1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines structures to encapsulate information gleaned from the
11// target register and register class definitions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenRegisters.h"
16#include "CodeGenTarget.h"
17#include "llvm/ADT/IntEqClasses.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/TableGen/Error.h"
24
25using namespace llvm;
26
27#define DEBUG_TYPE "regalloc-emitter"
28
29//===----------------------------------------------------------------------===//
30//                             CodeGenSubRegIndex
31//===----------------------------------------------------------------------===//
32
33CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34  : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35  Name = R->getName();
36  if (R->getValue("Namespace"))
37    Namespace = R->getValueAsString("Namespace");
38  Size = R->getValueAsInt("Size");
39  Offset = R->getValueAsInt("Offset");
40}
41
42CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43                                       unsigned Enum)
44  : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45    EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46}
47
48std::string CodeGenSubRegIndex::getQualifiedName() const {
49  std::string N = getNamespace();
50  if (!N.empty())
51    N += "::";
52  N += getName();
53  return N;
54}
55
56void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57  if (!TheDef)
58    return;
59
60  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61  if (!Comps.empty()) {
62    if (Comps.size() != 2)
63      PrintFatalError(TheDef->getLoc(),
64                      "ComposedOf must have exactly two entries");
65    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67    CodeGenSubRegIndex *X = A->addComposite(B, this);
68    if (X)
69      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70  }
71
72  std::vector<Record*> Parts =
73    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74  if (!Parts.empty()) {
75    if (Parts.size() < 2)
76      PrintFatalError(TheDef->getLoc(),
77                      "CoveredBySubRegs must have two or more entries");
78    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79    for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80      IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81    RegBank.addConcatSubRegIndex(IdxParts, this);
82  }
83}
84
85unsigned CodeGenSubRegIndex::computeLaneMask() const {
86  // Already computed?
87  if (LaneMask)
88    return LaneMask;
89
90  // Recursion guard, shouldn't be required.
91  LaneMask = ~0u;
92
93  // The lane mask is simply the union of all sub-indices.
94  unsigned M = 0;
95  for (const auto &C : Composed)
96    M |= C.second->computeLaneMask();
97  assert(M && "Missing lane mask, sub-register cycle?");
98  LaneMask = M;
99  return LaneMask;
100}
101
102//===----------------------------------------------------------------------===//
103//                              CodeGenRegister
104//===----------------------------------------------------------------------===//
105
106CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107  : TheDef(R),
108    EnumValue(Enum),
109    CostPerUse(R->getValueAsInt("CostPerUse")),
110    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111    HasDisjunctSubRegs(false),
112    SubRegsComplete(false),
113    SuperRegsComplete(false),
114    TopoSig(~0u)
115{}
116
117void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120
121  if (SRIs.size() != SRs.size())
122    PrintFatalError(TheDef->getLoc(),
123                    "SubRegs and SubRegIndices must have the same size");
124
125  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128  }
129
130  // Also compute leading super-registers. Each register has a list of
131  // covered-by-subregs super-registers where it appears as the first explicit
132  // sub-register.
133  //
134  // This is used by computeSecondarySubRegs() to find candidates.
135  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137
138  // Add ad hoc alias links. This is a symmetric relationship between two
139  // registers, so build a symmetric graph by adding links in both ends.
140  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142    CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143    ExplicitAliases.push_back(Reg);
144    Reg->ExplicitAliases.push_back(this);
145  }
146}
147
148const std::string &CodeGenRegister::getName() const {
149  assert(TheDef && "no def");
150  return TheDef->getName();
151}
152
153namespace {
154// Iterate over all register units in a set of registers.
155class RegUnitIterator {
156  CodeGenRegister::Vec::const_iterator RegI, RegE;
157  CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
158
159public:
160  RegUnitIterator(const CodeGenRegister::Vec &Regs):
161    RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
162
163    if (RegI != RegE) {
164      UnitI = (*RegI)->getRegUnits().begin();
165      UnitE = (*RegI)->getRegUnits().end();
166      advance();
167    }
168  }
169
170  bool isValid() const { return UnitI != UnitE; }
171
172  unsigned operator* () const { assert(isValid()); return *UnitI; }
173
174  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
175
176  /// Preincrement.  Move to the next unit.
177  void operator++() {
178    assert(isValid() && "Cannot advance beyond the last operand");
179    ++UnitI;
180    advance();
181  }
182
183protected:
184  void advance() {
185    while (UnitI == UnitE) {
186      if (++RegI == RegE)
187        break;
188      UnitI = (*RegI)->getRegUnits().begin();
189      UnitE = (*RegI)->getRegUnits().end();
190    }
191  }
192};
193} // namespace
194
195// Return true of this unit appears in RegUnits.
196static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
197  return RegUnits.test(Unit);
198}
199
200// Inherit register units from subregisters.
201// Return true if the RegUnits changed.
202bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
203  bool changed = false;
204  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
205       I != E; ++I) {
206    CodeGenRegister *SR = I->second;
207    // Merge the subregister's units into this register's RegUnits.
208    changed |= (RegUnits |= SR->RegUnits);
209  }
210
211  return changed;
212}
213
214const CodeGenRegister::SubRegMap &
215CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
216  // Only compute this map once.
217  if (SubRegsComplete)
218    return SubRegs;
219  SubRegsComplete = true;
220
221  HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
222
223  // First insert the explicit subregs and make sure they are fully indexed.
224  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
225    CodeGenRegister *SR = ExplicitSubRegs[i];
226    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
227    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
228      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
229                      " appears twice in Register " + getName());
230    // Map explicit sub-registers first, so the names take precedence.
231    // The inherited sub-registers are mapped below.
232    SubReg2Idx.insert(std::make_pair(SR, Idx));
233  }
234
235  // Keep track of inherited subregs and how they can be reached.
236  SmallPtrSet<CodeGenRegister*, 8> Orphans;
237
238  // Clone inherited subregs and place duplicate entries in Orphans.
239  // Here the order is important - earlier subregs take precedence.
240  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
241    CodeGenRegister *SR = ExplicitSubRegs[i];
242    const SubRegMap &Map = SR->computeSubRegs(RegBank);
243    HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
244
245    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
246         ++SI) {
247      if (!SubRegs.insert(*SI).second)
248        Orphans.insert(SI->second);
249    }
250  }
251
252  // Expand any composed subreg indices.
253  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
254  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
255  // expanded subreg indices recursively.
256  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
257  for (unsigned i = 0; i != Indices.size(); ++i) {
258    CodeGenSubRegIndex *Idx = Indices[i];
259    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
260    CodeGenRegister *SR = SubRegs[Idx];
261    const SubRegMap &Map = SR->computeSubRegs(RegBank);
262
263    // Look at the possible compositions of Idx.
264    // They may not all be supported by SR.
265    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
266           E = Comps.end(); I != E; ++I) {
267      SubRegMap::const_iterator SRI = Map.find(I->first);
268      if (SRI == Map.end())
269        continue; // Idx + I->first doesn't exist in SR.
270      // Add I->second as a name for the subreg SRI->second, assuming it is
271      // orphaned, and the name isn't already used for something else.
272      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
273        continue;
274      // We found a new name for the orphaned sub-register.
275      SubRegs.insert(std::make_pair(I->second, SRI->second));
276      Indices.push_back(I->second);
277    }
278  }
279
280  // Now Orphans contains the inherited subregisters without a direct index.
281  // Create inferred indexes for all missing entries.
282  // Work backwards in the Indices vector in order to compose subregs bottom-up.
283  // Consider this subreg sequence:
284  //
285  //   qsub_1 -> dsub_0 -> ssub_0
286  //
287  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
288  // can be reached in two different ways:
289  //
290  //   qsub_1 -> ssub_0
291  //   dsub_2 -> ssub_0
292  //
293  // We pick the latter composition because another register may have [dsub_0,
294  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
295  // dsub_2 -> ssub_0 composition can be shared.
