258 switch (II->getIntrinsicID()) { 1259 default: break; 1260 1261 // Binary vector operations that work column-wise. A dest element is a 1262 // function of the corresponding input elements from the two inputs. 1263 case Intrinsic::x86_sse_sub_ss: 1264 case Intrinsic::x86_sse_mul_ss: 1265 case Intrinsic::x86_sse_min_ss: 1266 case Intrinsic::x86_sse_max_ss: 1267 case Intrinsic::x86_sse2_sub_sd: 1268 case Intrinsic::x86_sse2_mul_sd: 1269 case Intrinsic::x86_sse2_min_sd: 1270 case Intrinsic::x86_sse2_max_sd: 1271 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1272 UndefElts, Depth + 1); 1273 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1274 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1275 UndefElts2, Depth + 1); 1276 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1277 1278 // If only the low elt is demanded and this is a scalarizable intrinsic, 1279 // scalarize it now. 1280 if (DemandedElts == 1) { 1281 switch (II->getIntrinsicID()) { 1282 default: break; 1283 case Intrinsic::x86_sse_sub_ss: 1284 case Intrinsic::x86_sse_mul_ss: 1285 case Intrinsic::x86_sse2_sub_sd: 1286 case Intrinsic::x86_sse2_mul_sd: 1287 // TODO: Lower MIN/MAX/ABS/etc 1288 Value *LHS = II->getArgOperand(0); 1289 Value *RHS = II->getArgOperand(1); 1290 // Extract the element as scalars. 1291 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 1292 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1293 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, 1294 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1295 1296 switch (II->getIntrinsicID()) { 1297 default: llvm_unreachable("Case stmts out of sync!"); 1298 case Intrinsic::x86_sse_sub_ss: 1299 case Intrinsic::x86_sse2_sub_sd: 1300 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, 1301 II->getName()), *II); 1302 break; 1303 case Intrinsic::x86_sse_mul_ss: 1304 case Intrinsic::x86_sse2_mul_sd: 1305 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, 1306 II->getName()), *II); 1307 break; 1308 } 1309 1310 Instruction *New = 1311 InsertElementInst::Create( 1312 UndefValue::get(II->getType()), TmpV, 1313 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), 1314 II->getName()); 1315 InsertNewInstWith(New, *II); 1316 return New; 1317 } 1318 } 1319 1320 // Output elements are undefined if both are undefined. Consider things 1321 // like undef&0. The result is known zero, not undef. 1322 UndefElts &= UndefElts2; 1323 break; 1324 } 1325 break; 1326 } 1327 } 1328 return MadeChange ? I : nullptr; 1329} 1330