1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18//===----------------------------------------------------------------------===// 19 20#include "llvm/Transforms/Scalar.h" 21#include "llvm/ADT/DenseMap.h" 22#include "llvm/ADT/DenseSet.h" 23#include "llvm/ADT/PointerIntPair.h" 24#include "llvm/ADT/SmallPtrSet.h" 25#include "llvm/ADT/SmallVector.h" 26#include "llvm/ADT/Statistic.h" 27#include "llvm/Analysis/ConstantFolding.h" 28#include "llvm/Analysis/TargetLibraryInfo.h" 29#include "llvm/IR/CallSite.h" 30#include "llvm/IR/Constants.h" 31#include "llvm/IR/DataLayout.h" 32#include "llvm/IR/DerivedTypes.h" 33#include "llvm/IR/InstVisitor.h" 34#include "llvm/IR/Instructions.h" 35#include "llvm/Pass.h" 36#include "llvm/Support/Debug.h" 37#include "llvm/Support/ErrorHandling.h" 38#include "llvm/Support/raw_ostream.h" 39#include "llvm/Transforms/IPO.h" 40#include "llvm/Transforms/Utils/Local.h" 41#include <algorithm> 42using namespace llvm; 43 44#define DEBUG_TYPE "sccp" 45 46STATISTIC(NumInstRemoved, "Number of instructions removed"); 47STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 48 49STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 50STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 51STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 52 53namespace { 54/// LatticeVal class - This class represents the different lattice values that 55/// an LLVM value may occupy. It is a simple class with value semantics. 56/// 57class LatticeVal { 58 enum LatticeValueTy { 59 /// undefined - This LLVM Value has no known value yet. 60 undefined, 61 62 /// constant - This LLVM Value has a specific constant value. 63 constant, 64 65 /// forcedconstant - This LLVM Value was thought to be undef until 66 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 67 /// with another (different) constant, it goes to overdefined, instead of 68 /// asserting. 69 forcedconstant, 70 71 /// overdefined - This instruction is not known to be constant, and we know 72 /// it has a value. 73 overdefined 74 }; 75 76 /// Val: This stores the current lattice value along with the Constant* for 77 /// the constant if this is a 'constant' or 'forcedconstant' value. 78 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 79 80 LatticeValueTy getLatticeValue() const { 81 return Val.getInt(); 82 } 83 84public: 85 LatticeVal() : Val(nullptr, undefined) {} 86 87 bool isUndefined() const { return getLatticeValue() == undefined; } 88 bool isConstant() const { 89 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 90 } 91 bool isOverdefined() const { return getLatticeValue() == overdefined; } 92 93 Constant *getConstant() const { 94 assert(isConstant() && "Cannot get the constant of a non-constant!"); 95 return Val.getPointer(); 96 } 97 98 /// markOverdefined - Return true if this is a change in status. 99 bool markOverdefined() { 100 if (isOverdefined()) 101 return false; 102 103 Val.setInt(overdefined); 104 return true; 105 } 106 107 /// markConstant - Return true if this is a change in status. 108 bool markConstant(Constant *V) { 109 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 110 assert(getConstant() == V && "Marking constant with different value"); 111 return false; 112 } 113 114 if (isUndefined()) { 115 Val.setInt(constant); 116 assert(V && "Marking constant with NULL"); 117 Val.setPointer(V); 118 } else { 119 assert(getLatticeValue() == forcedconstant && 120 "Cannot move from overdefined to constant!"); 121 // Stay at forcedconstant if the constant is the same. 122 if (V == getConstant()) return false; 123 124 // Otherwise, we go to overdefined. Assumptions made based on the 125 // forced value are possibly wrong. Assuming this is another constant 126 // could expose a contradiction. 127 Val.setInt(overdefined); 128 } 129 return true; 130 } 131 132 /// getConstantInt - If this is a constant with a ConstantInt value, return it 133 /// otherwise return null. 134 ConstantInt *getConstantInt() const { 135 if (isConstant()) 136 return dyn_cast<ConstantInt>(getConstant()); 137 return nullptr; 138 } 139 140 void markForcedConstant(Constant *V) { 141 assert(isUndefined() && "Can't force a defined value!"); 142 Val.setInt(forcedconstant); 143 Val.setPointer(V); 144 } 145}; 146} // end anonymous namespace. 147 148 149namespace { 150 151//===----------------------------------------------------------------------===// 152// 153/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 154/// Constant Propagation. 155/// 156class SCCPSolver : public InstVisitor<SCCPSolver> { 157 const DataLayout &DL; 158 const TargetLibraryInfo *TLI; 159 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. 160 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 161 162 /// StructValueState - This maintains ValueState for values that have 163 /// StructType, for example for formal arguments, calls, insertelement, etc. 164 /// 165 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 166 167 /// GlobalValue - If we are tracking any values for the contents of a global 168 /// variable, we keep a mapping from the constant accessor to the element of 169 /// the global, to the currently known value. If the value becomes 170 /// overdefined, it's entry is simply removed from this map. 171 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 172 173 /// TrackedRetVals - If we are tracking arguments into and the return 174 /// value out of a function, it will have an entry in this map, indicating 175 /// what the known return value for the function is. 176 DenseMap<Function*, LatticeVal> TrackedRetVals; 177 178 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 179 /// that return multiple values. 180 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 181 182 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 183 /// represented here for efficient lookup. 184 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 185 186 /// TrackingIncomingArguments - This is the set of functions for whose 187 /// arguments we make optimistic assumptions about and try to prove as 188 /// constants. 189 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 190 191 /// The reason for two worklists is that overdefined is the lowest state 192 /// on the lattice, and moving things to overdefined as fast as possible 193 /// makes SCCP converge much faster. 194 /// 195 /// By having a separate worklist, we accomplish this because everything 196 /// possibly overdefined will become overdefined at the soonest possible 197 /// point. 198 SmallVector<Value*, 64> OverdefinedInstWorkList; 199 SmallVector<Value*, 64> InstWorkList; 200 201 202 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 203 204 /// KnownFeasibleEdges - Entries in this set are edges which have already had 205 /// PHI nodes retriggered. 206 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 207 DenseSet<Edge> KnownFeasibleEdges; 208public: 209 SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) 210 : DL(DL), TLI(tli) {} 211 212 /// MarkBlockExecutable - This method can be used by clients to mark all of 213 /// the blocks that are known to be intrinsically live in the processed unit. 214 /// 215 /// This returns true if the block was not considered live before. 216 bool MarkBlockExecutable(BasicBlock *BB) { 217 if (!BBExecutable.insert(BB).second) 218 return false; 219 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 220 BBWorkList.push_back(BB); // Add the block to the work list! 221 return true; 222 } 223 224 /// TrackValueOfGlobalVariable - Clients can use this method to 225 /// inform the SCCPSolver that it should track loads and stores to the 226 /// specified global variable if it can. This is only legal to call if 227 /// performing Interprocedural SCCP. 228 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 229 // We only track the contents of scalar globals. 230 if (GV->getType()->getElementType()->isSingleValueType()) { 231 LatticeVal &IV = TrackedGlobals[GV]; 232 if (!isa<UndefValue>(GV->getInitializer())) 233 IV.markConstant(GV->getInitializer()); 234 } 235 } 236 237 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 238 /// and out of the specified function (which cannot have its address taken), 239 /// this method must be called. 240 void AddTrackedFunction(Function *F) { 241 // Add an entry, F -> undef. 242 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 243 MRVFunctionsTracked.insert(F); 244 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 245 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 246 LatticeVal())); 247 } else 248 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 249 } 250 251 void AddArgumentTrackedFunction(Function *F) { 252 TrackingIncomingArguments.insert(F); 253 } 254 255 /// Solve - Solve for constants and executable blocks. 