296  while (!Indices.empty() && !Orphans.empty()) {
297    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
298    CodeGenRegister *SR = SubRegs[Idx];
299    const SubRegMap &Map = SR->computeSubRegs(RegBank);
300    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
301         ++SI)
302      if (Orphans.erase(SI->second))
303        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
304  }
305
306  // Compute the inverse SubReg -> Idx map.
307  for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
308       SI != SE; ++SI) {
309    if (SI->second == this) {
310      ArrayRef<SMLoc> Loc;
311      if (TheDef)
312        Loc = TheDef->getLoc();
313      PrintFatalError(Loc, "Register " + getName() +
314                      " has itself as a sub-register");
315    }
316
317    // Compute AllSuperRegsCovered.
318    if (!CoveredBySubRegs)
319      SI->first->AllSuperRegsCovered = false;
320
321    // Ensure that every sub-register has a unique name.
322    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
323      SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
324    if (Ins->second == SI->first)
325      continue;
326    // Trouble: Two different names for SI->second.
327    ArrayRef<SMLoc> Loc;
328    if (TheDef)
329      Loc = TheDef->getLoc();
330    PrintFatalError(Loc, "Sub-register can't have two names: " +
331                  SI->second->getName() + " available as " +
332                  SI->first->getName() + " and " + Ins->second->getName());
333  }
334
335  // Derive possible names for sub-register concatenations from any explicit
336  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
337  // that getConcatSubRegIndex() won't invent any concatenated indices that the
338  // user already specified.
339  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
340    CodeGenRegister *SR = ExplicitSubRegs[i];
341    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
342      continue;
343
344    // SR is composed of multiple sub-regs. Find their names in this register.
345    SmallVector<CodeGenSubRegIndex*, 8> Parts;
346    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
347      Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
348
349    // Offer this as an existing spelling for the concatenation of Parts.
350    RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
351  }
352
353  // Initialize RegUnitList. Because getSubRegs is called recursively, this
354  // processes the register hierarchy in postorder.
355  //
356  // Inherit all sub-register units. It is good enough to look at the explicit
357  // sub-registers, the other registers won't contribute any more units.
358  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
359    CodeGenRegister *SR = ExplicitSubRegs[i];
360    RegUnits |= SR->RegUnits;
361  }
362
363  // Absent any ad hoc aliasing, we create one register unit per leaf register.
364  // These units correspond to the maximal cliques in the register overlap
365  // graph which is optimal.
366  //
367  // When there is ad hoc aliasing, we simply create one unit per edge in the
368  // undirected ad hoc aliasing graph. Technically, we could do better by
369  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
370  // are extremely rare anyway (I've never seen one), so we don't bother with
371  // the added complexity.
372  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
373    CodeGenRegister *AR = ExplicitAliases[i];
374    // Only visit each edge once.
375    if (AR->SubRegsComplete)
376      continue;
377    // Create a RegUnit representing this alias edge, and add it to both
378    // registers.
379    unsigned Unit = RegBank.newRegUnit(this, AR);
380    RegUnits.set(Unit);
381    AR->RegUnits.set(Unit);
382  }
383
384  // Finally, create units for leaf registers without ad hoc aliases. Note that
385  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
386  // necessary. This means the aliasing leaf registers can share a single unit.
387  if (RegUnits.empty())
388    RegUnits.set(RegBank.newRegUnit(this));
389
390  // We have now computed the native register units. More may be adopted later
391  // for balancing purposes.
392  NativeRegUnits = RegUnits;
393
394  return SubRegs;
395}
396
397// In a register that is covered by its sub-registers, try to find redundant
398// sub-registers. For example:
399//
400//   QQ0 = {Q0, Q1}
401//   Q0 = {D0, D1}
402//   Q1 = {D2, D3}
403//
404// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
405// the register definition.
406//
407// The explicitly specified registers form a tree. This function discovers
408// sub-register relationships that would force a DAG.
409//
410void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
411  // Collect new sub-registers first, add them later.
412  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
413
414  // Look at the leading super-registers of each sub-register. Those are the
415  // candidates for new sub-registers, assuming they are fully contained in
416  // this register.
417  for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
418    const CodeGenRegister *SubReg = I->second;
419    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
420    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
421      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
422      // Already got this sub-register?
423      if (Cand == this || getSubRegIndex(Cand))
424        continue;
425      // Check if each component of Cand is already a sub-register.
426      // We know that the first component is I->second, and is present with the
427      // name I->first.
428      SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
429      assert(!Cand->ExplicitSubRegs.empty() &&
430             "Super-register has no sub-registers");
431      for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
432        if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
433          Parts.push_back(Idx);
434        else {
435          // Sub-register doesn't exist.
436          Parts.clear();
437          break;
438        }
439      }
440      // If some Cand sub-register is not part of this register, or if Cand only
441      // has one sub-register, there is nothing to do.
442      if (Parts.size() <= 1)
443        continue;
444
445      // Each part of Cand is a sub-register of this. Make the full Cand also
446      // a sub-register with a concatenated sub-register index.
447      CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
448      NewSubRegs.push_back(std::make_pair(Concat, Cand));
449    }
450  }
451
452  // Now add all the new sub-registers.
453  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
454    // Don't add Cand if another sub-register is already using the index.
455    if (!SubRegs.insert(NewSubRegs[i]).second)
456      continue;
457
458    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
459    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
460    SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
461  }
462
463  // Create sub-register index composition maps for the synthesized indices.
464  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
466    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
467    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
468           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
469      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
470      if (!SubIdx)
471        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
472                        SI->second->getName() + " in " + getName());
473      NewIdx->addComposite(SI->first, SubIdx);
474    }
475  }
476}
477
478void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
479  // Only visit each register once.
480  if (SuperRegsComplete)
481    return;
482  SuperRegsComplete = true;
483
484  // Make sure all sub-registers have been visited first, so the super-reg
485  // lists will be topologically ordered.
486  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
487       I != E; ++I)
488    I->second->computeSuperRegs(RegBank);
489
490  // Now add this as a super-register on all sub-registers.
491  // Also compute the TopoSigId in post-order.
492  TopoSigId Id;
493  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
494       I != E; ++I) {
495    // Topological signature computed from SubIdx, TopoId(SubReg).
496    // Loops and idempotent indices have TopoSig = ~0u.
497    Id.push_back(I->first->EnumValue);
498    Id.push_back(I->second->TopoSig);
499
500    // Don't add duplicate entries.
501    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
502      continue;
503    I->second->SuperRegs.push_back(this);
504  }
505  TopoSig = RegBank.getTopoSig(Id);
506}
507
508void
509CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
510                                    CodeGenRegBank &RegBank) const {
511  assert(SubRegsComplete && "Must precompute sub-registers");
512  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
513    CodeGenRegister *SR = ExplicitSubRegs[i];
514    if (OSet.insert(SR))
515      SR->addSubRegsPreOrder(OSet, RegBank);
516  }
517  // Add any secondary sub-registers that weren't part of the explicit tree.
518  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
519       I != E; ++I)
520    OSet.insert(I->second);
521}
522
523// Get the sum of this register's unit weights.
524unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
525  unsigned Weight = 0;
526  for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
527       I != E; ++I) {
528    Weight += RegBank.getRegUnit(*I).Weight;
529  }
530  return Weight;
531}
532
533//===----------------------------------------------------------------------===//
534//                               RegisterTuples
535//===----------------------------------------------------------------------===//
536
537// A RegisterTuples def is used to generate pseudo-registers from lists of
538// sub-registers. We provide a SetTheory expander class that returns the new
539// registers.
540namespace {
541struct TupleExpander : SetTheory::Expander {
542  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
543    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
544    unsigned Dim = Indices.size();
545    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
546    if (Dim != SubRegs->getSize())
547      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
548    if (Dim < 2)
549      PrintFatalError(Def->getLoc(),
550                      "Tuples must have at least 2 sub-registers");
551
552    // Evaluate the sub-register lists to be zipped.
553    unsigned Length = ~0u;
554    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
555    for (unsigned i = 0; i != Dim; ++i) {
556      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
557      Length = std::min(Length, unsigned(Lists[i].size()));
558    }
559
560    if (Length == 0)
561      return;
562
563    // Precompute some types.
