1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/LibCallSemantics.h"
22#include "llvm/Analysis/MemoryBuiltins.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/CFG.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DIBuilder.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DebugInfo.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/GetElementPtrTypeIterator.h"
32#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/MDBuilder.h"
39#include "llvm/IR/Metadata.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/IR/ValueHandle.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47#define DEBUG_TYPE "local"
48
49STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
50
51//===----------------------------------------------------------------------===//
52//  Local constant propagation.
53//
54
55/// ConstantFoldTerminator - If a terminator instruction is predicated on a
56/// constant value, convert it into an unconditional branch to the constant
57/// destination.  This is a nontrivial operation because the successors of this
58/// basic block must have their PHI nodes updated.
59/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
60/// conditions and indirectbr addresses this might make dead if
61/// DeleteDeadConditions is true.
62bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
63                                  const TargetLibraryInfo *TLI) {
64  TerminatorInst *T = BB->getTerminator();
65  IRBuilder<> Builder(T);
66
67  // Branch - See if we are conditional jumping on constant
68  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
69    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
70    BasicBlock *Dest1 = BI->getSuccessor(0);
71    BasicBlock *Dest2 = BI->getSuccessor(1);
72
73    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
74      // Are we branching on constant?
75      // YES.  Change to unconditional branch...
76      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
77      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
78
79      //cerr << "Function: " << T->getParent()->getParent()
80      //     << "\nRemoving branch from " << T->getParent()
81      //     << "\n\nTo: " << OldDest << endl;
82
83      // Let the basic block know that we are letting go of it.  Based on this,
84      // it will adjust it's PHI nodes.
85      OldDest->removePredecessor(BB);
86
87      // Replace the conditional branch with an unconditional one.
88      Builder.CreateBr(Destination);
89      BI->eraseFromParent();
90      return true;
91    }
92
93    if (Dest2 == Dest1) {       // Conditional branch to same location?
94      // This branch matches something like this:
95      //     br bool %cond, label %Dest, label %Dest
96      // and changes it into:  br label %Dest
97
98      // Let the basic block know that we are letting go of one copy of it.
99      assert(BI->getParent() && "Terminator not inserted in block!");
100      Dest1->removePredecessor(BI->getParent());
101
102      // Replace the conditional branch with an unconditional one.
103      Builder.CreateBr(Dest1);
104      Value *Cond = BI->getCondition();
105      BI->eraseFromParent();
106      if (DeleteDeadConditions)
107        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
108      return true;
109    }
110    return false;
111  }
112
113  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
114    // If we are switching on a constant, we can convert the switch to an
115    // unconditional branch.
116    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
117    BasicBlock *DefaultDest = SI->getDefaultDest();
118    BasicBlock *TheOnlyDest = DefaultDest;
119
120    // If the default is unreachable, ignore it when searching for TheOnlyDest.
121    if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
122        SI->getNumCases() > 0) {
123      TheOnlyDest = SI->case_begin().getCaseSuccessor();
124    }
125
126    // Figure out which case it goes to.
127    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
128         i != e; ++i) {
129      // Found case matching a constant operand?
130      if (i.getCaseValue() == CI) {
131        TheOnlyDest = i.getCaseSuccessor();
132        break;
133      }
134
135      // Check to see if this branch is going to the same place as the default
136      // dest.  If so, eliminate it as an explicit compare.
137      if (i.getCaseSuccessor() == DefaultDest) {
138        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
139        unsigned NCases = SI->getNumCases();
140        // Fold the case metadata into the default if there will be any branches
141        // left, unless the metadata doesn't match the switch.
142        if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
143          // Collect branch weights into a vector.
144          SmallVector<uint32_t, 8> Weights;
145          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
146               ++MD_i) {
147            ConstantInt *CI =
148                mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
149            assert(CI);
150            Weights.push_back(CI->getValue().getZExtValue());
151          }
152          // Merge weight of this case to the default weight.
153          unsigned idx = i.getCaseIndex();
154          Weights[0] += Weights[idx+1];
155          // Remove weight for this case.
156          std::swap(Weights[idx+1], Weights.back());
157          Weights.pop_back();
158          SI->setMetadata(LLVMContext::MD_prof,
159                          MDBuilder(BB->getContext()).
160                          createBranchWeights(Weights));
161        }
162        // Remove this entry.
163        DefaultDest->removePredecessor(SI->getParent());
164        SI->removeCase(i);
165        --i; --e;
166        continue;
167      }
168
169      // Otherwise, check to see if the switch only branches to one destination.
170      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
171      // destinations.
172      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
173    }
174
175    if (CI && !TheOnlyDest) {
176      // Branching on a constant, but not any of the cases, go to the default
177      // successor.
178      TheOnlyDest = SI->getDefaultDest();
179    }
180
181    // If we found a single destination that we can fold the switch into, do so
182    // now.
183    if (TheOnlyDest) {
184      // Insert the new branch.
185      Builder.CreateBr(TheOnlyDest);
186      BasicBlock *BB = SI->getParent();
187
188      // Remove entries from PHI nodes which we no longer branch to...
189      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
190        // Found case matching a constant operand?
191        BasicBlock *Succ = SI->getSuccessor(i);
192        if (Succ == TheOnlyDest)
193          TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
194        else
195          Succ->removePredecessor(BB);
196      }
197
198      // Delete the old switch.
