1//===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Place garbage collection safepoints at appropriate locations in the IR. This
11// does not make relocation semantics or variable liveness explicit.  That's
12// done by RewriteStatepointsForGC.
13//
14// Terminology:
15// - A call is said to be "parseable" if there is a stack map generated for the
16// return PC of the call.  A runtime can determine where values listed in the
17// deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
18// on the stack when the code is suspended inside such a call.  Every parse
19// point is represented by a call wrapped in an gc.statepoint intrinsic.
20// - A "poll" is an explicit check in the generated code to determine if the
21// runtime needs the generated code to cooperate by calling a helper routine
22// and thus suspending its execution at a known state. The call to the helper
23// routine will be parseable.  The (gc & runtime specific) logic of a poll is
24// assumed to be provided in a function of the name "gc.safepoint_poll".
25//
26// We aim to insert polls such that running code can quickly be brought to a
27// well defined state for inspection by the collector.  In the current
28// implementation, this is done via the insertion of poll sites at method entry
29// and the backedge of most loops.  We try to avoid inserting more polls than
30// are neccessary to ensure a finite period between poll sites.  This is not
31// because the poll itself is expensive in the generated code; it's not.  Polls
32// do tend to impact the optimizer itself in negative ways; we'd like to avoid
33// perturbing the optimization of the method as much as we can.
34//
35// We also need to make most call sites parseable.  The callee might execute a
36// poll (or otherwise be inspected by the GC).  If so, the entire stack
37// (including the suspended frame of the current method) must be parseable.
38//
39// This pass will insert:
40// - Call parse points ("call safepoints") for any call which may need to
41// reach a safepoint during the execution of the callee function.
42// - Backedge safepoint polls and entry safepoint polls to ensure that
43// executing code reaches a safepoint poll in a finite amount of time.
44//
45// We do not currently support return statepoints, but adding them would not
46// be hard.  They are not required for correctness - entry safepoints are an
47// alternative - but some GCs may prefer them.  Patches welcome.
48//
49//===----------------------------------------------------------------------===//
50
51#include "llvm/Pass.h"
52#include "llvm/IR/LegacyPassManager.h"
53#include "llvm/ADT/SetOperations.h"
54#include "llvm/ADT/Statistic.h"
55#include "llvm/Analysis/LoopPass.h"
56#include "llvm/Analysis/LoopInfo.h"
57#include "llvm/Analysis/ScalarEvolution.h"
58#include "llvm/Analysis/ScalarEvolutionExpressions.h"
59#include "llvm/Analysis/CFG.h"
60#include "llvm/Analysis/InstructionSimplify.h"
61#include "llvm/IR/BasicBlock.h"
62#include "llvm/IR/CallSite.h"
63#include "llvm/IR/Dominators.h"
64#include "llvm/IR/Function.h"
65#include "llvm/IR/IRBuilder.h"
66#include "llvm/IR/InstIterator.h"
67#include "llvm/IR/Instructions.h"
68#include "llvm/IR/Intrinsics.h"
69#include "llvm/IR/IntrinsicInst.h"
70#include "llvm/IR/Module.h"
71#include "llvm/IR/Statepoint.h"
72#include "llvm/IR/Value.h"
73#include "llvm/IR/Verifier.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/raw_ostream.h"
77#include "llvm/Transforms/Scalar.h"
78#include "llvm/Transforms/Utils/BasicBlockUtils.h"
79#include "llvm/Transforms/Utils/Cloning.h"
80#include "llvm/Transforms/Utils/Local.h"
81
82#define DEBUG_TYPE "safepoint-placement"
83STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
84STATISTIC(NumCallSafepoints, "Number of call safepoints inserted");
85STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
86
87STATISTIC(CallInLoop, "Number of loops w/o safepoints due to calls in loop");
88STATISTIC(FiniteExecution, "Number of loops w/o safepoints finite execution");
89
90using namespace llvm;
91
92// Ignore oppurtunities to avoid placing safepoints on backedges, useful for
93// validation
94static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
95                                  cl::init(false));
96
97/// If true, do not place backedge safepoints in counted loops.
98static cl::opt<bool> SkipCounted("spp-counted", cl::Hidden, cl::init(true));
99
100// If true, split the backedge of a loop when placing the safepoint, otherwise
101// split the latch block itself.  Both are useful to support for
102// experimentation, but in practice, it looks like splitting the backedge
103// optimizes better.
104static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
105                                   cl::init(false));
106
107// Print tracing output
108static cl::opt<bool> TraceLSP("spp-trace", cl::Hidden, cl::init(false));
109
110namespace {
111
112/** An analysis pass whose purpose is to identify each of the backedges in
113    the function which require a safepoint poll to be inserted. */
114struct PlaceBackedgeSafepointsImpl : public LoopPass {
115  static char ID;
116
117  /// The output of the pass - gives a list of each backedge (described by
118  /// pointing at the branch) which need a poll inserted.