564    Record *RegisterCl = Def->getRecords().getClass("Register");
565    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
566    StringInit *BlankName = StringInit::get("");
567
568    // Zip them up.
569    for (unsigned n = 0; n != Length; ++n) {
570      std::string Name;
571      Record *Proto = Lists[0][n];
572      std::vector<Init*> Tuple;
573      unsigned CostPerUse = 0;
574      for (unsigned i = 0; i != Dim; ++i) {
575        Record *Reg = Lists[i][n];
576        if (i) Name += '_';
577        Name += Reg->getName();
578        Tuple.push_back(DefInit::get(Reg));
579        CostPerUse = std::max(CostPerUse,
580                              unsigned(Reg->getValueAsInt("CostPerUse")));
581      }
582
583      // Create a new Record representing the synthesized register. This record
584      // is only for consumption by CodeGenRegister, it is not added to the
585      // RecordKeeper.
586      Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
587      Elts.insert(NewReg);
588
589      // Copy Proto super-classes.
590      ArrayRef<Record *> Supers = Proto->getSuperClasses();
591      ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
592      for (unsigned i = 0, e = Supers.size(); i != e; ++i)
593        NewReg->addSuperClass(Supers[i], Ranges[i]);
594
595      // Copy Proto fields.
596      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
597        RecordVal RV = Proto->getValues()[i];
598
599        // Skip existing fields, like NAME.
600        if (NewReg->getValue(RV.getNameInit()))
601          continue;
602
603        StringRef Field = RV.getName();
604
605        // Replace the sub-register list with Tuple.
606        if (Field == "SubRegs")
607          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
608
609        // Provide a blank AsmName. MC hacks are required anyway.
610        if (Field == "AsmName")
611          RV.setValue(BlankName);
612
613        // CostPerUse is aggregated from all Tuple members.
614        if (Field == "CostPerUse")
615          RV.setValue(IntInit::get(CostPerUse));
616
617        // Composite registers are always covered by sub-registers.
618        if (Field == "CoveredBySubRegs")
619          RV.setValue(BitInit::get(true));
620
621        // Copy fields from the RegisterTuples def.
622        if (Field == "SubRegIndices" ||
623            Field == "CompositeIndices") {
624          NewReg->addValue(*Def->getValue(Field));
625          continue;
626        }
627
628        // Some fields get their default uninitialized value.
629        if (Field == "DwarfNumbers" ||
630            Field == "DwarfAlias" ||
631            Field == "Aliases") {
632          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
633            NewReg->addValue(*DefRV);
634          continue;
635        }
636
637        // Everything else is copied from Proto.
638        NewReg->addValue(RV);
639      }
640    }
641  }
642};
643}
644
645//===----------------------------------------------------------------------===//
646//                            CodeGenRegisterClass
647//===----------------------------------------------------------------------===//
648
649static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
650  std::sort(M.begin(), M.end(), deref<llvm::less>());
651  M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
652}
653
654CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
655  : TheDef(R),
656    Name(R->getName()),
657    TopoSigs(RegBank.getNumTopoSigs()),
658    EnumValue(-1),
659    LaneMask(0) {
660  // Rename anonymous register classes.
661  if (R->getName().size() > 9 && R->getName()[9] == '.') {
662    static unsigned AnonCounter = 0;
663    R->setName("AnonRegClass_" + utostr(AnonCounter++));
664  }
665
666  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
667  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
668    Record *Type = TypeList[i];
669    if (!Type->isSubClassOf("ValueType"))
670      PrintFatalError("RegTypes list member '" + Type->getName() +
671        "' does not derive from the ValueType class!");
672    VTs.push_back(getValueType(Type));
673  }
674  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
675
676  // Allocation order 0 is the full set. AltOrders provides others.
677  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
678  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
679  Orders.resize(1 + AltOrders->size());
680
681  // Default allocation order always contains all registers.
682  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
683    Orders[0].push_back((*Elements)[i]);
684    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
685    Members.push_back(Reg);
686    TopoSigs.set(Reg->getTopoSig());
687  }
688  sortAndUniqueRegisters(Members);
689
690  // Alternative allocation orders may be subsets.
691  SetTheory::RecSet Order;
692  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
693    RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
694    Orders[1 + i].append(Order.begin(), Order.end());
695    // Verify that all altorder members are regclass members.
696    while (!Order.empty()) {
697      CodeGenRegister *Reg = RegBank.getReg(Order.back());
698      Order.pop_back();
699      if (!contains(Reg))
700        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
701                      " is not a class member");
702    }
703  }
704
705  // Allow targets to override the size in bits of the RegisterClass.
706  unsigned Size = R->getValueAsInt("Size");
707
708  Namespace = R->getValueAsString("Namespace");
709  SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
710  SpillAlignment = R->getValueAsInt("Alignment");
711  CopyCost = R->getValueAsInt("CopyCost");
712  Allocatable = R->getValueAsBit("isAllocatable");
713  AltOrderSelect = R->getValueAsString("AltOrderSelect");
714  int AllocationPriority = R->getValueAsInt("AllocationPriority");
715  if (AllocationPriority < 0 || AllocationPriority > 63)
716    PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
717  this->AllocationPriority = AllocationPriority;
718}
719
720// Create an inferred register class that was missing from the .td files.
721// Most properties will be inherited from the closest super-class after the
722// class structure has been computed.
723CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
724                                           StringRef Name, Key Props)
725  : Members(*Props.Members),
726    TheDef(nullptr),
727    Name(Name),
728    TopoSigs(RegBank.getNumTopoSigs()),
729    EnumValue(-1),
730    SpillSize(Props.SpillSize),
731    SpillAlignment(Props.SpillAlignment),
732    CopyCost(0),
733    Allocatable(true),
734    AllocationPriority(0) {
735  for (const auto R : Members)
736    TopoSigs.set(R->getTopoSig());
737}
738
739// Compute inherited propertied for a synthesized register class.
740void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
741  assert(!getDef() && "Only synthesized classes can inherit properties");
742  assert(!SuperClasses.empty() && "Synthesized class without super class");
743
744  // The last super-class is the smallest one.
745  CodeGenRegisterClass &Super = *SuperClasses.back();
746
747  // Most properties are copied directly.
748  // Exceptions are members, size, and alignment
749  Namespace = Super.Namespace;
750  VTs = Super.VTs;
751  CopyCost = Super.CopyCost;
752  Allocatable = Super.Allocatable;
753  AltOrderSelect = Super.AltOrderSelect;
754  AllocationPriority = Super.AllocationPriority;
755
756  // Copy all allocation orders, filter out foreign registers from the larger
757  // super-class.
758  Orders.resize(Super.Orders.size());
759  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
760    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
761      if (contains(RegBank.getReg(Super.Orders[i][j])))
762        Orders[i].push_back(Super.Orders[i][j]);
763}
764
765bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
766  return std::binary_search(Members.begin(), Members.end(), Reg,
767                            deref<llvm::less>());
768}
769
770namespace llvm {
771  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
772    OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
773    for (const auto R : *K.Members)
774      OS << ", " << R->getName();
775    return OS << " }";
776  }
777}
778
779// This is a simple lexicographical order that can be used to search for sets.
780// It is not the same as the topological order provided by TopoOrderRC.
781bool CodeGenRegisterClass::Key::
782operator<(const CodeGenRegisterClass::Key &B) const {
783  assert(Members && B.Members);
784  return std::tie(*Members, SpillSize, SpillAlignment) <
785         std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
786}
787
788// Returns true if RC is a strict subclass.
789// RC is a sub-class of this class if it is a valid replacement for any
790// instruction operand where a register of this classis required. It must
791// satisfy these conditions:
792//
793// 1. All RC registers are also in this.
794// 2. The RC spill size must not be smaller than our spill size.
795// 3. RC spill alignment must be compatible with ours.
796//
797static bool testSubClass(const CodeGenRegisterClass *A,
798                         const CodeGenRegisterClass *B) {
799  return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
800         A->SpillSize <= B->SpillSize &&
801         std::includes(A->getMembers().begin(), A->getMembers().end(),
802                       B->getMembers().begin(), B->getMembers().end(),
803                       deref<llvm::less>());
804}
805
806/// Sorting predicate for register classes.  This provides a topological
807/// ordering that arranges all register classes before their sub-classes.
