1//===- CloneFunction.cpp - Clone a function into another function ---------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the CloneFunctionInto interface, which is used as the 11// low-level function cloner. This is used by the CloneFunction and function 12// inliner to do the dirty work of copying the body of a function around. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/Transforms/Utils/Cloning.h" 17#include "llvm/ADT/SmallVector.h" 18#include "llvm/Analysis/ConstantFolding.h" 19#include "llvm/Analysis/InstructionSimplify.h" 20#include "llvm/IR/CFG.h" 21#include "llvm/IR/Constants.h" 22#include "llvm/IR/DebugInfo.h" 23#include "llvm/IR/DerivedTypes.h" 24#include "llvm/IR/Function.h" 25#include "llvm/IR/GlobalVariable.h" 26#include "llvm/IR/Instructions.h" 27#include "llvm/IR/IntrinsicInst.h" 28#include "llvm/IR/LLVMContext.h" 29#include "llvm/IR/Metadata.h" 30#include "llvm/IR/Module.h" 31#include "llvm/Transforms/Utils/BasicBlockUtils.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "llvm/Transforms/Utils/ValueMapper.h" 34#include <map> 35using namespace llvm; 36 37/// See comments in Cloning.h. 38BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 39 ValueToValueMapTy &VMap, 40 const Twine &NameSuffix, Function *F, 41 ClonedCodeInfo *CodeInfo) { 42 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 43 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 44 45 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 46 47 // Loop over all instructions, and copy them over. 48 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 49 II != IE; ++II) { 50 Instruction *NewInst = II->clone(); 51 if (II->hasName()) 52 NewInst->setName(II->getName()+NameSuffix); 53 NewBB->getInstList().push_back(NewInst); 54 VMap[II] = NewInst; // Add instruction map to value. 55 56 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 57 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 58 if (isa<ConstantInt>(AI->getArraySize())) 59 hasStaticAllocas = true; 60 else 61 hasDynamicAllocas = true; 62 } 63 } 64 65 if (CodeInfo) { 66 CodeInfo->ContainsCalls |= hasCalls; 67 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 68 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 69 BB != &BB->getParent()->getEntryBlock(); 70 } 71 return NewBB; 72} 73 74// Clone OldFunc into NewFunc, transforming the old arguments into references to 75// VMap values. 76// 77void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 78 ValueToValueMapTy &VMap, 79 bool ModuleLevelChanges, 80 SmallVectorImpl<ReturnInst*> &Returns, 81 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 82 ValueMapTypeRemapper *TypeMapper, 83 ValueMaterializer *Materializer) { 84 assert(NameSuffix && "NameSuffix cannot be null!"); 85 86#ifndef NDEBUG 87 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 88 E = OldFunc->arg_end(); I != E; ++I) 89 assert(VMap.count(I) && "No mapping from source argument specified!"); 90#endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 AttributeSet OldAttrs = OldFunc->getAttributes(); 99 // Clone any argument attributes that are present in the VMap. 100 for (const Argument &OldArg : OldFunc->args()) 101 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 102 AttributeSet attrs = 103 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 104 if (attrs.getNumSlots() > 0) 105 NewArg->addAttr(attrs); 106 } 107 108 NewFunc->setAttributes( 109 NewFunc->getAttributes() 110 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 111 OldAttrs.getRetAttributes()) 112 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 113 OldAttrs.getFnAttributes())); 114 115 // Loop over all of the basic blocks in the function, cloning them as 116 // appropriate. Note that we save BE this way in order to handle cloning of 117 // recursive functions into themselves. 118 // 119 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 120 BI != BE; ++BI) { 121 const BasicBlock &BB = *BI; 122 123 // Create a new basic block and copy instructions into it! 124 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 125 126 // Add basic block mapping. 127 VMap[&BB] = CBB; 128 129 // It is only legal to clone a function if a block address within that 130 // function is never referenced outside of the function. Given that, we 131 // want to map block addresses from the old function to block addresses in 132 // the clone. (This is different from the generic ValueMapper 133 // implementation, which generates an invalid blockaddress when 134 // cloning a function.) 