1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific values in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "CodeGenTarget.h"
100#include "llvm/ADT/PointerUnion.h"
101#include "llvm/ADT/STLExtras.h"
102#include "llvm/ADT/SmallPtrSet.h"
103#include "llvm/ADT/SmallVector.h"
104#include "llvm/ADT/StringExtras.h"
105#include "llvm/Support/CommandLine.h"
106#include "llvm/Support/Debug.h"
107#include "llvm/Support/ErrorHandling.h"
108#include "llvm/TableGen/Error.h"
109#include "llvm/TableGen/Record.h"
110#include "llvm/TableGen/StringMatcher.h"
111#include "llvm/TableGen/StringToOffsetTable.h"
112#include "llvm/TableGen/TableGenBackend.h"
113#include <cassert>
114#include <cctype>
115#include <map>
116#include <set>
117#include <sstream>
118#include <forward_list>
119using namespace llvm;
120
121#define DEBUG_TYPE "asm-matcher-emitter"
122
123static cl::opt<std::string>
124MatchPrefix("match-prefix", cl::init(""),
125            cl::desc("Only match instructions with the given prefix"));
126
127namespace {
128class AsmMatcherInfo;
129struct SubtargetFeatureInfo;
130
131// Register sets are used as keys in some second-order sets TableGen creates
132// when generating its data structures. This means that the order of two
133// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
134// can even affect compiler output (at least seen in diagnostics produced when
135// all matches fail). So we use a type that sorts them consistently.
136typedef std::set<Record*, LessRecordByID> RegisterSet;
137
138class AsmMatcherEmitter {
139  RecordKeeper &Records;
140public:
141  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
142
143  void run(raw_ostream &o);
144};
145
146/// ClassInfo - Helper class for storing the information about a particular
147/// class of operands which can be matched.
148struct ClassInfo {
149  enum ClassInfoKind {
150    /// Invalid kind, for use as a sentinel value.
151    Invalid = 0,
152
153    /// The class for a particular token.
154    Token,
155
156    /// The (first) register class, subsequent register classes are
157    /// RegisterClass0+1, and so on.
158    RegisterClass0,
159
160    /// The (first) user defined class, subsequent user defined classes are
161    /// UserClass0+1, and so on.
162    UserClass0 = 1<<16
163  };
164
165  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
166  /// N) for the Nth user defined class.
167  unsigned Kind;
168
169  /// SuperClasses - The super classes of this class. Note that for simplicities
170  /// sake user operands only record their immediate super class, while register
171  /// operands include all superclasses.
172  std::vector<ClassInfo*> SuperClasses;
173
174  /// Name - The full class name, suitable for use in an enum.
175  std::string Name;
176
177  /// ClassName - The unadorned generic name for this class (e.g., Token).
178  std::string ClassName;
179
180  /// ValueName - The name of the value this class represents; for a token this
181  /// is the literal token string, for an operand it is the TableGen class (or
182  /// empty if this is a derived class).
183  std::string ValueName;
184
185  /// PredicateMethod - The name of the operand method to test whether the
186  /// operand matches this class; this is not valid for Token or register kinds.
187  std::string PredicateMethod;
188
189  /// RenderMethod - The name of the operand method to add this operand to an
190  /// MCInst; this is not valid for Token or register kinds.
191  std::string RenderMethod;
192
193  /// ParserMethod - The name of the operand method to do a target specific
194  /// parsing on the operand.
195  std::string ParserMethod;
196
197  /// For register classes: the records for all the registers in this class.
198  RegisterSet Registers;
199
200  /// For custom match classes: the diagnostic kind for when the predicate fails.
201  std::string DiagnosticType;
202public:
203  /// isRegisterClass() - Check if this is a register class.
204  bool isRegisterClass() const {
205    return Kind >= RegisterClass0 && Kind < UserClass0;
206  }
207
208  /// isUserClass() - Check if this is a user defined class.
209  bool isUserClass() const {
210    return Kind >= UserClass0;
211  }
212
213  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
214  /// are related if they are in the same class hierarchy.
215  bool isRelatedTo(const ClassInfo &RHS) const {
216    // Tokens are only related to tokens.
217    if (Kind == Token || RHS.Kind == Token)
218      return Kind == Token && RHS.Kind == Token;
219
220    // Registers classes are only related to registers classes, and only if
221    // their intersection is non-empty.
222    if (isRegisterClass() || RHS.isRegisterClass()) {
223      if (!isRegisterClass() || !RHS.isRegisterClass())
224        return false;
225
226      RegisterSet Tmp;
227      std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
228      std::set_intersection(Registers.begin(), Registers.end(),
229                            RHS.Registers.begin(), RHS.Registers.end(),
230                            II, LessRecordByID());
231
232      return !Tmp.empty();
233    }
234
235    // Otherwise we have two users operands; they are related if they are in the
236    // same class hierarchy.
237    //
238    // FIXME: This is an oversimplification, they should only be related if they
239    // intersect, however we don't have that information.
240    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
241    const ClassInfo *Root = this;
242    while (!Root->SuperClasses.empty())
243      Root = Root->SuperClasses.front();
244
245    const ClassInfo *RHSRoot = &RHS;
246    while (!RHSRoot->SuperClasses.empty())
247      RHSRoot = RHSRoot->SuperClasses.front();
248
249    return Root == RHSRoot;
250  }
251
252  /// isSubsetOf - Test whether this class is a subset of \p RHS.
253  bool isSubsetOf(const ClassInfo &RHS) const {
254    // This is a subset of RHS if it is the same class...
255    if (this == &RHS)
256      return true;
257
258    // ... or if any of its super classes are a subset of RHS.
259    for (const ClassInfo *CI : SuperClasses)
260      if (CI->isSubsetOf(RHS))
261        return true;
262
263    return false;
264  }
265
266  /// operator< - Compare two classes.
267  // FIXME: This ordering seems to be broken. For example:
268  // u64 < i64, i64 < s8, s8 < u64, forming a cycle
269  // u64 is a subset of i64
270  // i64 and s8 are not subsets of each other, so are ordered by name
271  // s8 and u64 are not subsets of each other, so are ordered by name
272  bool operator<(const ClassInfo &RHS) const {
273    if (this == &RHS)
274      return false;
275
276    // Unrelated classes can be ordered by kind.
277    if (!isRelatedTo(RHS))
278      return Kind < RHS.Kind;
279
280    switch (Kind) {
281    case Invalid:
282      llvm_unreachable("Invalid kind!");
283
284    default:
285      // This class precedes the RHS if it is a proper subset of the RHS.
286      if (isSubsetOf(RHS))
287        return true;
288      if (RHS.isSubsetOf(*this))
289        return false;
290
291      // Otherwise, order by name to ensure we have a total ordering.
292      return ValueName < RHS.ValueName;
293    }
294  }
295};
296
297/// MatchableInfo - Helper class for storing the necessary information for an
298/// instruction or alias which is capable of being matched.
299struct MatchableInfo {
300  struct AsmOperand {
301    /// Token - This is the token that the operand came from.
302    StringRef Token;
303
304    /// The unique class instance this operand should match.
305    ClassInfo *Class;
306
307    /// The operand name this is, if anything.
308    StringRef SrcOpName;
309
310    /// The suboperand index within SrcOpName, or -1 for the entire operand.
311    int SubOpIdx;
312
313    /// Register record if this token is singleton register.
314    Record *SingletonReg;
315
316    explicit AsmOperand(StringRef T) : Token(T), Class(nullptr), SubOpIdx(-1),
317                                       SingletonReg(nullptr) {}
318  };
319
320  /// ResOperand - This represents a single operand in the result instruction
321  /// generated by the match.  In cases (like addressing modes) where a single
322  /// assembler operand expands to multiple MCOperands, this represents the
323  /// single assembler operand, not the MCOperand.
324  struct ResOperand {
325    enum {
326      /// RenderAsmOperand - This represents an operand result that is
327      /// generated by calling the render method on the assembly operand.  The
328      /// corresponding AsmOperand is specified by AsmOperandNum.
329      RenderAsmOperand,
330
331      /// TiedOperand - This represents a result operand that is a duplicate of
332      /// a previous result operand.
333      TiedOperand,
334
335      /// ImmOperand - This represents an immediate value that is dumped into
336      /// the operand.
337      ImmOperand,
338
339      /// RegOperand - This represents a fixed register that is dumped in.
340      RegOperand
341    } Kind;
342
343    union {
344      /// This is the operand # in the AsmOperands list that this should be
345      /// copied from.
346      unsigned AsmOperandNum;
347
348      /// TiedOperandNum - This is the (earlier) result operand that should be
349      /// copied from.
350      unsigned TiedOperandNum;
351
352      /// ImmVal - This is the immediate value added to the instruction.
353      int64_t ImmVal;
354
355      /// Register - This is the register record.
356      Record *Register;
357    };
358
359    /// MINumOperands - The number of MCInst operands populated by this
360    /// operand.
361    unsigned MINumOperands;
362
363    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
364      ResOperand X;
365      X.Kind = RenderAsmOperand;
366      X.AsmOperandNum = AsmOpNum;
367      X.MINumOperands = NumOperands;
368      return X;
369    }
370
371    static ResOperand getTiedOp(unsigned TiedOperandNum) {
372      ResOperand X;
373      X.Kind = TiedOperand;
374      X.TiedOperandNum = TiedOperandNum;
375      X.MINumOperands = 1;
376      return X;
377    }
378
379    static ResOperand getImmOp(int64_t Val) {
380      ResOperand X;
381      X.Kind = ImmOperand;
382      X.ImmVal = Val;
383      X.MINumOperands = 1;
384      return X;
385    }
386
387    static ResOperand getRegOp(Record *Reg) {
388      ResOperand X;
389      X.Kind = RegOperand;
390      X.Register = Reg;
391      X.MINumOperands = 1;
392      return X;
393    }
394  };
395
396  /// AsmVariantID - Target's assembly syntax variant no.
397  int AsmVariantID;
398
399  /// AsmString - The assembly string for this instruction (with variants
400  /// removed), e.g. "movsx $src, $dst".
401  std::string AsmString;
402
403  /// TheDef - This is the definition of the instruction or InstAlias that this
404  /// matchable came from.
405  Record *const TheDef;
406
407  /// DefRec - This is the definition that it came from.
408  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
409
410  const CodeGenInstruction *getResultInst() const {
411    if (DefRec.is<const CodeGenInstruction*>())
412      return DefRec.get<const CodeGenInstruction*>();
413    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
414  }
415
416  /// ResOperands - This is the operand list that should be built for the result
417  /// MCInst.
418  SmallVector<ResOperand, 8> ResOperands;
419
420  /// Mnemonic - This is the first token of the matched instruction, its
421  /// mnemonic.
422  StringRef Mnemonic;
423
424  /// AsmOperands - The textual operands that this instruction matches,
425  /// annotated with a class and where in the OperandList they were defined.
426  /// This directly corresponds to the tokenized AsmString after the mnemonic is
427  /// removed.
428  SmallVector<AsmOperand, 8> AsmOperands;
429
430  /// Predicates - The required subtarget features to match this instruction.
431  SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
432
433  /// ConversionFnKind - The enum value which is passed to the generated
434  /// convertToMCInst to convert parsed operands into an MCInst for this
435  /// function.
436  std::string ConversionFnKind;
437
438  /// If this instruction is deprecated in some form.
439  bool HasDeprecation;
440
441  MatchableInfo(const CodeGenInstruction &CGI)
442    : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI) {
443  }
444
445  MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
446    : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), DefRec(Alias.release()) {
447  }
448
449  ~MatchableInfo() {
450    delete DefRec.dyn_cast<const CodeGenInstAlias*>();
451  }
452
453  // Two-operand aliases clone from the main matchable, but mark the second
454  // operand as a tied operand of the first for purposes of the assembler.
455  void formTwoOperandAlias(StringRef Constraint);
456
457  void initialize(const AsmMatcherInfo &Info,
458                  SmallPtrSetImpl<Record*> &SingletonRegisters,
459                  int AsmVariantNo, std::string &RegisterPrefix);
460
461  /// validate - Return true if this matchable is a valid thing to match against
462  /// and perform a bunch of validity checking.