808///
809/// Register classes with the same registers, spill size, and alignment form a
810/// clique.  They will be ordered alphabetically.
811///
812static bool TopoOrderRC(const CodeGenRegisterClass &PA,
813                        const CodeGenRegisterClass &PB) {
814  auto *A = &PA;
815  auto *B = &PB;
816  if (A == B)
817    return 0;
818
819  // Order by ascending spill size.
820  if (A->SpillSize < B->SpillSize)
821    return true;
822  if (A->SpillSize > B->SpillSize)
823    return false;
824
825  // Order by ascending spill alignment.
826  if (A->SpillAlignment < B->SpillAlignment)
827    return true;
828  if (A->SpillAlignment > B->SpillAlignment)
829    return false;
830
831  // Order by descending set size.  Note that the classes' allocation order may
832  // not have been computed yet.  The Members set is always vaild.
833  if (A->getMembers().size() > B->getMembers().size())
834    return true;
835  if (A->getMembers().size() < B->getMembers().size())
836    return false;
837
838  // Finally order by name as a tie breaker.
839  return StringRef(A->getName()) < B->getName();
840}
841
842std::string CodeGenRegisterClass::getQualifiedName() const {
843  if (Namespace.empty())
844    return getName();
845  else
846    return Namespace + "::" + getName();
847}
848
849// Compute sub-classes of all register classes.
850// Assume the classes are ordered topologically.
851void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
852  auto &RegClasses = RegBank.getRegClasses();
853
854  // Visit backwards so sub-classes are seen first.
855  for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
856    CodeGenRegisterClass &RC = *I;
857    RC.SubClasses.resize(RegClasses.size());
858    RC.SubClasses.set(RC.EnumValue);
859
860    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
861    for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
862      CodeGenRegisterClass &SubRC = *I2;
863      if (RC.SubClasses.test(SubRC.EnumValue))
864        continue;
865      if (!testSubClass(&RC, &SubRC))
866        continue;
867      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
868      // check them again.
869      RC.SubClasses |= SubRC.SubClasses;
870    }
871
872    // Sweep up missed clique members.  They will be immediately preceding RC.
873    for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
874      RC.SubClasses.set(I2->EnumValue);
875  }
876
877  // Compute the SuperClasses lists from the SubClasses vectors.
878  for (auto &RC : RegClasses) {
879    const BitVector &SC = RC.getSubClasses();
880    auto I = RegClasses.begin();
881    for (int s = 0, next_s = SC.find_first(); next_s != -1;
882         next_s = SC.find_next(s)) {
883      std::advance(I, next_s - s);
884      s = next_s;
885      if (&*I == &RC)
886        continue;
887      I->SuperClasses.push_back(&RC);
888    }
889  }
890
891  // With the class hierarchy in place, let synthesized register classes inherit
892  // properties from their closest super-class. The iteration order here can
893  // propagate properties down multiple levels.
894  for (auto &RC : RegClasses)
895    if (!RC.getDef())
896      RC.inheritProperties(RegBank);
897}
898
899void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
900                                              BitVector &Out) const {
901  auto FindI = SuperRegClasses.find(SubIdx);
902  if (FindI == SuperRegClasses.end())
903    return;
904  for (CodeGenRegisterClass *RC : FindI->second)
905    Out.set(RC->EnumValue);
906}
907
908// Populate a unique sorted list of units from a register set.
909void CodeGenRegisterClass::buildRegUnitSet(
910  std::vector<unsigned> &RegUnits) const {
911  std::vector<unsigned> TmpUnits;
912  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
913    TmpUnits.push_back(*UnitI);
914  std::sort(TmpUnits.begin(), TmpUnits.end());
915  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
916                   std::back_inserter(RegUnits));
917}
918
919//===----------------------------------------------------------------------===//
920//                               CodeGenRegBank
921//===----------------------------------------------------------------------===//
922
923CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
924  // Configure register Sets to understand register classes and tuples.
925  Sets.addFieldExpander("RegisterClass", "MemberList");
926  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
927  Sets.addExpander("RegisterTuples", new TupleExpander());
928
929  // Read in the user-defined (named) sub-register indices.
930  // More indices will be synthesized later.
931  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
932  std::sort(SRIs.begin(), SRIs.end(), LessRecord());
933  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
934    getSubRegIdx(SRIs[i]);
935  // Build composite maps from ComposedOf fields.
936  for (auto &Idx : SubRegIndices)
937    Idx.updateComponents(*this);
938
939  // Read in the register definitions.
940  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
941  std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
942  // Assign the enumeration values.
943  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
944    getReg(Regs[i]);
945
946  // Expand tuples and number the new registers.
947  std::vector<Record*> Tups =
948    Records.getAllDerivedDefinitions("RegisterTuples");
949
950  for (Record *R : Tups) {
951    std::vector<Record *> TupRegs = *Sets.expand(R);
952    std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
953    for (Record *RC : TupRegs)
954      getReg(RC);
955  }
956
957  // Now all the registers are known. Build the object graph of explicit
958  // register-register references.
959  for (auto &Reg : Registers)
960    Reg.buildObjectGraph(*this);
961
962  // Compute register name map.
963  for (auto &Reg : Registers)
964    // FIXME: This could just be RegistersByName[name] = register, except that
965    // causes some failures in MIPS - perhaps they have duplicate register name
966    // entries? (or maybe there's a reason for it - I don't know much about this
967    // code, just drive-by refactoring)
968    RegistersByName.insert(
969        std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
970
971  // Precompute all sub-register maps.
972  // This will create Composite entries for all inferred sub-register indices.
973  for (auto &Reg : Registers)
974    Reg.computeSubRegs(*this);
975
976  // Infer even more sub-registers by combining leading super-registers.
977  for (auto &Reg : Registers)
978    if (Reg.CoveredBySubRegs)
979      Reg.computeSecondarySubRegs(*this);
980
981  // After the sub-register graph is complete, compute the topologically
982  // ordered SuperRegs list.
983  for (auto &Reg : Registers)
984    Reg.computeSuperRegs(*this);
985
986  // Native register units are associated with a leaf register. They've all been
987  // discovered now.
988  NumNativeRegUnits = RegUnits.size();
989
990  // Read in register class definitions.
991  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
992  if (RCs.empty())
993    PrintFatalError("No 'RegisterClass' subclasses defined!");
994
995  // Allocate user-defined register classes.
996  for (auto *RC : RCs) {
997    RegClasses.push_back(CodeGenRegisterClass(*this, RC));
998    addToMaps(&RegClasses.back());
999  }
1000
1001  // Infer missing classes to create a full algebra.
1002  computeInferredRegisterClasses();
1003
1004  // Order register classes topologically and assign enum values.
1005  RegClasses.sort(TopoOrderRC);
1006  unsigned i = 0;
1007  for (auto &RC : RegClasses)
1008    RC.EnumValue = i++;
1009  CodeGenRegisterClass::computeSubClasses(*this);
1010}
1011
1012// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1013CodeGenSubRegIndex*
1014CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1015  SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1016  return &SubRegIndices.back();
1017}
1018
1019CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1020  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1021  if (Idx)
1022    return Idx;
1023  SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1024  Idx = &SubRegIndices.back();
1025  return Idx;
1026}
1027
1028CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1029  CodeGenRegister *&Reg = Def2Reg[Def];
1030  if (Reg)
1031    return Reg;
1032  Registers.emplace_back(Def, Registers.size() + 1);
1033  Reg = &Registers.back();
1034  return Reg;
1035}
1036
1037void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1038  if (Record *Def = RC->getDef())
1039    Def2RC.insert(std::make_pair(Def, RC));
1040
1041  // Duplicate classes are rejected by insert().
1042  // That's OK, we only care about the properties handled by CGRC::Key.
