1//===- MCJITTestBase.h - Common base class for MCJIT Unit tests  ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class implements common functionality required by the MCJIT unit tests,
11// as well as logic to skip tests on unsupported architectures and operating
12// systems.
13//
14//===----------------------------------------------------------------------===//
15
16
17#ifndef LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
18#define LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
19
20#include "MCJITTestAPICommon.h"
21#include "llvm/Config/config.h"
22#include "llvm/ExecutionEngine/ExecutionEngine.h"
23#include "llvm/ExecutionEngine/SectionMemoryManager.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/TypeBuilder.h"
29#include "llvm/Support/CodeGen.h"
30
31namespace llvm {
32
33/// Helper class that can build very simple Modules
34class TrivialModuleBuilder {
35protected:
36  LLVMContext Context;
37  IRBuilder<> Builder;
38  std::string BuilderTriple;
39
40  TrivialModuleBuilder(const std::string &Triple)
41    : Builder(Context), BuilderTriple(Triple) {}
42
43  Module *createEmptyModule(StringRef Name = StringRef()) {
44    Module * M = new Module(Name, Context);
45    M->setTargetTriple(Triple::normalize(BuilderTriple));
46    return M;
47  }
48
49  template<typename FuncType>
50  Function *startFunction(Module *M, StringRef Name) {
51    Function *Result = Function::Create(
52      TypeBuilder<FuncType, false>::get(Context),
53      GlobalValue::ExternalLinkage, Name, M);
54
55    BasicBlock *BB = BasicBlock::Create(Context, Name, Result);
56    Builder.SetInsertPoint(BB);
57
58    return Result;
59  }
60
61  void endFunctionWithRet(Function *Func, Value *RetValue) {
62    Builder.CreateRet(RetValue);
63  }
64
65  // Inserts a simple function that invokes Callee and takes the same arguments:
66  //    int Caller(...) { return Callee(...); }
67  template<typename Signature>
68  Function *insertSimpleCallFunction(Module *M, Function *Callee) {
69    Function *Result = startFunction<Signature>(M, "caller");
70
71    SmallVector<Value*, 1> CallArgs;
72
73    Function::arg_iterator arg_iter = Result->arg_begin();
74    for(;arg_iter != Result->arg_end(); ++arg_iter)
75      CallArgs.push_back(arg_iter);
76
77    Value *ReturnCode = Builder.CreateCall(Callee, CallArgs);
78    Builder.CreateRet(ReturnCode);
79    return Result;
80  }
81
82  // Inserts a function named 'main' that returns a uint32_t:
83  //    int32_t main() { return X; }
84  // where X is given by returnCode
85  Function *insertMainFunction(Module *M, uint32_t returnCode) {
86    Function *Result = startFunction<int32_t(void)>(M, "main");
87
88    Value *ReturnVal = ConstantInt::get(Context, APInt(32, returnCode));
89    endFunctionWithRet(Result, ReturnVal);
90
91    return Result;
92  }
93
94  // Inserts a function
95  //    int32_t add(int32_t a, int32_t b) { return a + b; }
96  // in the current module and returns a pointer to it.
97  Function *insertAddFunction(Module *M, StringRef Name = "add") {
98    Function *Result = startFunction<int32_t(int32_t, int32_t)>(M, Name);
99
100    Function::arg_iterator args = Result->arg_begin();
101    Value *Arg1 = args;
102    Value *Arg2 = ++args;
103    Value *AddResult = Builder.CreateAdd(Arg1, Arg2);
104
105    endFunctionWithRet(Result, AddResult);
106
107    return Result;
108  }
109
110  // Inserts a declaration to a function defined elsewhere
111  template <typename FuncType>
112  Function *insertExternalReferenceToFunction(Module *M, StringRef Name) {
113    Function *Result = Function::Create(
114                         TypeBuilder<FuncType, false>::get(Context),
115                         GlobalValue::ExternalLinkage, Name, M);
116    return Result;
117  }
118
119  // Inserts an declaration to a function defined elsewhere
120  Function *insertExternalReferenceToFunction(Module *M, StringRef Name,
121                                              FunctionType *FuncTy) {
122    Function *Result = Function::Create(FuncTy,
123                                        GlobalValue::ExternalLinkage,
124                                        Name, M);
125    return Result;
126  }
127
128  // Inserts an declaration to a function defined elsewhere
129  Function *insertExternalReferenceToFunction(Module *M, Function *Func) {
130    Function *Result = Function::Create(Func->getFunctionType(),
131                                        GlobalValue::ExternalLinkage,
132                                        Func->getName(), M);
133    return Result;
134  }
135
136  // Inserts a global variable of type int32
137  // FIXME: make this a template function to support any type
138  GlobalVariable *insertGlobalInt32(Module *M,
139                                    StringRef name,
140                                    int32_t InitialValue) {
141    Type *GlobalTy = TypeBuilder<types::i<32>, true>::get(Context);
142    Constant *IV = ConstantInt::get(Context, APInt(32, InitialValue));
143    GlobalVariable *Global = new GlobalVariable(*M,
144                                                GlobalTy,
145                                                false,
146                                                GlobalValue::ExternalLinkage,
147                                                IV,
148                                                name);
149    return Global;
150  }
151
152  // Inserts a function
153  //   int32_t recursive_add(int32_t num) {
154  //     if (num == 0) {
155  //       return num;
156  //     } else {
157  //       int32_t recursive_param = num - 1;
158  //       return num + Helper(recursive_param);
159  //     }
160  //   }
161  // NOTE: if Helper is left as the default parameter, Helper == recursive_add.