119  std::vector<TerminatorInst *> PollLocations;
120
121  /// True unless we're running spp-no-calls in which case we need to disable
122  /// the call dependend placement opts.
123  bool CallSafepointsEnabled;
124  PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
125      : LoopPass(ID), CallSafepointsEnabled(CallSafepoints) {
126    initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
127  }
128
129  bool runOnLoop(Loop *, LPPassManager &LPM) override;
130
131  void getAnalysisUsage(AnalysisUsage &AU) const override {
132    // needed for determining if the loop is finite
133    AU.addRequired<ScalarEvolution>();
134    // to ensure each edge has a single backedge
135    // TODO: is this still required?
136    AU.addRequiredID(LoopSimplifyID);
137
138    // We no longer modify the IR at all in this pass.  Thus all
139    // analysis are preserved.
140    AU.setPreservesAll();
141  }
142};
143}
144
145static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
146static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
147static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
148
149namespace {
150struct PlaceSafepoints : public ModulePass {
151  static char ID; // Pass identification, replacement for typeid
152
153  PlaceSafepoints() : ModulePass(ID) {
154    initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
155  }
156  bool runOnModule(Module &M) override {
157    bool modified = false;
158    for (Function &F : M) {
159      modified |= runOnFunction(F);
160    }
161    return modified;
162  }
163  bool runOnFunction(Function &F);
164
165  void getAnalysisUsage(AnalysisUsage &AU) const override {
166    // We modify the graph wholesale (inlining, block insertion, etc).  We
167    // preserve nothing at the moment.  We could potentially preserve dom tree
168    // if that was worth doing
169  }
170};
171}
172
173// Insert a safepoint poll immediately before the given instruction.  Does
174// not handle the parsability of state at the runtime call, that's the
175// callers job.
176static void
177InsertSafepointPoll(DominatorTree &DT, Instruction *after,
178                    std::vector<CallSite> &ParsePointsNeeded /*rval*/);
179
180static bool isGCLeafFunction(const CallSite &CS);
181
182static bool needsStatepoint(const CallSite &CS) {
183  if (isGCLeafFunction(CS))
184    return false;
185  if (CS.isCall()) {
186    CallInst *call = cast<CallInst>(CS.getInstruction());
187    if (call->isInlineAsm())
188      return false;
189  }
190  if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) {
191    return false;
192  }
193  return true;
194}
195
196static Value *ReplaceWithStatepoint(const CallSite &CS, Pass *P);
197
198/// Returns true if this loop is known to contain a call safepoint which
199/// must unconditionally execute on any iteration of the loop which returns
200/// to the loop header via an edge from Pred.  Returns a conservative correct
201/// answer; i.e. false is always valid.
202static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
203                                               BasicBlock *Pred,
204                                               DominatorTree &DT) {
205  // In general, we're looking for any cut of the graph which ensures
206  // there's a call safepoint along every edge between Header and Pred.
207  // For the moment, we look only for the 'cuts' that consist of a single call
208  // instruction in a block which is dominated by the Header and dominates the
209  // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
210  // of such dominating blocks gets substaintially more occurences than just
211  // checking the Pred and Header blocks themselves.  This may be due to the
212  // density of loop exit conditions caused by range and null checks.
213  // TODO: structure this as an analysis pass, cache the result for subloops,
214  // avoid dom tree recalculations
215  assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
216
217  BasicBlock *Current = Pred;
218  while (true) {
219    for (Instruction &I : *Current) {
220      if (auto CS = CallSite(&I))
221        // Note: Technically, needing a safepoint isn't quite the right
222        // condition here.  We should instead be checking if the target method
223        // has an
224        // unconditional poll. In practice, this is only a theoretical concern
225        // since we don't have any methods with conditional-only safepoint
226        // polls.
227        if (needsStatepoint(CS))
228          return true;
229    }
230
231    if (Current == Header)
232      break;
233    Current = DT.getNode(Current)->getIDom()->getBlock();
234  }
235
236  return false;
237}
238
239/// Returns true if this loop is known to terminate in a finite number of
240/// iterations.  Note that this function may return false for a loop which
241/// does actual terminate in a finite constant number of iterations due to
242/// conservatism in the analysis.
243static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
244                                    BasicBlock *Pred) {
245  // Only used when SkipCounted is off
246  const unsigned upperTripBound = 8192;
247
248  // A conservative bound on the loop as a whole.