135 if (BB.hasAddressTaken()) { 136 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 137 const_cast<BasicBlock*>(&BB)); 138 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 139 } 140 141 // Note return instructions for the caller. 142 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 143 Returns.push_back(RI); 144 } 145 146 // Loop over all of the instructions in the function, fixing up operand 147 // references as we go. This uses VMap to do all the hard work. 148 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 149 BE = NewFunc->end(); BB != BE; ++BB) 150 // Loop over all instructions, fixing each one as we find it... 151 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 152 RemapInstruction(II, VMap, 153 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 154 TypeMapper, Materializer); 155} 156 157// Find the MDNode which corresponds to the DISubprogram data that described F. 158static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) { 159 for (DISubprogram Subprogram : Finder.subprograms()) { 160 if (Subprogram->describes(F)) 161 return Subprogram; 162 } 163 return nullptr; 164} 165 166// Add an operand to an existing MDNode. The new operand will be added at the 167// back of the operand list. 168static void AddOperand(DICompileUnit CU, MDSubprogramArray SPs, Metadata *NewSP) { 169 SmallVector<Metadata *, 16> NewSPs; 170 NewSPs.reserve(SPs.size() + 1); 171 for (auto *SP : SPs) 172 NewSPs.push_back(SP); 173 NewSPs.push_back(NewSP); 174 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs)); 175} 176 177// Clone the module-level debug info associated with OldFunc. The cloned data 178// will point to NewFunc instead. 179static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 180 ValueToValueMapTy &VMap) { 181 DebugInfoFinder Finder; 182 Finder.processModule(*OldFunc->getParent()); 183 184 const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 185 if (!OldSubprogramMDNode) return; 186 187 // Ensure that OldFunc appears in the map. 188 // (if it's already there it must point to NewFunc anyway) 189 VMap[OldFunc] = NewFunc; 190 DISubprogram NewSubprogram = 191 cast<MDSubprogram>(MapMetadata(OldSubprogramMDNode, VMap)); 192 193 for (DICompileUnit CU : Finder.compile_units()) { 194 auto Subprograms = CU->getSubprograms(); 195 // If the compile unit's function list contains the old function, it should 196 // also contain the new one. 197 for (auto *SP : Subprograms) { 198 if (SP == OldSubprogramMDNode) { 199 AddOperand(CU, Subprograms, NewSubprogram); 200 break; 201 } 202 } 203 } 204} 205 206/// Return a copy of the specified function, but without 207/// embedding the function into another module. Also, any references specified 208/// in the VMap are changed to refer to their mapped value instead of the 209/// original one. If any of the arguments to the function are in the VMap, 210/// the arguments are deleted from the resultant function. The VMap is 211/// updated to include mappings from all of the instructions and basicblocks in 212/// the function from their old to new values. 213/// 214Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 215 bool ModuleLevelChanges, 216 ClonedCodeInfo *CodeInfo) { 217 std::vector<Type*> ArgTypes; 218 219 // The user might be deleting arguments to the function by specifying them in 220 // the VMap. If so, we need to not add the arguments to the arg ty vector 221 // 222 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 223 I != E; ++I) 224 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 225 ArgTypes.push_back(I->getType()); 226 227 // Create a new function type... 228 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 229 ArgTypes, F->getFunctionType()->isVarArg()); 230 231 // Create the new function... 232 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 233 234 // Loop over the arguments, copying the names of the mapped arguments over... 235 Function::arg_iterator DestI = NewF->arg_begin(); 236 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 237 I != E; ++I) 238 if (VMap.count(I) == 0) { // Is this argument preserved? 239 DestI->setName(I->getName()); // Copy the name over... 240 VMap[I] = DestI++; // Add mapping to VMap 241 } 242 243 if (ModuleLevelChanges) 244 CloneDebugInfoMetadata(NewF, F, VMap); 245 246 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 247 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 248 return NewF; 249} 250 251 252 253namespace { 254 /// This is a private class used to implement CloneAndPruneFunctionInto. 