1043  CodeGenRegisterClass::Key K(*RC);
1044  Key2RC.insert(std::make_pair(K, RC));
1045}
1046
1047// Create a synthetic sub-class if it is missing.
1048CodeGenRegisterClass*
1049CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1050                                    const CodeGenRegister::Vec *Members,
1051                                    StringRef Name) {
1052  // Synthetic sub-class has the same size and alignment as RC.
1053  CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1054  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1055  if (FoundI != Key2RC.end())
1056    return FoundI->second;
1057
1058  // Sub-class doesn't exist, create a new one.
1059  RegClasses.push_back(CodeGenRegisterClass(*this, Name, K));
1060  addToMaps(&RegClasses.back());
1061  return &RegClasses.back();
1062}
1063
1064CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1065  if (CodeGenRegisterClass *RC = Def2RC[Def])
1066    return RC;
1067
1068  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1069}
1070
1071CodeGenSubRegIndex*
1072CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1073                                        CodeGenSubRegIndex *B) {
1074  // Look for an existing entry.
1075  CodeGenSubRegIndex *Comp = A->compose(B);
1076  if (Comp)
1077    return Comp;
1078
1079  // None exists, synthesize one.
1080  std::string Name = A->getName() + "_then_" + B->getName();
1081  Comp = createSubRegIndex(Name, A->getNamespace());
1082  A->addComposite(B, Comp);
1083  return Comp;
1084}
1085
1086CodeGenSubRegIndex *CodeGenRegBank::
1087getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1088  assert(Parts.size() > 1 && "Need two parts to concatenate");
1089
1090  // Look for an existing entry.
1091  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1092  if (Idx)
1093    return Idx;
1094
1095  // None exists, synthesize one.
1096  std::string Name = Parts.front()->getName();
1097  // Determine whether all parts are contiguous.
1098  bool isContinuous = true;
1099  unsigned Size = Parts.front()->Size;
1100  unsigned LastOffset = Parts.front()->Offset;
1101  unsigned LastSize = Parts.front()->Size;
1102  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1103    Name += '_';
1104    Name += Parts[i]->getName();
1105    Size += Parts[i]->Size;
1106    if (Parts[i]->Offset != (LastOffset + LastSize))
1107      isContinuous = false;
1108    LastOffset = Parts[i]->Offset;
1109    LastSize = Parts[i]->Size;
1110  }
1111  Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1112  Idx->Size = Size;
1113  Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1114  return Idx;
1115}
1116
1117void CodeGenRegBank::computeComposites() {
1118  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1119  // and many registers will share TopoSigs on regular architectures.
1120  BitVector TopoSigs(getNumTopoSigs());
1121
1122  for (const auto &Reg1 : Registers) {
1123    // Skip identical subreg structures already processed.
1124    if (TopoSigs.test(Reg1.getTopoSig()))
1125      continue;
1126    TopoSigs.set(Reg1.getTopoSig());
1127
1128    const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1129    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1130         e1 = SRM1.end(); i1 != e1; ++i1) {
1131      CodeGenSubRegIndex *Idx1 = i1->first;
1132      CodeGenRegister *Reg2 = i1->second;
1133      // Ignore identity compositions.
1134      if (&Reg1 == Reg2)
1135        continue;
1136      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1137      // Try composing Idx1 with another SubRegIndex.
1138      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1139           e2 = SRM2.end(); i2 != e2; ++i2) {
1140        CodeGenSubRegIndex *Idx2 = i2->first;
1141        CodeGenRegister *Reg3 = i2->second;
1142        // Ignore identity compositions.
1143        if (Reg2 == Reg3)
1144          continue;
1145        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1146        CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1147        assert(Idx3 && "Sub-register doesn't have an index");
1148
1149        // Conflicting composition? Emit a warning but allow it.
1150        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1151          PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1152                       " and " + Idx2->getQualifiedName() +
1153                       " compose ambiguously as " + Prev->getQualifiedName() +
1154                       " or " + Idx3->getQualifiedName());
1155      }
1156    }
1157  }
1158}
1159
1160// Compute lane masks. This is similar to register units, but at the
1161// sub-register index level. Each bit in the lane mask is like a register unit
1162// class, and two lane masks will have a bit in common if two sub-register
1163// indices overlap in some register.
1164//
1165// Conservatively share a lane mask bit if two sub-register indices overlap in
1166// some registers, but not in others. That shouldn't happen a lot.
1167void CodeGenRegBank::computeSubRegLaneMasks() {
1168  // First assign individual bits to all the leaf indices.
1169  unsigned Bit = 0;
1170  // Determine mask of lanes that cover their registers.
1171  CoveringLanes = ~0u;
1172  for (auto &Idx : SubRegIndices) {
1173    if (Idx.getComposites().empty()) {
1174      Idx.LaneMask = 1u << Bit;
1175      // Share bit 31 in the unlikely case there are more than 32 leafs.
1176      //
1177      // Sharing bits is harmless; it allows graceful degradation in targets
1178      // with more than 32 vector lanes. They simply get a limited resolution
1179      // view of lanes beyond the 32nd.
1180      //
1181      // See also the comment for getSubRegIndexLaneMask().
1182      if (Bit < 31)
1183        ++Bit;
1184      else
1185        // Once bit 31 is shared among multiple leafs, the 'lane' it represents
1186        // is no longer covering its registers.
1187        CoveringLanes &= ~(1u << Bit);
1188    } else {
1189      Idx.LaneMask = 0;
1190    }
1191  }
1192
1193  // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1194  // here is that for each possible target subregister we look at the leafs
1195  // in the subregister graph that compose for this target and create
1196  // transformation sequences for the lanemasks. Each step in the sequence
1197  // consists of a bitmask and a bitrotate operation. As the rotation amounts
1198  // are usually the same for many subregisters we can easily combine the steps
1199  // by combining the masks.
1200  for (const auto &Idx : SubRegIndices) {
1201    const auto &Composites = Idx.getComposites();
1202    auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1203    // Go through all leaf subregisters and find the ones that compose with Idx.
1204    // These make out all possible valid bits in the lane mask we want to
1205    // transform. Looking only at the leafs ensure that only a single bit in
1206    // the mask is set.
1207    unsigned NextBit = 0;
1208    for (auto &Idx2 : SubRegIndices) {
1209      // Skip non-leaf subregisters.
1210      if (!Idx2.getComposites().empty())
1211        continue;
1212      // Replicate the behaviour from the lane mask generation loop above.
1213      unsigned SrcBit = NextBit;
1214      unsigned SrcMask = 1u << SrcBit;
1215      if (NextBit < 31)
1216        ++NextBit;
1217      assert(Idx2.LaneMask == SrcMask);
1218
1219      // Get the composed subregister if there is any.
1220      auto C = Composites.find(&Idx2);
1221      if (C == Composites.end())
1222        continue;
1223      const CodeGenSubRegIndex *Composite = C->second;
1224      // The Composed subreg should be a leaf subreg too
1225      assert(Composite->getComposites().empty());
1226
1227      // Create Mask+Rotate operation and merge with existing ops if possible.
1228      unsigned DstBit = Log2_32(Composite->LaneMask);
1229      int Shift = DstBit - SrcBit;
1230      uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
1231      for (auto &I : LaneTransforms) {
1232        if (I.RotateLeft == RotateLeft) {
1233          I.Mask |= SrcMask;
1234          SrcMask = 0;
1235        }
1236      }
1237      if (SrcMask != 0) {
1238        MaskRolPair MaskRol = { SrcMask, RotateLeft };
1239        LaneTransforms.push_back(MaskRol);
1240      }
1241    }
1242    // Optimize if the transformation consists of one step only: Set mask to
1243    // 0xffffffff (including some irrelevant invalid bits) so that it should
1244    // merge with more entries later while compressing the table.
1245    if (LaneTransforms.size() == 1)
1246      LaneTransforms[0].Mask = ~0u;
1247
1248    // Further compression optimization: For invalid compositions resulting
1249    // in a sequence with 0 entries we can just pick any other. Choose
1250    // Mask 0xffffffff with Rotation 0.