256 /// 257 void Solve(); 258 259 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 260 /// that branches on undef values cannot reach any of their successors. 261 /// However, this is not a safe assumption. After we solve dataflow, this 262 /// method should be use to handle this. If this returns true, the solver 263 /// should be rerun. 264 bool ResolvedUndefsIn(Function &F); 265 266 bool isBlockExecutable(BasicBlock *BB) const { 267 return BBExecutable.count(BB); 268 } 269 270 LatticeVal getLatticeValueFor(Value *V) const { 271 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 272 assert(I != ValueState.end() && "V is not in valuemap!"); 273 return I->second; 274 } 275 276 /// getTrackedRetVals - Get the inferred return value map. 277 /// 278 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 279 return TrackedRetVals; 280 } 281 282 /// getTrackedGlobals - Get and return the set of inferred initializers for 283 /// global variables. 284 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 285 return TrackedGlobals; 286 } 287 288 void markOverdefined(Value *V) { 289 assert(!V->getType()->isStructTy() && "Should use other method"); 290 markOverdefined(ValueState[V], V); 291 } 292 293 /// markAnythingOverdefined - Mark the specified value overdefined. This 294 /// works with both scalars and structs. 295 void markAnythingOverdefined(Value *V) { 296 if (StructType *STy = dyn_cast<StructType>(V->getType())) 297 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 298 markOverdefined(getStructValueState(V, i), V); 299 else 300 markOverdefined(V); 301 } 302 303private: 304 // markConstant - Make a value be marked as "constant". If the value 305 // is not already a constant, add it to the instruction work list so that 306 // the users of the instruction are updated later. 307 // 308 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 309 if (!IV.markConstant(C)) return; 310 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 311 if (IV.isOverdefined()) 312 OverdefinedInstWorkList.push_back(V); 313 else 314 InstWorkList.push_back(V); 315 } 316 317 void markConstant(Value *V, Constant *C) { 318 assert(!V->getType()->isStructTy() && "Should use other method"); 319 markConstant(ValueState[V], V, C); 320 } 321 322 void markForcedConstant(Value *V, Constant *C) { 323 assert(!V->getType()->isStructTy() && "Should use other method"); 324 LatticeVal &IV = ValueState[V]; 325 IV.markForcedConstant(C); 326 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 327 if (IV.isOverdefined()) 328 OverdefinedInstWorkList.push_back(V); 329 else 330 InstWorkList.push_back(V); 331 } 332 333 334 // markOverdefined - Make a value be marked as "overdefined". If the 335 // value is not already overdefined, add it to the overdefined instruction 336 // work list so that the users of the instruction are updated later. 337 void markOverdefined(LatticeVal &IV, Value *V) { 338 if (!IV.markOverdefined()) return; 339 340 DEBUG(dbgs() << "markOverdefined: "; 341 if (Function *F = dyn_cast<Function>(V)) 342 dbgs() << "Function '" << F->getName() << "'\n"; 343 else 344 dbgs() << *V << '\n'); 345 // Only instructions go on the work list 346 OverdefinedInstWorkList.push_back(V); 347 } 348 349 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 350 if (IV.isOverdefined() || MergeWithV.isUndefined()) 351 return; // Noop. 352 if (MergeWithV.isOverdefined()) 353 markOverdefined(IV, V); 354 else if (IV.isUndefined()) 355 markConstant(IV, V, MergeWithV.getConstant()); 356 else if (IV.getConstant() != MergeWithV.getConstant()) 357 markOverdefined(IV, V); 358 } 359 360 void mergeInValue(Value *V, LatticeVal MergeWithV) { 361 assert(!V->getType()->isStructTy() && "Should use other method"); 362 mergeInValue(ValueState[V], V, MergeWithV); 363 } 364 365 366 /// getValueState - Return the LatticeVal object that corresponds to the 367 /// value. This function handles the case when the value hasn't been seen yet 368 /// by properly seeding constants etc. 369 LatticeVal &getValueState(Value *V) { 370 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 371 372 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 373 ValueState.insert(std::make_pair(V, LatticeVal())); 374 LatticeVal &LV = I.first->second; 375 376 if (!I.second) 377 return LV; // Common case, already in the map. 378 379 if (Constant *C = dyn_cast<Constant>(V)) { 380 // Undef values remain undefined. 381 if (!isa<UndefValue>(V)) 382 LV.markConstant(C); // Constants are constant 383 } 384 385 // All others are underdefined by default. 386 return LV; 387 } 388 389 /// getStructValueState - Return the LatticeVal object that corresponds to the 390 /// value/field pair. This function handles the case when the value hasn't 391 /// been seen yet by properly seeding constants etc. 392 LatticeVal &getStructValueState(Value *V, unsigned i) { 393 assert(V->getType()->isStructTy() && "Should use getValueState"); 394 assert(i < cast<StructType>(V->getType())->getNumElements() && 395 "Invalid element #"); 396 397 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 398 bool> I = StructValueState.insert( 399 std::make_pair(std::make_pair(V, i), LatticeVal())); 400 LatticeVal &LV = I.first->second; 401 402 if (!I.second) 403 return LV; // Common case, already in the map. 404 405 if (Constant *C = dyn_cast<Constant>(V)) { 406 Constant *Elt = C->getAggregateElement(i); 407 408 if (!Elt) 409 LV.markOverdefined(); // Unknown sort of constant. 410 else if (isa<UndefValue>(Elt)) 411 ; // Undef values remain undefined. 412 else 413 LV.markConstant(Elt); // Constants are constant. 414 } 415 416 // All others are underdefined by default. 417 return LV; 418 } 419 420 421 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 422 /// work list if it is not already executable. 423 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 424 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 425 return; // This edge is already known to be executable! 426 427 if (!MarkBlockExecutable(Dest)) { 428 // If the destination is already executable, we just made an *edge* 429 // feasible that wasn't before. Revisit the PHI nodes in the block 430 // because they have potentially new operands. 431 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 432 << " -> " << Dest->getName() << '\n'); 433 434 PHINode *PN; 435 for (BasicBlock::iterator I = Dest->begin(); 436 (PN = dyn_cast<PHINode>(I)); ++I) 437 visitPHINode(*PN); 438 } 439 } 440 441 // getFeasibleSuccessors - Return a vector of booleans to indicate which 442 // successors are reachable from a given terminator instruction. 443 // 444 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs); 445 446 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 447 // block to the 'To' basic block is currently feasible. 448 // 449 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 450 451 // OperandChangedState - This method is invoked on all of the users of an 452 // instruction that was just changed state somehow. Based on this 453 // information, we need to update the specified user of this instruction. 454 // 455 void OperandChangedState(Instruction *I) { 456 if (BBExecutable.count(I->getParent())) // Inst is executable? 457 visit(*I); 458 } 459 460private: 461 friend class InstVisitor<SCCPSolver>; 462 463 // visit implementations - Something changed in this instruction. Either an 464 // operand made a transition, or the instruction is newly executable. Change 465 // the value type of I to reflect these changes if appropriate. 466 void visitPHINode(PHINode &I); 467 468 // Terminators 469 void visitReturnInst(ReturnInst &I); 470 void visitTerminatorInst(TerminatorInst &TI); 471 472 void visitCastInst(CastInst &I); 473 void visitSelectInst(SelectInst &I); 474 void visitBinaryOperator(Instruction &I); 475 void visitCmpInst(CmpInst &I); 476 void visitExtractElementInst(ExtractElementInst &I); 477 void visitInsertElementInst(InsertElementInst &I); 478 void visitShuffleVectorInst(ShuffleVectorInst &I); 479 void visitExtractValueInst(ExtractValueInst &EVI); 480 void visitInsertValueInst(InsertValueInst &IVI); 481 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } 482 483 // Instructions that cannot be folded away. 484 void visitStoreInst (StoreInst &I); 485 void visitLoadInst (LoadInst &I); 486 void visitGetElementPtrInst(GetElementPtrInst &I); 487 void visitCallInst (CallInst &I) { 488 visitCallSite(&I); 489 } 490 void visitInvokeInst (InvokeInst &II) { 491 visitCallSite(&II); 492 visitTerminatorInst(II); 493 } 494 void visitCallSite (CallSite CS); 495 void visitResumeInst (TerminatorInst &I) { /*returns void*/ } 496 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 497 void visitFenceInst (FenceInst &I) { /*returns void*/ } 498 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 499 markAnythingOverdefined(&I); 500 } 501 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } 502 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 503 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 504 505 void visitInstruction(Instruction &I) { 506 // If a new instruction is added to LLVM that we don't handle. 