463  bool validate(StringRef CommentDelimiter, bool Hack) const;
464
465  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
466  /// if present, from specified token.
467  void
468  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
469                                        std::string &RegisterPrefix);
470
471  /// findAsmOperand - Find the AsmOperand with the specified name and
472  /// suboperand index.
473  int findAsmOperand(StringRef N, int SubOpIdx) const {
474    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
475      if (N == AsmOperands[i].SrcOpName &&
476          SubOpIdx == AsmOperands[i].SubOpIdx)
477        return i;
478    return -1;
479  }
480
481  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
482  /// This does not check the suboperand index.
483  int findAsmOperandNamed(StringRef N) const {
484    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
485      if (N == AsmOperands[i].SrcOpName)
486        return i;
487    return -1;
488  }
489
490  void buildInstructionResultOperands();
491  void buildAliasResultOperands();
492
493  /// operator< - Compare two matchables.
494  bool operator<(const MatchableInfo &RHS) const {
495    // The primary comparator is the instruction mnemonic.
496    if (Mnemonic != RHS.Mnemonic)
497      return Mnemonic < RHS.Mnemonic;
498
499    if (AsmOperands.size() != RHS.AsmOperands.size())
500      return AsmOperands.size() < RHS.AsmOperands.size();
501
502    // Compare lexicographically by operand. The matcher validates that other
503    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
504    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
505      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
506        return true;
507      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
508        return false;
509    }
510
511    // Give matches that require more features higher precedence. This is useful
512    // because we cannot define AssemblerPredicates with the negation of
513    // processor features. For example, ARM v6 "nop" may be either a HINT or
514    // MOV. With v6, we want to match HINT. The assembler has no way to
515    // predicate MOV under "NoV6", but HINT will always match first because it
516    // requires V6 while MOV does not.
517    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
518      return RequiredFeatures.size() > RHS.RequiredFeatures.size();
519
520    return false;
521  }
522
523  /// couldMatchAmbiguouslyWith - Check whether this matchable could
524  /// ambiguously match the same set of operands as \p RHS (without being a
525  /// strictly superior match).
526  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
527    // The primary comparator is the instruction mnemonic.
528    if (Mnemonic != RHS.Mnemonic)
529      return false;
530
531    // The number of operands is unambiguous.
532    if (AsmOperands.size() != RHS.AsmOperands.size())
533      return false;
534
535    // Otherwise, make sure the ordering of the two instructions is unambiguous
536    // by checking that either (a) a token or operand kind discriminates them,
537    // or (b) the ordering among equivalent kinds is consistent.
538
539    // Tokens and operand kinds are unambiguous (assuming a correct target
540    // specific parser).
541    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
542      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
543          AsmOperands[i].Class->Kind == ClassInfo::Token)
544        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
545            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
546          return false;
547
548    // Otherwise, this operand could commute if all operands are equivalent, or
549    // there is a pair of operands that compare less than and a pair that
550    // compare greater than.
551    bool HasLT = false, HasGT = false;
552    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
553      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
554        HasLT = true;
555      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
556        HasGT = true;
557    }
558
559    return !(HasLT ^ HasGT);
560  }
561
562  void dump() const;
563
564private:
565  void tokenizeAsmString(const AsmMatcherInfo &Info);
566};
567
568/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
569/// feature which participates in instruction matching.
570struct SubtargetFeatureInfo {
571  /// \brief The predicate record for this feature.
572  Record *TheDef;
573
574  /// \brief An unique index assigned to represent this feature.
575  uint64_t Index;
576
577  SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
578
579  /// \brief The name of the enumerated constant identifying this feature.
580  std::string getEnumName() const {
581    return "Feature_" + TheDef->getName();
582  }
583
584  void dump() const {
585    errs() << getEnumName() << " " << Index << "\n";
586    TheDef->dump();
587  }
588};
589
590struct OperandMatchEntry {
591  unsigned OperandMask;
592  const MatchableInfo* MI;
593  ClassInfo *CI;
594
595  static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
596                                  unsigned opMask) {
597    OperandMatchEntry X;
598    X.OperandMask = opMask;
599    X.CI = ci;
600    X.MI = mi;
601    return X;
602  }
603};
604
605
606class AsmMatcherInfo {
607public:
608  /// Tracked Records
609  RecordKeeper &Records;
610
611  /// The tablegen AsmParser record.
612  Record *AsmParser;
613
614  /// Target - The target information.
615  CodeGenTarget &Target;
616
617  /// The classes which are needed for matching.
618  std::forward_list<ClassInfo> Classes;
619
620  /// The information on the matchables to match.
621  std::vector<std::unique_ptr<MatchableInfo>> Matchables;
622
623  /// Info for custom matching operands by user defined methods.
624  std::vector<OperandMatchEntry> OperandMatchInfo;
625
626  /// Map of Register records to their class information.
627  typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
628  RegisterClassesTy RegisterClasses;
629
630  /// Map of Predicate records to their subtarget information.
631  std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
632
633  /// Map of AsmOperandClass records to their class information.
634  std::map<Record*, ClassInfo*> AsmOperandClasses;
635
636private:
637  /// Map of token to class information which has already been constructed.
638  std::map<std::string, ClassInfo*> TokenClasses;
639
640  /// Map of RegisterClass records to their class information.
641  std::map<Record*, ClassInfo*> RegisterClassClasses;
642
643private:
644  /// getTokenClass - Lookup or create the class for the given token.
645  ClassInfo *getTokenClass(StringRef Token);
646
647  /// getOperandClass - Lookup or create the class for the given operand.
648  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
649                             int SubOpIdx);
650  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
651
652  /// buildRegisterClasses - Build the ClassInfo* instances for register
653  /// classes.
654  void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
655
656  /// buildOperandClasses - Build the ClassInfo* instances for user defined
657  /// operand classes.
658  void buildOperandClasses();
659
660  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
661                                        unsigned AsmOpIdx);
662  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
663                                  MatchableInfo::AsmOperand &Op);
664
665public:
666  AsmMatcherInfo(Record *AsmParser,
667                 CodeGenTarget &Target,
668                 RecordKeeper &Records);
669
670  /// buildInfo - Construct the various tables used during matching.
671  void buildInfo();
672
673  /// buildOperandMatchInfo - Build the necessary information to handle user
674  /// defined operand parsing methods.
675  void buildOperandMatchInfo();
676
677  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
678  /// given operand.
679  const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
680    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
681    const auto &I = SubtargetFeatures.find(Def);
682    return I == SubtargetFeatures.end() ? nullptr : &I->second;
683  }
684
685  RecordKeeper &getRecords() const {
686    return Records;
687  }
688};
689
690} // End anonymous namespace
691
692void MatchableInfo::dump() const {
693  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
694
695  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
696    const AsmOperand &Op = AsmOperands[i];
697    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
698    errs() << '\"' << Op.Token << "\"\n";
699  }
700}
701
702static std::pair<StringRef, StringRef>
703parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
704  // Split via the '='.
705  std::pair<StringRef, StringRef> Ops = S.split('=');
706  if (Ops.second == "")
707    PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
708  // Trim whitespace and the leading '$' on the operand names.
709  size_t start = Ops.first.find_first_of('$');
710  if (start == std::string::npos)
711    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
712  Ops.first = Ops.first.slice(start + 1, std::string::npos);
713  size_t end = Ops.first.find_last_of(" \t");
714  Ops.first = Ops.first.slice(0, end);
715  // Now the second operand.
716  start = Ops.second.find_first_of('$');
717  if (start == std::string::npos)
718    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
719  Ops.second = Ops.second.slice(start + 1, std::string::npos);
720  end = Ops.second.find_last_of(" \t");
721  Ops.first = Ops.first.slice(0, end);
722  return Ops;
723}
724
725void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
726  // Figure out which operands are aliased and mark them as tied.
727  std::pair<StringRef, StringRef> Ops =
728    parseTwoOperandConstraint(Constraint, TheDef->getLoc());
729
730  // Find the AsmOperands that refer to the operands we're aliasing.
731  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
732  int DstAsmOperand = findAsmOperandNamed(Ops.second);
733  if (SrcAsmOperand == -1)
734    PrintFatalError(TheDef->getLoc(),
735                    "unknown source two-operand alias operand '" + Ops.first +
736                    "'.");
737  if (DstAsmOperand == -1)
738    PrintFatalError(TheDef->getLoc(),
739                    "unknown destination two-operand alias operand '" +
740                    Ops.second + "'.");
741
742  // Find the ResOperand that refers to the operand we're aliasing away
743  // and update it to refer to the combined operand instead.
744  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
745    ResOperand &Op = ResOperands[i];
746    if (Op.Kind == ResOperand::RenderAsmOperand &&
747        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
748      Op.AsmOperandNum = DstAsmOperand;
749      break;
750    }
751  }
752  // Remove the AsmOperand for the alias operand.
753  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
754  // Adjust the ResOperand references to any AsmOperands that followed
755  // the one we just deleted.
756  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
757    ResOperand &Op = ResOperands[i];
758    switch(Op.Kind) {
759    default:
760      // Nothing to do for operands that don't reference AsmOperands.
761      break;
762    case ResOperand::RenderAsmOperand:
763      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
764        --Op.AsmOperandNum;
765      break;
766    case ResOperand::TiedOperand:
767      if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
768        --Op.TiedOperandNum;
769      break;
770    }
771  }
772}
773
774void MatchableInfo::initialize(const AsmMatcherInfo &Info,
775                               SmallPtrSetImpl<Record*> &SingletonRegisters,
776                               int AsmVariantNo, std::string &RegisterPrefix) {
777  AsmVariantID = AsmVariantNo;
778  AsmString =
779    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
780
781  tokenizeAsmString(Info);
782
783  // Compute the require features.
784  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
785  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
786    if (const SubtargetFeatureInfo *Feature =
787            Info.getSubtargetFeature(Predicates[i]))
788      RequiredFeatures.push_back(Feature);
789
790  // Collect singleton registers, if used.
791  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
792    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
793    if (Record *Reg = AsmOperands[i].SingletonReg)
794      SingletonRegisters.insert(Reg);
795  }
796
797  const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
798  if (!DepMask)
799    DepMask = TheDef->getValue("ComplexDeprecationPredicate");
800
801  HasDeprecation =
802      DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
803}
804
805/// tokenizeAsmString - Tokenize a simplified assembly string.
806void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
807  StringRef String = AsmString;
808  unsigned Prev = 0;
809  bool InTok = true;
810  for (unsigned i = 0, e = String.size(); i != e; ++i) {
811    switch (String[i]) {
812    case '[':
813    case ']':
814    case '*':
815    case '!':
816    case ' ':
817    case '\t':
818    case ',':
819      if (InTok) {
820        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
821        InTok = false;
822      }
823      if (!isspace(String[i]) && String[i] != ',')
824        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
825      Prev = i + 1;
826      break;
827
828    case '\\':
829      if (InTok) {
830        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
831        InTok = false;
832      }
833      ++i;
834      assert(i != String.size() && "Invalid quoted character");
835      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
836      Prev = i + 1;
837      break;
838
839    case '$': {
840      if (InTok) {
841        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
842        InTok = false;
843      }
844
845      // If this isn't "${", treat like a normal token.
846      if (i + 1 == String.size() || String[i + 1] != '{') {
847        Prev = i;
848        break;
849      }
850
851      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
852      assert(End != String.end() && "Missing brace in operand reference!");
853      size_t EndPos = End - String.begin();
854      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
855      Prev = EndPos + 1;
856      i = EndPos;
857      break;
858    }
859
860    case '.':
861      if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
862        if (InTok)
863          AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
864        Prev = i;
865      }
866      InTok = true;
867      break;
868
869    default:
870      InTok = true;
871    }
872  }
873  if (InTok && Prev != String.size())
874    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
875
876  // The first token of the instruction is the mnemonic, which must be a
877  // simple string, not a $foo variable or a singleton register.
878  if (AsmOperands.empty())
879    PrintFatalError(TheDef->getLoc(),
880                  "Instruction '" + TheDef->getName() + "' has no tokens");
881  Mnemonic = AsmOperands[0].Token;
882  if (Mnemonic.empty())
883    PrintFatalError(TheDef->getLoc(),
884                  "Missing instruction mnemonic");
885  // FIXME : Check and raise an error if it is a register.