249  const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
250  if (MaxTrips != SE->getCouldNotCompute()) {
251    if (SE->getUnsignedRange(MaxTrips).getUnsignedMax().ult(upperTripBound))
252      return true;
253    if (SkipCounted &&
254        SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(32))
255      return true;
256  }
257
258  // If this is a conditional branch to the header with the alternate path
259  // being outside the loop, we can ask questions about the execution frequency
260  // of the exit block.
261  if (L->isLoopExiting(Pred)) {
262    // This returns an exact expression only.  TODO: We really only need an
263    // upper bound here, but SE doesn't expose that.
264    const SCEV *MaxExec = SE->getExitCount(L, Pred);
265    if (MaxExec != SE->getCouldNotCompute()) {
266      if (SE->getUnsignedRange(MaxExec).getUnsignedMax().ult(upperTripBound))
267        return true;
268      if (SkipCounted &&
269          SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(32))
270        return true;
271    }
272  }
273
274  return /* not finite */ false;
275}
276
277static void scanOneBB(Instruction *start, Instruction *end,
278                      std::vector<CallInst *> &calls,
279                      std::set<BasicBlock *> &seen,
280                      std::vector<BasicBlock *> &worklist) {
281  for (BasicBlock::iterator itr(start);
282       itr != start->getParent()->end() && itr != BasicBlock::iterator(end);
283       itr++) {
284    if (CallInst *CI = dyn_cast<CallInst>(&*itr)) {
285      calls.push_back(CI);
286    }
287    // FIXME: This code does not handle invokes
288    assert(!dyn_cast<InvokeInst>(&*itr) &&
289           "support for invokes in poll code needed");
290    // Only add the successor blocks if we reach the terminator instruction
291    // without encountering end first
292    if (itr->isTerminator()) {
293      BasicBlock *BB = itr->getParent();
294      for (BasicBlock *Succ : successors(BB)) {
295        if (seen.count(Succ) == 0) {
296          worklist.push_back(Succ);
297          seen.insert(Succ);
298        }
299      }
300    }
301  }
302}
303static void scanInlinedCode(Instruction *start, Instruction *end,
304                            std::vector<CallInst *> &calls,
305                            std::set<BasicBlock *> &seen) {
306  calls.clear();
307  std::vector<BasicBlock *> worklist;
308  seen.insert(start->getParent());
309  scanOneBB(start, end, calls, seen, worklist);
310  while (!worklist.empty()) {
311    BasicBlock *BB = worklist.back();
312    worklist.pop_back();
313    scanOneBB(&*BB->begin(), end, calls, seen, worklist);
314  }
315}
316
317bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L, LPPassManager &LPM) {
318  ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
319
320  // Loop through all predecessors of the loop header and identify all
321  // backedges.  We need to place a safepoint on every backedge (potentially).
322  // Note: Due to LoopSimplify there should only be one.  Assert?  Or can we
323  // relax this?
324  BasicBlock *header = L->getHeader();
325
326  // TODO: Use the analysis pass infrastructure for this.  There is no reason
327  // to recalculate this here.
328  DominatorTree DT;
329  DT.recalculate(*header->getParent());
330
331  bool modified = false;
332  for (BasicBlock *pred : predecessors(header)) {
333    if (!L->contains(pred)) {
334      // This is not a backedge, it's coming from outside the loop
335      continue;
336    }
337
338    // Make a policy decision about whether this loop needs a safepoint or
339    // not.  Note that this is about unburdening the optimizer in loops, not
340    // avoiding the runtime cost of the actual safepoint.
341    if (!AllBackedges) {
342      if (mustBeFiniteCountedLoop(L, SE, pred)) {
343        if (TraceLSP)
344          errs() << "skipping safepoint placement in finite loop\n";
345        FiniteExecution++;
346        continue;
347      }
348      if (CallSafepointsEnabled &&
349          containsUnconditionalCallSafepoint(L, header, pred, DT)) {
350        // Note: This is only semantically legal since we won't do any further
351        // IPO or inlining before the actual call insertion..  If we hadn't, we
352        // might latter loose this call safepoint.
353        if (TraceLSP)
354          errs() << "skipping safepoint placement due to unconditional call\n";
355        CallInLoop++;
356        continue;
357      }
358    }
359
360    // TODO: We can create an inner loop which runs a finite number of
361    // iterations with an outer loop which contains a safepoint.  This would
362    // not help runtime performance that much, but it might help our ability to
363    // optimize the inner loop.
364
365    // We're unconditionally going to modify this loop.
