1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/Scalar.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/PointerIntPair.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/IR/CallSite.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/InstVisitor.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Transforms/IPO.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include <algorithm>
42using namespace llvm;
43
44#define DEBUG_TYPE "sccp"
45
46STATISTIC(NumInstRemoved, "Number of instructions removed");
47STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
48
49STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
50STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
51STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
52
53namespace {
54/// LatticeVal class - This class represents the different lattice values that
55/// an LLVM value may occupy.  It is a simple class with value semantics.
56///
57class LatticeVal {
58  enum LatticeValueTy {
59    /// undefined - This LLVM Value has no known value yet.
60    undefined,
61
62    /// constant - This LLVM Value has a specific constant value.
63    constant,
64
65    /// forcedconstant - This LLVM Value was thought to be undef until
66    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
67    /// with another (different) constant, it goes to overdefined, instead of
68    /// asserting.
69    forcedconstant,
70
71    /// overdefined - This instruction is not known to be constant, and we know
72    /// it has a value.
73    overdefined
74  };
75
76  /// Val: This stores the current lattice value along with the Constant* for
77  /// the constant if this is a 'constant' or 'forcedconstant' value.
78  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
79
80  LatticeValueTy getLatticeValue() const {
81    return Val.getInt();
82  }
83
84public:
85  LatticeVal() : Val(nullptr, undefined) {}
86
87  bool isUndefined() const { return getLatticeValue() == undefined; }
88  bool isConstant() const {
89    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
90  }
91  bool isOverdefined() const { return getLatticeValue() == overdefined; }
92
93  Constant *getConstant() const {
94    assert(isConstant() && "Cannot get the constant of a non-constant!");
95    return Val.getPointer();
96  }
97
98  /// markOverdefined - Return true if this is a change in status.
99  bool markOverdefined() {
100    if (isOverdefined())
101      return false;
102
103    Val.setInt(overdefined);
104    return true;
105  }
106
107  /// markConstant - Return true if this is a change in status.
108  bool markConstant(Constant *V) {
109    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
110      assert(getConstant() == V && "Marking constant with different value");
111      return false;
112    }
113
114    if (isUndefined()) {
115      Val.setInt(constant);
116      assert(V && "Marking constant with NULL");
117      Val.setPointer(V);
118    } else {
119      assert(getLatticeValue() == forcedconstant &&
120             "Cannot move from overdefined to constant!");
121      // Stay at forcedconstant if the constant is the same.
122      if (V == getConstant()) return false;
123
124      // Otherwise, we go to overdefined.  Assumptions made based on the
125      // forced value are possibly wrong.  Assuming this is another constant
126      // could expose a contradiction.
127      Val.setInt(overdefined);
128    }
129    return true;
130  }
131
132  /// getConstantInt - If this is a constant with a ConstantInt value, return it
133  /// otherwise return null.
134  ConstantInt *getConstantInt() const {
135    if (isConstant())
136      return dyn_cast<ConstantInt>(getConstant());
137    return nullptr;
138  }
139
140  void markForcedConstant(Constant *V) {
141    assert(isUndefined() && "Can't force a defined value!");
142    Val.setInt(forcedconstant);
143    Val.setPointer(V);
144  }
145};
146} // end anonymous namespace.
147
148
149namespace {
150
151//===----------------------------------------------------------------------===//
152//
153/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
154/// Constant Propagation.
155///
156class SCCPSolver : public InstVisitor<SCCPSolver> {
157  const DataLayout &DL;
158  const TargetLibraryInfo *TLI;
159  SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
160  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
161
162  /// StructValueState - This maintains ValueState for values that have
163  /// StructType, for example for formal arguments, calls, insertelement, etc.
164  ///
165  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
166
167  /// GlobalValue - If we are tracking any values for the contents of a global
168  /// variable, we keep a mapping from the constant accessor to the element of
169  /// the global, to the currently known value.  If the value becomes
170  /// overdefined, it's entry is simply removed from this map.
171  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
172
173  /// TrackedRetVals - If we are tracking arguments into and the return
174  /// value out of a function, it will have an entry in this map, indicating
175  /// what the known return value for the function is.
176  DenseMap<Function*, LatticeVal> TrackedRetVals;
177
178  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179  /// that return multiple values.
180  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
181
182  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183  /// represented here for efficient lookup.
184  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
185
186  /// TrackingIncomingArguments - This is the set of functions for whose
187  /// arguments we make optimistic assumptions about and try to prove as
188  /// constants.
189  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
190
191  /// The reason for two worklists is that overdefined is the lowest state
192  /// on the lattice, and moving things to overdefined as fast as possible
193  /// makes SCCP converge much faster.
194  ///
195  /// By having a separate worklist, we accomplish this because everything
196  /// possibly overdefined will become overdefined at the soonest possible
197  /// point.
198  SmallVector<Value*, 64> OverdefinedInstWorkList;
199  SmallVector<Value*, 64> InstWorkList;
200
201
202  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
203
204  /// KnownFeasibleEdges - Entries in this set are edges which have already had
205  /// PHI nodes retriggered.
206  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
207  DenseSet<Edge> KnownFeasibleEdges;
208public:
209  SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
210      : DL(DL), TLI(tli) {}
211
212  /// MarkBlockExecutable - This method can be used by clients to mark all of
213  /// the blocks that are known to be intrinsically live in the processed unit.
214  ///
215  /// This returns true if the block was not considered live before.
216  bool MarkBlockExecutable(BasicBlock *BB) {
217    if (!BBExecutable.insert(BB).second)
218      return false;
219    DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
220    BBWorkList.push_back(BB);  // Add the block to the work list!
221    return true;
222  }
223
224  /// TrackValueOfGlobalVariable - Clients can use this method to
225  /// inform the SCCPSolver that it should track loads and stores to the
226  /// specified global variable if it can.  This is only legal to call if
227  /// performing Interprocedural SCCP.
228  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
229    // We only track the contents of scalar globals.
230    if (GV->getType()->getElementType()->isSingleValueType()) {
231      LatticeVal &IV = TrackedGlobals[GV];
232      if (!isa<UndefValue>(GV->getInitializer()))
233        IV.markConstant(GV->getInitializer());
234    }
235  }
236
237  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
238  /// and out of the specified function (which cannot have its address taken),
239  /// this method must be called.
240  void AddTrackedFunction(Function *F) {
241    // Add an entry, F -> undef.
242    if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
243      MRVFunctionsTracked.insert(F);
244      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
245        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
246                                                     LatticeVal()));
247    } else
248      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
249  }
250
251  void AddArgumentTrackedFunction(Function *F) {
252    TrackingIncomingArguments.insert(F);
253  }
254
255  /// Solve - Solve for constants and executable blocks.
256  ///
257  void Solve();
258
259  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
260  /// that branches on undef values cannot reach any of their successors.
261  /// However, this is not a safe assumption.  After we solve dataflow, this
262  /// method should be use to handle this.  If this returns true, the solver
263  /// should be rerun.
264  bool ResolvedUndefsIn(Function &F);
265
266  bool isBlockExecutable(BasicBlock *BB) const {
267    return BBExecutable.count(BB);
268  }
269
270  LatticeVal getLatticeValueFor(Value *V) const {
271    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
272    assert(I != ValueState.end() && "V is not in valuemap!");
273    return I->second;
274  }
275
276  /// getTrackedRetVals - Get the inferred return value map.
277  ///
278  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
279    return TrackedRetVals;
280  }
281
282  /// getTrackedGlobals - Get and return the set of inferred initializers for
283  /// global variables.
284  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
285    return TrackedGlobals;
286  }
287
288  void markOverdefined(Value *V) {
289    assert(!V->getType()->isStructTy() && "Should use other method");
290    markOverdefined(ValueState[V], V);
291  }
292
293  /// markAnythingOverdefined - Mark the specified value overdefined.  This
294  /// works with both scalars and structs.