507 dbgs() << "SCCP: Don't know how to handle: " << I << '\n'; 508 markAnythingOverdefined(&I); // Just in case 509 } 510}; 511 512} // end anonymous namespace 513 514 515// getFeasibleSuccessors - Return a vector of booleans to indicate which 516// successors are reachable from a given terminator instruction. 517// 518void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 519 SmallVectorImpl<bool> &Succs) { 520 Succs.resize(TI.getNumSuccessors()); 521 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 522 if (BI->isUnconditional()) { 523 Succs[0] = true; 524 return; 525 } 526 527 LatticeVal BCValue = getValueState(BI->getCondition()); 528 ConstantInt *CI = BCValue.getConstantInt(); 529 if (!CI) { 530 // Overdefined condition variables, and branches on unfoldable constant 531 // conditions, mean the branch could go either way. 532 if (!BCValue.isUndefined()) 533 Succs[0] = Succs[1] = true; 534 return; 535 } 536 537 // Constant condition variables mean the branch can only go a single way. 538 Succs[CI->isZero()] = true; 539 return; 540 } 541 542 if (isa<InvokeInst>(TI)) { 543 // Invoke instructions successors are always executable. 544 Succs[0] = Succs[1] = true; 545 return; 546 } 547 548 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 549 if (!SI->getNumCases()) { 550 Succs[0] = true; 551 return; 552 } 553 LatticeVal SCValue = getValueState(SI->getCondition()); 554 ConstantInt *CI = SCValue.getConstantInt(); 555 556 if (!CI) { // Overdefined or undefined condition? 557 // All destinations are executable! 558 if (!SCValue.isUndefined()) 559 Succs.assign(TI.getNumSuccessors(), true); 560 return; 561 } 562 563 Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true; 564 return; 565 } 566 567 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 568 if (isa<IndirectBrInst>(&TI)) { 569 // Just mark all destinations executable! 570 Succs.assign(TI.getNumSuccessors(), true); 571 return; 572 } 573 574#ifndef NDEBUG 575 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 576#endif 577 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 578} 579 580 581// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 582// block to the 'To' basic block is currently feasible. 583// 584bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 585 assert(BBExecutable.count(To) && "Dest should always be alive!"); 586 587 // Make sure the source basic block is executable!! 588 if (!BBExecutable.count(From)) return false; 589 590 // Check to make sure this edge itself is actually feasible now. 591 TerminatorInst *TI = From->getTerminator(); 592 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 593 if (BI->isUnconditional()) 594 return true; 595 596 LatticeVal BCValue = getValueState(BI->getCondition()); 597 598 // Overdefined condition variables mean the branch could go either way, 599 // undef conditions mean that neither edge is feasible yet. 600 ConstantInt *CI = BCValue.getConstantInt(); 601 if (!CI) 602 return !BCValue.isUndefined(); 603 604 // Constant condition variables mean the branch can only go a single way. 605 return BI->getSuccessor(CI->isZero()) == To; 606 } 607 608 // Invoke instructions successors are always executable. 609 if (isa<InvokeInst>(TI)) 610 return true; 611 612 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 613 if (SI->getNumCases() < 1) 614 return true; 615 616 LatticeVal SCValue = getValueState(SI->getCondition()); 617 ConstantInt *CI = SCValue.getConstantInt(); 618 619 if (!CI) 620 return !SCValue.isUndefined(); 621 622 return SI->findCaseValue(CI).getCaseSuccessor() == To; 623 } 624 625 // Just mark all destinations executable! 626 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 627 if (isa<IndirectBrInst>(TI)) 628 return true; 629 630#ifndef NDEBUG 631 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 632#endif 633 llvm_unreachable(nullptr); 634} 635 636// visit Implementations - Something changed in this instruction, either an 637// operand made a transition, or the instruction is newly executable. Change 638// the value type of I to reflect these changes if appropriate. This method 639// makes sure to do the following actions: 640// 641// 1. If a phi node merges two constants in, and has conflicting value coming 642// from different branches, or if the PHI node merges in an overdefined 643// value, then the PHI node becomes overdefined. 644// 2. If a phi node merges only constants in, and they all agree on value, the 645// PHI node becomes a constant value equal to that. 646// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 647// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 648// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 649// 6. If a conditional branch has a value that is constant, make the selected 650// destination executable 651// 7. If a conditional branch has a value that is overdefined, make all 652// successors executable. 653// 654void SCCPSolver::visitPHINode(PHINode &PN) { 655 // If this PN returns a struct, just mark the result overdefined. 656 // TODO: We could do a lot better than this if code actually uses this. 657 if (PN.getType()->isStructTy()) 658 return markAnythingOverdefined(&PN); 659 660 if (getValueState(&PN).isOverdefined()) 661 return; // Quick exit 662 663 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 664 // and slow us down a lot. Just mark them overdefined. 665 if (PN.getNumIncomingValues() > 64) 666 return markOverdefined(&PN); 667 668 // Look at all of the executable operands of the PHI node. If any of them 669 // are overdefined, the PHI becomes overdefined as well. If they are all 670 // constant, and they agree with each other, the PHI becomes the identical 671 // constant. If they are constant and don't agree, the PHI is overdefined. 672 // If there are no executable operands, the PHI remains undefined. 673 // 674 Constant *OperandVal = nullptr; 675 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 676 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 677 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 678 679 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 680 continue; 681 682 if (IV.isOverdefined()) // PHI node becomes overdefined! 683 return markOverdefined(&PN); 684 685 if (!OperandVal) { // Grab the first value. 686 OperandVal = IV.getConstant(); 687 continue; 688 } 689 690 // There is already a reachable operand. If we conflict with it, 691 // then the PHI node becomes overdefined. If we agree with it, we 692 // can continue on. 693 694 // Check to see if there are two different constants merging, if so, the PHI 695 // node is overdefined. 696 if (IV.getConstant() != OperandVal) 697 return markOverdefined(&PN); 698 } 699 700 // If we exited the loop, this means that the PHI node only has constant 701 // arguments that agree with each other(and OperandVal is the constant) or 702 // OperandVal is null because there are no defined incoming arguments. If 703 // this is the case, the PHI remains undefined. 704 // 705 if (OperandVal) 706 markConstant(&PN, OperandVal); // Acquire operand value 707} 708 709void SCCPSolver::visitReturnInst(ReturnInst &I) { 710 if (I.getNumOperands() == 0) return; // ret void 711 712 Function *F = I.getParent()->getParent(); 713 Value *ResultOp = I.getOperand(0); 714 715 // If we are tracking the return value of this function, merge it in. 716 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 717 DenseMap<Function*, LatticeVal>::iterator TFRVI = 718 TrackedRetVals.find(F); 719 if (TFRVI != TrackedRetVals.end()) { 720 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 721 return; 722 } 723 } 724 725 // Handle functions that return multiple values. 726 if (!TrackedMultipleRetVals.empty()) { 727 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 728 if (MRVFunctionsTracked.count(F)) 729 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 730 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 731 getStructValueState(ResultOp, i)); 732 733 } 734} 735 736void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 737 SmallVector<bool, 16> SuccFeasible; 738 getFeasibleSuccessors(TI, SuccFeasible); 739 740 BasicBlock *BB = TI.getParent(); 741 742 // Mark all feasible successors executable. 