1251    if (LaneTransforms.size() == 0) {
1252      MaskRolPair P = { ~0u, 0 };
1253      LaneTransforms.push_back(P);
1254    }
1255  }
1256
1257  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1258  // by the sub-register graph? This doesn't occur in any known targets.
1259
1260  // Inherit lanes from composites.
1261  for (const auto &Idx : SubRegIndices) {
1262    unsigned Mask = Idx.computeLaneMask();
1263    // If some super-registers without CoveredBySubRegs use this index, we can
1264    // no longer assume that the lanes are covering their registers.
1265    if (!Idx.AllSuperRegsCovered)
1266      CoveringLanes &= ~Mask;
1267  }
1268
1269  // Compute lane mask combinations for register classes.
1270  for (auto &RegClass : RegClasses) {
1271    unsigned LaneMask = 0;
1272    for (const auto &SubRegIndex : SubRegIndices) {
1273      if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1274        continue;
1275      LaneMask |= SubRegIndex.LaneMask;
1276    }
1277    RegClass.LaneMask = LaneMask;
1278  }
1279}
1280
1281namespace {
1282// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1283// the transitive closure of the union of overlapping register
1284// classes. Together, the UberRegSets form a partition of the registers. If we
1285// consider overlapping register classes to be connected, then each UberRegSet
1286// is a set of connected components.
1287//
1288// An UberRegSet will likely be a horizontal slice of register names of
1289// the same width. Nontrivial subregisters should then be in a separate
1290// UberRegSet. But this property isn't required for valid computation of
1291// register unit weights.
1292//
1293// A Weight field caches the max per-register unit weight in each UberRegSet.
1294//
1295// A set of SingularDeterminants flags single units of some register in this set
1296// for which the unit weight equals the set weight. These units should not have
1297// their weight increased.
1298struct UberRegSet {
1299  CodeGenRegister::Vec Regs;
1300  unsigned Weight;
1301  CodeGenRegister::RegUnitList SingularDeterminants;
1302
1303  UberRegSet(): Weight(0) {}
1304};
1305} // namespace
1306
1307// Partition registers into UberRegSets, where each set is the transitive
1308// closure of the union of overlapping register classes.
1309//
1310// UberRegSets[0] is a special non-allocatable set.
1311static void computeUberSets(std::vector<UberRegSet> &UberSets,
1312                            std::vector<UberRegSet*> &RegSets,
1313                            CodeGenRegBank &RegBank) {
1314
1315  const auto &Registers = RegBank.getRegisters();
1316
1317  // The Register EnumValue is one greater than its index into Registers.
1318  assert(Registers.size() == Registers.back().EnumValue &&
1319         "register enum value mismatch");
1320
1321  // For simplicitly make the SetID the same as EnumValue.
1322  IntEqClasses UberSetIDs(Registers.size()+1);
1323  std::set<unsigned> AllocatableRegs;
1324  for (auto &RegClass : RegBank.getRegClasses()) {
1325    if (!RegClass.Allocatable)
1326      continue;
1327
1328    const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1329    if (Regs.empty())
1330      continue;
1331
1332    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1333    assert(USetID && "register number 0 is invalid");
1334
1335    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1336    for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1337      AllocatableRegs.insert((*I)->EnumValue);
1338      UberSetIDs.join(USetID, (*I)->EnumValue);
1339    }
1340  }
1341  // Combine non-allocatable regs.
1342  for (const auto &Reg : Registers) {
1343    unsigned RegNum = Reg.EnumValue;
1344    if (AllocatableRegs.count(RegNum))
1345      continue;
1346
1347    UberSetIDs.join(0, RegNum);
1348  }
1349  UberSetIDs.compress();
1350
1351  // Make the first UberSet a special unallocatable set.
1352  unsigned ZeroID = UberSetIDs[0];
1353
1354  // Insert Registers into the UberSets formed by union-find.
1355  // Do not resize after this.
1356  UberSets.resize(UberSetIDs.getNumClasses());
1357  unsigned i = 0;
1358  for (const CodeGenRegister &Reg : Registers) {
1359    unsigned USetID = UberSetIDs[Reg.EnumValue];
1360    if (!USetID)
1361      USetID = ZeroID;
1362    else if (USetID == ZeroID)
1363      USetID = 0;
1364
1365    UberRegSet *USet = &UberSets[USetID];
1366    USet->Regs.push_back(&Reg);
1367    sortAndUniqueRegisters(USet->Regs);
1368    RegSets[i++] = USet;
1369  }
1370}
1371
1372// Recompute each UberSet weight after changing unit weights.
1373static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1374                               CodeGenRegBank &RegBank) {
1375  // Skip the first unallocatable set.
1376  for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1377         E = UberSets.end(); I != E; ++I) {
1378
1379    // Initialize all unit weights in this set, and remember the max units/reg.
1380    const CodeGenRegister *Reg = nullptr;
1381    unsigned MaxWeight = 0, Weight = 0;
1382    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1383      if (Reg != UnitI.getReg()) {
1384        if (Weight > MaxWeight)
1385          MaxWeight = Weight;
1386        Reg = UnitI.getReg();
1387        Weight = 0;
1388      }
1389      unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1390      if (!UWeight) {
1391        UWeight = 1;
1392        RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1393      }
1394      Weight += UWeight;
1395    }
1396    if (Weight > MaxWeight)
1397      MaxWeight = Weight;
1398    if (I->Weight != MaxWeight) {
1399      DEBUG(
1400        dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1401        for (auto &Unit : I->Regs)
1402          dbgs() << " " << Unit->getName();
1403        dbgs() << "\n");
1404      // Update the set weight.
1405      I->Weight = MaxWeight;
1406    }
1407
1408    // Find singular determinants.
1409    for (const auto R : I->Regs) {
1410      if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1411        I->SingularDeterminants |= R->getRegUnits();
1412      }
1413    }
1414  }
1415}
1416
1417// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1418// a register and its subregisters so that they have the same weight as their
1419// UberSet. Self-recursion processes the subregister tree in postorder so
1420// subregisters are normalized first.
1421//
1422// Side effects:
1423// - creates new adopted register units
1424// - causes superregisters to inherit adopted units
1425// - increases the weight of "singular" units
1426// - induces recomputation of UberWeights.
1427static bool normalizeWeight(CodeGenRegister *Reg,
1428                            std::vector<UberRegSet> &UberSets,
1429                            std::vector<UberRegSet*> &RegSets,
1430                            SparseBitVector<> &NormalRegs,
1431                            CodeGenRegister::RegUnitList &NormalUnits,
1432                            CodeGenRegBank &RegBank) {
1433  if (NormalRegs.test(Reg->EnumValue))
1434    return false;
1435  NormalRegs.set(Reg->EnumValue);
1436
1437  bool Changed = false;
1438  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1439  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1440         SRE = SRM.end(); SRI != SRE; ++SRI) {
1441    if (SRI->second == Reg)
1442      continue; // self-cycles happen
1443
1444    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1445                               NormalRegs, NormalUnits, RegBank);
1446  }
1447  // Postorder register normalization.
1448
1449  // Inherit register units newly adopted by subregisters.
1450  if (Reg->inheritRegUnits(RegBank))
1451    computeUberWeights(UberSets, RegBank);
1452
1453  // Check if this register is too skinny for its UberRegSet.
1454  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1455
1456  unsigned RegWeight = Reg->getWeight(RegBank);
1457  if (UberSet->Weight > RegWeight) {
1458    // A register unit's weight can be adjusted only if it is the singular unit
1459    // for this register, has not been used to normalize a subregister's set,
1460    // and has not already been used to singularly determine this UberRegSet.
1461    unsigned AdjustUnit = *Reg->getRegUnits().begin();
1462    if (Reg->getRegUnits().count() != 1
1463        || hasRegUnit(NormalUnits, AdjustUnit)
1464        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1465      // We don't have an adjustable unit, so adopt a new one.
1466      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1467      Reg->adoptRegUnit(AdjustUnit);
1468      // Adopting a unit does not immediately require recomputing set weights.
1469    }
1470    else {
1471      // Adjust the existing single unit.
1472      RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1473      // The unit may be shared among sets and registers within this set.