295  void markAnythingOverdefined(Value *V) {
296    if (StructType *STy = dyn_cast<StructType>(V->getType()))
297      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
298        markOverdefined(getStructValueState(V, i), V);
299    else
300      markOverdefined(V);
301  }
302
303private:
304  // markConstant - Make a value be marked as "constant".  If the value
305  // is not already a constant, add it to the instruction work list so that
306  // the users of the instruction are updated later.
307  //
308  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
309    if (!IV.markConstant(C)) return;
310    DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
311    if (IV.isOverdefined())
312      OverdefinedInstWorkList.push_back(V);
313    else
314      InstWorkList.push_back(V);
315  }
316
317  void markConstant(Value *V, Constant *C) {
318    assert(!V->getType()->isStructTy() && "Should use other method");
319    markConstant(ValueState[V], V, C);
320  }
321
322  void markForcedConstant(Value *V, Constant *C) {
323    assert(!V->getType()->isStructTy() && "Should use other method");
324    LatticeVal &IV = ValueState[V];
325    IV.markForcedConstant(C);
326    DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
327    if (IV.isOverdefined())
328      OverdefinedInstWorkList.push_back(V);
329    else
330      InstWorkList.push_back(V);
331  }
332
333
334  // markOverdefined - Make a value be marked as "overdefined". If the
335  // value is not already overdefined, add it to the overdefined instruction
336  // work list so that the users of the instruction are updated later.
337  void markOverdefined(LatticeVal &IV, Value *V) {
338    if (!IV.markOverdefined()) return;
339
340    DEBUG(dbgs() << "markOverdefined: ";
341          if (Function *F = dyn_cast<Function>(V))
342            dbgs() << "Function '" << F->getName() << "'\n";
343          else
344            dbgs() << *V << '\n');
345    // Only instructions go on the work list
346    OverdefinedInstWorkList.push_back(V);
347  }
348
349  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
350    if (IV.isOverdefined() || MergeWithV.isUndefined())
351      return;  // Noop.
352    if (MergeWithV.isOverdefined())
353      markOverdefined(IV, V);
354    else if (IV.isUndefined())
355      markConstant(IV, V, MergeWithV.getConstant());
356    else if (IV.getConstant() != MergeWithV.getConstant())
357      markOverdefined(IV, V);
358  }
359
360  void mergeInValue(Value *V, LatticeVal MergeWithV) {
361    assert(!V->getType()->isStructTy() && "Should use other method");
362    mergeInValue(ValueState[V], V, MergeWithV);
363  }
364
365
366  /// getValueState - Return the LatticeVal object that corresponds to the
367  /// value.  This function handles the case when the value hasn't been seen yet
368  /// by properly seeding constants etc.
369  LatticeVal &getValueState(Value *V) {
370    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
371
372    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
373      ValueState.insert(std::make_pair(V, LatticeVal()));
374    LatticeVal &LV = I.first->second;
375
376    if (!I.second)
377      return LV;  // Common case, already in the map.
378
379    if (Constant *C = dyn_cast<Constant>(V)) {
380      // Undef values remain undefined.
381      if (!isa<UndefValue>(V))
382        LV.markConstant(C);          // Constants are constant
383    }
384
385    // All others are underdefined by default.
386    return LV;
387  }
388
389  /// getStructValueState - Return the LatticeVal object that corresponds to the
390  /// value/field pair.  This function handles the case when the value hasn't
391  /// been seen yet by properly seeding constants etc.
392  LatticeVal &getStructValueState(Value *V, unsigned i) {
393    assert(V->getType()->isStructTy() && "Should use getValueState");
394    assert(i < cast<StructType>(V->getType())->getNumElements() &&
395           "Invalid element #");
396
397    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
398              bool> I = StructValueState.insert(
399                        std::make_pair(std::make_pair(V, i), LatticeVal()));
400    LatticeVal &LV = I.first->second;
401
402    if (!I.second)
403      return LV;  // Common case, already in the map.
404
405    if (Constant *C = dyn_cast<Constant>(V)) {
406      Constant *Elt = C->getAggregateElement(i);
407
408      if (!Elt)
409        LV.markOverdefined();      // Unknown sort of constant.
410      else if (isa<UndefValue>(Elt))
411        ; // Undef values remain undefined.
412      else
413        LV.markConstant(Elt);      // Constants are constant.
414    }
415
416    // All others are underdefined by default.
417    return LV;
418  }
419
420
421  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
422  /// work list if it is not already executable.
423  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
424    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
425      return;  // This edge is already known to be executable!
426
427    if (!MarkBlockExecutable(Dest)) {
428      // If the destination is already executable, we just made an *edge*
429      // feasible that wasn't before.  Revisit the PHI nodes in the block
430      // because they have potentially new operands.
431      DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
432            << " -> " << Dest->getName() << '\n');
433
434      PHINode *PN;
435      for (BasicBlock::iterator I = Dest->begin();
436           (PN = dyn_cast<PHINode>(I)); ++I)
437        visitPHINode(*PN);
438    }
439  }
440
441  // getFeasibleSuccessors - Return a vector of booleans to indicate which
442  // successors are reachable from a given terminator instruction.
443  //
444  void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
445
446  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
447  // block to the 'To' basic block is currently feasible.
448  //
449  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
450
451  // OperandChangedState - This method is invoked on all of the users of an
452  // instruction that was just changed state somehow.  Based on this
453  // information, we need to update the specified user of this instruction.
454  //
455  void OperandChangedState(Instruction *I) {
456    if (BBExecutable.count(I->getParent()))   // Inst is executable?
457      visit(*I);
458  }
459
460private:
461  friend class InstVisitor<SCCPSolver>;
462
463  // visit implementations - Something changed in this instruction.  Either an
464  // operand made a transition, or the instruction is newly executable.  Change
465  // the value type of I to reflect these changes if appropriate.
466  void visitPHINode(PHINode &I);
467
468  // Terminators
469  void visitReturnInst(ReturnInst &I);
470  void visitTerminatorInst(TerminatorInst &TI);
471
472  void visitCastInst(CastInst &I);
473  void visitSelectInst(SelectInst &I);
474  void visitBinaryOperator(Instruction &I);
475  void visitCmpInst(CmpInst &I);
476  void visitExtractElementInst(ExtractElementInst &I);
477  void visitInsertElementInst(InsertElementInst &I);
478  void visitShuffleVectorInst(ShuffleVectorInst &I);
479  void visitExtractValueInst(ExtractValueInst &EVI);
480  void visitInsertValueInst(InsertValueInst &IVI);
481  void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
482
483  // Instructions that cannot be folded away.
484  void visitStoreInst     (StoreInst &I);
485  void visitLoadInst      (LoadInst &I);
486  void visitGetElementPtrInst(GetElementPtrInst &I);
487  void visitCallInst      (CallInst &I) {
488    visitCallSite(&I);
489  }
490  void visitInvokeInst    (InvokeInst &II) {
491    visitCallSite(&II);
492    visitTerminatorInst(II);
493  }
494  void visitCallSite      (CallSite CS);
495  void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
496  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
497  void visitFenceInst     (FenceInst &I) { /*returns void*/ }
498  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
499    markAnythingOverdefined(&I);
500  }
501  void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
502  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
503  void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
504
505  void visitInstruction(Instruction &I) {
506    // If a new instruction is added to LLVM that we don't handle.
507    dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
508    markAnythingOverdefined(&I);   // Just in case
509  }
510};
511
512} // end anonymous namespace
513
514
515// getFeasibleSuccessors - Return a vector of booleans to indicate which
516// successors are reachable from a given terminator instruction.