366    modified = true;
367
368    // Safepoint insertion would involve creating a new basic block (as the
369    // target of the current backedge) which does the safepoint (of all live
370    // variables) and branches to the true header
371    TerminatorInst *term = pred->getTerminator();
372
373    if (TraceLSP) {
374      errs() << "[LSP] terminator instruction: ";
375      term->dump();
376    }
377
378    PollLocations.push_back(term);
379  }
380
381  return modified;
382}
383
384static Instruction *findLocationForEntrySafepoint(Function &F,
385                                                  DominatorTree &DT) {
386
387  // Conceptually, this poll needs to be on method entry, but in
388  // practice, we place it as late in the entry block as possible.  We
389  // can place it as late as we want as long as it dominates all calls
390  // that can grow the stack.  This, combined with backedge polls,
391  // give us all the progress guarantees we need.
392
393  // Due to the way the frontend generates IR, we may have a couple of initial
394  // basic blocks before the first bytecode.  These will be single-entry
395  // single-exit blocks which conceptually are just part of the first 'real
396  // basic block'.  Since we don't have deopt state until the first bytecode,
397  // walk forward until we've found the first unconditional branch or merge.
398
399  // hasNextInstruction and nextInstruction are used to iterate
400  // through a "straight line" execution sequence.
401
402  auto hasNextInstruction = [](Instruction *I) {
403    if (!I->isTerminator()) {
404      return true;
405    }
406    BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
407    return nextBB && (nextBB->getUniquePredecessor() != nullptr);
408  };
409
410  auto nextInstruction = [&hasNextInstruction](Instruction *I) {
411    assert(hasNextInstruction(I) &&
412           "first check if there is a next instruction!");
413    if (I->isTerminator()) {
414      return I->getParent()->getUniqueSuccessor()->begin();
415    } else {
416      return std::next(BasicBlock::iterator(I));
417    }
418  };
419
420  Instruction *cursor = nullptr;
421  for (cursor = F.getEntryBlock().begin(); hasNextInstruction(cursor);
422       cursor = nextInstruction(cursor)) {
423
424    // We need to stop going forward as soon as we see a call that can
425    // grow the stack (i.e. the call target has a non-zero frame
426    // size).
427    if (CallSite(cursor)) {
428      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(cursor)) {
429        // llvm.assume(...) are not really calls.
430        if (II->getIntrinsicID() == Intrinsic::assume) {
431          continue;
432        }
433      }
434      break;
435    }
436  }
437
438  assert((hasNextInstruction(cursor) || cursor->isTerminator()) &&
439         "either we stopped because of a call, or because of terminator");
440
441  if (cursor->isTerminator()) {
442    return cursor;
443  }
444
445  BasicBlock *BB = cursor->getParent();
446  SplitBlock(BB, cursor, nullptr);
447
448  // Note: SplitBlock modifies the DT.  Simply passing a Pass (which is a
449  // module pass) is not enough.
450  DT.recalculate(F);
451#ifndef NDEBUG
452  // SplitBlock updates the DT
453  DT.verifyDomTree();
454#endif
455
456  return BB->getTerminator();
457}
458
459/// Identify the list of call sites which need to be have parseable state
460static void findCallSafepoints(Function &F,
461                               std::vector<CallSite> &Found /*rval*/) {
462  assert(Found.empty() && "must be empty!");
463  for (Instruction &I : inst_range(F)) {
464    Instruction *inst = &I;
465    if (isa<CallInst>(inst) || isa<InvokeInst>(inst)) {
466      CallSite CS(inst);
467
468      // No safepoint needed or wanted
469      if (!needsStatepoint(CS)) {
470        continue;
471      }
472
473      Found.push_back(CS);
474    }
475  }
476}
477
478/// Implement a unique function which doesn't require we sort the input
479/// vector.  Doing so has the effect of changing the output of a couple of
480/// tests in ways which make them less useful in testing fused safepoints.
481template <typename T> static void unique_unsorted(std::vector<T> &vec) {
482  std::set<T> seen;
483  std::vector<T> tmp;
484  vec.reserve(vec.size());
485  std::swap(tmp, vec);
486  for (auto V : tmp) {
487    if (seen.insert(V).second) {
488      vec.push_back(V);
489    }
490  }
491}
492
493static std::string GCSafepointPollName("gc.safepoint_poll");
494
495static bool isGCSafepointPoll(Function &F) {
496  return F.getName().equals(GCSafepointPollName);
497}
498
499/// Returns true if this function should be rewritten to include safepoint
500/// polls and parseable call sites.  The main point of this function is to be
501/// an extension point for custom logic.
502static bool shouldRewriteFunction(Function &F) {
503  // TODO: This should check the GCStrategy
504  if (F.hasGC()) {
505    const std::string StatepointExampleName("statepoint-example");
506    return StatepointExampleName == F.getGC();
507  } else
508    return false;
509}
510
511// TODO: These should become properties of the GCStrategy, possibly with
512// command line overrides.