1474      computeUberWeights(UberSets, RegBank);
1475    }
1476    Changed = true;
1477  }
1478
1479  // Mark these units normalized so superregisters can't change their weights.
1480  NormalUnits |= Reg->getRegUnits();
1481
1482  return Changed;
1483}
1484
1485// Compute a weight for each register unit created during getSubRegs.
1486//
1487// The goal is that two registers in the same class will have the same weight,
1488// where each register's weight is defined as sum of its units' weights.
1489void CodeGenRegBank::computeRegUnitWeights() {
1490  std::vector<UberRegSet> UberSets;
1491  std::vector<UberRegSet*> RegSets(Registers.size());
1492  computeUberSets(UberSets, RegSets, *this);
1493  // UberSets and RegSets are now immutable.
1494
1495  computeUberWeights(UberSets, *this);
1496
1497  // Iterate over each Register, normalizing the unit weights until reaching
1498  // a fix point.
1499  unsigned NumIters = 0;
1500  for (bool Changed = true; Changed; ++NumIters) {
1501    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1502    Changed = false;
1503    for (auto &Reg : Registers) {
1504      CodeGenRegister::RegUnitList NormalUnits;
1505      SparseBitVector<> NormalRegs;
1506      Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1507                                 NormalUnits, *this);
1508    }
1509  }
1510}
1511
1512// Find a set in UniqueSets with the same elements as Set.
1513// Return an iterator into UniqueSets.
1514static std::vector<RegUnitSet>::const_iterator
1515findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1516               const RegUnitSet &Set) {
1517  std::vector<RegUnitSet>::const_iterator
1518    I = UniqueSets.begin(), E = UniqueSets.end();
1519  for(;I != E; ++I) {
1520    if (I->Units == Set.Units)
1521      break;
1522  }
1523  return I;
1524}
1525
1526// Return true if the RUSubSet is a subset of RUSuperSet.
1527static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1528                            const std::vector<unsigned> &RUSuperSet) {
1529  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1530                       RUSubSet.begin(), RUSubSet.end());
1531}
1532
1533/// Iteratively prune unit sets. Prune subsets that are close to the superset,
1534/// but with one or two registers removed. We occasionally have registers like
1535/// APSR and PC thrown in with the general registers. We also see many
1536/// special-purpose register subsets, such as tail-call and Thumb
1537/// encodings. Generating all possible overlapping sets is combinatorial and
1538/// overkill for modeling pressure. Ideally we could fix this statically in
1539/// tablegen by (1) having the target define register classes that only include
1540/// the allocatable registers and marking other classes as non-allocatable and
1541/// (2) having a way to mark special purpose classes as "don't-care" classes for
1542/// the purpose of pressure.  However, we make an attempt to handle targets that
1543/// are not nicely defined by merging nearly identical register unit sets
1544/// statically. This generates smaller tables. Then, dynamically, we adjust the
1545/// set limit by filtering the reserved registers.
1546///
1547/// Merge sets only if the units have the same weight. For example, on ARM,
1548/// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1549/// should not expand the S set to include D regs.
1550void CodeGenRegBank::pruneUnitSets() {
1551  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1552
1553  // Form an equivalence class of UnitSets with no significant difference.
1554  std::vector<unsigned> SuperSetIDs;
1555  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1556       SubIdx != EndIdx; ++SubIdx) {
1557    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1558    unsigned SuperIdx = 0;
1559    for (; SuperIdx != EndIdx; ++SuperIdx) {
1560      if (SuperIdx == SubIdx)
1561        continue;
1562
1563      unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1564      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1565      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1566          && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1567          && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1568          && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1569        DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1570              << "\n");
1571        break;
1572      }
1573    }
1574    if (SuperIdx == EndIdx)
1575      SuperSetIDs.push_back(SubIdx);
1576  }
1577  // Populate PrunedUnitSets with each equivalence class's superset.
1578  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1579  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1580    unsigned SuperIdx = SuperSetIDs[i];
1581    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1582    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1583  }
1584  RegUnitSets.swap(PrunedUnitSets);
1585}
1586
1587// Create a RegUnitSet for each RegClass that contains all units in the class
1588// including adopted units that are necessary to model register pressure. Then
1589// iteratively compute RegUnitSets such that the union of any two overlapping
1590// RegUnitSets is repreresented.
1591//
1592// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1593// RegUnitSet that is a superset of that RegUnitClass.
1594void CodeGenRegBank::computeRegUnitSets() {
1595  assert(RegUnitSets.empty() && "dirty RegUnitSets");
1596
1597  // Compute a unique RegUnitSet for each RegClass.
1598  auto &RegClasses = getRegClasses();
1599  for (auto &RC : RegClasses) {
1600    if (!RC.Allocatable)
1601      continue;
1602
1603    // Speculatively grow the RegUnitSets to hold the new set.
1604    RegUnitSets.resize(RegUnitSets.size() + 1);
1605    RegUnitSets.back().Name = RC.getName();
1606
1607    // Compute a sorted list of units in this class.
1608    RC.buildRegUnitSet(RegUnitSets.back().Units);
1609
1610    // Find an existing RegUnitSet.
1611    std::vector<RegUnitSet>::const_iterator SetI =
1612      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1613    if (SetI != std::prev(RegUnitSets.end()))
1614      RegUnitSets.pop_back();
1615  }
1616
1617  DEBUG(dbgs() << "\nBefore pruning:\n";
1618        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1619             USIdx < USEnd; ++USIdx) {
1620          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1621                 << ":";
1622          for (auto &U : RegUnitSets[USIdx].Units)
1623            dbgs() << " " << RegUnits[U].Roots[0]->getName();
1624          dbgs() << "\n";
1625        });
1626
1627  // Iteratively prune unit sets.
1628  pruneUnitSets();
1629
1630  DEBUG(dbgs() << "\nBefore union:\n";
1631        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1632             USIdx < USEnd; ++USIdx) {
1633          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1634                 << ":";
1635          for (auto &U : RegUnitSets[USIdx].Units)
1636            dbgs() << " " << RegUnits[U].Roots[0]->getName();
1637          dbgs() << "\n";
1638        }
1639        dbgs() << "\nUnion sets:\n");
1640
1641  // Iterate over all unit sets, including new ones added by this loop.
1642  unsigned NumRegUnitSubSets = RegUnitSets.size();
1643  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1644    // In theory, this is combinatorial. In practice, it needs to be bounded
1645    // by a small number of sets for regpressure to be efficient.
1646    // If the assert is hit, we need to implement pruning.
1647    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1648
1649    // Compare new sets with all original classes.
1650    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1651         SearchIdx != EndIdx; ++SearchIdx) {
1652      std::set<unsigned> Intersection;
1653      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1654                            RegUnitSets[Idx].Units.end(),
1655                            RegUnitSets[SearchIdx].Units.begin(),
1656                            RegUnitSets[SearchIdx].Units.end(),
1657                            std::inserter(Intersection, Intersection.begin()));
1658      if (Intersection.empty())
1659        continue;
1660
1661      // Speculatively grow the RegUnitSets to hold the new set.
1662      RegUnitSets.resize(RegUnitSets.size() + 1);
1663      RegUnitSets.back().Name =
1664        RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1665
1666      std::set_union(RegUnitSets[Idx].Units.begin(),
1667                     RegUnitSets[Idx].Units.end(),
1668                     RegUnitSets[SearchIdx].Units.begin(),
1669                     RegUnitSets[SearchIdx].Units.end(),
1670                     std::inserter(RegUnitSets.back().Units,
1671                                   RegUnitSets.back().Units.begin()));
1672
1673      // Find an existing RegUnitSet, or add the union to the unique sets.
1674      std::vector<RegUnitSet>::const_iterator SetI =
1675        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1676      if (SetI != std::prev(RegUnitSets.end()))
1677        RegUnitSets.pop_back();
1678      else {
1679        DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1680              << " " << RegUnitSets.back().Name << ":";
1681              for (auto &U : RegUnitSets.back().Units)
1682                dbgs() << " " << RegUnits[U].Roots[0]->getName();
1683              dbgs() << "\n";);
1684      }
1685    }
1686  }
1687
1688  // Iteratively prune unit sets after inferring supersets.