199      Value *Cond = SI->getCondition();
200      SI->eraseFromParent();
201      if (DeleteDeadConditions)
202        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
203      return true;
204    }
205
206    if (SI->getNumCases() == 1) {
207      // Otherwise, we can fold this switch into a conditional branch
208      // instruction if it has only one non-default destination.
209      SwitchInst::CaseIt FirstCase = SI->case_begin();
210      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
211          FirstCase.getCaseValue(), "cond");
212
213      // Insert the new branch.
214      BranchInst *NewBr = Builder.CreateCondBr(Cond,
215                                               FirstCase.getCaseSuccessor(),
216                                               SI->getDefaultDest());
217      MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
218      if (MD && MD->getNumOperands() == 3) {
219        ConstantInt *SICase =
220            mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
221        ConstantInt *SIDef =
222            mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
223        assert(SICase && SIDef);
224        // The TrueWeight should be the weight for the single case of SI.
225        NewBr->setMetadata(LLVMContext::MD_prof,
226                        MDBuilder(BB->getContext()).
227                        createBranchWeights(SICase->getValue().getZExtValue(),
228                                            SIDef->getValue().getZExtValue()));
229      }
230
231      // Delete the old switch.
232      SI->eraseFromParent();
233      return true;
234    }
235    return false;
236  }
237
238  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
239    // indirectbr blockaddress(@F, @BB) -> br label @BB
240    if (BlockAddress *BA =
241          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
242      BasicBlock *TheOnlyDest = BA->getBasicBlock();
243      // Insert the new branch.
244      Builder.CreateBr(TheOnlyDest);
245
246      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
247        if (IBI->getDestination(i) == TheOnlyDest)
248          TheOnlyDest = nullptr;
249        else
250          IBI->getDestination(i)->removePredecessor(IBI->getParent());
251      }
252      Value *Address = IBI->getAddress();
253      IBI->eraseFromParent();
254      if (DeleteDeadConditions)
255        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
256
257      // If we didn't find our destination in the IBI successor list, then we
258      // have undefined behavior.  Replace the unconditional branch with an
259      // 'unreachable' instruction.
260      if (TheOnlyDest) {
261        BB->getTerminator()->eraseFromParent();
262        new UnreachableInst(BB->getContext(), BB);
263      }
264
265      return true;
266    }
267  }
268
269  return false;
270}
271
272
273//===----------------------------------------------------------------------===//
274//  Local dead code elimination.
275//
276
277/// isInstructionTriviallyDead - Return true if the result produced by the
278/// instruction is not used, and the instruction has no side effects.
279///
280bool llvm::isInstructionTriviallyDead(Instruction *I,
281                                      const TargetLibraryInfo *TLI) {
282  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
283
284  // We don't want the landingpad instruction removed by anything this general.
285  if (isa<LandingPadInst>(I))
286    return false;
287
288  // We don't want debug info removed by anything this general, unless
289  // debug info is empty.
290  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
291    if (DDI->getAddress())
292      return false;
293    return true;
294  }
295  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
296    if (DVI->getValue())
297      return false;
298    return true;
299  }
300
301  if (!I->mayHaveSideEffects()) return true;
302
303  // Special case intrinsics that "may have side effects" but can be deleted
304  // when dead.
305  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
306    // Safe to delete llvm.stacksave if dead.
307    if (II->getIntrinsicID() == Intrinsic::stacksave)
308      return true;
309
310    // Lifetime intrinsics are dead when their right-hand is undef.
311    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
312        II->getIntrinsicID() == Intrinsic::lifetime_end)
313      return isa<UndefValue>(II->getArgOperand(1));
314
315    // Assumptions are dead if their condition is trivially true.
316    if (II->getIntrinsicID() == Intrinsic::assume) {
317      if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
318        return !Cond->isZero();
319
320      return false;
321    }
322  }
323
324  if (isAllocLikeFn(I, TLI)) return true;
325
326  if (CallInst *CI = isFreeCall(I, TLI))
327    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
328      return C->isNullValue() || isa<UndefValue>(C);
329
330  return false;
331}
332
333/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
334/// trivially dead instruction, delete it.  If that makes any of its operands
335/// trivially dead, delete them too, recursively.  Return true if any
336/// instructions were deleted.
337bool
338llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
339                                                 const TargetLibraryInfo *TLI) {
340  Instruction *I = dyn_cast<Instruction>(V);
341  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
342    return false;
343
344  SmallVector<Instruction*, 16> DeadInsts;
345  DeadInsts.push_back(I);
346
347  do {
348    I = DeadInsts.pop_back_val();
349
350    // Null out all of the instruction's operands to see if any operand becomes
351    // dead as we go.
352    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
353      Value *OpV = I->getOperand(i);
354      I->setOperand(i, nullptr);
355
356      if (!OpV->use_empty()) continue;
357
358      // If the operand is an instruction that became dead as we nulled out the
359      // operand, and if it is 'trivially' dead, delete it in a future loop
360      // iteration.
361      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
362        if (isInstructionTriviallyDead(OpI, TLI))
363          DeadInsts.push_back(OpI);
364    }
365
366    I->eraseFromParent();
367  } while (!DeadInsts.empty());
368
369  return true;
370}
371
372/// areAllUsesEqual - Check whether the uses of a value are all the same.
373/// This is similar to Instruction::hasOneUse() except this will also return
374/// true when there are no uses or multiple uses that all refer to the same
375/// value.