517//
518void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
519                                       SmallVectorImpl<bool> &Succs) {
520  Succs.resize(TI.getNumSuccessors());
521  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
522    if (BI->isUnconditional()) {
523      Succs[0] = true;
524      return;
525    }
526
527    LatticeVal BCValue = getValueState(BI->getCondition());
528    ConstantInt *CI = BCValue.getConstantInt();
529    if (!CI) {
530      // Overdefined condition variables, and branches on unfoldable constant
531      // conditions, mean the branch could go either way.
532      if (!BCValue.isUndefined())
533        Succs[0] = Succs[1] = true;
534      return;
535    }
536
537    // Constant condition variables mean the branch can only go a single way.
538    Succs[CI->isZero()] = true;
539    return;
540  }
541
542  if (isa<InvokeInst>(TI)) {
543    // Invoke instructions successors are always executable.
544    Succs[0] = Succs[1] = true;
545    return;
546  }
547
548  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
549    if (!SI->getNumCases()) {
550      Succs[0] = true;
551      return;
552    }
553    LatticeVal SCValue = getValueState(SI->getCondition());
554    ConstantInt *CI = SCValue.getConstantInt();
555
556    if (!CI) {   // Overdefined or undefined condition?
557      // All destinations are executable!
558      if (!SCValue.isUndefined())
559        Succs.assign(TI.getNumSuccessors(), true);
560      return;
561    }
562
563    Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
564    return;
565  }
566
567  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
568  if (isa<IndirectBrInst>(&TI)) {
569    // Just mark all destinations executable!
570    Succs.assign(TI.getNumSuccessors(), true);
571    return;
572  }
573
574#ifndef NDEBUG
575  dbgs() << "Unknown terminator instruction: " << TI << '\n';
576#endif
577  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
578}
579
580
581// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
582// block to the 'To' basic block is currently feasible.
583//
584bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
585  assert(BBExecutable.count(To) && "Dest should always be alive!");
586
587  // Make sure the source basic block is executable!!
588  if (!BBExecutable.count(From)) return false;
589
590  // Check to make sure this edge itself is actually feasible now.
591  TerminatorInst *TI = From->getTerminator();
592  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
593    if (BI->isUnconditional())
594      return true;
595
596    LatticeVal BCValue = getValueState(BI->getCondition());
597
598    // Overdefined condition variables mean the branch could go either way,
599    // undef conditions mean that neither edge is feasible yet.
600    ConstantInt *CI = BCValue.getConstantInt();
601    if (!CI)
602      return !BCValue.isUndefined();
603
604    // Constant condition variables mean the branch can only go a single way.
605    return BI->getSuccessor(CI->isZero()) == To;
606  }
607
608  // Invoke instructions successors are always executable.
609  if (isa<InvokeInst>(TI))
610    return true;
611
612  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
613    if (SI->getNumCases() < 1)
614      return true;
615
616    LatticeVal SCValue = getValueState(SI->getCondition());
617    ConstantInt *CI = SCValue.getConstantInt();
618
619    if (!CI)
620      return !SCValue.isUndefined();
621
622    return SI->findCaseValue(CI).getCaseSuccessor() == To;
623  }
624
625  // Just mark all destinations executable!
626  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
627  if (isa<IndirectBrInst>(TI))
628    return true;
629
630#ifndef NDEBUG
631  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
632#endif
633  llvm_unreachable(nullptr);
634}
635
636// visit Implementations - Something changed in this instruction, either an
637// operand made a transition, or the instruction is newly executable.  Change
638// the value type of I to reflect these changes if appropriate.  This method
639// makes sure to do the following actions:
640//
641// 1. If a phi node merges two constants in, and has conflicting value coming
642//    from different branches, or if the PHI node merges in an overdefined
643//    value, then the PHI node becomes overdefined.
644// 2. If a phi node merges only constants in, and they all agree on value, the
645//    PHI node becomes a constant value equal to that.
646// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
647// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
648// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
649// 6. If a conditional branch has a value that is constant, make the selected
650//    destination executable
651// 7. If a conditional branch has a value that is overdefined, make all
652//    successors executable.
653//
654void SCCPSolver::visitPHINode(PHINode &PN) {
655  // If this PN returns a struct, just mark the result overdefined.
656  // TODO: We could do a lot better than this if code actually uses this.
657  if (PN.getType()->isStructTy())
658    return markAnythingOverdefined(&PN);
659
660  if (getValueState(&PN).isOverdefined())
661    return;  // Quick exit
662
663  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
664  // and slow us down a lot.  Just mark them overdefined.
665  if (PN.getNumIncomingValues() > 64)
666    return markOverdefined(&PN);
667
668  // Look at all of the executable operands of the PHI node.  If any of them
669  // are overdefined, the PHI becomes overdefined as well.  If they are all
670  // constant, and they agree with each other, the PHI becomes the identical
671  // constant.  If they are constant and don't agree, the PHI is overdefined.
672  // If there are no executable operands, the PHI remains undefined.
673  //
674  Constant *OperandVal = nullptr;
675  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
676    LatticeVal IV = getValueState(PN.getIncomingValue(i));
677    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
678
679    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
680      continue;
681
682    if (IV.isOverdefined())    // PHI node becomes overdefined!
683      return markOverdefined(&PN);
684
685    if (!OperandVal) {   // Grab the first value.
686      OperandVal = IV.getConstant();
687      continue;
688    }
689
690    // There is already a reachable operand.  If we conflict with it,
691    // then the PHI node becomes overdefined.  If we agree with it, we
692    // can continue on.
693
694    // Check to see if there are two different constants merging, if so, the PHI
695    // node is overdefined.
696    if (IV.getConstant() != OperandVal)
697      return markOverdefined(&PN);
698  }
699
700  // If we exited the loop, this means that the PHI node only has constant
701  // arguments that agree with each other(and OperandVal is the constant) or
702  // OperandVal is null because there are no defined incoming arguments.  If
703  // this is the case, the PHI remains undefined.
704  //
705  if (OperandVal)
706    markConstant(&PN, OperandVal);      // Acquire operand value
707}
708
709void SCCPSolver::visitReturnInst(ReturnInst &I) {
710  if (I.getNumOperands() == 0) return;  // ret void
711
712  Function *F = I.getParent()->getParent();
713  Value *ResultOp = I.getOperand(0);
714
715  // If we are tracking the return value of this function, merge it in.
716  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
717    DenseMap<Function*, LatticeVal>::iterator TFRVI =
718      TrackedRetVals.find(F);
719    if (TFRVI != TrackedRetVals.end()) {
720      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
721      return;
722    }
723  }
724
725  // Handle functions that return multiple values.
726  if (!TrackedMultipleRetVals.empty()) {
727    if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
728      if (MRVFunctionsTracked.count(F))
729        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
730          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
731                       getStructValueState(ResultOp, i));
732
733  }
734}
735
736void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
737  SmallVector<bool, 16> SuccFeasible;
738  getFeasibleSuccessors(TI, SuccFeasible);
739
740  BasicBlock *BB = TI.getParent();
741
742  // Mark all feasible successors executable.
743  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
744    if (SuccFeasible[i])
745      markEdgeExecutable(BB, TI.getSuccessor(i));
746}
747
748void SCCPSolver::visitCastInst(CastInst &I) {
749  LatticeVal OpSt = getValueState(I.getOperand(0));
750  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
751    markOverdefined(&I);
752  else if (OpSt.isConstant())        // Propagate constant value
753    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
754                                           OpSt.getConstant(), I.getType()));
755}
756
757
758void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
759  // If this returns a struct, mark all elements over defined, we don't track
760  // structs in structs.
761  if (EVI.getType()->isStructTy())
762    return markAnythingOverdefined(&EVI);
763
764  // If this is extracting from more than one level of struct, we don't know.
765  if (EVI.getNumIndices() != 1)
766    return markOverdefined(&EVI);
767
768  Value *AggVal = EVI.getAggregateOperand();
769  if (AggVal->getType()->isStructTy()) {
770    unsigned i = *EVI.idx_begin();
771    LatticeVal EltVal = getStructValueState(AggVal, i);
772    mergeInValue(getValueState(&EVI), &EVI, EltVal);
773  } else {
774    // Otherwise, must be extracting from an array.