513static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
514static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
515static bool enableCallSafepoints(Function &F) { return !NoCall; }
516
517
518bool PlaceSafepoints::runOnFunction(Function &F) {
519  if (F.isDeclaration() || F.empty()) {
520    // This is a declaration, nothing to do.  Must exit early to avoid crash in
521    // dom tree calculation
522    return false;
523  }
524
525  if (isGCSafepointPoll(F)) {
526    // Given we're inlining this inside of safepoint poll insertion, this
527    // doesn't make any sense.  Note that we do make any contained calls
528    // parseable after we inline a poll.
529    return false;
530  }
531
532  if (!shouldRewriteFunction(F))
533    return false;
534
535  bool modified = false;
536
537  // In various bits below, we rely on the fact that uses are reachable from
538  // defs.  When there are basic blocks unreachable from the entry, dominance
539  // and reachablity queries return non-sensical results.  Thus, we preprocess
540  // the function to ensure these properties hold.
541  modified |= removeUnreachableBlocks(F);
542
543  // STEP 1 - Insert the safepoint polling locations.  We do not need to
544  // actually insert parse points yet.  That will be done for all polls and
545  // calls in a single pass.
546
547  // Note: With the migration, we need to recompute this for each 'pass'.  Once
548  // we merge these, we'll do it once before the analysis
549  DominatorTree DT;
550
551  std::vector<CallSite> ParsePointNeeded;
552
553  if (enableBackedgeSafepoints(F)) {
554    // Construct a pass manager to run the LoopPass backedge logic.  We
555    // need the pass manager to handle scheduling all the loop passes
556    // appropriately.  Doing this by hand is painful and just not worth messing
557    // with for the moment.
558    legacy::FunctionPassManager FPM(F.getParent());
559    bool CanAssumeCallSafepoints = enableCallSafepoints(F);
560    PlaceBackedgeSafepointsImpl *PBS =
561      new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
562    FPM.add(PBS);
563    // Note: While the analysis pass itself won't modify the IR, LoopSimplify
564    // (which it depends on) may.  i.e. analysis must be recalculated after run
565    FPM.run(F);
566
567    // We preserve dominance information when inserting the poll, otherwise
568    // we'd have to recalculate this on every insert
569    DT.recalculate(F);
570
571    // Insert a poll at each point the analysis pass identified
572    for (size_t i = 0; i < PBS->PollLocations.size(); i++) {
573      // We are inserting a poll, the function is modified
574      modified = true;
575
576      // The poll location must be the terminator of a loop latch block.
577      TerminatorInst *Term = PBS->PollLocations[i];
578
579      std::vector<CallSite> ParsePoints;
580      if (SplitBackedge) {
581        // Split the backedge of the loop and insert the poll within that new
582        // basic block.  This creates a loop with two latches per original
583        // latch (which is non-ideal), but this appears to be easier to
584        // optimize in practice than inserting the poll immediately before the
585        // latch test.
586
587        // Since this is a latch, at least one of the successors must dominate
588        // it. Its possible that we have a) duplicate edges to the same header
589        // and b) edges to distinct loop headers.  We need to insert pools on
590        // each. (Note: This still relies on LoopSimplify.)
591        DenseSet<BasicBlock *> Headers;
592        for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
593          BasicBlock *Succ = Term->getSuccessor(i);
594          if (DT.dominates(Succ, Term->getParent())) {
595            Headers.insert(Succ);
596          }
597        }
598        assert(!Headers.empty() && "poll location is not a loop latch?");
599
600        // The split loop structure here is so that we only need to recalculate
601        // the dominator tree once.  Alternatively, we could just keep it up to
602        // date and use a more natural merged loop.
603        DenseSet<BasicBlock *> SplitBackedges;
604        for (BasicBlock *Header : Headers) {
605          BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, nullptr);
606          SplitBackedges.insert(NewBB);
607        }
608        DT.recalculate(F);
609        for (BasicBlock *NewBB : SplitBackedges) {
610          InsertSafepointPoll(DT, NewBB->getTerminator(), ParsePoints);
611          NumBackedgeSafepoints++;
612        }
613
614      } else {
615        // Split the latch block itself, right before the terminator.
616        InsertSafepointPoll(DT, Term, ParsePoints);
617        NumBackedgeSafepoints++;
618      }
619
620      // Record the parse points for later use
621      ParsePointNeeded.insert(ParsePointNeeded.end(), ParsePoints.begin(),
622                              ParsePoints.end());
623    }
624  }
625
626  if (enableEntrySafepoints(F)) {
627    DT.recalculate(F);
628    Instruction *term = findLocationForEntrySafepoint(F, DT);
629    if (!term) {
630      // policy choice not to insert?