376static bool areAllUsesEqual(Instruction *I) {
377  Value::user_iterator UI = I->user_begin();
378  Value::user_iterator UE = I->user_end();
379  if (UI == UE)
380    return true;
381
382  User *TheUse = *UI;
383  for (++UI; UI != UE; ++UI) {
384    if (*UI != TheUse)
385      return false;
386  }
387  return true;
388}
389
390/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
391/// dead PHI node, due to being a def-use chain of single-use nodes that
392/// either forms a cycle or is terminated by a trivially dead instruction,
393/// delete it.  If that makes any of its operands trivially dead, delete them
394/// too, recursively.  Return true if a change was made.
395bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
396                                        const TargetLibraryInfo *TLI) {
397  SmallPtrSet<Instruction*, 4> Visited;
398  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
399       I = cast<Instruction>(*I->user_begin())) {
400    if (I->use_empty())
401      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
402
403    // If we find an instruction more than once, we're on a cycle that
404    // won't prove fruitful.
405    if (!Visited.insert(I).second) {
406      // Break the cycle and delete the instruction and its operands.
407      I->replaceAllUsesWith(UndefValue::get(I->getType()));
408      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
409      return true;
410    }
411  }
412  return false;
413}
414
415/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
416/// simplify any instructions in it and recursively delete dead instructions.
417///
418/// This returns true if it changed the code, note that it can delete
419/// instructions in other blocks as well in this block.
420bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
421                                       const TargetLibraryInfo *TLI) {
422  bool MadeChange = false;
423
424#ifndef NDEBUG
425  // In debug builds, ensure that the terminator of the block is never replaced
426  // or deleted by these simplifications. The idea of simplification is that it
427  // cannot introduce new instructions, and there is no way to replace the
428  // terminator of a block without introducing a new instruction.
429  AssertingVH<Instruction> TerminatorVH(--BB->end());
430#endif
431
432  for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
433    assert(!BI->isTerminator());
434    Instruction *Inst = BI++;
435
436    WeakVH BIHandle(BI);
437    if (recursivelySimplifyInstruction(Inst, TLI)) {
438      MadeChange = true;
439      if (BIHandle != BI)
440        BI = BB->begin();
441      continue;
442    }
443
444    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
445    if (BIHandle != BI)
446      BI = BB->begin();
447  }
448  return MadeChange;
449}
450
451//===----------------------------------------------------------------------===//
452//  Control Flow Graph Restructuring.
453//
454
455
456/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
457/// method is called when we're about to delete Pred as a predecessor of BB.  If
458/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
459///
460/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
461/// nodes that collapse into identity values.  For example, if we have:
462///   x = phi(1, 0, 0, 0)
463///   y = and x, z
464///
465/// .. and delete the predecessor corresponding to the '1', this will attempt to
466/// recursively fold the and to 0.
467void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
468  // This only adjusts blocks with PHI nodes.
469  if (!isa<PHINode>(BB->begin()))
470    return;
471
472  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
473  // them down.  This will leave us with single entry phi nodes and other phis
474  // that can be removed.
475  BB->removePredecessor(Pred, true);
476
477  WeakVH PhiIt = &BB->front();
478  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
479    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
480    Value *OldPhiIt = PhiIt;
481
482    if (!recursivelySimplifyInstruction(PN))
483      continue;
484
485    // If recursive simplification ended up deleting the next PHI node we would
486    // iterate to, then our iterator is invalid, restart scanning from the top
487    // of the block.
488    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
489  }
490}
491
492
493/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
494/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
495/// between them, moving the instructions in the predecessor into DestBB and
496/// deleting the predecessor block.
497///
498void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
499  // If BB has single-entry PHI nodes, fold them.
500  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
501    Value *NewVal = PN->getIncomingValue(0);
502    // Replace self referencing PHI with undef, it must be dead.
503    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
504    PN->replaceAllUsesWith(NewVal);
505    PN->eraseFromParent();
506  }
507
508  BasicBlock *PredBB = DestBB->getSinglePredecessor();
509  assert(PredBB && "Block doesn't have a single predecessor!");
510
511  // Zap anything that took the address of DestBB.  Not doing this will give the
512  // address an invalid value.
513  if (DestBB->hasAddressTaken()) {
514    BlockAddress *BA = BlockAddress::get(DestBB);
515    Constant *Replacement =
516      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
517    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
518                                                     BA->getType()));
519    BA->destroyConstant();
520  }
521
522  // Anything that branched to PredBB now branches to DestBB.
523  PredBB->replaceAllUsesWith(DestBB);
524
525  // Splice all the instructions from PredBB to DestBB.
526  PredBB->getTerminator()->eraseFromParent();
527  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
528
529  // If the PredBB is the entry block of the function, move DestBB up to
530  // become the entry block after we erase PredBB.
531  if (PredBB == &DestBB->getParent()->getEntryBlock())
532    DestBB->moveAfter(PredBB);
533
534  if (DT) {
535    BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
536    DT->changeImmediateDominator(DestBB, PredBBIDom);
537    DT->eraseNode(PredBB);
538  }
539  // Nuke BB.
540  PredBB->eraseFromParent();
541}
542
543/// CanMergeValues - Return true if we can choose one of these values to use
544/// in place of the other. Note that we will always choose the non-undef
545/// value to keep.
546static bool CanMergeValues(Value *First, Value *Second) {
547  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
548}
549
550/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
551/// almost-empty BB ending in an unconditional branch to Succ, into Succ.
552///
553/// Assumption: Succ is the single successor for BB.