255 struct PruningFunctionCloner { 256 Function *NewFunc; 257 const Function *OldFunc; 258 ValueToValueMapTy &VMap; 259 bool ModuleLevelChanges; 260 const char *NameSuffix; 261 ClonedCodeInfo *CodeInfo; 262 CloningDirector *Director; 263 ValueMapTypeRemapper *TypeMapper; 264 ValueMaterializer *Materializer; 265 266 public: 267 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 268 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 269 const char *nameSuffix, ClonedCodeInfo *codeInfo, 270 CloningDirector *Director) 271 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 272 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 273 CodeInfo(codeInfo), Director(Director) { 274 // These are optional components. The Director may return null. 275 if (Director) { 276 TypeMapper = Director->getTypeRemapper(); 277 Materializer = Director->getValueMaterializer(); 278 } else { 279 TypeMapper = nullptr; 280 Materializer = nullptr; 281 } 282 } 283 284 /// The specified block is found to be reachable, clone it and 285 /// anything that it can reach. 286 void CloneBlock(const BasicBlock *BB, 287 BasicBlock::const_iterator StartingInst, 288 std::vector<const BasicBlock*> &ToClone); 289 }; 290} 291 292/// The specified block is found to be reachable, clone it and 293/// anything that it can reach. 294void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 295 BasicBlock::const_iterator StartingInst, 296 std::vector<const BasicBlock*> &ToClone){ 297 WeakVH &BBEntry = VMap[BB]; 298 299 // Have we already cloned this block? 300 if (BBEntry) return; 301 302 // Nope, clone it now. 303 BasicBlock *NewBB; 304 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 305 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 306 307 // It is only legal to clone a function if a block address within that 308 // function is never referenced outside of the function. Given that, we 309 // want to map block addresses from the old function to block addresses in 310 // the clone. (This is different from the generic ValueMapper 311 // implementation, which generates an invalid blockaddress when 312 // cloning a function.) 313 // 314 // Note that we don't need to fix the mapping for unreachable blocks; 315 // the default mapping there is safe. 316 if (BB->hasAddressTaken()) { 317 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 318 const_cast<BasicBlock*>(BB)); 319 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 320 } 321 322 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 323 324 // Loop over all instructions, and copy them over, DCE'ing as we go. This 325 // loop doesn't include the terminator. 326 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 327 II != IE; ++II) { 328 // If the "Director" remaps the instruction, don't clone it. 329 if (Director) { 330 CloningDirector::CloningAction Action 331 = Director->handleInstruction(VMap, II, NewBB); 332 // If the cloning director says stop, we want to stop everything, not 333 // just break out of the loop (which would cause the terminator to be 334 // cloned). The cloning director is responsible for inserting a proper 335 // terminator into the new basic block in this case. 336 if (Action == CloningDirector::StopCloningBB) 337 return; 338 // If the cloning director says skip, continue to the next instruction. 339 // In this case, the cloning director is responsible for mapping the 340 // skipped instruction to some value that is defined in the new 341 // basic block. 342 if (Action == CloningDirector::SkipInstruction) 343 continue; 344 } 345 346 Instruction *NewInst = II->clone(); 347 348 // Eagerly remap operands to the newly cloned instruction, except for PHI 349 // nodes for which we defer processing until we update the CFG. 350 if (!isa<PHINode>(NewInst)) { 351 RemapInstruction(NewInst, VMap, 352 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 353 TypeMapper, Materializer); 354 355 // If we can simplify this instruction to some other value, simply add 356 // a mapping to that value rather than inserting a new instruction into 357 // the basic block. 358 if (Value *V = 359 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 360 // On the off-chance that this simplifies to an instruction in the old 361 // function, map it back into the new function. 362 if (Value *MappedV = VMap.lookup(V)) 363 V = MappedV; 364 365 VMap[II] = V; 366 delete NewInst; 367 continue; 368 } 369 } 370 371 if (II->hasName()) 372 NewInst->setName(II->getName()+NameSuffix); 373 VMap[II] = NewInst; // Add instruction map to value. 