886  if (Mnemonic[0] == '$')
887    PrintFatalError(TheDef->getLoc(),
888                    "Invalid instruction mnemonic '" + Mnemonic + "'!");
889
890  // Remove the first operand, it is tracked in the mnemonic field.
891  AsmOperands.erase(AsmOperands.begin());
892}
893
894bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
895  // Reject matchables with no .s string.
896  if (AsmString.empty())
897    PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
898
899  // Reject any matchables with a newline in them, they should be marked
900  // isCodeGenOnly if they are pseudo instructions.
901  if (AsmString.find('\n') != std::string::npos)
902    PrintFatalError(TheDef->getLoc(),
903                  "multiline instruction is not valid for the asmparser, "
904                  "mark it isCodeGenOnly");
905
906  // Remove comments from the asm string.  We know that the asmstring only
907  // has one line.
908  if (!CommentDelimiter.empty() &&
909      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
910    PrintFatalError(TheDef->getLoc(),
911                  "asmstring for instruction has comment character in it, "
912                  "mark it isCodeGenOnly");
913
914  // Reject matchables with operand modifiers, these aren't something we can
915  // handle, the target should be refactored to use operands instead of
916  // modifiers.
917  //
918  // Also, check for instructions which reference the operand multiple times;
919  // this implies a constraint we would not honor.
920  std::set<std::string> OperandNames;
921  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
922    StringRef Tok = AsmOperands[i].Token;
923    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
924      PrintFatalError(TheDef->getLoc(),
925                      "matchable with operand modifier '" + Tok +
926                      "' not supported by asm matcher.  Mark isCodeGenOnly!");
927
928    // Verify that any operand is only mentioned once.
929    // We reject aliases and ignore instructions for now.
930    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
931      if (!Hack)
932        PrintFatalError(TheDef->getLoc(),
933                        "ERROR: matchable with tied operand '" + Tok +
934                        "' can never be matched!");
935      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
936      // bunch of instructions.  It is unclear what the right answer is.
937      DEBUG({
938        errs() << "warning: '" << TheDef->getName() << "': "
939               << "ignoring instruction with tied operand '"
940               << Tok << "'\n";
941      });
942      return false;
943    }
944  }
945
946  return true;
947}
948
949/// extractSingletonRegisterForAsmOperand - Extract singleton register,
950/// if present, from specified token.
951void MatchableInfo::
952extractSingletonRegisterForAsmOperand(unsigned OperandNo,
953                                      const AsmMatcherInfo &Info,
954                                      std::string &RegisterPrefix) {
955  StringRef Tok = AsmOperands[OperandNo].Token;
956  if (RegisterPrefix.empty()) {
957    std::string LoweredTok = Tok.lower();
958    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
959      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
960    return;
961  }
962
963  if (!Tok.startswith(RegisterPrefix))
964    return;
965
966  StringRef RegName = Tok.substr(RegisterPrefix.size());
967  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
968    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
969
970  // If there is no register prefix (i.e. "%" in "%eax"), then this may
971  // be some random non-register token, just ignore it.
972  return;
973}
974
975static std::string getEnumNameForToken(StringRef Str) {
976  std::string Res;
977
978  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
979    switch (*it) {
980    case '*': Res += "_STAR_"; break;
981    case '%': Res += "_PCT_"; break;
982    case ':': Res += "_COLON_"; break;
983    case '!': Res += "_EXCLAIM_"; break;
984    case '.': Res += "_DOT_"; break;
985    case '<': Res += "_LT_"; break;
986    case '>': Res += "_GT_"; break;
987    case '-': Res += "_MINUS_"; break;
988    default:
989      if ((*it >= 'A' && *it <= 'Z') ||
990          (*it >= 'a' && *it <= 'z') ||
991          (*it >= '0' && *it <= '9'))
992        Res += *it;
993      else
994        Res += "_" + utostr((unsigned) *it) + "_";
995    }
996  }
997
998  return Res;
999}
1000
1001ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1002  ClassInfo *&Entry = TokenClasses[Token];
1003
1004  if (!Entry) {
1005    Classes.emplace_front();
1006    Entry = &Classes.front();
1007    Entry->Kind = ClassInfo::Token;
1008    Entry->ClassName = "Token";
1009    Entry->Name = "MCK_" + getEnumNameForToken(Token);
1010    Entry->ValueName = Token;
1011    Entry->PredicateMethod = "<invalid>";
1012    Entry->RenderMethod = "<invalid>";
1013    Entry->ParserMethod = "";
1014    Entry->DiagnosticType = "";
1015  }
1016
1017  return Entry;
1018}
1019
1020ClassInfo *
1021AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1022                                int SubOpIdx) {
1023  Record *Rec = OI.Rec;
1024  if (SubOpIdx != -1)
1025    Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1026  return getOperandClass(Rec, SubOpIdx);
1027}
1028
1029ClassInfo *
1030AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1031  if (Rec->isSubClassOf("RegisterOperand")) {
1032    // RegisterOperand may have an associated ParserMatchClass. If it does,
1033    // use it, else just fall back to the underlying register class.
1034    const RecordVal *R = Rec->getValue("ParserMatchClass");
1035    if (!R || !R->getValue())
1036      PrintFatalError("Record `" + Rec->getName() +
1037        "' does not have a ParserMatchClass!\n");
1038
1039    if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1040      Record *MatchClass = DI->getDef();
1041      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1042        return CI;
1043    }
1044
1045    // No custom match class. Just use the register class.
1046    Record *ClassRec = Rec->getValueAsDef("RegClass");
1047    if (!ClassRec)
1048      PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1049                    "' has no associated register class!\n");
1050    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1051      return CI;
1052    PrintFatalError(Rec->getLoc(), "register class has no class info!");
1053  }
1054
1055
1056  if (Rec->isSubClassOf("RegisterClass")) {
1057    if (ClassInfo *CI = RegisterClassClasses[Rec])
1058      return CI;
1059    PrintFatalError(Rec->getLoc(), "register class has no class info!");
1060  }
1061
1062  if (!Rec->isSubClassOf("Operand"))
1063    PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1064                  "' does not derive from class Operand!\n");
1065  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1066  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1067    return CI;
1068
1069  PrintFatalError(Rec->getLoc(), "operand has no match class!");
1070}
1071
1072struct LessRegisterSet {
1073  bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1074    // std::set<T> defines its own compariso "operator<", but it
1075    // performs a lexicographical comparison by T's innate comparison
1076    // for some reason. We don't want non-deterministic pointer
1077    // comparisons so use this instead.
1078    return std::lexicographical_compare(LHS.begin(), LHS.end(),
1079                                        RHS.begin(), RHS.end(),
1080                                        LessRecordByID());
1081  }
1082};
1083
1084void AsmMatcherInfo::
1085buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1086  const auto &Registers = Target.getRegBank().getRegisters();
1087  auto &RegClassList = Target.getRegBank().getRegClasses();
1088
1089  typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1090
1091  // The register sets used for matching.
1092  RegisterSetSet RegisterSets;
1093
1094  // Gather the defined sets.
1095  for (const CodeGenRegisterClass &RC : RegClassList)
1096    RegisterSets.insert(
1097        RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1098
1099  // Add any required singleton sets.
1100  for (Record *Rec : SingletonRegisters) {
1101    RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1102  }
1103
1104  // Introduce derived sets where necessary (when a register does not determine
1105  // a unique register set class), and build the mapping of registers to the set
1106  // they should classify to.
1107  std::map<Record*, RegisterSet> RegisterMap;
1108  for (const CodeGenRegister &CGR : Registers) {
1109    // Compute the intersection of all sets containing this register.
1110    RegisterSet ContainingSet;
1111
1112    for (const RegisterSet &RS : RegisterSets) {
1113      if (!RS.count(CGR.TheDef))
1114        continue;
1115
1116      if (ContainingSet.empty()) {
1117        ContainingSet = RS;
1118        continue;
1119      }
1120
1121      RegisterSet Tmp;
1122      std::swap(Tmp, ContainingSet);
1123      std::insert_iterator<RegisterSet> II(ContainingSet,
1124                                           ContainingSet.begin());
1125      std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1126                            LessRecordByID());
1127    }
1128
1129    if (!ContainingSet.empty()) {
1130      RegisterSets.insert(ContainingSet);
1131      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1132    }
1133  }
1134
1135  // Construct the register classes.
1136  std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1137  unsigned Index = 0;
1138  for (const RegisterSet &RS : RegisterSets) {
1139    Classes.emplace_front();
1140    ClassInfo *CI = &Classes.front();
1141    CI->Kind = ClassInfo::RegisterClass0 + Index;
1142    CI->ClassName = "Reg" + utostr(Index);
1143    CI->Name = "MCK_Reg" + utostr(Index);
1144    CI->ValueName = "";
1145    CI->PredicateMethod = ""; // unused
1146    CI->RenderMethod = "addRegOperands";
1147    CI->Registers = RS;
1148    // FIXME: diagnostic type.
1149    CI->DiagnosticType = "";
1150    RegisterSetClasses.insert(std::make_pair(RS, CI));
1151    ++Index;
1152  }
1153
1154  // Find the superclasses; we could compute only the subgroup lattice edges,
1155  // but there isn't really a point.
1156  for (const RegisterSet &RS : RegisterSets) {
1157    ClassInfo *CI = RegisterSetClasses[RS];
1158    for (const RegisterSet &RS2 : RegisterSets)
1159      if (RS != RS2 &&
1160          std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1161                        LessRecordByID()))
1162        CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1163  }
1164
1165  // Name the register classes which correspond to a user defined RegisterClass.
1166  for (const CodeGenRegisterClass &RC : RegClassList) {
1167    // Def will be NULL for non-user defined register classes.
1168    Record *Def = RC.getDef();
1169    if (!Def)
1170      continue;
1171    ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1172                                                   RC.getOrder().end())];
1173    if (CI->ValueName.empty()) {
1174      CI->ClassName = RC.getName();
1175      CI->Name = "MCK_" + RC.getName();
1176      CI->ValueName = RC.getName();
1177    } else
1178      CI->ValueName = CI->ValueName + "," + RC.getName();
1179
1180    RegisterClassClasses.insert(std::make_pair(Def, CI));
1181  }
1182
1183  // Populate the map for individual registers.
1184  for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1185         ie = RegisterMap.end(); it != ie; ++it)
1186    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1187
1188  // Name the register classes which correspond to singleton registers.
1189  for (Record *Rec : SingletonRegisters) {
1190    ClassInfo *CI = RegisterClasses[Rec];
1191    assert(CI && "Missing singleton register class info!");
1192
1193    if (CI->ValueName.empty()) {
1194      CI->ClassName = Rec->getName();
1195      CI->Name = "MCK_" + Rec->getName();
1196      CI->ValueName = Rec->getName();
1197    } else
1198      CI->ValueName = CI->ValueName + "," + Rec->getName();
1199  }
1200}
1201
1202void AsmMatcherInfo::buildOperandClasses() {
1203  std::vector<Record*> AsmOperands =
1204    Records.getAllDerivedDefinitions("AsmOperandClass");
1205
1206  // Pre-populate AsmOperandClasses map.
1207  for (Record *Rec : AsmOperands) {
1208    Classes.emplace_front();
1209    AsmOperandClasses[Rec] = &Classes.front();
1210  }
1211
1212  unsigned Index = 0;
1213  for (Record *Rec : AsmOperands) {
1214    ClassInfo *CI = AsmOperandClasses[Rec];
1215    CI->Kind = ClassInfo::UserClass0 + Index;
1216
1217    ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1218    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1219      DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
1220      if (!DI) {
1221        PrintError(Rec->getLoc(), "Invalid super class reference!");
1222        continue;
1223      }
1224
1225      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1226      if (!SC)
1227        PrintError(Rec->getLoc(), "Invalid super class reference!");
1228      else
1229        CI->SuperClasses.push_back(SC);
1230    }
1231    CI->ClassName = Rec->getValueAsString("Name");
1232    CI->Name = "MCK_" + CI->ClassName;
1233    CI->ValueName = Rec->getName();
1234
1235    // Get or construct the predicate method name.