554///
555static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
556  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
557
558  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
559        << Succ->getName() << "\n");
560  // Shortcut, if there is only a single predecessor it must be BB and merging
561  // is always safe
562  if (Succ->getSinglePredecessor()) return true;
563
564  // Make a list of the predecessors of BB
565  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
566
567  // Look at all the phi nodes in Succ, to see if they present a conflict when
568  // merging these blocks
569  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
570    PHINode *PN = cast<PHINode>(I);
571
572    // If the incoming value from BB is again a PHINode in
573    // BB which has the same incoming value for *PI as PN does, we can
574    // merge the phi nodes and then the blocks can still be merged
575    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
576    if (BBPN && BBPN->getParent() == BB) {
577      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
578        BasicBlock *IBB = PN->getIncomingBlock(PI);
579        if (BBPreds.count(IBB) &&
580            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
581                            PN->getIncomingValue(PI))) {
582          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
583                << Succ->getName() << " is conflicting with "
584                << BBPN->getName() << " with regard to common predecessor "
585                << IBB->getName() << "\n");
586          return false;
587        }
588      }
589    } else {
590      Value* Val = PN->getIncomingValueForBlock(BB);
591      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
592        // See if the incoming value for the common predecessor is equal to the
593        // one for BB, in which case this phi node will not prevent the merging
594        // of the block.
595        BasicBlock *IBB = PN->getIncomingBlock(PI);
596        if (BBPreds.count(IBB) &&
597            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
598          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
599                << Succ->getName() << " is conflicting with regard to common "
600                << "predecessor " << IBB->getName() << "\n");
601          return false;
602        }
603      }
604    }
605  }
606
607  return true;
608}
609
610typedef SmallVector<BasicBlock *, 16> PredBlockVector;
611typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
612
613/// \brief Determines the value to use as the phi node input for a block.
614///
615/// Select between \p OldVal any value that we know flows from \p BB
616/// to a particular phi on the basis of which one (if either) is not
617/// undef. Update IncomingValues based on the selected value.
618///
619/// \param OldVal The value we are considering selecting.
620/// \param BB The block that the value flows in from.
621/// \param IncomingValues A map from block-to-value for other phi inputs
622/// that we have examined.
623///
624/// \returns the selected value.
625static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
626                                          IncomingValueMap &IncomingValues) {
627  if (!isa<UndefValue>(OldVal)) {
628    assert((!IncomingValues.count(BB) ||
629            IncomingValues.find(BB)->second == OldVal) &&
630           "Expected OldVal to match incoming value from BB!");
631
632    IncomingValues.insert(std::make_pair(BB, OldVal));
633    return OldVal;
634  }
635
636  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
637  if (It != IncomingValues.end()) return It->second;
638
639  return OldVal;
640}
641
642/// \brief Create a map from block to value for the operands of a
643/// given phi.
644///
645/// Create a map from block to value for each non-undef value flowing
646/// into \p PN.
647///
648/// \param PN The phi we are collecting the map for.
649/// \param IncomingValues [out] The map from block to value for this phi.
650static void gatherIncomingValuesToPhi(PHINode *PN,
651                                      IncomingValueMap &IncomingValues) {
652  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
653    BasicBlock *BB = PN->getIncomingBlock(i);
654    Value *V = PN->getIncomingValue(i);
655
656    if (!isa<UndefValue>(V))
657      IncomingValues.insert(std::make_pair(BB, V));
658  }
659}
660
661/// \brief Replace the incoming undef values to a phi with the values
662/// from a block-to-value map.
663///
664/// \param PN The phi we are replacing the undefs in.
665/// \param IncomingValues A map from block to value.
666static void replaceUndefValuesInPhi(PHINode *PN,
667                                    const IncomingValueMap &IncomingValues) {
668  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
669    Value *V = PN->getIncomingValue(i);
670
671    if (!isa<UndefValue>(V)) continue;
672
673    BasicBlock *BB = PN->getIncomingBlock(i);
674    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
675    if (It == IncomingValues.end()) continue;
676
677    PN->setIncomingValue(i, It->second);
678  }
679}
680
681/// \brief Replace a value flowing from a block to a phi with
682/// potentially multiple instances of that value flowing from the
683/// block's predecessors to the phi.
684///
685/// \param BB The block with the value flowing into the phi.
686/// \param BBPreds The predecessors of BB.
687/// \param PN The phi that we are updating.
688static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
689                                                const PredBlockVector &BBPreds,
690                                                PHINode *PN) {
691  Value *OldVal = PN->removeIncomingValue(BB, false);
692  assert(OldVal && "No entry in PHI for Pred BB!");
693
694  IncomingValueMap IncomingValues;
695
696  // We are merging two blocks - BB, and the block containing PN - and
697  // as a result we need to redirect edges from the predecessors of BB
698  // to go to the block containing PN, and update PN
699  // accordingly. Since we allow merging blocks in the case where the
700  // predecessor and successor blocks both share some predecessors,
701  // and where some of those common predecessors might have undef
702  // values flowing into PN, we want to rewrite those values to be
703  // consistent with the non-undef values.
704
705  gatherIncomingValuesToPhi(PN, IncomingValues);
706
707  // If this incoming value is one of the PHI nodes in BB, the new entries
708  // in the PHI node are the entries from the old PHI.
709  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
710    PHINode *OldValPN = cast<PHINode>(OldVal);
711    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
712      // Note that, since we are merging phi nodes and BB and Succ might
713      // have common predecessors, we could end up with a phi node with
714      // identical incoming branches. This will be cleaned up later (and
715      // will trigger asserts if we try to clean it up now, without also
716      // simplifying the corresponding conditional branch).