162  Function *insertAccumulateFunction(Module *M,
163                                              Function *Helper = 0,
164                                              StringRef Name = "accumulate") {
165    Function *Result = startFunction<int32_t(int32_t)>(M, Name);
166    if (Helper == 0)
167      Helper = Result;
168
169    BasicBlock *BaseCase = BasicBlock::Create(Context, "", Result);
170    BasicBlock *RecursiveCase = BasicBlock::Create(Context, "", Result);
171
172    // if (num == 0)
173    Value *Param = Result->arg_begin();
174    Value *Zero = ConstantInt::get(Context, APInt(32, 0));
175    Builder.CreateCondBr(Builder.CreateICmpEQ(Param, Zero),
176                         BaseCase, RecursiveCase);
177
178    //   return num;
179    Builder.SetInsertPoint(BaseCase);
180    Builder.CreateRet(Param);
181
182    //   int32_t recursive_param = num - 1;
183    //   return Helper(recursive_param);
184    Builder.SetInsertPoint(RecursiveCase);
185    Value *One = ConstantInt::get(Context, APInt(32, 1));
186    Value *RecursiveParam = Builder.CreateSub(Param, One);
187    Value *RecursiveReturn = Builder.CreateCall(Helper, RecursiveParam);
188    Value *Accumulator = Builder.CreateAdd(Param, RecursiveReturn);
189    Builder.CreateRet(Accumulator);
190
191    return Result;
192  }
193
194  // Populates Modules A and B:
195  // Module A { Extern FB1, Function FA which calls FB1 },
196  // Module B { Extern FA, Function FB1, Function FB2 which calls FA },
197  void createCrossModuleRecursiveCase(std::unique_ptr<Module> &A, Function *&FA,
198                                      std::unique_ptr<Module> &B,
199                                      Function *&FB1, Function *&FB2) {
200    // Define FB1 in B.
201    B.reset(createEmptyModule("B"));
202    FB1 = insertAccumulateFunction(B.get(), 0, "FB1");
203
204    // Declare FB1 in A (as an external).
205    A.reset(createEmptyModule("A"));
206    Function *FB1Extern = insertExternalReferenceToFunction(A.get(), FB1);
207
208    // Define FA in A (with a call to FB1).