374 NewBB->getInstList().push_back(NewInst); 375 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 376 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 377 if (isa<ConstantInt>(AI->getArraySize())) 378 hasStaticAllocas = true; 379 else 380 hasDynamicAllocas = true; 381 } 382 } 383 384 // Finally, clone over the terminator. 385 const TerminatorInst *OldTI = BB->getTerminator(); 386 bool TerminatorDone = false; 387 if (Director) { 388 CloningDirector::CloningAction Action 389 = Director->handleInstruction(VMap, OldTI, NewBB); 390 // If the cloning director says stop, we want to stop everything, not 391 // just break out of the loop (which would cause the terminator to be 392 // cloned). The cloning director is responsible for inserting a proper 393 // terminator into the new basic block in this case. 394 if (Action == CloningDirector::StopCloningBB) 395 return; 396 if (Action == CloningDirector::CloneSuccessors) { 397 // If the director says to skip with a terminate instruction, we still 398 // need to clone this block's successors. 399 const TerminatorInst *TI = NewBB->getTerminator(); 400 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 401 ToClone.push_back(TI->getSuccessor(i)); 402 return; 403 } 404 assert(Action != CloningDirector::SkipInstruction && 405 "SkipInstruction is not valid for terminators."); 406 } 407 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 408 if (BI->isConditional()) { 409 // If the condition was a known constant in the callee... 410 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 411 // Or is a known constant in the caller... 412 if (!Cond) { 413 Value *V = VMap[BI->getCondition()]; 414 Cond = dyn_cast_or_null<ConstantInt>(V); 415 } 416 417 // Constant fold to uncond branch! 418 if (Cond) { 419 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 420 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 421 ToClone.push_back(Dest); 422 TerminatorDone = true; 423 } 424 } 425 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 426 // If switching on a value known constant in the caller. 427 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 428 if (!Cond) { // Or known constant after constant prop in the callee... 429 Value *V = VMap[SI->getCondition()]; 430 Cond = dyn_cast_or_null<ConstantInt>(V); 431 } 432 if (Cond) { // Constant fold to uncond branch! 433 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 434 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 435 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 436 ToClone.push_back(Dest); 437 TerminatorDone = true; 438 } 439 } 440 441 if (!TerminatorDone) { 442 Instruction *NewInst = OldTI->clone(); 443 if (OldTI->hasName()) 444 NewInst->setName(OldTI->getName()+NameSuffix); 445 NewBB->getInstList().push_back(NewInst); 446 VMap[OldTI] = NewInst; // Add instruction map to value. 447 448 // Recursively clone any reachable successor blocks. 449 const TerminatorInst *TI = BB->getTerminator(); 450 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 451 ToClone.push_back(TI->getSuccessor(i)); 452 } 453 454 if (CodeInfo) { 455 CodeInfo->ContainsCalls |= hasCalls; 456 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 457 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 458 BB != &BB->getParent()->front(); 459 } 460} 461 462/// This works like CloneAndPruneFunctionInto, except that it does not clone the 463/// entire function. Instead it starts at an instruction provided by the caller 464/// and copies (and prunes) only the code reachable from that instruction. 465void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 466 const Instruction *StartingInst, 467 ValueToValueMapTy &VMap, 468 bool ModuleLevelChanges, 469 SmallVectorImpl<ReturnInst *> &Returns, 470 const char *NameSuffix, 471 ClonedCodeInfo *CodeInfo, 472 CloningDirector *Director) { 473 assert(NameSuffix && "NameSuffix cannot be null!"); 474 475 ValueMapTypeRemapper *TypeMapper = nullptr; 476 ValueMaterializer *Materializer = nullptr; 477 478 if (Director) { 479 TypeMapper = Director->getTypeRemapper(); 480 Materializer = Director->getValueMaterializer(); 481 } 482 483#ifndef NDEBUG 484 // If the cloning starts at the begining of the function, verify that 485 // the function arguments are mapped. 