717      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
718      Value *PredVal = OldValPN->getIncomingValue(i);
719      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
720                                                    IncomingValues);
721
722      // And add a new incoming value for this predecessor for the
723      // newly retargeted branch.
724      PN->addIncoming(Selected, PredBB);
725    }
726  } else {
727    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
728      // Update existing incoming values in PN for this
729      // predecessor of BB.
730      BasicBlock *PredBB = BBPreds[i];
731      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
732                                                    IncomingValues);
733
734      // And add a new incoming value for this predecessor for the
735      // newly retargeted branch.
736      PN->addIncoming(Selected, PredBB);
737    }
738  }
739
740  replaceUndefValuesInPhi(PN, IncomingValues);
741}
742
743/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
744/// unconditional branch, and contains no instructions other than PHI nodes,
745/// potential side-effect free intrinsics and the branch.  If possible,
746/// eliminate BB by rewriting all the predecessors to branch to the successor
747/// block and return true.  If we can't transform, return false.
748bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
749  assert(BB != &BB->getParent()->getEntryBlock() &&
750         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
751
752  // We can't eliminate infinite loops.
753  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
754  if (BB == Succ) return false;
755
756  // Check to see if merging these blocks would cause conflicts for any of the
757  // phi nodes in BB or Succ. If not, we can safely merge.
758  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
759
760  // Check for cases where Succ has multiple predecessors and a PHI node in BB
761  // has uses which will not disappear when the PHI nodes are merged.  It is
762  // possible to handle such cases, but difficult: it requires checking whether
763  // BB dominates Succ, which is non-trivial to calculate in the case where
764  // Succ has multiple predecessors.  Also, it requires checking whether
765  // constructing the necessary self-referential PHI node doesn't introduce any
766  // conflicts; this isn't too difficult, but the previous code for doing this
767  // was incorrect.
768  //
769  // Note that if this check finds a live use, BB dominates Succ, so BB is
770  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
771  // folding the branch isn't profitable in that case anyway.
772  if (!Succ->getSinglePredecessor()) {
773    BasicBlock::iterator BBI = BB->begin();
774    while (isa<PHINode>(*BBI)) {
775      for (Use &U : BBI->uses()) {
776        if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
777          if (PN->getIncomingBlock(U) != BB)
778            return false;
779        } else {
780          return false;
781        }
782      }
783      ++BBI;
784    }
785  }
786
787  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
788
789  if (isa<PHINode>(Succ->begin())) {
790    // If there is more than one pred of succ, and there are PHI nodes in
791    // the successor, then we need to add incoming edges for the PHI nodes
792    //
793    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
794
795    // Loop over all of the PHI nodes in the successor of BB.
796    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
797      PHINode *PN = cast<PHINode>(I);
798
799      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
800    }
801  }
802
803  if (Succ->getSinglePredecessor()) {
804    // BB is the only predecessor of Succ, so Succ will end up with exactly
805    // the same predecessors BB had.
806
807    // Copy over any phi, debug or lifetime instruction.
808    BB->getTerminator()->eraseFromParent();
809    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
810  } else {
811    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
812      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
813      assert(PN->use_empty() && "There shouldn't be any uses here!");
814      PN->eraseFromParent();
815    }
816  }
817
818  // Everything that jumped to BB now goes to Succ.
819  BB->replaceAllUsesWith(Succ);
820  if (!Succ->hasName()) Succ->takeName(BB);
821  BB->eraseFromParent();              // Delete the old basic block.
822  return true;
823}
824
825/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
826/// nodes in this block. This doesn't try to be clever about PHI nodes
827/// which differ only in the order of the incoming values, but instcombine
828/// orders them so it usually won't matter.
829///
830bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
831  bool Changed = false;
832
833  // This implementation doesn't currently consider undef operands
834  // specially. Theoretically, two phis which are identical except for
835  // one having an undef where the other doesn't could be collapsed.
836
837  // Map from PHI hash values to PHI nodes. If multiple PHIs have
838  // the same hash value, the element is the first PHI in the
839  // linked list in CollisionMap.
840  DenseMap<uintptr_t, PHINode *> HashMap;
841
842  // Maintain linked lists of PHI nodes with common hash values.
843  DenseMap<PHINode *, PHINode *> CollisionMap;
844
845  // Examine each PHI.
846  for (BasicBlock::iterator I = BB->begin();
847       PHINode *PN = dyn_cast<PHINode>(I++); ) {
848    // Compute a hash value on the operands. Instcombine will likely have sorted
849    // them, which helps expose duplicates, but we have to check all the
850    // operands to be safe in case instcombine hasn't run.
851    uintptr_t Hash = 0;
852    // This hash algorithm is quite weak as hash functions go, but it seems
853    // to do a good enough job for this particular purpose, and is very quick.
854    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
855      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
856      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
857    }
858    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
859         I != E; ++I) {
860      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
861      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
862    }
863    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
864    Hash >>= 1;
865    // If we've never seen this hash value before, it's a unique PHI.
866    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
867      HashMap.insert(std::make_pair(Hash, PN));
868    if (Pair.second) continue;
869    // Otherwise it's either a duplicate or a hash collision.
870    for (PHINode *OtherPN = Pair.first->second; ; ) {
871      if (OtherPN->isIdenticalTo(PN)) {
872        // A duplicate. Replace this PHI with its duplicate.
873        PN->replaceAllUsesWith(OtherPN);
874        PN->eraseFromParent();
875        Changed = true;
876        break;
877      }
878      // A non-duplicate hash collision.