775    return markOverdefined(&EVI);
776  }
777}
778
779void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
780  StructType *STy = dyn_cast<StructType>(IVI.getType());
781  if (!STy)
782    return markOverdefined(&IVI);
783
784  // If this has more than one index, we can't handle it, drive all results to
785  // undef.
786  if (IVI.getNumIndices() != 1)
787    return markAnythingOverdefined(&IVI);
788
789  Value *Aggr = IVI.getAggregateOperand();
790  unsigned Idx = *IVI.idx_begin();
791
792  // Compute the result based on what we're inserting.
793  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
794    // This passes through all values that aren't the inserted element.
795    if (i != Idx) {
796      LatticeVal EltVal = getStructValueState(Aggr, i);
797      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
798      continue;
799    }
800
801    Value *Val = IVI.getInsertedValueOperand();
802    if (Val->getType()->isStructTy())
803      // We don't track structs in structs.
804      markOverdefined(getStructValueState(&IVI, i), &IVI);
805    else {
806      LatticeVal InVal = getValueState(Val);
807      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
808    }
809  }
810}
811
812void SCCPSolver::visitSelectInst(SelectInst &I) {
813  // If this select returns a struct, just mark the result overdefined.
814  // TODO: We could do a lot better than this if code actually uses this.
815  if (I.getType()->isStructTy())
816    return markAnythingOverdefined(&I);
817
818  LatticeVal CondValue = getValueState(I.getCondition());
819  if (CondValue.isUndefined())
820    return;
821
822  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
823    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
824    mergeInValue(&I, getValueState(OpVal));
825    return;
826  }
827
828  // Otherwise, the condition is overdefined or a constant we can't evaluate.
829  // See if we can produce something better than overdefined based on the T/F
830  // value.
831  LatticeVal TVal = getValueState(I.getTrueValue());
832  LatticeVal FVal = getValueState(I.getFalseValue());
833
834  // select ?, C, C -> C.
835  if (TVal.isConstant() && FVal.isConstant() &&
836      TVal.getConstant() == FVal.getConstant())
837    return markConstant(&I, FVal.getConstant());
838
839  if (TVal.isUndefined())   // select ?, undef, X -> X.
840    return mergeInValue(&I, FVal);
841  if (FVal.isUndefined())   // select ?, X, undef -> X.
842    return mergeInValue(&I, TVal);
843  markOverdefined(&I);
844}
845
846// Handle Binary Operators.
847void SCCPSolver::visitBinaryOperator(Instruction &I) {
848  LatticeVal V1State = getValueState(I.getOperand(0));
849  LatticeVal V2State = getValueState(I.getOperand(1));
850
851  LatticeVal &IV = ValueState[&I];
852  if (IV.isOverdefined()) return;
853
854  if (V1State.isConstant() && V2State.isConstant())
855    return markConstant(IV, &I,
856                        ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
857                                          V2State.getConstant()));
858
859  // If something is undef, wait for it to resolve.
860  if (!V1State.isOverdefined() && !V2State.isOverdefined())
861    return;
862
863  // Otherwise, one of our operands is overdefined.  Try to produce something
864  // better than overdefined with some tricks.
865
866  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
867  // operand is overdefined.
868  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
869    LatticeVal *NonOverdefVal = nullptr;
870    if (!V1State.isOverdefined())
871      NonOverdefVal = &V1State;
872    else if (!V2State.isOverdefined())
873      NonOverdefVal = &V2State;
874
875    if (NonOverdefVal) {
876      if (NonOverdefVal->isUndefined()) {
877        // Could annihilate value.
878        if (I.getOpcode() == Instruction::And)
879          markConstant(IV, &I, Constant::getNullValue(I.getType()));
880        else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
881          markConstant(IV, &I, Constant::getAllOnesValue(PT));
882        else
883          markConstant(IV, &I,
884                       Constant::getAllOnesValue(I.getType()));
885        return;
886      }
887
888      if (I.getOpcode() == Instruction::And) {
889        // X and 0 = 0
890        if (NonOverdefVal->getConstant()->isNullValue())
891          return markConstant(IV, &I, NonOverdefVal->getConstant());
892      } else {
893        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
894          if (CI->isAllOnesValue())     // X or -1 = -1
895            return markConstant(IV, &I, NonOverdefVal->getConstant());
896      }
897    }
898  }
899
900
901  markOverdefined(&I);
902}
903
904// Handle ICmpInst instruction.
905void SCCPSolver::visitCmpInst(CmpInst &I) {
906  LatticeVal V1State = getValueState(I.getOperand(0));
907  LatticeVal V2State = getValueState(I.getOperand(1));
908
909  LatticeVal &IV = ValueState[&I];
910  if (IV.isOverdefined()) return;
911
912  if (V1State.isConstant() && V2State.isConstant())
913    return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
914                                                         V1State.getConstant(),
915                                                        V2State.getConstant()));
916
917  // If operands are still undefined, wait for it to resolve.
918  if (!V1State.isOverdefined() && !V2State.isOverdefined())
919    return;
920
921  markOverdefined(&I);
922}
923
924void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
925  // TODO : SCCP does not handle vectors properly.
926  return markOverdefined(&I);
927
928#if 0
929  LatticeVal &ValState = getValueState(I.getOperand(0));
930  LatticeVal &IdxState = getValueState(I.getOperand(1));
931
932  if (ValState.isOverdefined() || IdxState.isOverdefined())
933    markOverdefined(&I);
934  else if(ValState.isConstant() && IdxState.isConstant())
935    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
936                                                     IdxState.getConstant()));
937#endif
938}
939
940void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
941  // TODO : SCCP does not handle vectors properly.
942  return markOverdefined(&I);
943#if 0
944  LatticeVal &ValState = getValueState(I.getOperand(0));
945  LatticeVal &EltState = getValueState(I.getOperand(1));
946  LatticeVal &IdxState = getValueState(I.getOperand(2));
947
948  if (ValState.isOverdefined() || EltState.isOverdefined() ||
949      IdxState.isOverdefined())
950    markOverdefined(&I);
951  else if(ValState.isConstant() && EltState.isConstant() &&
952          IdxState.isConstant())
953    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
954                                                    EltState.getConstant(),
955                                                    IdxState.getConstant()));
956  else if (ValState.isUndefined() && EltState.isConstant() &&
957           IdxState.isConstant())
958    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
959                                                   EltState.getConstant(),
960                                                   IdxState.getConstant()));
961#endif
962}
963
964void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
965  // TODO : SCCP does not handle vectors properly.
966  return markOverdefined(&I);
967#if 0
968  LatticeVal &V1State   = getValueState(I.getOperand(0));
969  LatticeVal &V2State   = getValueState(I.getOperand(1));
970  LatticeVal &MaskState = getValueState(I.getOperand(2));
971
972  if (MaskState.isUndefined() ||
973      (V1State.isUndefined() && V2State.isUndefined()))
974    return;  // Undefined output if mask or both inputs undefined.
975
976  if (V1State.isOverdefined() || V2State.isOverdefined() ||
977      MaskState.isOverdefined()) {
978    markOverdefined(&I);
979  } else {
980    // A mix of constant/undef inputs.
981    Constant *V1 = V1State.isConstant() ?
982        V1State.getConstant() : UndefValue::get(I.getType());
983    Constant *V2 = V2State.isConstant() ?
984        V2State.getConstant() : UndefValue::get(I.getType());
985    Constant *Mask = MaskState.isConstant() ?
986      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
987    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
988  }
989#endif
990}
991
992// Handle getelementptr instructions.  If all operands are constants then we
993// can turn this into a getelementptr ConstantExpr.