743 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 744 if (SuccFeasible[i]) 745 markEdgeExecutable(BB, TI.getSuccessor(i)); 746} 747 748void SCCPSolver::visitCastInst(CastInst &I) { 749 LatticeVal OpSt = getValueState(I.getOperand(0)); 750 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 751 markOverdefined(&I); 752 else if (OpSt.isConstant()) // Propagate constant value 753 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 754 OpSt.getConstant(), I.getType())); 755} 756 757 758void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 759 // If this returns a struct, mark all elements over defined, we don't track 760 // structs in structs. 761 if (EVI.getType()->isStructTy()) 762 return markAnythingOverdefined(&EVI); 763 764 // If this is extracting from more than one level of struct, we don't know. 765 if (EVI.getNumIndices() != 1) 766 return markOverdefined(&EVI); 767 768 Value *AggVal = EVI.getAggregateOperand(); 769 if (AggVal->getType()->isStructTy()) { 770 unsigned i = *EVI.idx_begin(); 771 LatticeVal EltVal = getStructValueState(AggVal, i); 772 mergeInValue(getValueState(&EVI), &EVI, EltVal); 773 } else { 774 // Otherwise, must be extracting from an array. 775 return markOverdefined(&EVI); 776 } 777} 778 779void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 780 StructType *STy = dyn_cast<StructType>(IVI.getType()); 781 if (!STy) 782 return markOverdefined(&IVI); 783 784 // If this has more than one index, we can't handle it, drive all results to 785 // undef. 786 if (IVI.getNumIndices() != 1) 787 return markAnythingOverdefined(&IVI); 788 789 Value *Aggr = IVI.getAggregateOperand(); 790 unsigned Idx = *IVI.idx_begin(); 791 792 // Compute the result based on what we're inserting. 793 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 794 // This passes through all values that aren't the inserted element. 795 if (i != Idx) { 796 LatticeVal EltVal = getStructValueState(Aggr, i); 797 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 798 continue; 799 } 800 801 Value *Val = IVI.getInsertedValueOperand(); 802 if (Val->getType()->isStructTy()) 803 // We don't track structs in structs. 804 markOverdefined(getStructValueState(&IVI, i), &IVI); 805 else { 806 LatticeVal InVal = getValueState(Val); 807 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 808 } 809 } 810} 811 812void SCCPSolver::visitSelectInst(SelectInst &I) { 813 // If this select returns a struct, just mark the result overdefined. 814 // TODO: We could do a lot better than this if code actually uses this. 815 if (I.getType()->isStructTy()) 816 return markAnythingOverdefined(&I); 817 818 LatticeVal CondValue = getValueState(I.getCondition()); 819 if (CondValue.isUndefined()) 820 return; 821 822 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 823 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 824 mergeInValue(&I, getValueState(OpVal)); 825 return; 826 } 827 828 // Otherwise, the condition is overdefined or a constant we can't evaluate. 829 // See if we can produce something better than overdefined based on the T/F 830 // value. 831 LatticeVal TVal = getValueState(I.getTrueValue()); 832 LatticeVal FVal = getValueState(I.getFalseValue()); 833 834 // select ?, C, C -> C. 835 if (TVal.isConstant() && FVal.isConstant() && 836 TVal.getConstant() == FVal.getConstant()) 837 return markConstant(&I, FVal.getConstant()); 838 839 if (TVal.isUndefined()) // select ?, undef, X -> X. 840 return mergeInValue(&I, FVal); 841 if (FVal.isUndefined()) // select ?, X, undef -> X. 842 return mergeInValue(&I, TVal); 843 markOverdefined(&I); 844} 845 846// Handle Binary Operators. 847void SCCPSolver::visitBinaryOperator(Instruction &I) { 848 LatticeVal V1State = getValueState(I.getOperand(0)); 849 LatticeVal V2State = getValueState(I.getOperand(1)); 850 851 LatticeVal &IV = ValueState[&I]; 852 if (IV.isOverdefined()) return; 853 854 if (V1State.isConstant() && V2State.isConstant()) 855 return markConstant(IV, &I, 856 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 857 V2State.getConstant())); 858 859 // If something is undef, wait for it to resolve. 860 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 861 return; 862 863 // Otherwise, one of our operands is overdefined. Try to produce something 864 // better than overdefined with some tricks. 865 866 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 867 // operand is overdefined. 868 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 869 LatticeVal *NonOverdefVal = nullptr; 870 if (!V1State.isOverdefined()) 871 NonOverdefVal = &V1State; 872 else if (!V2State.isOverdefined()) 873 NonOverdefVal = &V2State; 874 875 if (NonOverdefVal) { 876 if (NonOverdefVal->isUndefined()) { 877 // Could annihilate value. 878 if (I.getOpcode() == Instruction::And) 879 markConstant(IV, &I, Constant::getNullValue(I.getType())); 880 else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) 881 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 882 else 883 markConstant(IV, &I, 884 Constant::getAllOnesValue(I.getType())); 885 return; 886 } 887 888 if (I.getOpcode() == Instruction::And) { 889 // X and 0 = 0 890 if (NonOverdefVal->getConstant()->isNullValue()) 891 return markConstant(IV, &I, NonOverdefVal->getConstant()); 892 } else { 893 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 894 if (CI->isAllOnesValue()) // X or -1 = -1 895 return markConstant(IV, &I, NonOverdefVal->getConstant()); 896 } 897 } 898 } 899 900 901 markOverdefined(&I); 902} 903 904// Handle ICmpInst instruction. 905void SCCPSolver::visitCmpInst(CmpInst &I) { 906 LatticeVal V1State = getValueState(I.getOperand(0)); 907 LatticeVal V2State = getValueState(I.getOperand(1)); 908 909 LatticeVal &IV = ValueState[&I]; 910 if (IV.isOverdefined()) return; 911 912 if (V1State.isConstant() && V2State.isConstant()) 913 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 914 V1State.getConstant(), 915 V2State.getConstant())); 916 917 // If operands are still undefined, wait for it to resolve. 918 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 919 return; 920 921 markOverdefined(&I); 922} 923 924void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 925 // TODO : SCCP does not handle vectors properly. 926 return markOverdefined(&I); 927 928#if 0 929 LatticeVal &ValState = getValueState(I.getOperand(0)); 930 LatticeVal &IdxState = getValueState(I.getOperand(1)); 931 932 if (ValState.isOverdefined() || IdxState.isOverdefined()) 933 markOverdefined(&I); 934 else if(ValState.isConstant() && IdxState.isConstant()) 935 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 936 IdxState.getConstant())); 937#endif 938} 939 940void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 941 // TODO : SCCP does not handle vectors properly. 942 return markOverdefined(&I); 943#if 0 944 LatticeVal &ValState = getValueState(I.getOperand(0)); 945 LatticeVal &EltState = getValueState(I.getOperand(1)); 946 LatticeVal &IdxState = getValueState(I.getOperand(2)); 947 948 if (ValState.isOverdefined() || EltState.isOverdefined() || 949 IdxState.isOverdefined()) 950 markOverdefined(&I); 951 else if(ValState.isConstant() && EltState.isConstant() && 952 IdxState.isConstant()) 953 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 954 EltState.getConstant(), 955 IdxState.getConstant())); 956 else if (ValState.isUndefined() && EltState.isConstant() && 957 IdxState.isConstant()) 958 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 959 EltState.getConstant(), 960 IdxState.getConstant())); 961#endif 962} 963 964void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 965 // TODO : SCCP does not handle vectors properly. 966 return markOverdefined(&I); 967#if 0 968 LatticeVal &V1State = getValueState(I.getOperand(0)); 969 LatticeVal &V2State = getValueState(I.getOperand(1)); 970 LatticeVal &MaskState = getValueState(I.getOperand(2)); 971 972 if (MaskState.isUndefined() || 973 (V1State.isUndefined() && V2State.isUndefined())) 974 return; // Undefined output if mask or both inputs undefined. 975 976 if (V1State.isOverdefined() || V2State.isOverdefined() || 977 MaskState.isOverdefined()) { 978 markOverdefined(&I); 979 } else { 980 // A mix of constant/undef inputs. 981 Constant *V1 = V1State.isConstant() ? 982 V1State.getConstant() : UndefValue::get(I.getType()); 983 Constant *V2 = V2State.isConstant() ? 