631    } else {
632      std::vector<CallSite> RuntimeCalls;
633      InsertSafepointPoll(DT, term, RuntimeCalls);
634      modified = true;
635      NumEntrySafepoints++;
636      ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
637                              RuntimeCalls.end());
638    }
639  }
640
641  if (enableCallSafepoints(F)) {
642    DT.recalculate(F);
643    std::vector<CallSite> Calls;
644    findCallSafepoints(F, Calls);
645    NumCallSafepoints += Calls.size();
646    ParsePointNeeded.insert(ParsePointNeeded.end(), Calls.begin(), Calls.end());
647  }
648
649  // Unique the vectors since we can end up with duplicates if we scan the call
650  // site for call safepoints after we add it for entry or backedge.  The
651  // only reason we need tracking at all is that some functions might have
652  // polls but not call safepoints and thus we might miss marking the runtime
653  // calls for the polls. (This is useful in test cases!)
654  unique_unsorted(ParsePointNeeded);
655
656  // Any parse point (no matter what source) will be handled here
657  DT.recalculate(F); // Needed?
658
659  // We're about to start modifying the function
660  if (!ParsePointNeeded.empty())
661    modified = true;
662
663  // Now run through and insert the safepoints, but do _NOT_ update or remove
664  // any existing uses.  We have references to live variables that need to
665  // survive to the last iteration of this loop.
666  std::vector<Value *> Results;
667  Results.reserve(ParsePointNeeded.size());
668  for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
669    CallSite &CS = ParsePointNeeded[i];
670    Value *GCResult = ReplaceWithStatepoint(CS, nullptr);
671    Results.push_back(GCResult);
672  }
673  assert(Results.size() == ParsePointNeeded.size());
674
675  // Adjust all users of the old call sites to use the new ones instead
676  for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
677    CallSite &CS = ParsePointNeeded[i];
678    Value *GCResult = Results[i];
679    if (GCResult) {
680      // In case if we inserted result in a different basic block than the
681      // original safepoint (this can happen for invokes). We need to be sure
682      // that
683      // original result value was not used in any of the phi nodes at the
684      // beginning of basic block with gc result. Because we know that all such
685      // blocks will have single predecessor we can safely assume that all phi
686      // nodes have single entry (because of normalizeBBForInvokeSafepoint).
687      // Just remove them all here.
688      if (CS.isInvoke()) {
689        FoldSingleEntryPHINodes(cast<Instruction>(GCResult)->getParent(),
690                                nullptr);
691        assert(
692            !isa<PHINode>(cast<Instruction>(GCResult)->getParent()->begin()));
693      }
694
695      // Replace all uses with the new call
696      CS.getInstruction()->replaceAllUsesWith(GCResult);
697    }
698
699    // Now that we've handled all uses, remove the original call itself
700    // Note: The insert point can't be the deleted instruction!
701    CS.getInstruction()->eraseFromParent();
702  }
703  return modified;
704}
705
706char PlaceBackedgeSafepointsImpl::ID = 0;
707char PlaceSafepoints::ID = 0;
708
709ModulePass *llvm::createPlaceSafepointsPass() { return new PlaceSafepoints(); }
710
711INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
712                      "place-backedge-safepoints-impl",
713                      "Place Backedge Safepoints", false, false)
714INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
715INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
716INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
717                    "place-backedge-safepoints-impl",
718                    "Place Backedge Safepoints", false, false)
719
720INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
721                      false, false)
722INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
723                    false, false)
724
725static bool isGCLeafFunction(const CallSite &CS) {
726  Instruction *inst = CS.getInstruction();
727  if (isa<IntrinsicInst>(inst)) {
728    // Most LLVM intrinsics are things which can never take a safepoint.
729    // As a result, we don't need to have the stack parsable at the
730    // callsite.  This is a highly useful optimization since intrinsic
731    // calls are fairly prevelent, particularly in debug builds.
732    return true;
733  }
734
735  // If this function is marked explicitly as a leaf call, we don't need to
736  // place a safepoint of it.  In fact, for correctness we *can't* in many
737  // cases.  Note: Indirect calls return Null for the called function,
738  // these obviously aren't runtime functions with attributes
739  // TODO: Support attributes on the call site as well.
740  const Function *F = CS.getCalledFunction();
741  bool isLeaf =
742      F &&
743      F->getFnAttribute("gc-leaf-function").getValueAsString().equals("true");
744  if (isLeaf) {
745    return true;
746  }
747  return false;
748}
749
750static void
751InsertSafepointPoll(DominatorTree &DT, Instruction *term,
752                    std::vector<CallSite> &ParsePointsNeeded /*rval*/) {
753  Module *M = term->getParent()->getParent()->getParent();
754  assert(M);
755
756  // Inline the safepoint poll implementation - this will get all the branch,
757  // control flow, etc..  Most importantly, it will introduce the actual slow
758  // path call - where we need to insert a safepoint (parsepoint).