879      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
880      if (I == CollisionMap.end()) {
881        // Set this PHI to be the head of the linked list of colliding PHIs.
882        PHINode *Old = Pair.first->second;
883        Pair.first->second = PN;
884        CollisionMap[PN] = Old;
885        break;
886      }
887      // Proceed to the next PHI in the list.
888      OtherPN = I->second;
889    }
890  }
891
892  return Changed;
893}
894
895/// enforceKnownAlignment - If the specified pointer points to an object that
896/// we control, modify the object's alignment to PrefAlign. This isn't
897/// often possible though. If alignment is important, a more reliable approach
898/// is to simply align all global variables and allocation instructions to
899/// their preferred alignment from the beginning.
900///
901static unsigned enforceKnownAlignment(Value *V, unsigned Align,
902                                      unsigned PrefAlign,
903                                      const DataLayout &DL) {
904  V = V->stripPointerCasts();
905
906  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
907    // If the preferred alignment is greater than the natural stack alignment
908    // then don't round up. This avoids dynamic stack realignment.
909    if (DL.exceedsNaturalStackAlignment(PrefAlign))
910      return Align;
911    // If there is a requested alignment and if this is an alloca, round up.
912    if (AI->getAlignment() >= PrefAlign)
913      return AI->getAlignment();
914    AI->setAlignment(PrefAlign);
915    return PrefAlign;
916  }
917
918  if (auto *GO = dyn_cast<GlobalObject>(V)) {
919    // If there is a large requested alignment and we can, bump up the alignment
920    // of the global.
921    if (GO->isDeclaration())
922      return Align;
923    // If the memory we set aside for the global may not be the memory used by
924    // the final program then it is impossible for us to reliably enforce the
925    // preferred alignment.
926    if (GO->isWeakForLinker())
927      return Align;
928
929    if (GO->getAlignment() >= PrefAlign)
930      return GO->getAlignment();
931    // We can only increase the alignment of the global if it has no alignment
932    // specified or if it is not assigned a section.  If it is assigned a
933    // section, the global could be densely packed with other objects in the
934    // section, increasing the alignment could cause padding issues.
935    if (!GO->hasSection() || GO->getAlignment() == 0)
936      GO->setAlignment(PrefAlign);
937    return GO->getAlignment();
938  }
939
940  return Align;
941}
942
943/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
944/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
945/// and it is more than the alignment of the ultimate object, see if we can
946/// increase the alignment of the ultimate object, making this check succeed.
947unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
948                                          const DataLayout &DL,
949                                          const Instruction *CxtI,
950                                          AssumptionCache *AC,
951                                          const DominatorTree *DT) {
952  assert(V->getType()->isPointerTy() &&
953         "getOrEnforceKnownAlignment expects a pointer!");
954  unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
955
956  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
957  computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
958  unsigned TrailZ = KnownZero.countTrailingOnes();
959
960  // Avoid trouble with ridiculously large TrailZ values, such as
961  // those computed from a null pointer.
962  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
963
964  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
965
966  // LLVM doesn't support alignments larger than this currently.
967  Align = std::min(Align, +Value::MaximumAlignment);
968
969  if (PrefAlign > Align)
970    Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
971
972  // We don't need to make any adjustment.
973  return Align;
974}
975
976///===---------------------------------------------------------------------===//
977///  Dbg Intrinsic utilities
978///
979
980/// See if there is a dbg.value intrinsic for DIVar before I.
981static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
982  // Since we can't guarantee that the original dbg.declare instrinsic
983  // is removed by LowerDbgDeclare(), we need to make sure that we are
984  // not inserting the same dbg.value intrinsic over and over.
985  llvm::BasicBlock::InstListType::iterator PrevI(I);
986  if (PrevI != I->getParent()->getInstList().begin()) {
987    --PrevI;
988    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
989      if (DVI->getValue() == I->getOperand(0) &&
990          DVI->getOffset() == 0 &&
991          DVI->getVariable() == DIVar)
992        return true;
993  }
994  return false;
995}
996
997/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
998/// that has an associated llvm.dbg.decl intrinsic.
999bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1000                                           StoreInst *SI, DIBuilder &Builder) {
1001  DIVariable DIVar = DDI->getVariable();
1002  DIExpression DIExpr = DDI->getExpression();
1003  if (!DIVar)
1004    return false;
1005
1006  if (LdStHasDebugValue(DIVar, SI))
1007    return true;
1008
1009  // If an argument is zero extended then use argument directly. The ZExt
1010  // may be zapped by an optimization pass in future.
1011  Argument *ExtendedArg = nullptr;
1012  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1013    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1014  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1015    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1016  if (ExtendedArg)
1017    Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr,
1018                                    DDI->getDebugLoc(), SI);
1019  else
1020    Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1021                                    DDI->getDebugLoc(), SI);
1022  return true;
1023}
1024
1025/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1026/// that has an associated llvm.dbg.decl intrinsic.
1027bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1028                                           LoadInst *LI, DIBuilder &Builder) {
1029  DIVariable DIVar = DDI->getVariable();
1030  DIExpression DIExpr = DDI->getExpression();
1031  if (!DIVar)
1032    return false;
1033
1034  if (LdStHasDebugValue(DIVar, LI))
1035    return true;
1036
1037  Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr,
1038                                  DDI->getDebugLoc(), LI);
1039  return true;
1040}
1041
1042/// Determine whether this alloca is either a VLA or an array.