994//
995void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
996  if (ValueState[&I].isOverdefined()) return;
997
998  SmallVector<Constant*, 8> Operands;
999  Operands.reserve(I.getNumOperands());
1000
1001  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1002    LatticeVal State = getValueState(I.getOperand(i));
1003    if (State.isUndefined())
1004      return;  // Operands are not resolved yet.
1005
1006    if (State.isOverdefined())
1007      return markOverdefined(&I);
1008
1009    assert(State.isConstant() && "Unknown state!");
1010    Operands.push_back(State.getConstant());
1011  }
1012
1013  Constant *Ptr = Operands[0];
1014  auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1015  markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr,
1016                                                  Indices));
1017}
1018
1019void SCCPSolver::visitStoreInst(StoreInst &SI) {
1020  // If this store is of a struct, ignore it.
1021  if (SI.getOperand(0)->getType()->isStructTy())
1022    return;
1023
1024  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1025    return;
1026
1027  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1028  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1029  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1030
1031  // Get the value we are storing into the global, then merge it.
1032  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1033  if (I->second.isOverdefined())
1034    TrackedGlobals.erase(I);      // No need to keep tracking this!
1035}
1036
1037
1038// Handle load instructions.  If the operand is a constant pointer to a constant
1039// global, we can replace the load with the loaded constant value!
1040void SCCPSolver::visitLoadInst(LoadInst &I) {
1041  // If this load is of a struct, just mark the result overdefined.
1042  if (I.getType()->isStructTy())
1043    return markAnythingOverdefined(&I);
1044
1045  LatticeVal PtrVal = getValueState(I.getOperand(0));
1046  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1047
1048  LatticeVal &IV = ValueState[&I];
1049  if (IV.isOverdefined()) return;
1050
1051  if (!PtrVal.isConstant() || I.isVolatile())
1052    return markOverdefined(IV, &I);
1053
1054  Constant *Ptr = PtrVal.getConstant();
1055
1056  // load null -> null
1057  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1058    return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1059
1060  // Transform load (constant global) into the value loaded.
1061  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1062    if (!TrackedGlobals.empty()) {
1063      // If we are tracking this global, merge in the known value for it.
1064      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1065        TrackedGlobals.find(GV);
1066      if (It != TrackedGlobals.end()) {
1067        mergeInValue(IV, &I, It->second);
1068        return;
1069      }
1070    }
1071  }
1072
1073  // Transform load from a constant into a constant if possible.
1074  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
1075    return markConstant(IV, &I, C);
1076
1077  // Otherwise we cannot say for certain what value this load will produce.
1078  // Bail out.
1079  markOverdefined(IV, &I);
1080}
1081
1082void SCCPSolver::visitCallSite(CallSite CS) {
1083  Function *F = CS.getCalledFunction();
1084  Instruction *I = CS.getInstruction();
1085
1086  // The common case is that we aren't tracking the callee, either because we
1087  // are not doing interprocedural analysis or the callee is indirect, or is
1088  // external.  Handle these cases first.
1089  if (!F || F->isDeclaration()) {
1090CallOverdefined:
1091    // Void return and not tracking callee, just bail.
1092    if (I->getType()->isVoidTy()) return;
1093
1094    // Otherwise, if we have a single return value case, and if the function is
1095    // a declaration, maybe we can constant fold it.
1096    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1097        canConstantFoldCallTo(F)) {
1098
1099      SmallVector<Constant*, 8> Operands;
1100      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1101           AI != E; ++AI) {
1102        LatticeVal State = getValueState(*AI);
1103
1104        if (State.isUndefined())
1105          return;  // Operands are not resolved yet.
1106        if (State.isOverdefined())
1107          return markOverdefined(I);
1108        assert(State.isConstant() && "Unknown state!");
1109        Operands.push_back(State.getConstant());
1110      }
1111
1112      if (getValueState(I).isOverdefined())
1113        return;
1114
1115      // If we can constant fold this, mark the result of the call as a
1116      // constant.
1117      if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1118        return markConstant(I, C);
1119    }
1120
1121    // Otherwise, we don't know anything about this call, mark it overdefined.
1122    return markAnythingOverdefined(I);
1123  }
1124
1125  // If this is a local function that doesn't have its address taken, mark its
1126  // entry block executable and merge in the actual arguments to the call into
1127  // the formal arguments of the function.
1128  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1129    MarkBlockExecutable(F->begin());
1130
1131    // Propagate information from this call site into the callee.
1132    CallSite::arg_iterator CAI = CS.arg_begin();
1133    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1134         AI != E; ++AI, ++CAI) {
1135      // If this argument is byval, and if the function is not readonly, there
1136      // will be an implicit copy formed of the input aggregate.
1137      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1138        markOverdefined(AI);
1139        continue;
1140      }
1141
1142      if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1143        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1144          LatticeVal CallArg = getStructValueState(*CAI, i);
1145          mergeInValue(getStructValueState(AI, i), AI, CallArg);
1146        }
1147      } else {
1148        mergeInValue(AI, getValueState(*CAI));
1149      }
1150    }
1151  }
1152
1153  // If this is a single/zero retval case, see if we're tracking the function.
1154  if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1155    if (!MRVFunctionsTracked.count(F))
1156      goto CallOverdefined;  // Not tracking this callee.
1157
1158    // If we are tracking this callee, propagate the result of the function
1159    // into this call site.
1160    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1161      mergeInValue(getStructValueState(I, i), I,
1162                   TrackedMultipleRetVals[std::make_pair(F, i)]);
1163  } else {
1164    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1165    if (TFRVI == TrackedRetVals.end())
1166      goto CallOverdefined;  // Not tracking this callee.
1167
1168    // If so, propagate the return value of the callee into this call result.
1169    mergeInValue(I, TFRVI->second);
1170  }
1171}
1172
1173void SCCPSolver::Solve() {
1174  // Process the work lists until they are empty!
1175  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1176         !OverdefinedInstWorkList.empty()) {
1177    // Process the overdefined instruction's work list first, which drives other
1178    // things to overdefined more quickly.
1179    while (!OverdefinedInstWorkList.empty()) {
1180      Value *I = OverdefinedInstWorkList.pop_back_val();
1181
1182      DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1183
1184      // "I" got into the work list because it either made the transition from
1185      // bottom to constant, or to overdefined.
1186      //
1187      // Anything on this worklist that is overdefined need not be visited
1188      // since all of its users will have already been marked as overdefined
1189      // Update all of the users of this instruction's value.
1190      //
1191      for (User *U : I->users())
1192        if (Instruction *UI = dyn_cast<Instruction>(U))
1193          OperandChangedState(UI);
1194    }
1195
1196    // Process the instruction work list.
1197    while (!InstWorkList.empty()) {
1198      Value *I = InstWorkList.pop_back_val();
1199
1200      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1201
1202      // "I" got into the work list because it made the transition from undef to
1203      // constant.
1204      //
1205      // Anything on this worklist that is overdefined need not be visited
1206      // since all of its users will have already been marked as overdefined.
1207      // Update all of the users of this instruction's value.
1208      //
1209      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1210        for (User *U : I->users())
1211          if (Instruction *UI = dyn_cast<Instruction>(U))
1212            OperandChangedState(UI);
1213    }
1214
1215    // Process the basic block work list.
1216    while (!BBWorkList.empty()) {
1217      BasicBlock *BB = BBWorkList.back();
1218      BBWorkList.pop_back();
1219
1220      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1221
1222      // Notify all instructions in this basic block that they are newly
1223      // executable.
1224      visit(BB);
1225    }
1226  }
1227}
1228
1229/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1230/// that branches on undef values cannot reach any of their successors.
1231/// However, this is not a safe assumption.  After we solve dataflow, this
1232/// method should be use to handle this.  If this returns true, the solver
1233/// should be rerun.