1236    Init *PMName = Rec->getValueInit("PredicateMethod");
1237    if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1238      CI->PredicateMethod = SI->getValue();
1239    } else {
1240      assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1241      CI->PredicateMethod = "is" + CI->ClassName;
1242    }
1243
1244    // Get or construct the render method name.
1245    Init *RMName = Rec->getValueInit("RenderMethod");
1246    if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1247      CI->RenderMethod = SI->getValue();
1248    } else {
1249      assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1250      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1251    }
1252
1253    // Get the parse method name or leave it as empty.
1254    Init *PRMName = Rec->getValueInit("ParserMethod");
1255    if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1256      CI->ParserMethod = SI->getValue();
1257
1258    // Get the diagnostic type or leave it as empty.
1259    // Get the parse method name or leave it as empty.
1260    Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1261    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1262      CI->DiagnosticType = SI->getValue();
1263
1264    ++Index;
1265  }
1266}
1267
1268AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1269                               CodeGenTarget &target,
1270                               RecordKeeper &records)
1271  : Records(records), AsmParser(asmParser), Target(target) {
1272}
1273
1274/// buildOperandMatchInfo - Build the necessary information to handle user
1275/// defined operand parsing methods.
1276void AsmMatcherInfo::buildOperandMatchInfo() {
1277
1278  /// Map containing a mask with all operands indices that can be found for
1279  /// that class inside a instruction.
1280  typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1281  OpClassMaskTy OpClassMask;
1282
1283  for (const auto &MI : Matchables) {
1284    OpClassMask.clear();
1285
1286    // Keep track of all operands of this instructions which belong to the
1287    // same class.
1288    for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1289      const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1290      if (Op.Class->ParserMethod.empty())
1291        continue;
1292      unsigned &OperandMask = OpClassMask[Op.Class];
1293      OperandMask |= (1 << i);
1294    }
1295
1296    // Generate operand match info for each mnemonic/operand class pair.
1297    for (const auto &OCM : OpClassMask) {
1298      unsigned OpMask = OCM.second;
1299      ClassInfo *CI = OCM.first;
1300      OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1301                                                           OpMask));
1302    }
1303  }
1304}
1305
1306void AsmMatcherInfo::buildInfo() {
1307  // Build information about all of the AssemblerPredicates.
1308  std::vector<Record*> AllPredicates =
1309    Records.getAllDerivedDefinitions("Predicate");
1310  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1311    Record *Pred = AllPredicates[i];
1312    // Ignore predicates that are not intended for the assembler.
1313    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1314      continue;
1315
1316    if (Pred->getName().empty())
1317      PrintFatalError(Pred->getLoc(), "Predicate has no name!");
1318
1319    SubtargetFeatures.insert(std::make_pair(
1320        Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
1321    DEBUG(SubtargetFeatures.find(Pred)->second.dump());
1322    assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1323  }
1324
1325  // Parse the instructions; we need to do this first so that we can gather the
1326  // singleton register classes.
1327  SmallPtrSet<Record*, 16> SingletonRegisters;
1328  unsigned VariantCount = Target.getAsmParserVariantCount();
1329  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1330    Record *AsmVariant = Target.getAsmParserVariant(VC);
1331    std::string CommentDelimiter =
1332      AsmVariant->getValueAsString("CommentDelimiter");
1333    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1334    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1335
1336    for (const CodeGenInstruction *CGI : Target.instructions()) {
1337
1338      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1339      // filter the set of instructions we consider.
1340      if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1341        continue;
1342
1343      // Ignore "codegen only" instructions.
1344      if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1345        continue;
1346
1347      std::unique_ptr<MatchableInfo> II(new MatchableInfo(*CGI));
1348
1349      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1350
1351      // Ignore instructions which shouldn't be matched and diagnose invalid
1352      // instruction definitions with an error.
1353      if (!II->validate(CommentDelimiter, true))
1354        continue;
1355
1356      Matchables.push_back(std::move(II));
1357    }
1358
1359    // Parse all of the InstAlias definitions and stick them in the list of
1360    // matchables.
1361    std::vector<Record*> AllInstAliases =
1362      Records.getAllDerivedDefinitions("InstAlias");
1363    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1364      auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1365                                                       AsmVariantNo, Target);
1366
1367      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1368      // filter the set of instruction aliases we consider, based on the target
1369      // instruction.
1370      if (!StringRef(Alias->ResultInst->TheDef->getName())
1371            .startswith( MatchPrefix))
1372        continue;
1373
1374      std::unique_ptr<MatchableInfo> II(new MatchableInfo(std::move(Alias)));
1375
1376      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1377
1378      // Validate the alias definitions.
1379      II->validate(CommentDelimiter, false);
1380
1381      Matchables.push_back(std::move(II));
1382    }
1383  }
1384
1385  // Build info for the register classes.
1386  buildRegisterClasses(SingletonRegisters);
1387
1388  // Build info for the user defined assembly operand classes.
1389  buildOperandClasses();
1390
1391  // Build the information about matchables, now that we have fully formed
1392  // classes.
1393  std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1394  for (auto &II : Matchables) {
1395    // Parse the tokens after the mnemonic.
1396    // Note: buildInstructionOperandReference may insert new AsmOperands, so
1397    // don't precompute the loop bound.
1398    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1399      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1400      StringRef Token = Op.Token;
1401
1402      // Check for singleton registers.
1403      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1404        Op.Class = RegisterClasses[RegRecord];
1405        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1406               "Unexpected class for singleton register");
1407        continue;
1408      }
1409
1410      // Check for simple tokens.
1411      if (Token[0] != '$') {
1412        Op.Class = getTokenClass(Token);
1413        continue;
1414      }
1415
1416      if (Token.size() > 1 && isdigit(Token[1])) {
1417        Op.Class = getTokenClass(Token);
1418        continue;
1419      }
1420
1421      // Otherwise this is an operand reference.
1422      StringRef OperandName;
1423      if (Token[1] == '{')
1424        OperandName = Token.substr(2, Token.size() - 3);
1425      else
1426        OperandName = Token.substr(1);
1427
1428      if (II->DefRec.is<const CodeGenInstruction*>())
1429        buildInstructionOperandReference(II.get(), OperandName, i);
1430      else
1431        buildAliasOperandReference(II.get(), OperandName, Op);
1432    }
1433
1434    if (II->DefRec.is<const CodeGenInstruction*>()) {
1435      II->buildInstructionResultOperands();
1436      // If the instruction has a two-operand alias, build up the
1437      // matchable here. We'll add them in bulk at the end to avoid
1438      // confusing this loop.
1439      std::string Constraint =
1440        II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1441      if (Constraint != "") {
1442        // Start by making a copy of the original matchable.
1443        std::unique_ptr<MatchableInfo> AliasII(new MatchableInfo(*II));
1444
1445        // Adjust it to be a two-operand alias.
1446        AliasII->formTwoOperandAlias(Constraint);
1447
1448        // Add the alias to the matchables list.
1449        NewMatchables.push_back(std::move(AliasII));
1450      }
1451    } else
1452      II->buildAliasResultOperands();
1453  }
1454  if (!NewMatchables.empty())
1455    Matchables.insert(Matchables.end(),
1456                      std::make_move_iterator(NewMatchables.begin()),
1457                      std::make_move_iterator(NewMatchables.end()));
1458
1459  // Process token alias definitions and set up the associated superclass
1460  // information.
1461  std::vector<Record*> AllTokenAliases =
1462    Records.getAllDerivedDefinitions("TokenAlias");
1463  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1464    Record *Rec = AllTokenAliases[i];
1465    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1466    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1467    if (FromClass == ToClass)
1468      PrintFatalError(Rec->getLoc(),
1469                    "error: Destination value identical to source value.");
1470    FromClass->SuperClasses.push_back(ToClass);
1471  }
1472
1473  // Reorder classes so that classes precede super classes.
1474  Classes.sort();
1475}
1476
1477/// buildInstructionOperandReference - The specified operand is a reference to a
1478/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1479void AsmMatcherInfo::
1480buildInstructionOperandReference(MatchableInfo *II,
1481                                 StringRef OperandName,
1482                                 unsigned AsmOpIdx) {
1483  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1484  const CGIOperandList &Operands = CGI.Operands;
1485  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1486
1487  // Map this token to an operand.
1488  unsigned Idx;
1489  if (!Operands.hasOperandNamed(OperandName, Idx))
1490    PrintFatalError(II->TheDef->getLoc(),
1491                    "error: unable to find operand: '" + OperandName + "'");
1492
1493  // If the instruction operand has multiple suboperands, but the parser
1494  // match class for the asm operand is still the default "ImmAsmOperand",
1495  // then handle each suboperand separately.
1496  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1497    Record *Rec = Operands[Idx].Rec;
1498    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1499    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1500    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1501      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1502      StringRef Token = Op->Token; // save this in case Op gets moved
1503      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1504        MatchableInfo::AsmOperand NewAsmOp(Token);
1505        NewAsmOp.SubOpIdx = SI;
1506        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1507      }
1508      // Replace Op with first suboperand.
1509      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1510      Op->SubOpIdx = 0;
1511    }
1512  }
1513
1514  // Set up the operand class.
1515  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1516
1517  // If the named operand is tied, canonicalize it to the untied operand.
1518  // For example, something like:
1519  //   (outs GPR:$dst), (ins GPR:$src)
1520  // with an asmstring of
1521  //   "inc $src"
1522  // we want to canonicalize to:
1523  //   "inc $dst"
1524  // so that we know how to provide the $dst operand when filling in the result.
1525  int OITied = -1;
1526  if (Operands[Idx].MINumOperands == 1)
1527    OITied = Operands[Idx].getTiedRegister();
1528  if (OITied != -1) {
1529    // The tied operand index is an MIOperand index, find the operand that
1530    // contains it.
1531    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1532    OperandName = Operands[Idx.first].Name;
1533    Op->SubOpIdx = Idx.second;
1534  }
1535
1536  Op->SrcOpName = OperandName;
1537}
1538
1539/// buildAliasOperandReference - When parsing an operand reference out of the
1540/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1541/// operand reference is by looking it up in the result pattern definition.
1542void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1543                                                StringRef OperandName,
1544                                                MatchableInfo::AsmOperand &Op) {
1545  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1546
1547  // Set up the operand class.
1548  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1549    if (CGA.ResultOperands[i].isRecord() &&
1550        CGA.ResultOperands[i].getName() == OperandName) {
1551      // It's safe to go with the first one we find, because CodeGenInstAlias
1552      // validates that all operands with the same name have the same record.
1553      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1554      // Use the match class from the Alias definition, not the
1555      // destination instruction, as we may have an immediate that's
1556      // being munged by the match class.
1557      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1558                                 Op.SubOpIdx);
1559      Op.SrcOpName = OperandName;
1560      return;
1561    }
1562
1563  PrintFatalError(II->TheDef->getLoc(),
1564                  "error: unable to find operand: '" + OperandName + "'");
1565}
1566
1567void MatchableInfo::buildInstructionResultOperands() {
1568  const CodeGenInstruction *ResultInst = getResultInst();
1569
1570  // Loop over all operands of the result instruction, determining how to
1571  // populate them.
1572  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1573    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1574
1575    // If this is a tied operand, just copy from the previously handled operand.
1576    int TiedOp = -1;
1577    if (OpInfo.MINumOperands == 1)
1578      TiedOp = OpInfo.getTiedRegister();
1579    if (TiedOp != -1) {
1580      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1581      continue;
1582    }
1583
1584    // Find out what operand from the asmparser this MCInst operand comes from.
1585    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1586    if (OpInfo.Name.empty() || SrcOperand == -1) {
1587      // This may happen for operands that are tied to a suboperand of a
1588      // complex operand.  Simply use a dummy value here; nobody should
1589      // use this operand slot.
1590      // FIXME: The long term goal is for the MCOperand list to not contain
1591      // tied operands at all.
1592      ResOperands.push_back(ResOperand::getImmOp(0));
1593      continue;
1594    }
1595
1596    // Check if the one AsmOperand populates the entire operand.
1597    unsigned NumOperands = OpInfo.MINumOperands;
1598    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1599      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1600      continue;
1601    }
1602
1603    // Add a separate ResOperand for each suboperand.