1043static bool isArray(AllocaInst *AI) {
1044  return AI->isArrayAllocation() ||
1045    AI->getType()->getElementType()->isArrayTy();
1046}
1047
1048/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1049/// of llvm.dbg.value intrinsics.
1050bool llvm::LowerDbgDeclare(Function &F) {
1051  DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1052  SmallVector<DbgDeclareInst *, 4> Dbgs;
1053  for (auto &FI : F)
1054    for (BasicBlock::iterator BI : FI)
1055      if (auto DDI = dyn_cast<DbgDeclareInst>(BI))
1056        Dbgs.push_back(DDI);
1057
1058  if (Dbgs.empty())
1059    return false;
1060
1061  for (auto &I : Dbgs) {
1062    DbgDeclareInst *DDI = I;
1063    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1064    // If this is an alloca for a scalar variable, insert a dbg.value
1065    // at each load and store to the alloca and erase the dbg.declare.
1066    // The dbg.values allow tracking a variable even if it is not
1067    // stored on the stack, while the dbg.declare can only describe
1068    // the stack slot (and at a lexical-scope granularity). Later
1069    // passes will attempt to elide the stack slot.
1070    if (AI && !isArray(AI)) {
1071      for (User *U : AI->users())
1072        if (StoreInst *SI = dyn_cast<StoreInst>(U))
1073          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1074        else if (LoadInst *LI = dyn_cast<LoadInst>(U))
1075          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1076        else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1077          // This is a call by-value or some other instruction that
1078          // takes a pointer to the variable. Insert a *value*
1079          // intrinsic that describes the alloca.
1080          DIB.insertDbgValueIntrinsic(AI, 0, DIVariable(DDI->getVariable()),
1081                                      DIExpression(DDI->getExpression()),
1082                                      DDI->getDebugLoc(), CI);
1083        }
1084      DDI->eraseFromParent();
1085    }
1086  }
1087  return true;
1088}
1089
1090/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1091/// alloca 'V', if any.
1092DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1093  if (auto *L = LocalAsMetadata::getIfExists(V))
1094    if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1095      for (User *U : MDV->users())
1096        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1097          return DDI;
1098
1099  return nullptr;
1100}
1101
1102bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1103                                      DIBuilder &Builder, bool Deref) {
1104  DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1105  if (!DDI)
1106    return false;
1107  DebugLoc Loc = DDI->getDebugLoc();
1108  DIVariable DIVar = DDI->getVariable();
1109  DIExpression DIExpr = DDI->getExpression();
1110  if (!DIVar)
1111    return false;
1112
1113  if (Deref) {
1114    // Create a copy of the original DIDescriptor for user variable, prepending
1115    // "deref" operation to a list of address elements, as new llvm.dbg.declare
1116    // will take a value storing address of the memory for variable, not
1117    // alloca itself.
1118    SmallVector<uint64_t, 4> NewDIExpr;
1119    NewDIExpr.push_back(dwarf::DW_OP_deref);
1120    if (DIExpr)
1121      NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1122    DIExpr = Builder.createExpression(NewDIExpr);
1123  }
1124
1125  // Insert llvm.dbg.declare in the same basic block as the original alloca,
1126  // and remove old llvm.dbg.declare.
1127  BasicBlock *BB = AI->getParent();
1128  Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, Loc, BB);
1129  DDI->eraseFromParent();
1130  return true;
1131}
1132
1133/// changeToUnreachable - Insert an unreachable instruction before the specified
1134/// instruction, making it and the rest of the code in the block dead.
1135static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1136  BasicBlock *BB = I->getParent();
1137  // Loop over all of the successors, removing BB's entry from any PHI
1138  // nodes.
1139  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1140    (*SI)->removePredecessor(BB);
1141
1142  // Insert a call to llvm.trap right before this.  This turns the undefined
1143  // behavior into a hard fail instead of falling through into random code.
1144  if (UseLLVMTrap) {
1145    Function *TrapFn =
1146      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1147    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1148    CallTrap->setDebugLoc(I->getDebugLoc());
1149  }
1150  new UnreachableInst(I->getContext(), I);
1151
1152  // All instructions after this are dead.
1153  BasicBlock::iterator BBI = I, BBE = BB->end();
1154  while (BBI != BBE) {
1155    if (!BBI->use_empty())
1156      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1157    BB->getInstList().erase(BBI++);
1158  }
1159}
1160
1161/// changeToCall - Convert the specified invoke into a normal call.
1162static void changeToCall(InvokeInst *II) {
1163  SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
1164  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
1165  NewCall->takeName(II);
1166  NewCall->setCallingConv(II->getCallingConv());
1167  NewCall->setAttributes(II->getAttributes());
1168  NewCall->setDebugLoc(II->getDebugLoc());
1169  II->replaceAllUsesWith(NewCall);
1170
1171  // Follow the call by a branch to the normal destination.
1172  BranchInst::Create(II->getNormalDest(), II);
1173
1174  // Update PHI nodes in the unwind destination
1175  II->getUnwindDest()->removePredecessor(II->getParent());
1176  II->eraseFromParent();
1177}
1178
1179static bool markAliveBlocks(BasicBlock *BB,
1180                            SmallPtrSetImpl<BasicBlock*> &Reachable) {
1181
1182  SmallVector<BasicBlock*, 128> Worklist;
1183  Worklist.push_back(BB);
1184  Reachable.insert(BB);
1185  bool Changed = false;
1186  do {
1187    BB = Worklist.pop_back_val();
1188
1189    // Do a quick scan of the basic block, turning any obviously unreachable
1190    // instructions into LLVM unreachable insts.  The instruction combining pass
1191    // canonicalizes unreachable insts into stores to null or undef.