1234///
1235/// This method handles this by finding an unresolved branch and marking it one
1236/// of the edges from the block as being feasible, even though the condition
1237/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1238/// CFG and only slightly pessimizes the analysis results (by marking one,
1239/// potentially infeasible, edge feasible).  This cannot usefully modify the
1240/// constraints on the condition of the branch, as that would impact other users
1241/// of the value.
1242///
1243/// This scan also checks for values that use undefs, whose results are actually
1244/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1245/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1246/// even if X isn't defined.
1247bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1248  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1249    if (!BBExecutable.count(BB))
1250      continue;
1251
1252    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1253      // Look for instructions which produce undef values.
1254      if (I->getType()->isVoidTy()) continue;
1255
1256      if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1257        // Only a few things that can be structs matter for undef.
1258
1259        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1260        if (CallSite CS = CallSite(I))
1261          if (Function *F = CS.getCalledFunction())
1262            if (MRVFunctionsTracked.count(F))
1263              continue;
1264
1265        // extractvalue and insertvalue don't need to be marked; they are
1266        // tracked as precisely as their operands.
1267        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1268          continue;
1269
1270        // Send the results of everything else to overdefined.  We could be
1271        // more precise than this but it isn't worth bothering.
1272        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1273          LatticeVal &LV = getStructValueState(I, i);
1274          if (LV.isUndefined())
1275            markOverdefined(LV, I);
1276        }
1277        continue;
1278      }
1279
1280      LatticeVal &LV = getValueState(I);
1281      if (!LV.isUndefined()) continue;
1282
1283      // extractvalue is safe; check here because the argument is a struct.
1284      if (isa<ExtractValueInst>(I))
1285        continue;
1286
1287      // Compute the operand LatticeVals, for convenience below.
1288      // Anything taking a struct is conservatively assumed to require
1289      // overdefined markings.
1290      if (I->getOperand(0)->getType()->isStructTy()) {
1291        markOverdefined(I);
1292        return true;
1293      }
1294      LatticeVal Op0LV = getValueState(I->getOperand(0));
1295      LatticeVal Op1LV;
1296      if (I->getNumOperands() == 2) {
1297        if (I->getOperand(1)->getType()->isStructTy()) {
1298          markOverdefined(I);
1299          return true;
1300        }
1301
1302        Op1LV = getValueState(I->getOperand(1));
1303      }
1304      // If this is an instructions whose result is defined even if the input is
1305      // not fully defined, propagate the information.
1306      Type *ITy = I->getType();
1307      switch (I->getOpcode()) {
1308      case Instruction::Add:
1309      case Instruction::Sub:
1310      case Instruction::Trunc:
1311      case Instruction::FPTrunc:
1312      case Instruction::BitCast:
1313        break; // Any undef -> undef
1314      case Instruction::FSub:
1315      case Instruction::FAdd:
1316      case Instruction::FMul:
1317      case Instruction::FDiv:
1318      case Instruction::FRem:
1319        // Floating-point binary operation: be conservative.
1320        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1321          markForcedConstant(I, Constant::getNullValue(ITy));
1322        else
1323          markOverdefined(I);
1324        return true;
1325      case Instruction::ZExt:
1326      case Instruction::SExt:
1327      case Instruction::FPToUI:
1328      case Instruction::FPToSI:
1329      case Instruction::FPExt:
1330      case Instruction::PtrToInt:
1331      case Instruction::IntToPtr:
1332      case Instruction::SIToFP:
1333      case Instruction::UIToFP:
1334        // undef -> 0; some outputs are impossible
1335        markForcedConstant(I, Constant::getNullValue(ITy));
1336        return true;
1337      case Instruction::Mul:
1338      case Instruction::And:
1339        // Both operands undef -> undef
1340        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1341          break;
1342        // undef * X -> 0.   X could be zero.
1343        // undef & X -> 0.   X could be zero.
1344        markForcedConstant(I, Constant::getNullValue(ITy));
1345        return true;
1346
1347      case Instruction::Or:
1348        // Both operands undef -> undef
1349        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1350          break;
1351        // undef | X -> -1.   X could be -1.
1352        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1353        return true;
1354
1355      case Instruction::Xor:
1356        // undef ^ undef -> 0; strictly speaking, this is not strictly
1357        // necessary, but we try to be nice to people who expect this
1358        // behavior in simple cases
1359        if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1360          markForcedConstant(I, Constant::getNullValue(ITy));
1361          return true;
1362        }
1363        // undef ^ X -> undef
1364        break;
1365
1366      case Instruction::SDiv:
1367      case Instruction::UDiv:
1368      case Instruction::SRem:
1369      case Instruction::URem:
1370        // X / undef -> undef.  No change.
1371        // X % undef -> undef.  No change.
1372        if (Op1LV.isUndefined()) break;
1373
1374        // undef / X -> 0.   X could be maxint.
1375        // undef % X -> 0.   X could be 1.
1376        markForcedConstant(I, Constant::getNullValue(ITy));
1377        return true;
1378
1379      case Instruction::AShr:
1380        // X >>a undef -> undef.
1381        if (Op1LV.isUndefined()) break;
1382
1383        // undef >>a X -> all ones
1384        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1385        return true;
1386      case Instruction::LShr:
1387      case Instruction::Shl:
1388        // X << undef -> undef.
1389        // X >> undef -> undef.
1390        if (Op1LV.isUndefined()) break;
1391
1392        // undef << X -> 0
1393        // undef >> X -> 0
1394        markForcedConstant(I, Constant::getNullValue(ITy));
1395        return true;
1396      case Instruction::Select:
1397        Op1LV = getValueState(I->getOperand(1));
1398        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1399        if (Op0LV.isUndefined()) {
1400          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1401            Op1LV = getValueState(I->getOperand(2));
1402        } else if (Op1LV.isUndefined()) {
1403          // c ? undef : undef -> undef.  No change.
1404          Op1LV = getValueState(I->getOperand(2));
1405          if (Op1LV.isUndefined())
1406            break;
1407          // Otherwise, c ? undef : x -> x.
1408        } else {
1409          // Leave Op1LV as Operand(1)'s LatticeValue.
1410        }
1411
1412        if (Op1LV.isConstant())
1413          markForcedConstant(I, Op1LV.getConstant());
1414        else
1415          markOverdefined(I);
1416        return true;
1417      case Instruction::Load:
1418        // A load here means one of two things: a load of undef from a global,
1419        // a load from an unknown pointer.  Either way, having it return undef
1420        // is okay.
1421        break;
1422      case Instruction::ICmp:
1423        // X == undef -> undef.  Other comparisons get more complicated.
1424        if (cast<ICmpInst>(I)->isEquality())
1425          break;
1426        markOverdefined(I);
1427        return true;
1428      case Instruction::Call:
1429      case Instruction::Invoke: {
1430        // There are two reasons a call can have an undef result
1431        // 1. It could be tracked.
1432        // 2. It could be constant-foldable.
1433        // Because of the way we solve return values, tracked calls must
1434        // never be marked overdefined in ResolvedUndefsIn.
1435        if (Function *F = CallSite(I).getCalledFunction())
1436          if (TrackedRetVals.count(F))
1437            break;
1438
1439        // If the call is constant-foldable, we mark it overdefined because
1440        // we do not know what return values are valid.
1441        markOverdefined(I);
1442        return true;
1443      }
1444      default:
1445        // If we don't know what should happen here, conservatively mark it
1446        // overdefined.
1447        markOverdefined(I);
1448        return true;
1449      }
1450    }
1451
1452    // Check to see if we have a branch or switch on an undefined value.  If so
1453    // we force the branch to go one way or the other to make the successor
1454    // values live.  It doesn't really matter which way we force it.
1455    TerminatorInst *TI = BB->getTerminator();
1456    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1457      if (!BI->isConditional()) continue;
1458      if (!getValueState(BI->getCondition()).isUndefined())
1459        continue;
1460
1461      // If the input to SCCP is actually branch on undef, fix the undef to
1462      // false.