1604    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1605      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1606             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1607             "unexpected AsmOperands for suboperands");
1608      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1609    }
1610  }
1611}
1612
1613void MatchableInfo::buildAliasResultOperands() {
1614  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1615  const CodeGenInstruction *ResultInst = getResultInst();
1616
1617  // Loop over all operands of the result instruction, determining how to
1618  // populate them.
1619  unsigned AliasOpNo = 0;
1620  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1621  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1622    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1623
1624    // If this is a tied operand, just copy from the previously handled operand.
1625    int TiedOp = -1;
1626    if (OpInfo->MINumOperands == 1)
1627      TiedOp = OpInfo->getTiedRegister();
1628    if (TiedOp != -1) {
1629      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1630      continue;
1631    }
1632
1633    // Handle all the suboperands for this operand.
1634    const std::string &OpName = OpInfo->Name;
1635    for ( ; AliasOpNo <  LastOpNo &&
1636            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1637      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1638
1639      // Find out what operand from the asmparser that this MCInst operand
1640      // comes from.
1641      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1642      case CodeGenInstAlias::ResultOperand::K_Record: {
1643        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1644        int SrcOperand = findAsmOperand(Name, SubIdx);
1645        if (SrcOperand == -1)
1646          PrintFatalError(TheDef->getLoc(), "Instruction '" +
1647                        TheDef->getName() + "' has operand '" + OpName +
1648                        "' that doesn't appear in asm string!");
1649        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1650        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1651                                                        NumOperands));
1652        break;
1653      }
1654      case CodeGenInstAlias::ResultOperand::K_Imm: {
1655        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1656        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1657        break;
1658      }
1659      case CodeGenInstAlias::ResultOperand::K_Reg: {
1660        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1661        ResOperands.push_back(ResOperand::getRegOp(Reg));
1662        break;
1663      }
1664      }
1665    }
1666  }
1667}
1668
1669static unsigned getConverterOperandID(const std::string &Name,
1670                                      SetVector<std::string> &Table,
1671                                      bool &IsNew) {
1672  IsNew = Table.insert(Name);
1673
1674  unsigned ID = IsNew ? Table.size() - 1 :
1675    std::find(Table.begin(), Table.end(), Name) - Table.begin();
1676
1677  assert(ID < Table.size());
1678
1679  return ID;
1680}
1681
1682
1683static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1684                             std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1685                             raw_ostream &OS) {
1686  SetVector<std::string> OperandConversionKinds;
1687  SetVector<std::string> InstructionConversionKinds;
1688  std::vector<std::vector<uint8_t> > ConversionTable;
1689  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1690
1691  // TargetOperandClass - This is the target's operand class, like X86Operand.
1692  std::string TargetOperandClass = Target.getName() + "Operand";
1693
1694  // Write the convert function to a separate stream, so we can drop it after
1695  // the enum. We'll build up the conversion handlers for the individual
1696  // operand types opportunistically as we encounter them.
1697  std::string ConvertFnBody;
1698  raw_string_ostream CvtOS(ConvertFnBody);
1699  // Start the unified conversion function.
1700  CvtOS << "void " << Target.getName() << ClassName << "::\n"
1701        << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1702        << "unsigned Opcode,\n"
1703        << "                const OperandVector"
1704        << " &Operands) {\n"
1705        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1706        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1707        << "  Inst.setOpcode(Opcode);\n"
1708        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1709        << "    switch (*p) {\n"
1710        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1711        << "    case CVT_Reg:\n"
1712        << "      static_cast<" << TargetOperandClass
1713        << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n"
1714        << "      break;\n"
1715        << "    case CVT_Tied:\n"
1716        << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1717        << "      break;\n";
1718
1719  std::string OperandFnBody;
1720  raw_string_ostream OpOS(OperandFnBody);
1721  // Start the operand number lookup function.
1722  OpOS << "void " << Target.getName() << ClassName << "::\n"
1723       << "convertToMapAndConstraints(unsigned Kind,\n";
1724  OpOS.indent(27);
1725  OpOS << "const OperandVector &Operands) {\n"
1726       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1727       << "  unsigned NumMCOperands = 0;\n"
1728       << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1729       << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1730       << "    switch (*p) {\n"
1731       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1732       << "    case CVT_Reg:\n"
1733       << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1734       << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
1735       << "      ++NumMCOperands;\n"
1736       << "      break;\n"
1737       << "    case CVT_Tied:\n"
1738       << "      ++NumMCOperands;\n"
1739       << "      break;\n";
1740
1741  // Pre-populate the operand conversion kinds with the standard always
1742  // available entries.
1743  OperandConversionKinds.insert("CVT_Done");
1744  OperandConversionKinds.insert("CVT_Reg");
1745  OperandConversionKinds.insert("CVT_Tied");
1746  enum { CVT_Done, CVT_Reg, CVT_Tied };
1747
1748  for (auto &II : Infos) {
1749    // Check if we have a custom match function.
1750    std::string AsmMatchConverter =
1751      II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1752    if (!AsmMatchConverter.empty()) {
1753      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1754      II->ConversionFnKind = Signature;
1755
1756      // Check if we have already generated this signature.
1757      if (!InstructionConversionKinds.insert(Signature))
1758        continue;
1759
1760      // Remember this converter for the kind enum.
1761      unsigned KindID = OperandConversionKinds.size();
1762      OperandConversionKinds.insert("CVT_" +
1763                                    getEnumNameForToken(AsmMatchConverter));
1764
1765      // Add the converter row for this instruction.
1766      ConversionTable.push_back(std::vector<uint8_t>());
1767      ConversionTable.back().push_back(KindID);
1768      ConversionTable.back().push_back(CVT_Done);
1769
1770      // Add the handler to the conversion driver function.
1771      CvtOS << "    case CVT_"
1772            << getEnumNameForToken(AsmMatchConverter) << ":\n"
1773            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
1774            << "      break;\n";
1775
1776      // FIXME: Handle the operand number lookup for custom match functions.
1777      continue;
1778    }
1779
1780    // Build the conversion function signature.
1781    std::string Signature = "Convert";
1782
1783    std::vector<uint8_t> ConversionRow;
1784
1785    // Compute the convert enum and the case body.
1786    MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
1787
1788    for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
1789      const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
1790
1791      // Generate code to populate each result operand.
1792      switch (OpInfo.Kind) {
1793      case MatchableInfo::ResOperand::RenderAsmOperand: {
1794        // This comes from something we parsed.
1795        const MatchableInfo::AsmOperand &Op =
1796          II->AsmOperands[OpInfo.AsmOperandNum];
1797
1798        // Registers are always converted the same, don't duplicate the
1799        // conversion function based on them.
1800        Signature += "__";
1801        std::string Class;
1802        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1803        Signature += Class;
1804        Signature += utostr(OpInfo.MINumOperands);
1805        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1806
1807        // Add the conversion kind, if necessary, and get the associated ID
1808        // the index of its entry in the vector).
1809        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1810                                     Op.Class->RenderMethod);
1811        Name = getEnumNameForToken(Name);
1812
1813        bool IsNewConverter = false;
1814        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1815                                            IsNewConverter);
1816
1817        // Add the operand entry to the instruction kind conversion row.
1818        ConversionRow.push_back(ID);
1819        ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
1820
1821        if (!IsNewConverter)
1822          break;
1823
1824        // This is a new operand kind. Add a handler for it to the
1825        // converter driver.
1826        CvtOS << "    case " << Name << ":\n"
1827              << "      static_cast<" << TargetOperandClass
1828              << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod
1829              << "(Inst, " << OpInfo.MINumOperands << ");\n"
1830              << "      break;\n";
1831
1832        // Add a handler for the operand number lookup.
1833        OpOS << "    case " << Name << ":\n"
1834             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
1835
1836        if (Op.Class->isRegisterClass())
1837          OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
1838        else
1839          OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
1840        OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
1841             << "      break;\n";
1842        break;
1843      }
1844      case MatchableInfo::ResOperand::TiedOperand: {
1845        // If this operand is tied to a previous one, just copy the MCInst
1846        // operand from the earlier one.We can only tie single MCOperand values.
1847        assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1848        unsigned TiedOp = OpInfo.TiedOperandNum;
1849        assert(i > TiedOp && "Tied operand precedes its target!");
1850        Signature += "__Tie" + utostr(TiedOp);
1851        ConversionRow.push_back(CVT_Tied);
1852        ConversionRow.push_back(TiedOp);
1853        break;
1854      }
1855      case MatchableInfo::ResOperand::ImmOperand: {
1856        int64_t Val = OpInfo.ImmVal;
1857        std::string Ty = "imm_" + itostr(Val);
1858        Ty = getEnumNameForToken(Ty);
1859        Signature += "__" + Ty;
1860
1861        std::string Name = "CVT_" + Ty;
1862        bool IsNewConverter = false;
1863        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1864                                            IsNewConverter);
1865        // Add the operand entry to the instruction kind conversion row.
1866        ConversionRow.push_back(ID);
1867        ConversionRow.push_back(0);
1868
1869        if (!IsNewConverter)
1870          break;
1871
1872        CvtOS << "    case " << Name << ":\n"
1873              << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
1874              << "      break;\n";
1875
1876        OpOS << "    case " << Name << ":\n"
1877             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1878             << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
1879             << "      ++NumMCOperands;\n"
1880             << "      break;\n";
1881        break;
1882      }
1883      case MatchableInfo::ResOperand::RegOperand: {
1884        std::string Reg, Name;
1885        if (!OpInfo.Register) {
1886          Name = "reg0";
1887          Reg = "0";
1888        } else {
1889          Reg = getQualifiedName(OpInfo.Register);
1890          Name = "reg" + OpInfo.Register->getName();
1891        }
1892        Signature += "__" + Name;
1893        Name = "CVT_" + Name;
1894        bool IsNewConverter = false;
1895        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1896                                            IsNewConverter);
1897        // Add the operand entry to the instruction kind conversion row.
1898        ConversionRow.push_back(ID);
1899        ConversionRow.push_back(0);
1900
1901        if (!IsNewConverter)
1902          break;
1903        CvtOS << "    case " << Name << ":\n"
1904              << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
1905              << "      break;\n";
1906
1907        OpOS << "    case " << Name << ":\n"
1908             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1909             << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
1910             << "      ++NumMCOperands;\n"
1911             << "      break;\n";
1912      }
1913      }
1914    }
1915
1916    // If there were no operands, add to the signature to that effect
1917    if (Signature == "Convert")
1918      Signature += "_NoOperands";
1919
1920    II->ConversionFnKind = Signature;
1921
1922    // Save the signature. If we already have it, don't add a new row
1923    // to the table.
1924    if (!InstructionConversionKinds.insert(Signature))
1925      continue;
1926
1927    // Add the row to the table.
1928    ConversionTable.push_back(ConversionRow);
1929  }
1930
1931  // Finish up the converter driver function.
1932  CvtOS << "    }\n  }\n}\n\n";
1933
1934  // Finish up the operand number lookup function.
1935  OpOS << "    }\n  }\n}\n\n";
1936
1937  OS << "namespace {\n";
1938
1939  // Output the operand conversion kind enum.
1940  OS << "enum OperatorConversionKind {\n";
1941  for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1942    OS << "  " << OperandConversionKinds[i] << ",\n";
1943  OS << "  CVT_NUM_CONVERTERS\n";
1944  OS << "};\n\n";
1945
1946  // Output the instruction conversion kind enum.
1947  OS << "enum InstructionConversionKind {\n";
1948  for (SetVector<std::string>::const_iterator
1949         i = InstructionConversionKinds.begin(),
1950         e = InstructionConversionKinds.end(); i != e; ++i)
1951    OS << "  " << *i << ",\n";
1952  OS << "  CVT_NUM_SIGNATURES\n";
1953  OS << "};\n\n";
1954
1955
1956  OS << "} // end anonymous namespace\n\n";
1957
1958  // Output the conversion table.
1959  OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
1960     << MaxRowLength << "] = {\n";
1961
1962  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
1963    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
1964    OS << "  // " << InstructionConversionKinds[Row] << "\n";
1965    OS << "  { ";
1966    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
1967      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
1968         << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
1969    OS << "CVT_Done },\n";
1970  }
1971
1972  OS << "};\n\n";
1973
1974  // Spit out the conversion driver function.