984 V2State.getConstant() : UndefValue::get(I.getType()); 985 Constant *Mask = MaskState.isConstant() ? 986 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 987 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 988 } 989#endif 990} 991 992// Handle getelementptr instructions. If all operands are constants then we 993// can turn this into a getelementptr ConstantExpr. 994// 995void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 996 if (ValueState[&I].isOverdefined()) return; 997 998 SmallVector<Constant*, 8> Operands; 999 Operands.reserve(I.getNumOperands()); 1000 1001 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1002 LatticeVal State = getValueState(I.getOperand(i)); 1003 if (State.isUndefined()) 1004 return; // Operands are not resolved yet. 1005 1006 if (State.isOverdefined()) 1007 return markOverdefined(&I); 1008 1009 assert(State.isConstant() && "Unknown state!"); 1010 Operands.push_back(State.getConstant()); 1011 } 1012 1013 Constant *Ptr = Operands[0]; 1014 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1015 markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, 1016 Indices)); 1017} 1018 1019void SCCPSolver::visitStoreInst(StoreInst &SI) { 1020 // If this store is of a struct, ignore it. 1021 if (SI.getOperand(0)->getType()->isStructTy()) 1022 return; 1023 1024 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1025 return; 1026 1027 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1028 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1029 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1030 1031 // Get the value we are storing into the global, then merge it. 1032 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1033 if (I->second.isOverdefined()) 1034 TrackedGlobals.erase(I); // No need to keep tracking this! 1035} 1036 1037 1038// Handle load instructions. If the operand is a constant pointer to a constant 1039// global, we can replace the load with the loaded constant value! 1040void SCCPSolver::visitLoadInst(LoadInst &I) { 1041 // If this load is of a struct, just mark the result overdefined. 1042 if (I.getType()->isStructTy()) 1043 return markAnythingOverdefined(&I); 1044 1045 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1046 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1047 1048 LatticeVal &IV = ValueState[&I]; 1049 if (IV.isOverdefined()) return; 1050 1051 if (!PtrVal.isConstant() || I.isVolatile()) 1052 return markOverdefined(IV, &I); 1053 1054 Constant *Ptr = PtrVal.getConstant(); 1055 1056 // load null -> null 1057 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1058 return markConstant(IV, &I, Constant::getNullValue(I.getType())); 1059 1060 // Transform load (constant global) into the value loaded. 1061 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1062 if (!TrackedGlobals.empty()) { 1063 // If we are tracking this global, merge in the known value for it. 1064 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1065 TrackedGlobals.find(GV); 1066 if (It != TrackedGlobals.end()) { 1067 mergeInValue(IV, &I, It->second); 1068 return; 1069 } 1070 } 1071 } 1072 1073 // Transform load from a constant into a constant if possible. 1074 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL)) 1075 return markConstant(IV, &I, C); 1076 1077 // Otherwise we cannot say for certain what value this load will produce. 1078 // Bail out. 1079 markOverdefined(IV, &I); 1080} 1081 1082void SCCPSolver::visitCallSite(CallSite CS) { 1083 Function *F = CS.getCalledFunction(); 1084 Instruction *I = CS.getInstruction(); 1085 1086 // The common case is that we aren't tracking the callee, either because we 1087 // are not doing interprocedural analysis or the callee is indirect, or is 1088 // external. Handle these cases first. 1089 if (!F || F->isDeclaration()) { 1090CallOverdefined: 1091 // Void return and not tracking callee, just bail. 1092 if (I->getType()->isVoidTy()) return; 1093 1094 // Otherwise, if we have a single return value case, and if the function is 1095 // a declaration, maybe we can constant fold it. 1096 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1097 canConstantFoldCallTo(F)) { 1098 1099 SmallVector<Constant*, 8> Operands; 1100 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1101 AI != E; ++AI) { 1102 LatticeVal State = getValueState(*AI); 1103 1104 if (State.isUndefined()) 1105 return; // Operands are not resolved yet. 1106 if (State.isOverdefined()) 1107 return markOverdefined(I); 1108 assert(State.isConstant() && "Unknown state!"); 1109 Operands.push_back(State.getConstant()); 1110 } 1111 1112 if (getValueState(I).isOverdefined()) 1113 return; 1114 1115 // If we can constant fold this, mark the result of the call as a 1116 // constant. 1117 if (Constant *C = ConstantFoldCall(F, Operands, TLI)) 1118 return markConstant(I, C); 1119 } 1120 1121 // Otherwise, we don't know anything about this call, mark it overdefined. 1122 return markAnythingOverdefined(I); 1123 } 1124 1125 // If this is a local function that doesn't have its address taken, mark its 1126 // entry block executable and merge in the actual arguments to the call into 1127 // the formal arguments of the function. 1128 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1129 MarkBlockExecutable(F->begin()); 1130 1131 // Propagate information from this call site into the callee. 1132 CallSite::arg_iterator CAI = CS.arg_begin(); 1133 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1134 AI != E; ++AI, ++CAI) { 1135 // If this argument is byval, and if the function is not readonly, there 1136 // will be an implicit copy formed of the input aggregate. 1137 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1138 markOverdefined(AI); 1139 continue; 1140 } 1141 1142 if (StructType *STy = dyn_cast<StructType>(AI->getType())) { 1143 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1144 LatticeVal CallArg = getStructValueState(*CAI, i); 1145 mergeInValue(getStructValueState(AI, i), AI, CallArg); 1146 } 1147 } else { 1148 mergeInValue(AI, getValueState(*CAI)); 1149 } 1150 } 1151 } 1152 1153 // If this is a single/zero retval case, see if we're tracking the function. 1154 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1155 if (!MRVFunctionsTracked.count(F)) 1156 goto CallOverdefined; // Not tracking this callee. 1157 1158 // If we are tracking this callee, propagate the result of the function 1159 // into this call site. 1160 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1161 mergeInValue(getStructValueState(I, i), I, 1162 TrackedMultipleRetVals[std::make_pair(F, i)]); 1163 } else { 1164 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1165 if (TFRVI == TrackedRetVals.end()) 1166 goto CallOverdefined; // Not tracking this callee. 1167 1168 // If so, propagate the return value of the callee into this call result. 1169 mergeInValue(I, TFRVI->second); 1170 } 1171} 1172 1173void SCCPSolver::Solve() { 1174 // Process the work lists until they are empty! 1175 while (!BBWorkList.empty() || !InstWorkList.empty() || 1176 !OverdefinedInstWorkList.empty()) { 1177 // Process the overdefined instruction's work list first, which drives other 1178 // things to overdefined more quickly. 1179 while (!OverdefinedInstWorkList.empty()) { 1180 Value *I = OverdefinedInstWorkList.pop_back_val(); 1181 1182 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1183 1184 // "I" got into the work list because it either made the transition from 1185 // bottom to constant, or to overdefined. 1186 // 1187 // Anything on this worklist that is overdefined need not be visited 1188 // since all of its users will have already been marked as overdefined 1189 // Update all of the users of this instruction's value. 1190 // 1191 for (User *U : I->users()) 1192 if (Instruction *UI = dyn_cast<Instruction>(U)) 1193 OperandChangedState(UI); 1194 } 1195 1196 // Process the instruction work list. 1197 while (!InstWorkList.empty()) { 1198 Value *I = InstWorkList.pop_back_val(); 1199 1200 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1201 1202 // "I" got into the work list because it made the transition from undef to 1203 // constant. 1204 // 1205 // Anything on this worklist that is overdefined need not be visited 1206 // since all of its users will have already been marked as overdefined. 1207 // Update all of the users of this instruction's value. 1208 // 1209 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1210 for (User *U : I->users()) 1211 if (Instruction *UI = dyn_cast<Instruction>(U)) 1212 OperandChangedState(UI); 1213 } 1214 1215 // Process the basic block work list. 1216 while (!BBWorkList.empty()) { 1217 BasicBlock *BB = BBWorkList.back(); 1218 BBWorkList.pop_back(); 1219 1220 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1221 1222 // Notify all instructions in this basic block that they are newly 1223 // executable. 