759  FunctionType *ftype =
760      FunctionType::get(Type::getVoidTy(M->getContext()), false);
761  assert(ftype && "null?");
762  // Note: This cast can fail if there's a function of the same name with a
763  // different type inserted previously
764  Function *F =
765      dyn_cast<Function>(M->getOrInsertFunction("gc.safepoint_poll", ftype));
766  assert(F && "void @gc.safepoint_poll() must be defined");
767  assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
768  CallInst *poll = CallInst::Create(F, "", term);
769
770  // Record some information about the call site we're replacing
771  BasicBlock *OrigBB = term->getParent();
772  BasicBlock::iterator before(poll), after(poll);
773  bool isBegin(false);
774  if (before == term->getParent()->begin()) {
775    isBegin = true;
776  } else {
777    before--;
778  }
779  after++;
780  assert(after != poll->getParent()->end() && "must have successor");
781  assert(DT.dominates(before, after) && "trivially true");
782
783  // do the actual inlining
784  InlineFunctionInfo IFI;
785  bool inlineStatus = InlineFunction(poll, IFI);
786  assert(inlineStatus && "inline must succeed");
787  (void)inlineStatus; // suppress warning in release-asserts
788
789  // Check post conditions
790  assert(IFI.StaticAllocas.empty() && "can't have allocs");
791
792  std::vector<CallInst *> calls; // new calls
793  std::set<BasicBlock *> BBs;    // new BBs + insertee
794  // Include only the newly inserted instructions, Note: begin may not be valid
795  // if we inserted to the beginning of the basic block
796  BasicBlock::iterator start;
797  if (isBegin) {
798    start = OrigBB->begin();
799  } else {
800    start = before;
801    start++;
802  }
803
804  // If your poll function includes an unreachable at the end, that's not
805  // valid.  Bugpoint likes to create this, so check for it.
806  assert(isPotentiallyReachable(&*start, &*after, nullptr, nullptr) &&
807         "malformed poll function");
808
809  scanInlinedCode(&*(start), &*(after), calls, BBs);
810
811  // Recompute since we've invalidated cached data.  Conceptually we
812  // shouldn't need to do this, but implementation wise we appear to.  Needed
813  // so we can insert safepoints correctly.
814  // TODO: update more cheaply
815  DT.recalculate(*after->getParent()->getParent());
816
817  assert(!calls.empty() && "slow path not found for safepoint poll");
818
819  // Record the fact we need a parsable state at the runtime call contained in
820  // the poll function.  This is required so that the runtime knows how to
821  // parse the last frame when we actually take  the safepoint (i.e. execute
822  // the slow path)
823  assert(ParsePointsNeeded.empty());
824  for (size_t i = 0; i < calls.size(); i++) {
825
826    // No safepoint needed or wanted
827    if (!needsStatepoint(calls[i])) {
828      continue;
829    }
830
831    // These are likely runtime calls.  Should we assert that via calling
832    // convention or something?
833    ParsePointsNeeded.push_back(CallSite(calls[i]));
834  }
835  assert(ParsePointsNeeded.size() <= calls.size());
836}
837
838// Normalize basic block to make it ready to be target of invoke statepoint.
839// It means spliting it to have single predecessor. Return newly created BB
840// ready to be successor of invoke statepoint.
841static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB,
842                                                 BasicBlock *InvokeParent) {
843  BasicBlock *ret = BB;
844
845  if (!BB->getUniquePredecessor()) {
846    ret = SplitBlockPredecessors(BB, InvokeParent, "");
847  }
848
849  // Another requirement for such basic blocks is to not have any phi nodes.
850  // Since we just ensured that new BB will have single predecessor,
851  // all phi nodes in it will have one value. Here it would be naturall place
852  // to
853  // remove them all. But we can not do this because we are risking to remove
854  // one of the values stored in liveset of another statepoint. We will do it
855  // later after placing all safepoints.
856
857  return ret;
858}
859
860/// Replaces the given call site (Call or Invoke) with a gc.statepoint
861/// intrinsic with an empty deoptimization arguments list.  This does
862/// NOT do explicit relocation for GC support.
863static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */
864                                    Pass *P) {
865  BasicBlock *BB = CS.getInstruction()->getParent();
866  Function *F = BB->getParent();
867  Module *M = F->getParent();
868  assert(M && "must be set");
869
870  // TODO: technically, a pass is not allowed to get functions from within a
871  // function pass since it might trigger a new function addition.  Refactor
872  // this logic out to the initialization of the pass.  Doesn't appear to
873  // matter in practice.
874
875  // Then go ahead and use the builder do actually do the inserts.  We insert
876  // immediately before the previous instruction under the assumption that all
877  // arguments will be available here.  We can't insert afterwards since we may
878  // be replacing a terminator.