1975  OS << CvtOS.str();
1976
1977  // Spit out the operand number lookup function.
1978  OS << OpOS.str();
1979}
1980
1981/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
1982static void emitMatchClassEnumeration(CodeGenTarget &Target,
1983                                      std::forward_list<ClassInfo> &Infos,
1984                                      raw_ostream &OS) {
1985  OS << "namespace {\n\n";
1986
1987  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1988     << "/// instruction matching.\n";
1989  OS << "enum MatchClassKind {\n";
1990  OS << "  InvalidMatchClass = 0,\n";
1991  for (const auto &CI : Infos) {
1992    OS << "  " << CI.Name << ", // ";
1993    if (CI.Kind == ClassInfo::Token) {
1994      OS << "'" << CI.ValueName << "'\n";
1995    } else if (CI.isRegisterClass()) {
1996      if (!CI.ValueName.empty())
1997        OS << "register class '" << CI.ValueName << "'\n";
1998      else
1999        OS << "derived register class\n";
2000    } else {
2001      OS << "user defined class '" << CI.ValueName << "'\n";
2002    }
2003  }
2004  OS << "  NumMatchClassKinds\n";
2005  OS << "};\n\n";
2006
2007  OS << "}\n\n";
2008}
2009
2010/// emitValidateOperandClass - Emit the function to validate an operand class.
2011static void emitValidateOperandClass(AsmMatcherInfo &Info,
2012                                     raw_ostream &OS) {
2013  OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2014     << "MatchClassKind Kind) {\n";
2015  OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2016     << Info.Target.getName() << "Operand&)GOp;\n";
2017
2018  // The InvalidMatchClass is not to match any operand.
2019  OS << "  if (Kind == InvalidMatchClass)\n";
2020  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2021
2022  // Check for Token operands first.
2023  // FIXME: Use a more specific diagnostic type.
2024  OS << "  if (Operand.isToken())\n";
2025  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2026     << "             MCTargetAsmParser::Match_Success :\n"
2027     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2028
2029  // Check the user classes. We don't care what order since we're only
2030  // actually matching against one of them.
2031  for (const auto &CI : Info.Classes) {
2032    if (!CI.isUserClass())
2033      continue;
2034
2035    OS << "  // '" << CI.ClassName << "' class\n";
2036    OS << "  if (Kind == " << CI.Name << ") {\n";
2037    OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2038    OS << "      return MCTargetAsmParser::Match_Success;\n";
2039    if (!CI.DiagnosticType.empty())
2040      OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2041         << CI.DiagnosticType << ";\n";
2042    OS << "  }\n\n";
2043  }
2044
2045  // Check for register operands, including sub-classes.
2046  OS << "  if (Operand.isReg()) {\n";
2047  OS << "    MatchClassKind OpKind;\n";
2048  OS << "    switch (Operand.getReg()) {\n";
2049  OS << "    default: OpKind = InvalidMatchClass; break;\n";
2050  for (const auto &RC : Info.RegisterClasses)
2051    OS << "    case " << Info.Target.getName() << "::"
2052       << RC.first->getName() << ": OpKind = " << RC.second->Name
2053       << "; break;\n";
2054  OS << "    }\n";
2055  OS << "    return isSubclass(OpKind, Kind) ? "
2056     << "MCTargetAsmParser::Match_Success :\n                             "
2057     << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
2058
2059  // Generic fallthrough match failure case for operands that don't have
2060  // specialized diagnostic types.
2061  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2062  OS << "}\n\n";
2063}
2064
2065/// emitIsSubclass - Emit the subclass predicate function.
2066static void emitIsSubclass(CodeGenTarget &Target,
2067                           std::forward_list<ClassInfo> &Infos,
2068                           raw_ostream &OS) {
2069  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2070  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2071  OS << "  if (A == B)\n";
2072  OS << "    return true;\n\n";
2073
2074  std::string OStr;
2075  raw_string_ostream SS(OStr);
2076  unsigned Count = 0;
2077  SS << "  switch (A) {\n";
2078  SS << "  default:\n";
2079  SS << "    return false;\n";
2080  for (const auto &A : Infos) {
2081    std::vector<StringRef> SuperClasses;
2082    for (const auto &B : Infos) {
2083      if (&A != &B && A.isSubsetOf(B))
2084        SuperClasses.push_back(B.Name);
2085    }
2086
2087    if (SuperClasses.empty())
2088      continue;
2089    ++Count;
2090
2091    SS << "\n  case " << A.Name << ":\n";
2092
2093    if (SuperClasses.size() == 1) {
2094      SS << "    return B == " << SuperClasses.back().str() << ";\n";
2095      continue;
2096    }
2097
2098    if (!SuperClasses.empty()) {
2099      SS << "    switch (B) {\n";
2100      SS << "    default: return false;\n";
2101      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2102        SS << "    case " << SuperClasses[i].str() << ": return true;\n";
2103      SS << "    }\n";
2104    } else {
2105      // No case statement to emit
2106      SS << "    return false;\n";
2107    }
2108  }
2109  SS << "  }\n";
2110
2111  // If there were case statements emitted into the string stream, write them
2112  // to the output stream, otherwise write the default.
2113  if (Count)
2114    OS << SS.str();
2115  else
2116    OS << "  return false;\n";
2117
2118  OS << "}\n\n";
2119}
2120
2121/// emitMatchTokenString - Emit the function to match a token string to the
2122/// appropriate match class value.
2123static void emitMatchTokenString(CodeGenTarget &Target,
2124                                 std::forward_list<ClassInfo> &Infos,
2125                                 raw_ostream &OS) {
2126  // Construct the match list.
2127  std::vector<StringMatcher::StringPair> Matches;
2128  for (const auto &CI : Infos) {
2129    if (CI.Kind == ClassInfo::Token)
2130      Matches.push_back(
2131          StringMatcher::StringPair(CI.ValueName, "return " + CI.Name + ";"));
2132  }
2133
2134  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2135
2136  StringMatcher("Name", Matches, OS).Emit();
2137
2138  OS << "  return InvalidMatchClass;\n";
2139  OS << "}\n\n";
2140}
2141
2142/// emitMatchRegisterName - Emit the function to match a string to the target
2143/// specific register enum.
2144static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2145                                  raw_ostream &OS) {
2146  // Construct the match list.
2147  std::vector<StringMatcher::StringPair> Matches;
2148  const auto &Regs = Target.getRegBank().getRegisters();
2149  for (const CodeGenRegister &Reg : Regs) {
2150    if (Reg.TheDef->getValueAsString("AsmName").empty())
2151      continue;
2152
2153    Matches.push_back(
2154        StringMatcher::StringPair(Reg.TheDef->getValueAsString("AsmName"),
2155                                  "return " + utostr(Reg.EnumValue) + ";"));
2156  }
2157
2158  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2159
2160  StringMatcher("Name", Matches, OS).Emit();
2161
2162  OS << "  return 0;\n";
2163  OS << "}\n\n";
2164}
2165
2166static const char *getMinimalTypeForRange(uint64_t Range) {
2167  assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
2168  if (Range > 0xFFFFFFFFULL)
2169    return "uint64_t";
2170  if (Range > 0xFFFF)
2171    return "uint32_t";
2172  if (Range > 0xFF)
2173    return "uint16_t";
2174  return "uint8_t";
2175}
2176
2177static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
2178  uint64_t MaxIndex = Info.SubtargetFeatures.size();
2179  if (MaxIndex > 0)
2180    MaxIndex--;
2181  return getMinimalTypeForRange(1ULL << MaxIndex);
2182}
2183
2184/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2185/// definitions.
2186static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2187                                                raw_ostream &OS) {
2188  OS << "// Flags for subtarget features that participate in "
2189     << "instruction matching.\n";
2190  OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
2191     << " {\n";
2192  for (const auto &SF : Info.SubtargetFeatures) {
2193    const SubtargetFeatureInfo &SFI = SF.second;
2194    OS << "  " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
2195  }
2196  OS << "  Feature_None = 0\n";
2197  OS << "};\n\n";
2198}
2199
2200/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2201static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2202  // Get the set of diagnostic types from all of the operand classes.
2203  std::set<StringRef> Types;
2204  for (std::map<Record*, ClassInfo*>::const_iterator
2205       I = Info.AsmOperandClasses.begin(),
2206       E = Info.AsmOperandClasses.end(); I != E; ++I) {
2207    if (!I->second->DiagnosticType.empty())
2208      Types.insert(I->second->DiagnosticType);
2209  }
2210
2211  if (Types.empty()) return;
2212
2213  // Now emit the enum entries.
2214  for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2215       I != E; ++I)
2216    OS << "  Match_" << *I << ",\n";
2217  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2218}
2219
2220/// emitGetSubtargetFeatureName - Emit the helper function to get the
2221/// user-level name for a subtarget feature.
2222static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2223  OS << "// User-level names for subtarget features that participate in\n"
2224     << "// instruction matching.\n"
2225     << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2226  if (!Info.SubtargetFeatures.empty()) {
2227    OS << "  switch(Val) {\n";
2228    for (const auto &SF : Info.SubtargetFeatures) {
2229      const SubtargetFeatureInfo &SFI = SF.second;
2230      // FIXME: Totally just a placeholder name to get the algorithm working.
2231      OS << "  case " << SFI.getEnumName() << ": return \""
2232         << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2233    }
2234    OS << "  default: return \"(unknown)\";\n";
2235    OS << "  }\n";
2236  } else {
2237    // Nothing to emit, so skip the switch
2238    OS << "  return \"(unknown)\";\n";
2239  }
2240  OS << "}\n\n";
2241}
2242
2243/// emitComputeAvailableFeatures - Emit the function to compute the list of
2244/// available features given a subtarget.
2245static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2246                                         raw_ostream &OS) {
2247  std::string ClassName =
2248    Info.AsmParser->getValueAsString("AsmParserClassName");
2249
2250  OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
2251     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
2252  OS << "  uint64_t Features = 0;\n";
2253  for (const auto &SF : Info.SubtargetFeatures) {
2254    const SubtargetFeatureInfo &SFI = SF.second;
2255
2256    OS << "  if (";
2257    std::string CondStorage =
2258      SFI.TheDef->getValueAsString("AssemblerCondString");
2259    StringRef Conds = CondStorage;
2260    std::pair<StringRef,StringRef> Comma = Conds.split(',');
2261    bool First = true;
2262    do {
2263      if (!First)
2264        OS << " && ";
2265
2266      bool Neg = false;
2267      StringRef Cond = Comma.first;
2268      if (Cond[0] == '!') {
2269        Neg = true;
2270        Cond = Cond.substr(1);
2271      }
2272
2273      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
2274      if (Neg)
2275        OS << " == 0";
2276      else
2277        OS << " != 0";
2278      OS << ")";
2279
2280      if (Comma.second.empty())
2281        break;
2282
2283      First = false;
2284      Comma = Comma.second.split(',');
2285    } while (true);
2286
2287    OS << ")\n";
2288    OS << "    Features |= " << SFI.getEnumName() << ";\n";
2289  }
2290  OS << "  return Features;\n";
2291  OS << "}\n\n";
2292}
2293
2294static std::string GetAliasRequiredFeatures(Record *R,
2295                                            const AsmMatcherInfo &Info) {
2296  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2297  std::string Result;
2298  unsigned NumFeatures = 0;
2299  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2300    const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2301
2302    if (!F)
2303      PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2304                    "' is not marked as an AssemblerPredicate!");
2305
2306    if (NumFeatures)
2307      Result += '|';
2308
2309    Result += F->getEnumName();
2310    ++NumFeatures;
2311  }
2312
2313  if (NumFeatures > 1)
2314    Result = '(' + Result + ')';
2315  return Result;
2316}
2317
2318static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2319                                     std::vector<Record*> &Aliases,
2320                                     unsigned Indent = 0,
2321                                  StringRef AsmParserVariantName = StringRef()){
2322  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2323  // iteration order of the map is stable.
2324  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2325
2326  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2327    Record *R = Aliases[i];
2328    // FIXME: Allow AssemblerVariantName to be a comma separated list.