486 if (!StartingInst) 487 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 488 E = OldFunc->arg_end(); II != E; ++II) 489 assert(VMap.count(II) && "No mapping from source argument specified!"); 490#endif 491 492 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 493 NameSuffix, CodeInfo, Director); 494 const BasicBlock *StartingBB; 495 if (StartingInst) 496 StartingBB = StartingInst->getParent(); 497 else { 498 StartingBB = &OldFunc->getEntryBlock(); 499 StartingInst = StartingBB->begin(); 500 } 501 502 // Clone the entry block, and anything recursively reachable from it. 503 std::vector<const BasicBlock*> CloneWorklist; 504 PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist); 505 while (!CloneWorklist.empty()) { 506 const BasicBlock *BB = CloneWorklist.back(); 507 CloneWorklist.pop_back(); 508 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 509 } 510 511 // Loop over all of the basic blocks in the old function. If the block was 512 // reachable, we have cloned it and the old block is now in the value map: 513 // insert it into the new function in the right order. If not, ignore it. 514 // 515 // Defer PHI resolution until rest of function is resolved. 516 SmallVector<const PHINode*, 16> PHIToResolve; 517 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 518 BI != BE; ++BI) { 519 Value *V = VMap[BI]; 520 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 521 if (!NewBB) continue; // Dead block. 522 523 // Add the new block to the new function. 524 NewFunc->getBasicBlockList().push_back(NewBB); 525 526 // Handle PHI nodes specially, as we have to remove references to dead 527 // blocks. 528 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { 529 // PHI nodes may have been remapped to non-PHI nodes by the caller or 530 // during the cloning process. 531 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 532 if (isa<PHINode>(VMap[PN])) 533 PHIToResolve.push_back(PN); 534 else 535 break; 536 } else { 537 break; 538 } 539 } 540 541 // Finally, remap the terminator instructions, as those can't be remapped 542 // until all BBs are mapped. 543 RemapInstruction(NewBB->getTerminator(), VMap, 544 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 545 TypeMapper, Materializer); 546 } 547 548 // Defer PHI resolution until rest of function is resolved, PHI resolution 549 // requires the CFG to be up-to-date. 550 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 551 const PHINode *OPN = PHIToResolve[phino]; 552 unsigned NumPreds = OPN->getNumIncomingValues(); 553 const BasicBlock *OldBB = OPN->getParent(); 554 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 555 556 // Map operands for blocks that are live and remove operands for blocks 557 // that are dead. 558 for (; phino != PHIToResolve.size() && 559 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 560 OPN = PHIToResolve[phino]; 561 PHINode *PN = cast<PHINode>(VMap[OPN]); 562 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 563 Value *V = VMap[PN->getIncomingBlock(pred)]; 564 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 565 Value *InVal = MapValue(PN->getIncomingValue(pred), 566 VMap, 567 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 568 assert(InVal && "Unknown input value?"); 569 PN->setIncomingValue(pred, InVal); 570 PN->setIncomingBlock(pred, MappedBlock); 571 } else { 572 PN->removeIncomingValue(pred, false); 573 --pred, --e; // Revisit the next entry. 574 } 575 } 576 } 577 578 // The loop above has removed PHI entries for those blocks that are dead 579 // and has updated others. However, if a block is live (i.e. copied over) 580 // but its terminator has been changed to not go to this block, then our 581 // phi nodes will have invalid entries. Update the PHI nodes in this 582 // case. 583 PHINode *PN = cast<PHINode>(NewBB->begin()); 584 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 585 if (NumPreds != PN->getNumIncomingValues()) { 586 assert(NumPreds < PN->getNumIncomingValues()); 587 // Count how many times each predecessor comes to this block. 588 std::map<BasicBlock*, unsigned> PredCount; 589 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 590 PI != E; ++PI) 591 --PredCount[*PI]; 592 593 // Figure out how many entries to remove from each PHI. 594 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 595 ++PredCount[PN->getIncomingBlock(i)]; 596 597 // At this point, the excess predecessor entries are positive in the 598 // map. Loop over all of the PHIs and remove excess predecessor 599 // entries. 600 BasicBlock::iterator I = NewBB->begin(); 601 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 602 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 603 E = PredCount.end(); PCI != E; ++PCI) { 604 BasicBlock *Pred = PCI->first; 605 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 606 PN->removeIncomingValue(Pred, false); 607 } 608 } 609 } 610 611 // If the loops above have made these phi nodes have 0 or 1 operand, 612 // replace them with undef or the input value. We must do this for 613 // correctness, because 0-operand phis are not valid. 