879  Instruction *insertBefore = CS.getInstruction();
880  IRBuilder<> Builder(insertBefore);
881
882  // Note: The gc args are not filled in at this time, that's handled by
883  // RewriteStatepointsForGC (which is currently under review).
884
885  // Create the statepoint given all the arguments
886  Instruction *token = nullptr;
887  AttributeSet return_attributes;
888  if (CS.isCall()) {
889    CallInst *toReplace = cast<CallInst>(CS.getInstruction());
890    CallInst *Call = Builder.CreateGCStatepoint(
891        CS.getCalledValue(), makeArrayRef(CS.arg_begin(), CS.arg_end()), None,
892        None, "safepoint_token");
893    Call->setTailCall(toReplace->isTailCall());
894    Call->setCallingConv(toReplace->getCallingConv());
895
896    // Before we have to worry about GC semantics, all attributes are legal
897    AttributeSet new_attrs = toReplace->getAttributes();
898    // In case if we can handle this set of sttributes - set up function attrs
899    // directly on statepoint and return attrs later for gc_result intrinsic.
900    Call->setAttributes(new_attrs.getFnAttributes());
901    return_attributes = new_attrs.getRetAttributes();
902    // TODO: handle param attributes
903
904    token = Call;
905
906    // Put the following gc_result and gc_relocate calls immediately after the
907    // the old call (which we're about to delete)
908    BasicBlock::iterator next(toReplace);
909    assert(BB->end() != next && "not a terminator, must have next");
910    next++;
911    Instruction *IP = &*(next);
912    Builder.SetInsertPoint(IP);
913    Builder.SetCurrentDebugLocation(IP->getDebugLoc());
914
915  } else if (CS.isInvoke()) {
916    // TODO: make CreateGCStatepoint return an Instruction that we can cast to a
917    // Call or Invoke, instead of doing this junk here.
918
919    // Fill in the one generic type'd argument (the function is also
920    // vararg)
921    std::vector<Type *> argTypes;
922    argTypes.push_back(CS.getCalledValue()->getType());
923
924    Function *gc_statepoint_decl = Intrinsic::getDeclaration(
925        M, Intrinsic::experimental_gc_statepoint, argTypes);
926
927    // First, create the statepoint (with all live ptrs as arguments).
928    std::vector<llvm::Value *> args;
929    // target, #call args, unused, ... call parameters, #deopt args, ... deopt
930    // parameters, ... gc parameters
931    Value *Target = CS.getCalledValue();
932    args.push_back(Target);
933    int callArgSize = CS.arg_size();
934    // #call args
935    args.push_back(Builder.getInt32(callArgSize));
936    // unused
937    args.push_back(Builder.getInt32(0));
938    // call parameters
939    args.insert(args.end(), CS.arg_begin(), CS.arg_end());
940    // #deopt args: 0
941    args.push_back(Builder.getInt32(0));
942
943    InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
944
945    // Insert the new invoke into the old block.  We'll remove the old one in a
946    // moment at which point this will become the new terminator for the
947    // original block.
948    InvokeInst *invoke = InvokeInst::Create(
949        gc_statepoint_decl, toReplace->getNormalDest(),
950        toReplace->getUnwindDest(), args, "", toReplace->getParent());
951    invoke->setCallingConv(toReplace->getCallingConv());
952
953    // Currently we will fail on parameter attributes and on certain
954    // function attributes.
955    AttributeSet new_attrs = toReplace->getAttributes();
956    // In case if we can handle this set of sttributes - set up function attrs
957    // directly on statepoint and return attrs later for gc_result intrinsic.
958    invoke->setAttributes(new_attrs.getFnAttributes());
959    return_attributes = new_attrs.getRetAttributes();
960
961    token = invoke;
962
963    // We'll insert the gc.result into the normal block
964    BasicBlock *normalDest = normalizeBBForInvokeSafepoint(
965        toReplace->getNormalDest(), invoke->getParent());
966    Instruction *IP = &*(normalDest->getFirstInsertionPt());
967    Builder.SetInsertPoint(IP);
968  } else {
969    llvm_unreachable("unexpect type of CallSite");
970  }
971  assert(token);
972
973  // Handle the return value of the original call - update all uses to use a
974  // gc_result hanging off the statepoint node we just inserted
975
976  // Only add the gc_result iff there is actually a used result
977  if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
978    std::string takenName =
979      CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
980    CallInst *gc_result =
981        Builder.CreateGCResult(token, CS.getType(), takenName);
982    gc_result->setAttributes(return_attributes);
983    return gc_result;
984  } else {
985    // No return value for the call.
986    return nullptr;
987  }
988}
989