2329    std::string AsmVariantName = R->getValueAsString("AsmVariantName");
2330    if (AsmVariantName != AsmParserVariantName)
2331      continue;
2332    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2333  }
2334  if (AliasesFromMnemonic.empty())
2335    return;
2336
2337  // Process each alias a "from" mnemonic at a time, building the code executed
2338  // by the string remapper.
2339  std::vector<StringMatcher::StringPair> Cases;
2340  for (std::map<std::string, std::vector<Record*> >::iterator
2341       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2342       I != E; ++I) {
2343    const std::vector<Record*> &ToVec = I->second;
2344
2345    // Loop through each alias and emit code that handles each case.  If there
2346    // are two instructions without predicates, emit an error.  If there is one,
2347    // emit it last.
2348    std::string MatchCode;
2349    int AliasWithNoPredicate = -1;
2350
2351    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2352      Record *R = ToVec[i];
2353      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2354
2355      // If this unconditionally matches, remember it for later and diagnose
2356      // duplicates.
2357      if (FeatureMask.empty()) {
2358        if (AliasWithNoPredicate != -1) {
2359          // We can't have two aliases from the same mnemonic with no predicate.
2360          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2361                     "two MnemonicAliases with the same 'from' mnemonic!");
2362          PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2363        }
2364
2365        AliasWithNoPredicate = i;
2366        continue;
2367      }
2368      if (R->getValueAsString("ToMnemonic") == I->first)
2369        PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2370
2371      if (!MatchCode.empty())
2372        MatchCode += "else ";
2373      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2374      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2375    }
2376
2377    if (AliasWithNoPredicate != -1) {
2378      Record *R = ToVec[AliasWithNoPredicate];
2379      if (!MatchCode.empty())
2380        MatchCode += "else\n  ";
2381      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2382    }
2383
2384    MatchCode += "return;";
2385
2386    Cases.push_back(std::make_pair(I->first, MatchCode));
2387  }
2388  StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2389}
2390
2391/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2392/// emit a function for them and return true, otherwise return false.
2393static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2394                                CodeGenTarget &Target) {
2395  // Ignore aliases when match-prefix is set.
2396  if (!MatchPrefix.empty())
2397    return false;
2398
2399  std::vector<Record*> Aliases =
2400    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2401  if (Aliases.empty()) return false;
2402
2403  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2404    "uint64_t Features, unsigned VariantID) {\n";
2405  OS << "  switch (VariantID) {\n";
2406  unsigned VariantCount = Target.getAsmParserVariantCount();
2407  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2408    Record *AsmVariant = Target.getAsmParserVariant(VC);
2409    int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2410    std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
2411    OS << "    case " << AsmParserVariantNo << ":\n";
2412    emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2413                             AsmParserVariantName);
2414    OS << "    break;\n";
2415  }
2416  OS << "  }\n";
2417
2418  // Emit aliases that apply to all variants.
2419  emitMnemonicAliasVariant(OS, Info, Aliases);
2420
2421  OS << "}\n\n";
2422
2423  return true;
2424}
2425
2426static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2427                              const AsmMatcherInfo &Info, StringRef ClassName,
2428                              StringToOffsetTable &StringTable,
2429                              unsigned MaxMnemonicIndex) {
2430  unsigned MaxMask = 0;
2431  for (std::vector<OperandMatchEntry>::const_iterator it =
2432       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2433       it != ie; ++it) {
2434    MaxMask |= it->OperandMask;
2435  }
2436
2437  // Emit the static custom operand parsing table;
2438  OS << "namespace {\n";
2439  OS << "  struct OperandMatchEntry {\n";
2440  OS << "    " << getMinimalRequiredFeaturesType(Info)
2441               << " RequiredFeatures;\n";
2442  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2443               << " Mnemonic;\n";
2444  OS << "    " << getMinimalTypeForRange(std::distance(
2445                      Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2446  OS << "    " << getMinimalTypeForRange(MaxMask)
2447               << " OperandMask;\n\n";
2448  OS << "    StringRef getMnemonic() const {\n";
2449  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2450  OS << "                       MnemonicTable[Mnemonic]);\n";
2451  OS << "    }\n";
2452  OS << "  };\n\n";
2453
2454  OS << "  // Predicate for searching for an opcode.\n";
2455  OS << "  struct LessOpcodeOperand {\n";
2456  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2457  OS << "      return LHS.getMnemonic()  < RHS;\n";
2458  OS << "    }\n";
2459  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2460  OS << "      return LHS < RHS.getMnemonic();\n";
2461  OS << "    }\n";
2462  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2463  OS << " const OperandMatchEntry &RHS) {\n";
2464  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2465  OS << "    }\n";
2466  OS << "  };\n";
2467
2468  OS << "} // end anonymous namespace.\n\n";
2469
2470  OS << "static const OperandMatchEntry OperandMatchTable["
2471     << Info.OperandMatchInfo.size() << "] = {\n";
2472
2473  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2474  for (std::vector<OperandMatchEntry>::const_iterator it =
2475       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2476       it != ie; ++it) {
2477    const OperandMatchEntry &OMI = *it;
2478    const MatchableInfo &II = *OMI.MI;
2479
2480    OS << "  { ";
2481
2482    // Write the required features mask.
2483    if (!II.RequiredFeatures.empty()) {
2484      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2485        if (i) OS << "|";
2486        OS << II.RequiredFeatures[i]->getEnumName();
2487      }
2488    } else
2489      OS << "0";
2490
2491    // Store a pascal-style length byte in the mnemonic.
2492    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2493    OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2494       << " /* " << II.Mnemonic << " */, ";
2495
2496    OS << OMI.CI->Name;
2497
2498    OS << ", " << OMI.OperandMask;
2499    OS << " /* ";
2500    bool printComma = false;
2501    for (int i = 0, e = 31; i !=e; ++i)
2502      if (OMI.OperandMask & (1 << i)) {
2503        if (printComma)
2504          OS << ", ";
2505        OS << i;
2506        printComma = true;
2507      }
2508    OS << " */";
2509
2510    OS << " },\n";
2511  }
2512  OS << "};\n\n";
2513
2514  // Emit the operand class switch to call the correct custom parser for
2515  // the found operand class.
2516  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2517     << Target.getName() << ClassName << "::\n"
2518     << "tryCustomParseOperand(OperandVector"
2519     << " &Operands,\n                      unsigned MCK) {\n\n"
2520     << "  switch(MCK) {\n";
2521
2522  for (const auto &CI : Info.Classes) {
2523    if (CI.ParserMethod.empty())
2524      continue;
2525    OS << "  case " << CI.Name << ":\n"
2526       << "    return " << CI.ParserMethod << "(Operands);\n";
2527  }
2528
2529  OS << "  default:\n";
2530  OS << "    return MatchOperand_NoMatch;\n";
2531  OS << "  }\n";
2532  OS << "  return MatchOperand_NoMatch;\n";
2533  OS << "}\n\n";
2534
2535  // Emit the static custom operand parser. This code is very similar with
2536  // the other matcher. Also use MatchResultTy here just in case we go for
2537  // a better error handling.
2538  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2539     << Target.getName() << ClassName << "::\n"
2540     << "MatchOperandParserImpl(OperandVector"
2541     << " &Operands,\n                       StringRef Mnemonic) {\n";
2542
2543  // Emit code to get the available features.
2544  OS << "  // Get the current feature set.\n";
2545  OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2546
2547  OS << "  // Get the next operand index.\n";
2548  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2549
2550  // Emit code to search the table.
2551  OS << "  // Search the table.\n";
2552  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2553  OS << " MnemonicRange =\n";
2554  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2555     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2556     << "                     LessOpcodeOperand());\n\n";
2557
2558  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2559  OS << "    return MatchOperand_NoMatch;\n\n";
2560
2561  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2562     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2563
2564  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2565  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2566
2567  // Emit check that the required features are available.
2568  OS << "    // check if the available features match\n";
2569  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2570     << "!= it->RequiredFeatures) {\n";
2571  OS << "      continue;\n";
2572  OS << "    }\n\n";
2573
2574  // Emit check to ensure the operand number matches.
2575  OS << "    // check if the operand in question has a custom parser.\n";
2576  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2577  OS << "      continue;\n\n";
2578
2579  // Emit call to the custom parser method
2580  OS << "    // call custom parse method to handle the operand\n";
2581  OS << "    OperandMatchResultTy Result = ";
2582  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2583  OS << "    if (Result != MatchOperand_NoMatch)\n";
2584  OS << "      return Result;\n";
2585  OS << "  }\n\n";
2586
2587  OS << "  // Okay, we had no match.\n";
2588  OS << "  return MatchOperand_NoMatch;\n";
2589  OS << "}\n\n";
2590}
2591
2592void AsmMatcherEmitter::run(raw_ostream &OS) {
2593  CodeGenTarget Target(Records);
2594  Record *AsmParser = Target.getAsmParser();
2595  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2596
2597  // Compute the information on the instructions to match.
2598  AsmMatcherInfo Info(AsmParser, Target, Records);
2599  Info.buildInfo();
2600
2601  // Sort the instruction table using the partial order on classes. We use
2602  // stable_sort to ensure that ambiguous instructions are still
2603  // deterministically ordered.
2604  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2605                   [](const std::unique_ptr<MatchableInfo> &a,
2606                      const std::unique_ptr<MatchableInfo> &b){
2607                     return *a < *b;});
2608
2609  DEBUG_WITH_TYPE("instruction_info", {
2610      for (const auto &MI : Info.Matchables)
2611        MI->dump();
2612    });
2613
2614  // Check for ambiguous matchables.
2615  DEBUG_WITH_TYPE("ambiguous_instrs", {
2616    unsigned NumAmbiguous = 0;
2617    for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
2618         ++I) {
2619      for (auto J = std::next(I); J != E; ++J) {
2620        const MatchableInfo &A = **I;
2621        const MatchableInfo &B = **J;
2622
2623        if (A.couldMatchAmbiguouslyWith(B)) {
2624          errs() << "warning: ambiguous matchables:\n";
2625          A.dump();
2626          errs() << "\nis incomparable with:\n";
2627          B.dump();
2628          errs() << "\n\n";
2629          ++NumAmbiguous;
2630        }
2631      }
2632    }
2633    if (NumAmbiguous)
2634      errs() << "warning: " << NumAmbiguous
2635             << " ambiguous matchables!\n";
2636  });
2637
2638  // Compute the information on the custom operand parsing.
2639  Info.buildOperandMatchInfo();
2640
2641  // Write the output.
2642
2643  // Information for the class declaration.
2644  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2645  OS << "#undef GET_ASSEMBLER_HEADER\n";
2646  OS << "  // This should be included into the middle of the declaration of\n";
2647  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2648  OS << "  uint64_t ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2649  OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2650     << "unsigned Opcode,\n"
2651     << "                       const OperandVector "
2652     << "&Operands);\n";
2653  OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
2654  OS << "           const OperandVector &Operands) override;\n";
2655  OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n";
2656  OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
2657     << "                                MCInst &Inst,\n"
2658     << "                                uint64_t &ErrorInfo,"
2659     << " bool matchingInlineAsm,\n"
2660     << "                                unsigned VariantID = 0);\n";
2661
2662  if (!Info.OperandMatchInfo.empty()) {
2663    OS << "\n  enum OperandMatchResultTy {\n";
2664    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2665    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2666    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2667    OS << "  };\n";
2668    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2669    OS << "    OperandVector &Operands,\n";
2670    OS << "    StringRef Mnemonic);\n";
2671
2672    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2673    OS << "    OperandVector &Operands,\n";
2674    OS << "    unsigned MCK);\n\n";
2675  }
2676
2677  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2678
2679  // Emit the operand match diagnostic enum names.
2680  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2681  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2682  emitOperandDiagnosticTypes(Info, OS);
2683  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2684
2685
2686  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2687  OS << "#undef GET_REGISTER_MATCHER\n\n";
2688
2689  // Emit the subtarget feature enumeration.
2690  emitSubtargetFeatureFlagEnumeration(Info, OS);
2691
2692  // Emit the function to match a register name to number.
2693  // This should be omitted for Mips target
2694  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2695    emitMatchRegisterName(Target, AsmParser, OS);
2696
2697  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2698
2699  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2700  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2701
2702  // Generate the helper function to get the names for subtarget features.