1463      if (isa<UndefValue>(BI->getCondition())) {
1464        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1465        markEdgeExecutable(BB, TI->getSuccessor(1));
1466        return true;
1467      }
1468
1469      // Otherwise, it is a branch on a symbolic value which is currently
1470      // considered to be undef.  Handle this by forcing the input value to the
1471      // branch to false.
1472      markForcedConstant(BI->getCondition(),
1473                         ConstantInt::getFalse(TI->getContext()));
1474      return true;
1475    }
1476
1477    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1478      if (!SI->getNumCases())
1479        continue;
1480      if (!getValueState(SI->getCondition()).isUndefined())
1481        continue;
1482
1483      // If the input to SCCP is actually switch on undef, fix the undef to
1484      // the first constant.
1485      if (isa<UndefValue>(SI->getCondition())) {
1486        SI->setCondition(SI->case_begin().getCaseValue());
1487        markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
1488        return true;
1489      }
1490
1491      markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1492      return true;
1493    }
1494  }
1495
1496  return false;
1497}
1498
1499
1500namespace {
1501  //===--------------------------------------------------------------------===//
1502  //
1503  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1504  /// Sparse Conditional Constant Propagator.
1505  ///
1506  struct SCCP : public FunctionPass {
1507    void getAnalysisUsage(AnalysisUsage &AU) const override {
1508      AU.addRequired<TargetLibraryInfoWrapperPass>();
1509    }
1510    static char ID; // Pass identification, replacement for typeid
1511    SCCP() : FunctionPass(ID) {
1512      initializeSCCPPass(*PassRegistry::getPassRegistry());
1513    }
1514
1515    // runOnFunction - Run the Sparse Conditional Constant Propagation
1516    // algorithm, and return true if the function was modified.
1517    //
1518    bool runOnFunction(Function &F) override;
1519  };
1520} // end anonymous namespace
1521
1522char SCCP::ID = 0;
1523INITIALIZE_PASS(SCCP, "sccp",
1524                "Sparse Conditional Constant Propagation", false, false)
1525
1526// createSCCPPass - This is the public interface to this file.
1527FunctionPass *llvm::createSCCPPass() {
1528  return new SCCP();
1529}
1530
1531static void DeleteInstructionInBlock(BasicBlock *BB) {
1532  DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1533  ++NumDeadBlocks;
1534
1535  // Check to see if there are non-terminating instructions to delete.
1536  if (isa<TerminatorInst>(BB->begin()))
1537    return;
1538
1539  // Delete the instructions backwards, as it has a reduced likelihood of having
1540  // to update as many def-use and use-def chains.
1541  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1542  while (EndInst != BB->begin()) {
1543    // Delete the next to last instruction.
1544    BasicBlock::iterator I = EndInst;
1545    Instruction *Inst = --I;
1546    if (!Inst->use_empty())
1547      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1548    if (isa<LandingPadInst>(Inst)) {
1549      EndInst = Inst;
1550      continue;
1551    }
1552    BB->getInstList().erase(Inst);
1553    ++NumInstRemoved;
1554  }
1555}
1556
1557// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1558// and return true if the function was modified.
1559//
1560bool SCCP::runOnFunction(Function &F) {
1561  if (skipOptnoneFunction(F))
1562    return false;
1563
1564  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1565  const DataLayout &DL = F.getParent()->getDataLayout();
1566  const TargetLibraryInfo *TLI =
1567      &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1568  SCCPSolver Solver(DL, TLI);
1569
1570  // Mark the first block of the function as being executable.
1571  Solver.MarkBlockExecutable(F.begin());
1572
1573  // Mark all arguments to the function as being overdefined.
1574  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1575    Solver.markAnythingOverdefined(AI);
1576
1577  // Solve for constants.
1578  bool ResolvedUndefs = true;
1579  while (ResolvedUndefs) {
1580    Solver.Solve();
1581    DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1582    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1583  }
1584
1585  bool MadeChanges = false;
1586
1587  // If we decided that there are basic blocks that are dead in this function,
1588  // delete their contents now.  Note that we cannot actually delete the blocks,
1589  // as we cannot modify the CFG of the function.
1590
1591  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1592    if (!Solver.isBlockExecutable(BB)) {
1593      DeleteInstructionInBlock(BB);
1594      MadeChanges = true;
1595      continue;
1596    }
1597
1598    // Iterate over all of the instructions in a function, replacing them with
1599    // constants if we have found them to be of constant values.
1600    //
1601    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1602      Instruction *Inst = BI++;
1603      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1604        continue;
1605
1606      // TODO: Reconstruct structs from their elements.
1607      if (Inst->getType()->isStructTy())
1608        continue;
1609
1610      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1611      if (IV.isOverdefined())
1612        continue;
1613
1614      Constant *Const = IV.isConstant()
1615        ? IV.getConstant() : UndefValue::get(Inst->getType());
1616      DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1617
1618      // Replaces all of the uses of a variable with uses of the constant.
1619      Inst->replaceAllUsesWith(Const);
1620
1621      // Delete the instruction.
1622      Inst->eraseFromParent();
1623
1624      // Hey, we just changed something!
1625      MadeChanges = true;
1626      ++NumInstRemoved;
1627    }
1628  }
1629
1630  return MadeChanges;
1631}
1632
1633namespace {
1634  //===--------------------------------------------------------------------===//
1635  //
1636  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1637  /// Constant Propagation.
1638  ///
1639  struct IPSCCP : public ModulePass {
1640    void getAnalysisUsage(AnalysisUsage &AU) const override {
1641      AU.addRequired<TargetLibraryInfoWrapperPass>();
1642    }
1643    static char ID;
1644    IPSCCP() : ModulePass(ID) {
1645      initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1646    }
1647    bool runOnModule(Module &M) override;
1648  };
1649} // end anonymous namespace
1650
1651char IPSCCP::ID = 0;
1652INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1653                "Interprocedural Sparse Conditional Constant Propagation",
1654                false, false)
1655INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1656INITIALIZE_PASS_END(IPSCCP, "ipsccp",
1657                "Interprocedural Sparse Conditional Constant Propagation",
1658                false, false)
1659
1660// createIPSCCPPass - This is the public interface to this file.
1661ModulePass *llvm::createIPSCCPPass() {
1662  return new IPSCCP();
1663}
1664
1665
1666static bool AddressIsTaken(const GlobalValue *GV) {
1667  // Delete any dead constantexpr klingons.
1668  GV->removeDeadConstantUsers();
1669
1670  for (const Use &U : GV->uses()) {
1671    const User *UR = U.getUser();
1672    if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1673      if (SI->getOperand(0) == GV || SI->isVolatile())
1674        return true;  // Storing addr of GV.
1675    } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1676      // Make sure we are calling the function, not passing the address.
1677      ImmutableCallSite CS(cast<Instruction>(UR));
1678      if (!CS.isCallee(&U))
1679        return true;
1680    } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1681      if (LI->isVolatile())
1682        return true;
1683    } else if (isa<BlockAddress>(UR)) {
1684      // blockaddress doesn't take the address of the function, it takes addr
1685      // of label.
1686    } else {
1687      return true;
1688    }
1689  }
1690  return false;
1691}
1692
1693bool IPSCCP::runOnModule(Module &M) {
1694  const DataLayout &DL = M.getDataLayout();
1695  const TargetLibraryInfo *TLI =
1696      &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1697  SCCPSolver Solver(DL, TLI);
1698
1699  // AddressTakenFunctions - This set keeps track of the address-taken functions
1700  // that are in the input.  As IPSCCP runs through and simplifies code,
1701  // functions that were address taken can end up losing their
1702  // address-taken-ness.  Because of this, we keep track of their addresses from
1703  // the first pass so we can use them for the later simplification pass.
1704  SmallPtrSet<Function*, 32> AddressTakenFunctions;
1705
1706  // Loop over all functions, marking arguments to those with their addresses
1707  // taken or that are external as overdefined.