209    FA = insertAccumulateFunction(A.get(), FB1Extern, "FA");
210
211    // Declare FA in B (as an external)
212    Function *FAExtern = insertExternalReferenceToFunction(B.get(), FA);
213
214    // Define FB2 in B (with a call to FA)
215    FB2 = insertAccumulateFunction(B.get(), FAExtern, "FB2");
216  }
217
218  // Module A { Function FA },
219  // Module B { Extern FA, Function FB which calls FA },
220  // Module C { Extern FB, Function FC which calls FB },
221  void
222  createThreeModuleChainedCallsCase(std::unique_ptr<Module> &A, Function *&FA,
223                                    std::unique_ptr<Module> &B, Function *&FB,
224                                    std::unique_ptr<Module> &C, Function *&FC) {
225    A.reset(createEmptyModule("A"));
226    FA = insertAddFunction(A.get());
227
228    B.reset(createEmptyModule("B"));
229    Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
230    FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
231
232    C.reset(createEmptyModule("C"));
233    Function *FBExtern_in_C = insertExternalReferenceToFunction(C.get(), FB);
234    FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FBExtern_in_C);
235  }
236
237
238  // Module A { Function FA },
239  // Populates Modules A and B:
240  // Module B { Function FB }
241  void createTwoModuleCase(std::unique_ptr<Module> &A, Function *&FA,
242                           std::unique_ptr<Module> &B, Function *&FB) {
243    A.reset(createEmptyModule("A"));
244    FA = insertAddFunction(A.get());
245
246    B.reset(createEmptyModule("B"));
247    FB = insertAddFunction(B.get());
248  }
249
250  // Module A { Function FA },
251  // Module B { Extern FA, Function FB which calls FA }
252  void createTwoModuleExternCase(std::unique_ptr<Module> &A, Function *&FA,
253                                 std::unique_ptr<Module> &B, Function *&FB) {
254    A.reset(createEmptyModule("A"));
255    FA = insertAddFunction(A.get());
256
257    B.reset(createEmptyModule("B"));
258    Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
259    FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(),
260                                                             FAExtern_in_B);
261  }
262
263  // Module A { Function FA },
264  // Module B { Extern FA, Function FB which calls FA },
265  // Module C { Extern FB, Function FC which calls FA },
266  void createThreeModuleCase(std::unique_ptr<Module> &A, Function *&FA,
267                             std::unique_ptr<Module> &B, Function *&FB,
268                             std::unique_ptr<Module> &C, Function *&FC) {
269    A.reset(createEmptyModule("A"));
270    FA = insertAddFunction(A.get());
271
272    B.reset(createEmptyModule("B"));
273    Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
274    FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
275
276    C.reset(createEmptyModule("C"));
277    Function *FAExtern_in_C = insertExternalReferenceToFunction(C.get(), FA);
278    FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FAExtern_in_C);
279  }
280};
281
282
283class MCJITTestBase : public MCJITTestAPICommon, public TrivialModuleBuilder {
284protected:
285
286  MCJITTestBase()
287    : TrivialModuleBuilder(HostTriple)
288    , OptLevel(CodeGenOpt::None)
289    , RelocModel(Reloc::Default)
290    , CodeModel(CodeModel::Default)
291    , MArch("")
292    , MM(new SectionMemoryManager)
293  {
294    // The architectures below are known to be compatible with MCJIT as they
295    // are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
296    // kept in sync.
297    SupportedArchs.push_back(Triple::aarch64);
298    SupportedArchs.push_back(Triple::arm);
299    SupportedArchs.push_back(Triple::mips);
300    SupportedArchs.push_back(Triple::mipsel);
301    SupportedArchs.push_back(Triple::x86);
302    SupportedArchs.push_back(Triple::x86_64);
303
304    // Some architectures have sub-architectures in which tests will fail, like
305    // ARM. These two vectors will define if they do have sub-archs (to avoid
306    // extra work for those who don't), and if so, if they are listed to work
307    HasSubArchs.push_back(Triple::arm);
308    SupportedSubArchs.push_back("armv6");
309    SupportedSubArchs.push_back("armv7");
310
311    UnsupportedEnvironments.push_back(Triple::Cygnus);
312  }
313
314  void createJIT(std::unique_ptr<Module> M) {
315
316    // Due to the EngineBuilder constructor, it is required to have a Module
317    // in order to construct an ExecutionEngine (i.e. MCJIT)
318    assert(M != 0 && "a non-null Module must be provided to create MCJIT");
319
320    EngineBuilder EB(std::move(M));
321    std::string Error;
322    TheJIT.reset(EB.setEngineKind(EngineKind::JIT)
323                 .setMCJITMemoryManager(std::move(MM))
324                 .setErrorStr(&Error)
325                 .setOptLevel(CodeGenOpt::None)
326                 .setCodeModel(CodeModel::JITDefault)
327                 .setRelocationModel(Reloc::Default)
328                 .setMArch(MArch)
329                 .setMCPU(sys::getHostCPUName())
330                 //.setMAttrs(MAttrs)
331                 .create());
332    // At this point, we cannot modify the module any more.
333    assert(TheJIT.get() != NULL && "error creating MCJIT with EngineBuilder");
334  }
335
336  CodeGenOpt::Level OptLevel;
337  Reloc::Model RelocModel;
338  CodeModel::Model CodeModel;
339  StringRef MArch;
340  SmallVector<std::string, 1> MAttrs;
341  std::unique_ptr<ExecutionEngine> TheJIT;
342  std::unique_ptr<RTDyldMemoryManager> MM;
343
344  std::unique_ptr<Module> M;
345};
346
347} // namespace llvm
348
349#endif
350