2703  emitGetSubtargetFeatureName(Info, OS);
2704
2705  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2706
2707  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2708  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2709
2710  // Generate the function that remaps for mnemonic aliases.
2711  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
2712
2713  // Generate the convertToMCInst function to convert operands into an MCInst.
2714  // Also, generate the convertToMapAndConstraints function for MS-style inline
2715  // assembly.  The latter doesn't actually generate a MCInst.
2716  emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
2717
2718  // Emit the enumeration for classes which participate in matching.
2719  emitMatchClassEnumeration(Target, Info.Classes, OS);
2720
2721  // Emit the routine to match token strings to their match class.
2722  emitMatchTokenString(Target, Info.Classes, OS);
2723
2724  // Emit the subclass predicate routine.
2725  emitIsSubclass(Target, Info.Classes, OS);
2726
2727  // Emit the routine to validate an operand against a match class.
2728  emitValidateOperandClass(Info, OS);
2729
2730  // Emit the available features compute function.
2731  emitComputeAvailableFeatures(Info, OS);
2732
2733
2734  StringToOffsetTable StringTable;
2735
2736  size_t MaxNumOperands = 0;
2737  unsigned MaxMnemonicIndex = 0;
2738  bool HasDeprecation = false;
2739  for (const auto &MI : Info.Matchables) {
2740    MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
2741    HasDeprecation |= MI->HasDeprecation;
2742
2743    // Store a pascal-style length byte in the mnemonic.
2744    std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
2745    MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2746                        StringTable.GetOrAddStringOffset(LenMnemonic, false));
2747  }
2748
2749  OS << "static const char *const MnemonicTable =\n";
2750  StringTable.EmitString(OS);
2751  OS << ";\n\n";
2752
2753  // Emit the static match table; unused classes get initalized to 0 which is
2754  // guaranteed to be InvalidMatchClass.
2755  //
2756  // FIXME: We can reduce the size of this table very easily. First, we change
2757  // it so that store the kinds in separate bit-fields for each index, which
2758  // only needs to be the max width used for classes at that index (we also need
2759  // to reject based on this during classification). If we then make sure to
2760  // order the match kinds appropriately (putting mnemonics last), then we
2761  // should only end up using a few bits for each class, especially the ones
2762  // following the mnemonic.
2763  OS << "namespace {\n";
2764  OS << "  struct MatchEntry {\n";
2765  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2766               << " Mnemonic;\n";
2767  OS << "    uint16_t Opcode;\n";
2768  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2769               << " ConvertFn;\n";
2770  OS << "    " << getMinimalRequiredFeaturesType(Info)
2771               << " RequiredFeatures;\n";
2772  OS << "    " << getMinimalTypeForRange(
2773                      std::distance(Info.Classes.begin(), Info.Classes.end()))
2774     << " Classes[" << MaxNumOperands << "];\n";
2775  OS << "    StringRef getMnemonic() const {\n";
2776  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2777  OS << "                       MnemonicTable[Mnemonic]);\n";
2778  OS << "    }\n";
2779  OS << "  };\n\n";
2780
2781  OS << "  // Predicate for searching for an opcode.\n";
2782  OS << "  struct LessOpcode {\n";
2783  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2784  OS << "      return LHS.getMnemonic() < RHS;\n";
2785  OS << "    }\n";
2786  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2787  OS << "      return LHS < RHS.getMnemonic();\n";
2788  OS << "    }\n";
2789  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2790  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2791  OS << "    }\n";
2792  OS << "  };\n";
2793
2794  OS << "} // end anonymous namespace.\n\n";
2795
2796  unsigned VariantCount = Target.getAsmParserVariantCount();
2797  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2798    Record *AsmVariant = Target.getAsmParserVariant(VC);
2799    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2800
2801    OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
2802
2803    for (const auto &MI : Info.Matchables) {
2804      if (MI->AsmVariantID != AsmVariantNo)
2805        continue;
2806
2807      // Store a pascal-style length byte in the mnemonic.
2808      std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
2809      OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2810         << " /* " << MI->Mnemonic << " */, "
2811         << Target.getName() << "::"
2812         << MI->getResultInst()->TheDef->getName() << ", "
2813         << MI->ConversionFnKind << ", ";
2814
2815      // Write the required features mask.
2816      if (!MI->RequiredFeatures.empty()) {
2817        for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
2818          if (i) OS << "|";
2819          OS << MI->RequiredFeatures[i]->getEnumName();
2820        }
2821      } else
2822        OS << "0";
2823
2824      OS << ", { ";
2825      for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
2826        const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
2827
2828        if (i) OS << ", ";
2829        OS << Op.Class->Name;
2830      }
2831      OS << " }, },\n";
2832    }
2833
2834    OS << "};\n\n";
2835  }
2836
2837  // A method to determine if a mnemonic is in the list.
2838  OS << "bool " << Target.getName() << ClassName << "::\n"
2839     << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
2840  OS << "  // Find the appropriate table for this asm variant.\n";
2841  OS << "  const MatchEntry *Start, *End;\n";
2842  OS << "  switch (VariantID) {\n";
2843  OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
2844  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2845    Record *AsmVariant = Target.getAsmParserVariant(VC);
2846    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2847    OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2848       << "); End = std::end(MatchTable" << VC << "); break;\n";
2849  }
2850  OS << "  }\n";
2851  OS << "  // Search the table.\n";
2852  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2853  OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
2854  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2855  OS << "}\n\n";
2856
2857  // Finally, build the match function.
2858  OS << "unsigned " << Target.getName() << ClassName << "::\n"
2859     << "MatchInstructionImpl(const OperandVector &Operands,\n";
2860  OS << "                     MCInst &Inst, uint64_t &ErrorInfo,\n"
2861     << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
2862
2863  OS << "  // Eliminate obvious mismatches.\n";
2864  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2865  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2866  OS << "    return Match_InvalidOperand;\n";
2867  OS << "  }\n\n";
2868
2869  // Emit code to get the available features.
2870  OS << "  // Get the current feature set.\n";
2871  OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2872
2873  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2874  OS << "  StringRef Mnemonic = ((" << Target.getName()
2875     << "Operand&)*Operands[0]).getToken();\n\n";
2876
2877  if (HasMnemonicAliases) {
2878    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2879    OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
2880  }
2881
2882  // Emit code to compute the class list for this operand vector.
2883  OS << "  // Some state to try to produce better error messages.\n";
2884  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2885  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2886  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2887  OS << "  uint64_t MissingFeatures = ~0ULL;\n";
2888  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2889  OS << "  // wrong for all instances of the instruction.\n";
2890  OS << "  ErrorInfo = ~0ULL;\n";
2891
2892  // Emit code to search the table.
2893  OS << "  // Find the appropriate table for this asm variant.\n";
2894  OS << "  const MatchEntry *Start, *End;\n";
2895  OS << "  switch (VariantID) {\n";
2896  OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
2897  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2898    Record *AsmVariant = Target.getAsmParserVariant(VC);
2899    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2900    OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2901       << "); End = std::end(MatchTable" << VC << "); break;\n";
2902  }
2903  OS << "  }\n";
2904  OS << "  // Search the table.\n";
2905  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2906  OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
2907
2908  OS << "  // Return a more specific error code if no mnemonics match.\n";
2909  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2910  OS << "    return Match_MnemonicFail;\n\n";
2911
2912  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2913     << "*ie = MnemonicRange.second;\n";
2914  OS << "       it != ie; ++it) {\n";
2915
2916  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2917  OS << "    assert(Mnemonic == it->getMnemonic());\n";
2918
2919  // Emit check that the subclasses match.
2920  OS << "    bool OperandsValid = true;\n";
2921  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2922  OS << "      if (i + 1 >= Operands.size()) {\n";
2923  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2924  OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
2925  OS << "        break;\n";
2926  OS << "      }\n";
2927  OS << "      unsigned Diag = validateOperandClass(*Operands[i+1],\n";
2928  OS.indent(43);
2929  OS << "(MatchClassKind)it->Classes[i]);\n";
2930  OS << "      if (Diag == Match_Success)\n";
2931  OS << "        continue;\n";
2932  OS << "      // If the generic handler indicates an invalid operand\n";
2933  OS << "      // failure, check for a special case.\n";
2934  OS << "      if (Diag == Match_InvalidOperand) {\n";
2935  OS << "        Diag = validateTargetOperandClass(*Operands[i+1],\n";
2936  OS.indent(43);
2937  OS << "(MatchClassKind)it->Classes[i]);\n";
2938  OS << "        if (Diag == Match_Success)\n";
2939  OS << "          continue;\n";
2940  OS << "      }\n";
2941  OS << "      // If this operand is broken for all of the instances of this\n";
2942  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2943  OS << "      // If we already had a match that only failed due to a\n";
2944  OS << "      // target predicate, that diagnostic is preferred.\n";
2945  OS << "      if (!HadMatchOtherThanPredicate &&\n";
2946  OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
2947  OS << "        ErrorInfo = i+1;\n";
2948  OS << "        // InvalidOperand is the default. Prefer specificity.\n";
2949  OS << "        if (Diag != Match_InvalidOperand)\n";
2950  OS << "          RetCode = Diag;\n";
2951  OS << "      }\n";
2952  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2953  OS << "      OperandsValid = false;\n";
2954  OS << "      break;\n";
2955  OS << "    }\n\n";
2956
2957  OS << "    if (!OperandsValid) continue;\n";
2958
2959  // Emit check that the required features are available.
2960  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2961     << "!= it->RequiredFeatures) {\n";
2962  OS << "      HadMatchOtherThanFeatures = true;\n";
2963  OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
2964        "~AvailableFeatures;\n";
2965  OS << "      if (countPopulation(NewMissingFeatures) <=\n"
2966        "          countPopulation(MissingFeatures))\n";
2967  OS << "        MissingFeatures = NewMissingFeatures;\n";
2968  OS << "      continue;\n";
2969  OS << "    }\n";
2970  OS << "\n";
2971  OS << "    Inst.clear();\n\n";
2972  OS << "    if (matchingInlineAsm) {\n";
2973  OS << "      Inst.setOpcode(it->Opcode);\n";
2974  OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
2975  OS << "      return Match_Success;\n";
2976  OS << "    }\n\n";
2977  OS << "    // We have selected a definite instruction, convert the parsed\n"
2978     << "    // operands into the appropriate MCInst.\n";
2979  OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
2980  OS << "\n";
2981
2982  // Verify the instruction with the target-specific match predicate function.
2983  OS << "    // We have a potential match. Check the target predicate to\n"
2984     << "    // handle any context sensitive constraints.\n"
2985     << "    unsigned MatchResult;\n"
2986     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2987     << " Match_Success) {\n"
2988     << "      Inst.clear();\n"
2989     << "      RetCode = MatchResult;\n"
2990     << "      HadMatchOtherThanPredicate = true;\n"
2991     << "      continue;\n"
2992     << "    }\n\n";
2993
2994  // Call the post-processing function, if used.
2995  std::string InsnCleanupFn =
2996    AsmParser->getValueAsString("AsmParserInstCleanup");
2997  if (!InsnCleanupFn.empty())
2998    OS << "    " << InsnCleanupFn << "(Inst);\n";
2999
3000  if (HasDeprecation) {
3001    OS << "    std::string Info;\n";
3002    OS << "    if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, STI, Info)) {\n";
3003    OS << "      SMLoc Loc = ((" << Target.getName()
3004       << "Operand&)*Operands[0]).getStartLoc();\n";
3005    OS << "      getParser().Warning(Loc, Info, None);\n";
3006    OS << "    }\n";
3007  }
3008
3009  OS << "    return Match_Success;\n";
3010  OS << "  }\n\n";
3011
3012  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3013  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3014  OS << "    return RetCode;\n\n";
3015  OS << "  // Missing feature matches return which features were missing\n";
3016  OS << "  ErrorInfo = MissingFeatures;\n";
3017  OS << "  return Match_MissingFeature;\n";
3018  OS << "}\n\n";
3019
3020  if (!Info.OperandMatchInfo.empty())
3021    emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3022                             MaxMnemonicIndex);
3023
3024  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3025}
3026
3027namespace llvm {
3028
3029void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3030  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3031  AsmMatcherEmitter(RK).run(OS);
3032}
3033
3034} // End llvm namespace
3035