614 PN = cast<PHINode>(NewBB->begin()); 615 if (PN->getNumIncomingValues() == 0) { 616 BasicBlock::iterator I = NewBB->begin(); 617 BasicBlock::const_iterator OldI = OldBB->begin(); 618 while ((PN = dyn_cast<PHINode>(I++))) { 619 Value *NV = UndefValue::get(PN->getType()); 620 PN->replaceAllUsesWith(NV); 621 assert(VMap[OldI] == PN && "VMap mismatch"); 622 VMap[OldI] = NV; 623 PN->eraseFromParent(); 624 ++OldI; 625 } 626 } 627 } 628 629 // Make a second pass over the PHINodes now that all of them have been 630 // remapped into the new function, simplifying the PHINode and performing any 631 // recursive simplifications exposed. This will transparently update the 632 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 633 // two PHINodes, the iteration over the old PHIs remains valid, and the 634 // mapping will just map us to the new node (which may not even be a PHI 635 // node). 636 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 637 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 638 recursivelySimplifyInstruction(PN); 639 640 // Now that the inlined function body has been fully constructed, go through 641 // and zap unconditional fall-through branches. This happens all the time when 642 // specializing code: code specialization turns conditional branches into 643 // uncond branches, and this code folds them. 644 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]); 645 Function::iterator I = Begin; 646 while (I != NewFunc->end()) { 647 // Check if this block has become dead during inlining or other 648 // simplifications. Note that the first block will appear dead, as it has 649 // not yet been wired up properly. 650 if (I != Begin && (pred_begin(I) == pred_end(I) || 651 I->getSinglePredecessor() == I)) { 652 BasicBlock *DeadBB = I++; 653 DeleteDeadBlock(DeadBB); 654 continue; 655 } 656 657 // We need to simplify conditional branches and switches with a constant 658 // operand. We try to prune these out when cloning, but if the 659 // simplification required looking through PHI nodes, those are only 660 // available after forming the full basic block. That may leave some here, 661 // and we still want to prune the dead code as early as possible. 662 ConstantFoldTerminator(I); 663 664 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 665 if (!BI || BI->isConditional()) { ++I; continue; } 666 667 BasicBlock *Dest = BI->getSuccessor(0); 668 if (!Dest->getSinglePredecessor()) { 669 ++I; continue; 670 } 671 672 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 673 // above should have zapped all of them.. 674 assert(!isa<PHINode>(Dest->begin())); 675 676 // We know all single-entry PHI nodes in the inlined function have been 677 // removed, so we just need to splice the blocks. 678 BI->eraseFromParent(); 679 680 // Make all PHI nodes that referred to Dest now refer to I as their source. 681 Dest->replaceAllUsesWith(I); 682 683 // Move all the instructions in the succ to the pred. 684 I->getInstList().splice(I->end(), Dest->getInstList()); 685 686 // Remove the dest block. 687 Dest->eraseFromParent(); 688 689 // Do not increment I, iteratively merge all things this block branches to. 690 } 691 692 // Make a final pass over the basic blocks from the old function to gather 693 // any return instructions which survived folding. We have to do this here 694 // because we can iteratively remove and merge returns above. 695 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]), 696 E = NewFunc->end(); 697 I != E; ++I) 698 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 699 Returns.push_back(RI); 700} 701 702 703/// This works exactly like CloneFunctionInto, 704/// except that it does some simple constant prop and DCE on the fly. The 705/// effect of this is to copy significantly less code in cases where (for 706/// example) a function call with constant arguments is inlined, and those 707/// constant arguments cause a significant amount of code in the callee to be 708/// dead. Since this doesn't produce an exact copy of the input, it can't be 709/// used for things like CloneFunction or CloneModule. 710void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 711 ValueToValueMapTy &VMap, 712 bool ModuleLevelChanges, 713 SmallVectorImpl<ReturnInst*> &Returns, 714 const char *NameSuffix, 715 ClonedCodeInfo *CodeInfo, 716 Instruction *TheCall) { 717 CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap, 718 ModuleLevelChanges, Returns, NameSuffix, CodeInfo, 719 nullptr); 720} 721