1224 visit(BB); 1225 } 1226 } 1227} 1228 1229/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1230/// that branches on undef values cannot reach any of their successors. 1231/// However, this is not a safe assumption. After we solve dataflow, this 1232/// method should be use to handle this. If this returns true, the solver 1233/// should be rerun. 1234/// 1235/// This method handles this by finding an unresolved branch and marking it one 1236/// of the edges from the block as being feasible, even though the condition 1237/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1238/// CFG and only slightly pessimizes the analysis results (by marking one, 1239/// potentially infeasible, edge feasible). This cannot usefully modify the 1240/// constraints on the condition of the branch, as that would impact other users 1241/// of the value. 1242/// 1243/// This scan also checks for values that use undefs, whose results are actually 1244/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1245/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1246/// even if X isn't defined. 1247bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1248 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1249 if (!BBExecutable.count(BB)) 1250 continue; 1251 1252 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1253 // Look for instructions which produce undef values. 1254 if (I->getType()->isVoidTy()) continue; 1255 1256 if (StructType *STy = dyn_cast<StructType>(I->getType())) { 1257 // Only a few things that can be structs matter for undef. 1258 1259 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1260 if (CallSite CS = CallSite(I)) 1261 if (Function *F = CS.getCalledFunction()) 1262 if (MRVFunctionsTracked.count(F)) 1263 continue; 1264 1265 // extractvalue and insertvalue don't need to be marked; they are 1266 // tracked as precisely as their operands. 1267 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1268 continue; 1269 1270 // Send the results of everything else to overdefined. We could be 1271 // more precise than this but it isn't worth bothering. 1272 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1273 LatticeVal &LV = getStructValueState(I, i); 1274 if (LV.isUndefined()) 1275 markOverdefined(LV, I); 1276 } 1277 continue; 1278 } 1279 1280 LatticeVal &LV = getValueState(I); 1281 if (!LV.isUndefined()) continue; 1282 1283 // extractvalue is safe; check here because the argument is a struct. 1284 if (isa<ExtractValueInst>(I)) 1285 continue; 1286 1287 // Compute the operand LatticeVals, for convenience below. 1288 // Anything taking a struct is conservatively assumed to require 1289 // overdefined markings. 1290 if (I->getOperand(0)->getType()->isStructTy()) { 1291 markOverdefined(I); 1292 return true; 1293 } 1294 LatticeVal Op0LV = getValueState(I->getOperand(0)); 1295 LatticeVal Op1LV; 1296 if (I->getNumOperands() == 2) { 1297 if (I->getOperand(1)->getType()->isStructTy()) { 1298 markOverdefined(I); 1299 return true; 1300 } 1301 1302 Op1LV = getValueState(I->getOperand(1)); 1303 } 1304 // If this is an instructions whose result is defined even if the input is 1305 // not fully defined, propagate the information. 1306 Type *ITy = I->getType(); 1307 switch (I->getOpcode()) { 1308 case Instruction::Add: 1309 case Instruction::Sub: 1310 case Instruction::Trunc: 1311 case Instruction::FPTrunc: 1312 case Instruction::BitCast: 1313 break; // Any undef -> undef 1314 case Instruction::FSub: 1315 case Instruction::FAdd: 1316 case Instruction::FMul: 1317 case Instruction::FDiv: 1318 case Instruction::FRem: 1319 // Floating-point binary operation: be conservative. 1320 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1321 markForcedConstant(I, Constant::getNullValue(ITy)); 1322 else 1323 markOverdefined(I); 1324 return true; 1325 case Instruction::ZExt: 1326 case Instruction::SExt: 1327 case Instruction::FPToUI: 1328 case Instruction::FPToSI: 1329 case Instruction::FPExt: 1330 case Instruction::PtrToInt: 1331 case Instruction::IntToPtr: 1332 case Instruction::SIToFP: 1333 case Instruction::UIToFP: 1334 // undef -> 0; some outputs are impossible 1335 markForcedConstant(I, Constant::getNullValue(ITy)); 1336 return true; 1337 case Instruction::Mul: 1338 case Instruction::And: 1339 // Both operands undef -> undef 1340 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1341 break; 1342 // undef * X -> 0. X could be zero. 1343 // undef & X -> 0. X could be zero. 1344 markForcedConstant(I, Constant::getNullValue(ITy)); 1345 return true; 1346 1347 case Instruction::Or: 1348 // Both operands undef -> undef 1349 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1350 break; 1351 // undef | X -> -1. X could be -1. 1352 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1353 return true; 1354 1355 case Instruction::Xor: 1356 // undef ^ undef -> 0; strictly speaking, this is not strictly 1357 // necessary, but we try to be nice to people who expect this 1358 // behavior in simple cases 1359 if (Op0LV.isUndefined() && Op1LV.isUndefined()) { 1360 markForcedConstant(I, Constant::getNullValue(ITy)); 1361 return true; 1362 } 1363 // undef ^ X -> undef 1364 break; 1365 1366 case Instruction::SDiv: 1367 case Instruction::UDiv: 1368 case Instruction::SRem: 1369 case Instruction::URem: 1370 // X / undef -> undef. No change. 1371 // X % undef -> undef. No change. 1372 if (Op1LV.isUndefined()) break; 1373 1374 // undef / X -> 0. X could be maxint. 1375 // undef % X -> 0. X could be 1. 1376 markForcedConstant(I, Constant::getNullValue(ITy)); 1377 return true; 1378 1379 case Instruction::AShr: 1380 // X >>a undef -> undef. 1381 if (Op1LV.isUndefined()) break; 1382 1383 // undef >>a X -> all ones 1384 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1385 return true; 1386 case Instruction::LShr: 1387 case Instruction::Shl: 1388 // X << undef -> undef. 1389 // X >> undef -> undef. 1390 if (Op1LV.isUndefined()) break; 1391 1392 // undef << X -> 0 1393 // undef >> X -> 0 1394 markForcedConstant(I, Constant::getNullValue(ITy)); 1395 return true; 1396 case Instruction::Select: 1397 Op1LV = getValueState(I->getOperand(1)); 1398 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1399 if (Op0LV.isUndefined()) { 1400 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1401 Op1LV = getValueState(I->getOperand(2)); 1402 } else if (Op1LV.isUndefined()) { 1403 // c ? undef : undef -> undef. No change. 1404 Op1LV = getValueState(I->getOperand(2)); 1405 if (Op1LV.isUndefined()) 1406 break; 1407 // Otherwise, c ? undef : x -> x. 1408 } else { 1409 // Leave Op1LV as Operand(1)'s LatticeValue. 1410 } 1411 1412 if (Op1LV.isConstant()) 1413 markForcedConstant(I, Op1LV.getConstant()); 1414 else 1415 markOverdefined(I); 1416 return true; 1417 case Instruction::Load: 1418 // A load here means one of two things: a load of undef from a global, 1419 // a load from an unknown pointer. Either way, having it return undef 1420 // is okay. 1421 break; 1422 case Instruction::ICmp: 1423 // X == undef -> undef. Other comparisons get more complicated. 1424 if (cast<ICmpInst>(I)->isEquality()) 1425 break; 1426 markOverdefined(I); 1427 return true; 1428 case Instruction::Call: 1429 case Instruction::Invoke: { 1430 // There are two reasons a call can have an undef result 1431 // 1. It could be tracked. 1432 // 2. It could be constant-foldable. 1433 // Because of the way we solve return values, tracked calls must 1434 // never be marked overdefined in ResolvedUndefsIn. 1435 if (Function *F = CallSite(I).getCalledFunction()) 1436 if (TrackedRetVals.count(F)) 1437 break; 1438 1439 // If the call is constant-foldable, we mark it overdefined because 1440 // we do not know what return values are valid. 1441 markOverdefined(I); 1442 return true; 1443 } 1444 default: 1445 // If we don't know what should happen here, conservatively mark it 1446 // overdefined. 1447 markOverdefined(I); 1448 return true; 1449 } 1450 } 1451 1452 // Check to see if we have a branch or switch on an undefined value. If so 1453 // we force the branch to go one way or the other to make the successor 1454 // values live. It doesn't really matter which way we force it. 1455 TerminatorInst *TI = BB->getTerminator(); 1456 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1457 if (!BI->isConditional()) continue; 1458 if (!getValueState(BI->getCondition()).isUndefined()) 1459 continue; 1460 1461 // If the input to SCCP is actually branch on undef, fix the undef to 1462 // false. 