1708  //
1709  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1710    if (F->isDeclaration())
1711      continue;
1712
1713    // If this is a strong or ODR definition of this function, then we can
1714    // propagate information about its result into callsites of it.
1715    if (!F->mayBeOverridden())
1716      Solver.AddTrackedFunction(F);
1717
1718    // If this function only has direct calls that we can see, we can track its
1719    // arguments and return value aggressively, and can assume it is not called
1720    // unless we see evidence to the contrary.
1721    if (F->hasLocalLinkage()) {
1722      if (AddressIsTaken(F))
1723        AddressTakenFunctions.insert(F);
1724      else {
1725        Solver.AddArgumentTrackedFunction(F);
1726        continue;
1727      }
1728    }
1729
1730    // Assume the function is called.
1731    Solver.MarkBlockExecutable(F->begin());
1732
1733    // Assume nothing about the incoming arguments.
1734    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1735         AI != E; ++AI)
1736      Solver.markAnythingOverdefined(AI);
1737  }
1738
1739  // Loop over global variables.  We inform the solver about any internal global
1740  // variables that do not have their 'addresses taken'.  If they don't have
1741  // their addresses taken, we can propagate constants through them.
1742  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1743       G != E; ++G)
1744    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1745      Solver.TrackValueOfGlobalVariable(G);
1746
1747  // Solve for constants.
1748  bool ResolvedUndefs = true;
1749  while (ResolvedUndefs) {
1750    Solver.Solve();
1751
1752    DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1753    ResolvedUndefs = false;
1754    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1755      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1756  }
1757
1758  bool MadeChanges = false;
1759
1760  // Iterate over all of the instructions in the module, replacing them with
1761  // constants if we have found them to be of constant values.
1762  //
1763  SmallVector<BasicBlock*, 512> BlocksToErase;
1764
1765  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1766    if (Solver.isBlockExecutable(F->begin())) {
1767      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1768           AI != E; ++AI) {
1769        if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1770
1771        // TODO: Could use getStructLatticeValueFor to find out if the entire
1772        // result is a constant and replace it entirely if so.
1773
1774        LatticeVal IV = Solver.getLatticeValueFor(AI);
1775        if (IV.isOverdefined()) continue;
1776
1777        Constant *CST = IV.isConstant() ?
1778        IV.getConstant() : UndefValue::get(AI->getType());
1779        DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1780
1781        // Replaces all of the uses of a variable with uses of the
1782        // constant.
1783        AI->replaceAllUsesWith(CST);
1784        ++IPNumArgsElimed;
1785      }
1786    }
1787
1788    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1789      if (!Solver.isBlockExecutable(BB)) {
1790        DeleteInstructionInBlock(BB);
1791        MadeChanges = true;
1792
1793        TerminatorInst *TI = BB->getTerminator();
1794        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1795          BasicBlock *Succ = TI->getSuccessor(i);
1796          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1797            TI->getSuccessor(i)->removePredecessor(BB);
1798        }
1799        if (!TI->use_empty())
1800          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1801        TI->eraseFromParent();
1802
1803        if (&*BB != &F->front())
1804          BlocksToErase.push_back(BB);
1805        else
1806          new UnreachableInst(M.getContext(), BB);
1807        continue;
1808      }
1809
1810      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1811        Instruction *Inst = BI++;
1812        if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1813          continue;
1814
1815        // TODO: Could use getStructLatticeValueFor to find out if the entire
1816        // result is a constant and replace it entirely if so.
1817
1818        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1819        if (IV.isOverdefined())
1820          continue;
1821
1822        Constant *Const = IV.isConstant()
1823          ? IV.getConstant() : UndefValue::get(Inst->getType());
1824        DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1825
1826        // Replaces all of the uses of a variable with uses of the
1827        // constant.
1828        Inst->replaceAllUsesWith(Const);
1829
1830        // Delete the instruction.
1831        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1832          Inst->eraseFromParent();
1833
1834        // Hey, we just changed something!
1835        MadeChanges = true;
1836        ++IPNumInstRemoved;
1837      }
1838    }
1839
1840    // Now that all instructions in the function are constant folded, erase dead
1841    // blocks, because we can now use ConstantFoldTerminator to get rid of
1842    // in-edges.
1843    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1844      // If there are any PHI nodes in this successor, drop entries for BB now.
1845      BasicBlock *DeadBB = BlocksToErase[i];
1846      for (Value::user_iterator UI = DeadBB->user_begin(),
1847                                UE = DeadBB->user_end();
1848           UI != UE;) {
1849        // Grab the user and then increment the iterator early, as the user
1850        // will be deleted. Step past all adjacent uses from the same user.
1851        Instruction *I = dyn_cast<Instruction>(*UI);
1852        do { ++UI; } while (UI != UE && *UI == I);
1853
1854        // Ignore blockaddress users; BasicBlock's dtor will handle them.
1855        if (!I) continue;
1856
1857        bool Folded = ConstantFoldTerminator(I->getParent());
1858        if (!Folded) {
1859          // The constant folder may not have been able to fold the terminator
1860          // if this is a branch or switch on undef.  Fold it manually as a
1861          // branch to the first successor.
1862#ifndef NDEBUG
1863          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1864            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1865                   "Branch should be foldable!");
1866          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1867            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1868          } else {
1869            llvm_unreachable("Didn't fold away reference to block!");
1870          }
1871#endif
1872
1873          // Make this an uncond branch to the first successor.
1874          TerminatorInst *TI = I->getParent()->getTerminator();
1875          BranchInst::Create(TI->getSuccessor(0), TI);
1876
1877          // Remove entries in successor phi nodes to remove edges.
1878          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1879            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1880
1881          // Remove the old terminator.
1882          TI->eraseFromParent();
1883        }
1884      }
1885
1886      // Finally, delete the basic block.
1887      F->getBasicBlockList().erase(DeadBB);
1888    }
1889    BlocksToErase.clear();
1890  }
1891
1892  // If we inferred constant or undef return values for a function, we replaced
1893  // all call uses with the inferred value.  This means we don't need to bother
1894  // actually returning anything from the function.  Replace all return
1895  // instructions with return undef.
1896  //
1897  // Do this in two stages: first identify the functions we should process, then
1898  // actually zap their returns.  This is important because we can only do this
1899  // if the address of the function isn't taken.  In cases where a return is the
1900  // last use of a function, the order of processing functions would affect
1901  // whether other functions are optimizable.
1902  SmallVector<ReturnInst*, 8> ReturnsToZap;
1903
1904  // TODO: Process multiple value ret instructions also.
1905  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1906  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1907       E = RV.end(); I != E; ++I) {
1908    Function *F = I->first;
1909    if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1910      continue;
1911
1912    // We can only do this if we know that nothing else can call the function.
1913    if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1914      continue;
1915
1916    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1917      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1918        if (!isa<UndefValue>(RI->getOperand(0)))
1919          ReturnsToZap.push_back(RI);
1920  }
1921
1922  // Zap all returns which we've identified as zap to change.
1923  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1924    Function *F = ReturnsToZap[i]->getParent()->getParent();
1925    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1926  }
1927
1928  // If we inferred constant or undef values for globals variables, we can
1929  // delete the global and any stores that remain to it.
1930  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1931  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1932         E = TG.end(); I != E; ++I) {
1933    GlobalVariable *GV = I->first;
1934    assert(!I->second.isOverdefined() &&
1935           "Overdefined values should have been taken out of the map!");
1936    DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1937    while (!GV->use_empty()) {
1938      StoreInst *SI = cast<StoreInst>(GV->user_back());
1939      SI->eraseFromParent();
1940    }
1941    M.getGlobalList().erase(GV);
1942    ++IPNumGlobalConst;
1943  }
1944
1945  return MadeChanges;
1946}
1947