1192    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1193      // Assumptions that are known to be false are equivalent to unreachable.
1194      // Also, if the condition is undefined, then we make the choice most
1195      // beneficial to the optimizer, and choose that to also be unreachable.
1196      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
1197        if (II->getIntrinsicID() == Intrinsic::assume) {
1198          bool MakeUnreachable = false;
1199          if (isa<UndefValue>(II->getArgOperand(0)))
1200            MakeUnreachable = true;
1201          else if (ConstantInt *Cond =
1202                   dyn_cast<ConstantInt>(II->getArgOperand(0)))
1203            MakeUnreachable = Cond->isZero();
1204
1205          if (MakeUnreachable) {
1206            // Don't insert a call to llvm.trap right before the unreachable.
1207            changeToUnreachable(BBI, false);
1208            Changed = true;
1209            break;
1210          }
1211        }
1212
1213      if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1214        if (CI->doesNotReturn()) {
1215          // If we found a call to a no-return function, insert an unreachable
1216          // instruction after it.  Make sure there isn't *already* one there
1217          // though.
1218          ++BBI;
1219          if (!isa<UnreachableInst>(BBI)) {
1220            // Don't insert a call to llvm.trap right before the unreachable.
1221            changeToUnreachable(BBI, false);
1222            Changed = true;
1223          }
1224          break;
1225        }
1226      }
1227
1228      // Store to undef and store to null are undefined and used to signal that
1229      // they should be changed to unreachable by passes that can't modify the
1230      // CFG.
1231      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1232        // Don't touch volatile stores.
1233        if (SI->isVolatile()) continue;
1234
1235        Value *Ptr = SI->getOperand(1);
1236
1237        if (isa<UndefValue>(Ptr) ||
1238            (isa<ConstantPointerNull>(Ptr) &&
1239             SI->getPointerAddressSpace() == 0)) {
1240          changeToUnreachable(SI, true);
1241          Changed = true;
1242          break;
1243        }
1244      }
1245    }
1246
1247    // Turn invokes that call 'nounwind' functions into ordinary calls.
1248    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
1249      Value *Callee = II->getCalledValue();
1250      if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1251        changeToUnreachable(II, true);
1252        Changed = true;
1253      } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(II)) {
1254        if (II->use_empty() && II->onlyReadsMemory()) {
1255          // jump to the normal destination branch.
1256          BranchInst::Create(II->getNormalDest(), II);
1257          II->getUnwindDest()->removePredecessor(II->getParent());
1258          II->eraseFromParent();
1259        } else
1260          changeToCall(II);
1261        Changed = true;
1262      }
1263    }
1264
1265    Changed |= ConstantFoldTerminator(BB, true);
1266    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1267      if (Reachable.insert(*SI).second)
1268        Worklist.push_back(*SI);
1269  } while (!Worklist.empty());
1270  return Changed;
1271}
1272
1273/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1274/// if they are in a dead cycle.  Return true if a change was made, false
1275/// otherwise.
1276bool llvm::removeUnreachableBlocks(Function &F) {
1277  SmallPtrSet<BasicBlock*, 128> Reachable;
1278  bool Changed = markAliveBlocks(F.begin(), Reachable);
1279
1280  // If there are unreachable blocks in the CFG...
1281  if (Reachable.size() == F.size())
1282    return Changed;
1283
1284  assert(Reachable.size() < F.size());
1285  NumRemoved += F.size()-Reachable.size();
1286
1287  // Loop over all of the basic blocks that are not reachable, dropping all of
1288  // their internal references...
1289  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1290    if (Reachable.count(BB))
1291      continue;
1292
1293    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1294      if (Reachable.count(*SI))
1295        (*SI)->removePredecessor(BB);
1296    BB->dropAllReferences();
1297  }
1298
1299  for (Function::iterator I = ++F.begin(); I != F.end();)
1300    if (!Reachable.count(I))
1301      I = F.getBasicBlockList().erase(I);
1302    else
1303      ++I;
1304
1305  return true;
1306}
1307
1308void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) {
1309  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1310  K->dropUnknownMetadata(KnownIDs);
1311  K->getAllMetadataOtherThanDebugLoc(Metadata);
1312  for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1313    unsigned Kind = Metadata[i].first;
1314    MDNode *JMD = J->getMetadata(Kind);
1315    MDNode *KMD = Metadata[i].second;
1316
1317    switch (Kind) {
1318      default:
1319        K->setMetadata(Kind, nullptr); // Remove unknown metadata
1320        break;
1321      case LLVMContext::MD_dbg:
1322        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1323      case LLVMContext::MD_tbaa:
1324        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1325        break;
1326      case LLVMContext::MD_alias_scope:
1327        K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1328        break;
1329      case LLVMContext::MD_noalias:
1330        K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1331        break;
1332      case LLVMContext::MD_range:
1333        K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1334        break;
1335      case LLVMContext::MD_fpmath:
1336        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1337        break;
1338      case LLVMContext::MD_invariant_load:
1339        // Only set the !invariant.load if it is present in both instructions.
1340        K->setMetadata(Kind, JMD);
1341        break;
1342      case LLVMContext::MD_nonnull:
1343        // Only set the !nonnull if it is present in both instructions.
1344        K->setMetadata(Kind, JMD);
1345        break;
1346    }
1347  }
1348}
1349