1463 if (isa<UndefValue>(BI->getCondition())) { 1464 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1465 markEdgeExecutable(BB, TI->getSuccessor(1)); 1466 return true; 1467 } 1468 1469 // Otherwise, it is a branch on a symbolic value which is currently 1470 // considered to be undef. Handle this by forcing the input value to the 1471 // branch to false. 1472 markForcedConstant(BI->getCondition(), 1473 ConstantInt::getFalse(TI->getContext())); 1474 return true; 1475 } 1476 1477 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1478 if (!SI->getNumCases()) 1479 continue; 1480 if (!getValueState(SI->getCondition()).isUndefined()) 1481 continue; 1482 1483 // If the input to SCCP is actually switch on undef, fix the undef to 1484 // the first constant. 1485 if (isa<UndefValue>(SI->getCondition())) { 1486 SI->setCondition(SI->case_begin().getCaseValue()); 1487 markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor()); 1488 return true; 1489 } 1490 1491 markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue()); 1492 return true; 1493 } 1494 } 1495 1496 return false; 1497} 1498 1499 1500namespace { 1501 //===--------------------------------------------------------------------===// 1502 // 1503 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1504 /// Sparse Conditional Constant Propagator. 1505 /// 1506 struct SCCP : public FunctionPass { 1507 void getAnalysisUsage(AnalysisUsage &AU) const override { 1508 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1509 } 1510 static char ID; // Pass identification, replacement for typeid 1511 SCCP() : FunctionPass(ID) { 1512 initializeSCCPPass(*PassRegistry::getPassRegistry()); 1513 } 1514 1515 // runOnFunction - Run the Sparse Conditional Constant Propagation 1516 // algorithm, and return true if the function was modified. 1517 // 1518 bool runOnFunction(Function &F) override; 1519 }; 1520} // end anonymous namespace 1521 1522char SCCP::ID = 0; 1523INITIALIZE_PASS(SCCP, "sccp", 1524 "Sparse Conditional Constant Propagation", false, false) 1525 1526// createSCCPPass - This is the public interface to this file. 1527FunctionPass *llvm::createSCCPPass() { 1528 return new SCCP(); 1529} 1530 1531static void DeleteInstructionInBlock(BasicBlock *BB) { 1532 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1533 ++NumDeadBlocks; 1534 1535 // Check to see if there are non-terminating instructions to delete. 1536 if (isa<TerminatorInst>(BB->begin())) 1537 return; 1538 1539 // Delete the instructions backwards, as it has a reduced likelihood of having 1540 // to update as many def-use and use-def chains. 1541 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1542 while (EndInst != BB->begin()) { 1543 // Delete the next to last instruction. 1544 BasicBlock::iterator I = EndInst; 1545 Instruction *Inst = --I; 1546 if (!Inst->use_empty()) 1547 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1548 if (isa<LandingPadInst>(Inst)) { 1549 EndInst = Inst; 1550 continue; 1551 } 1552 BB->getInstList().erase(Inst); 1553 ++NumInstRemoved; 1554 } 1555} 1556 1557// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1558// and return true if the function was modified. 1559// 1560bool SCCP::runOnFunction(Function &F) { 1561 if (skipOptnoneFunction(F)) 1562 return false; 1563 1564 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1565 const DataLayout &DL = F.getParent()->getDataLayout(); 1566 const TargetLibraryInfo *TLI = 1567 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1568 SCCPSolver Solver(DL, TLI); 1569 1570 // Mark the first block of the function as being executable. 1571 Solver.MarkBlockExecutable(F.begin()); 1572 1573 // Mark all arguments to the function as being overdefined. 1574 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1575 Solver.markAnythingOverdefined(AI); 1576 1577 // Solve for constants. 1578 bool ResolvedUndefs = true; 1579 while (ResolvedUndefs) { 1580 Solver.Solve(); 1581 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1582 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1583 } 1584 1585 bool MadeChanges = false; 1586 1587 // If we decided that there are basic blocks that are dead in this function, 1588 // delete their contents now. Note that we cannot actually delete the blocks, 1589 // as we cannot modify the CFG of the function. 1590 1591 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1592 if (!Solver.isBlockExecutable(BB)) { 1593 DeleteInstructionInBlock(BB); 1594 MadeChanges = true; 1595 continue; 1596 } 1597 1598 // Iterate over all of the instructions in a function, replacing them with 1599 // constants if we have found them to be of constant values. 1600 // 1601 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1602 Instruction *Inst = BI++; 1603 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1604 continue; 1605 1606 // TODO: Reconstruct structs from their elements. 1607 if (Inst->getType()->isStructTy()) 1608 continue; 1609 1610 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1611 if (IV.isOverdefined()) 1612 continue; 1613 1614 Constant *Const = IV.isConstant() 1615 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1616 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n'); 1617 1618 // Replaces all of the uses of a variable with uses of the constant. 1619 Inst->replaceAllUsesWith(Const); 1620 1621 // Delete the instruction. 1622 Inst->eraseFromParent(); 1623 1624 // Hey, we just changed something! 1625 MadeChanges = true; 1626 ++NumInstRemoved; 1627 } 1628 } 1629 1630 return MadeChanges; 1631} 1632 1633namespace { 1634 //===--------------------------------------------------------------------===// 1635 // 1636 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1637 /// Constant Propagation. 1638 /// 1639 struct IPSCCP : public ModulePass { 1640 void getAnalysisUsage(AnalysisUsage &AU) const override { 1641 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1642 } 1643 static char ID; 1644 IPSCCP() : ModulePass(ID) { 1645 initializeIPSCCPPass(*PassRegistry::getPassRegistry()); 1646 } 1647 bool runOnModule(Module &M) override; 1648 }; 1649} // end anonymous namespace 1650 1651char IPSCCP::ID = 0; 1652INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp", 1653 "Interprocedural Sparse Conditional Constant Propagation", 1654 false, false) 1655INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1656INITIALIZE_PASS_END(IPSCCP, "ipsccp", 1657 "Interprocedural Sparse Conditional Constant Propagation", 1658 false, false) 1659 1660// createIPSCCPPass - This is the public interface to this file. 1661ModulePass *llvm::createIPSCCPPass() { 1662 return new IPSCCP(); 1663} 1664 1665 1666static bool AddressIsTaken(const GlobalValue *GV) { 1667 // Delete any dead constantexpr klingons. 1668 GV->removeDeadConstantUsers(); 1669 1670 for (const Use &U : GV->uses()) { 1671 const User *UR = U.getUser(); 1672 if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) { 1673 if (SI->getOperand(0) == GV || SI->isVolatile()) 1674 return true; // Storing addr of GV. 1675 } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) { 1676 // Make sure we are calling the function, not passing the address. 1677 ImmutableCallSite CS(cast<Instruction>(UR)); 1678 if (!CS.isCallee(&U)) 1679 return true; 1680 } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) { 1681 if (LI->isVolatile()) 1682 return true; 1683 } else if (isa<BlockAddress>(UR)) { 1684 // blockaddress doesn't take the address of the function, it takes addr 1685 // of label. 1686 } else { 1687 return true; 1688 } 1689 } 1690 return false; 1691} 1692 1693bool IPSCCP::runOnModule(Module &M) { 1694 const DataLayout &DL = M.getDataLayout(); 1695 const TargetLibraryInfo *TLI = 1696 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1697 SCCPSolver Solver(DL, TLI); 1698 1699 // AddressTakenFunctions - This set keeps track of the address-taken functions 1700 // that are in the input. As IPSCCP runs through and simplifies code, 1701 // functions that were address taken can end up losing their 1702 // address-taken-ness. Because of this, we keep track of their addresses from 1703 // the first pass so we can use them for the later simplification pass. 1704 SmallPtrSet<Function*, 32> AddressTakenFunctions; 1705 1706 // Loop over all functions, marking arguments to those with their addresses 1707 // taken or that are external as overdefined. 1708 // 1709 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1710 if (F->isDeclaration()) 1711 continue; 1712 1713 // If this is a strong or ODR definition of this function, then we can 1714 // propagate information about its result into callsites of it. 1715 if (!F->mayBeOverridden()) 1716 Solver.AddTrackedFunction(F); 1717 1718 // If this function only has direct calls that we can see, we can track its 1719 // arguments and return value aggressively, and can assume it is not called 1720 // unless we see evidence to the contrary. 1721 if (F->hasLocalLinkage()) { 1722 if (AddressIsTaken(F)) 1723 AddressTakenFunctions.insert(F); 1724 else { 1725 Solver.AddArgumentTrackedFunction(F); 1726 continue; 1727 } 1728 } 1729 1730 // Assume the function is called. 1731 Solver.MarkBlockExecutable(F->begin()); 1732 1733 // Assume nothing about the incoming arguments. 1734 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1735 AI != E; ++AI) 1736 Solver.markAnythingOverdefined(AI); 1737 } 1738 1739 // Loop over global variables. We inform the solver about any internal global 1740 // variables that do not have their 'addresses taken'. If they don't have 1741 // their addresses taken, we can propagate constants through them. 1742 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1743 G != E; ++G) 1744 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1745 Solver.TrackValueOfGlobalVariable(G); 1746 1747 // Solve for constants. 1748 bool ResolvedUndefs = true; 1749 while (ResolvedUndefs) { 1750 Solver.Solve(); 1751 1752 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1753 ResolvedUndefs = false; 1754 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1755 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1756 } 1757 1758 bool MadeChanges = false; 1759 1760 // Iterate over all of the instructions in the module, replacing them with 1761 // constants if we have found them to be of constant values. 1762 // 1763 SmallVector<BasicBlock*, 512> BlocksToErase; 1764 1765 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1766 if (Solver.isBlockExecutable(F->begin())) { 1767 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1768 AI != E; ++AI) { 1769 if (AI->use_empty() || AI->getType()->isStructTy()) continue; 1770 1771 // TODO: Could use getStructLatticeValueFor to find out if the entire 1772 // result is a constant and replace it entirely if so. 1773 1774 LatticeVal IV = Solver.getLatticeValueFor(AI); 1775 if (IV.isOverdefined()) continue; 1776 1777 Constant *CST = IV.isConstant() ? 1778 IV.getConstant() : UndefValue::get(AI->getType()); 1779 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1780 1781 // Replaces all of the uses of a variable with uses of the 1782 // constant. 1783 AI->replaceAllUsesWith(CST); 1784 ++IPNumArgsElimed; 1785 } 1786 } 1787 1788 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1789 if (!Solver.isBlockExecutable(BB)) { 1790 DeleteInstructionInBlock(BB); 1791 MadeChanges = true; 1792 1793 TerminatorInst *TI = BB->getTerminator(); 1794 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1795 BasicBlock *Succ = TI->getSuccessor(i); 1796 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1797 TI->getSuccessor(i)->removePredecessor(BB); 1798 } 1799 if (!TI->use_empty()) 1800 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1801 TI->eraseFromParent(); 1802 1803 if (&*BB != &F->front()) 1804 BlocksToErase.push_back(BB); 1805 else 1806 new UnreachableInst(M.getContext(), BB); 1807 continue; 1808 } 1809 1810 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1811 Instruction *Inst = BI++; 1812 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) 1813 continue; 1814 1815 // TODO: Could use getStructLatticeValueFor to find out if the entire 1816 // result is a constant and replace it entirely if so. 1817 1818 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1819 if (IV.isOverdefined()) 1820 continue; 1821 1822 Constant *Const = IV.isConstant() 1823 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1824 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n'); 1825 1826 // Replaces all of the uses of a variable with uses of the 1827 // constant. 1828 Inst->replaceAllUsesWith(Const); 1829 1830 // Delete the instruction. 1831 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1832 Inst->eraseFromParent(); 1833 1834 // Hey, we just changed something! 1835 MadeChanges = true; 1836 ++IPNumInstRemoved; 1837 } 1838 } 1839 1840 // Now that all instructions in the function are constant folded, erase dead 1841 // blocks, because we can now use ConstantFoldTerminator to get rid of 1842 // in-edges. 1843 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1844 // If there are any PHI nodes in this successor, drop entries for BB now. 1845 BasicBlock *DeadBB = BlocksToErase[i]; 1846 for (Value::user_iterator UI = DeadBB->user_begin(), 1847 UE = DeadBB->user_end(); 1848 UI != UE;) { 1849 // Grab the user and then increment the iterator early, as the user 1850 // will be deleted. Step past all adjacent uses from the same user. 1851 Instruction *I = dyn_cast<Instruction>(*UI); 1852 do { ++UI; } while (UI != UE && *UI == I); 1853 1854 // Ignore blockaddress users; BasicBlock's dtor will handle them. 1855 if (!I) continue; 1856 1857 bool Folded = ConstantFoldTerminator(I->getParent()); 1858 if (!Folded) { 1859 // The constant folder may not have been able to fold the terminator 1860 // if this is a branch or switch on undef. Fold it manually as a 1861 // branch to the first successor. 1862#ifndef NDEBUG 1863 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1864 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1865 "Branch should be foldable!"); 1866 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1867 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1868 } else { 1869 llvm_unreachable("Didn't fold away reference to block!"); 1870 } 1871#endif 1872 1873 // Make this an uncond branch to the first successor. 1874 TerminatorInst *TI = I->getParent()->getTerminator(); 1875 BranchInst::Create(TI->getSuccessor(0), TI); 1876 1877 // Remove entries in successor phi nodes to remove edges. 1878 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1879 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1880 1881 // Remove the old terminator. 1882 TI->eraseFromParent(); 1883 } 1884 } 1885 1886 // Finally, delete the basic block. 1887 F->getBasicBlockList().erase(DeadBB); 1888 } 1889 BlocksToErase.clear(); 1890 } 1891 1892 // If we inferred constant or undef return values for a function, we replaced 1893 // all call uses with the inferred value. This means we don't need to bother 1894 // actually returning anything from the function. Replace all return 1895 // instructions with return undef. 1896 // 1897 // Do this in two stages: first identify the functions we should process, then 1898 // actually zap their returns. This is important because we can only do this 1899 // if the address of the function isn't taken. In cases where a return is the 1900 // last use of a function, the order of processing functions would affect 1901 // whether other functions are optimizable. 1902 SmallVector<ReturnInst*, 8> ReturnsToZap; 1903 1904 // TODO: Process multiple value ret instructions also. 1905 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1906 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1907 E = RV.end(); I != E; ++I) { 1908 Function *F = I->first; 1909 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) 1910 continue; 1911 1912 // We can only do this if we know that nothing else can call the function. 1913 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) 1914 continue; 1915 1916 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1917 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1918 if (!isa<UndefValue>(RI->getOperand(0))) 1919 ReturnsToZap.push_back(RI); 1920 } 1921 1922 // Zap all returns which we've identified as zap to change. 1923 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 1924 Function *F = ReturnsToZap[i]->getParent()->getParent(); 1925 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 1926 } 1927 1928 // If we inferred constant or undef values for globals variables, we can 1929 // delete the global and any stores that remain to it. 1930 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1931 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1932 E = TG.end(); I != E; ++I) { 1933 GlobalVariable *GV = I->first; 1934 assert(!I->second.isOverdefined() && 1935 "Overdefined values should have been taken out of the map!"); 1936 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1937 while (!GV->use_empty()) { 1938 StoreInst *SI = cast<StoreInst>(GV->user_back()); 1939 SI->eraseFromParent(); 1940 } 1941 M.getGlobalList().erase(GV); 1942 ++IPNumGlobalConst; 1943 } 1944 1945 return MadeChanges; 1946} 1947