1689  pruneUnitSets();
1690
1691  DEBUG(dbgs() << "\n";
1692        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1693             USIdx < USEnd; ++USIdx) {
1694          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1695                 << ":";
1696          for (auto &U : RegUnitSets[USIdx].Units)
1697            dbgs() << " " << RegUnits[U].Roots[0]->getName();
1698          dbgs() << "\n";
1699        });
1700
1701  // For each register class, list the UnitSets that are supersets.
1702  RegClassUnitSets.resize(RegClasses.size());
1703  int RCIdx = -1;
1704  for (auto &RC : RegClasses) {
1705    ++RCIdx;
1706    if (!RC.Allocatable)
1707      continue;
1708
1709    // Recompute the sorted list of units in this class.
1710    std::vector<unsigned> RCRegUnits;
1711    RC.buildRegUnitSet(RCRegUnits);
1712
1713    // Don't increase pressure for unallocatable regclasses.
1714    if (RCRegUnits.empty())
1715      continue;
1716
1717    DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1718          for (auto &U : RCRegUnits)
1719            dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
1720          dbgs() << "\n  UnitSetIDs:");
1721
1722    // Find all supersets.
1723    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1724         USIdx != USEnd; ++USIdx) {
1725      if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1726        DEBUG(dbgs() << " " << USIdx);
1727        RegClassUnitSets[RCIdx].push_back(USIdx);
1728      }
1729    }
1730    DEBUG(dbgs() << "\n");
1731    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1732  }
1733
1734  // For each register unit, ensure that we have the list of UnitSets that
1735  // contain the unit. Normally, this matches an existing list of UnitSets for a
1736  // register class. If not, we create a new entry in RegClassUnitSets as a
1737  // "fake" register class.
1738  for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1739       UnitIdx < UnitEnd; ++UnitIdx) {
1740    std::vector<unsigned> RUSets;
1741    for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1742      RegUnitSet &RUSet = RegUnitSets[i];
1743      if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1744          == RUSet.Units.end())
1745        continue;
1746      RUSets.push_back(i);
1747    }
1748    unsigned RCUnitSetsIdx = 0;
1749    for (unsigned e = RegClassUnitSets.size();
1750         RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1751      if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1752        break;
1753      }
1754    }
1755    RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1756    if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1757      // Create a new list of UnitSets as a "fake" register class.
1758      RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1759      RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1760    }
1761  }
1762}
1763
1764void CodeGenRegBank::computeRegUnitLaneMasks() {
1765  for (auto &Register : Registers) {
1766    // Create an initial lane mask for all register units.
1767    const auto &RegUnits = Register.getRegUnits();
1768    CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0);
1769    // Iterate through SubRegisters.
1770    typedef CodeGenRegister::SubRegMap SubRegMap;
1771    const SubRegMap &SubRegs = Register.getSubRegs();
1772    for (SubRegMap::const_iterator S = SubRegs.begin(),
1773         SE = SubRegs.end(); S != SE; ++S) {
1774      CodeGenRegister *SubReg = S->second;
1775      // Ignore non-leaf subregisters, their lane masks are fully covered by
1776      // the leaf subregisters anyway.
1777      if (SubReg->getSubRegs().size() != 0)
1778        continue;
1779      CodeGenSubRegIndex *SubRegIndex = S->first;
1780      const CodeGenRegister *SubRegister = S->second;
1781      unsigned LaneMask = SubRegIndex->LaneMask;
1782      // Distribute LaneMask to Register Units touched.
1783      for (unsigned SUI : SubRegister->getRegUnits()) {
1784        bool Found = false;
1785        unsigned u = 0;
1786        for (unsigned RU : RegUnits) {
1787          if (SUI == RU) {
1788            RegUnitLaneMasks[u] |= LaneMask;
1789            assert(!Found);
1790            Found = true;
1791          }
1792          ++u;
1793        }
1794        (void)Found;
1795        assert(Found);
1796      }
1797    }
1798    Register.setRegUnitLaneMasks(RegUnitLaneMasks);
1799  }
1800}
1801
1802void CodeGenRegBank::computeDerivedInfo() {
1803  computeComposites();
1804  computeSubRegLaneMasks();
1805
1806  // Compute a weight for each register unit created during getSubRegs.
1807  // This may create adopted register units (with unit # >= NumNativeRegUnits).
1808  computeRegUnitWeights();
1809
1810  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1811  // supersets for the union of overlapping sets.
1812  computeRegUnitSets();
1813
1814  computeRegUnitLaneMasks();
1815
1816  // Compute register class HasDisjunctSubRegs flag.
1817  for (CodeGenRegisterClass &RC : RegClasses) {
1818    RC.HasDisjunctSubRegs = false;
1819    for (const CodeGenRegister *Reg : RC.getMembers())
1820      RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
1821  }
1822
1823  // Get the weight of each set.
1824  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1825    RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1826
1827  // Find the order of each set.
1828  RegUnitSetOrder.reserve(RegUnitSets.size());
1829  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1830    RegUnitSetOrder.push_back(Idx);
1831
1832  std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1833                   [this](unsigned ID1, unsigned ID2) {
1834    return getRegPressureSet(ID1).Units.size() <
1835           getRegPressureSet(ID2).Units.size();
1836  });
1837  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1838    RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1839  }
1840}
1841
1842//
1843// Synthesize missing register class intersections.
1844//
1845// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1846// returns a maximal register class for all X.
1847//
1848void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1849  assert(!RegClasses.empty());
1850  // Stash the iterator to the last element so that this loop doesn't visit
1851  // elements added by the getOrCreateSubClass call within it.
1852  for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
1853       I != std::next(E); ++I) {
1854    CodeGenRegisterClass *RC1 = RC;
1855    CodeGenRegisterClass *RC2 = &*I;
1856    if (RC1 == RC2)
1857      continue;
1858
1859    // Compute the set intersection of RC1 and RC2.
1860    const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
1861    const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
1862    CodeGenRegister::Vec Intersection;
1863    std::set_intersection(
1864        Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
1865        std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
1866
1867    // Skip disjoint class pairs.
1868    if (Intersection.empty())
1869      continue;
1870
1871    // If RC1 and RC2 have different spill sizes or alignments, use the
1872    // larger size for sub-classing.  If they are equal, prefer RC1.
1873    if (RC2->SpillSize > RC1->SpillSize ||
1874        (RC2->SpillSize == RC1->SpillSize &&
1875         RC2->SpillAlignment > RC1->SpillAlignment))
1876      std::swap(RC1, RC2);
1877
1878    getOrCreateSubClass(RC1, &Intersection,
1879                        RC1->getName() + "_and_" + RC2->getName());
1880  }
1881}
1882
1883//
1884// Synthesize missing sub-classes for getSubClassWithSubReg().
1885//
1886// Make sure that the set of registers in RC with a given SubIdx sub-register
1887// form a register class.  Update RC->SubClassWithSubReg.
1888//
1889void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1890  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1891  typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
1892                   deref<llvm::less>> SubReg2SetMap;
1893
1894  // Compute the set of registers supporting each SubRegIndex.
1895  SubReg2SetMap SRSets;
1896  for (const auto R : RC->getMembers()) {
1897    const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
1898    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1899         E = SRM.end(); I != E; ++I)
1900      SRSets[I->first].push_back(R);
1901  }
1902
1903  for (auto I : SRSets)
1904    sortAndUniqueRegisters(I.second);
1905
1906  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1907  // numerical order to visit synthetic indices last.
1908  for (const auto &SubIdx : SubRegIndices) {
1909    SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
1910    // Unsupported SubRegIndex. Skip it.
1911    if (I == SRSets.end())
1912      continue;
1913    // In most cases, all RC registers support the SubRegIndex.
1914    if (I->second.size() == RC->getMembers().size()) {
1915      RC->setSubClassWithSubReg(&SubIdx, RC);
1916      continue;
1917    }
1918    // This is a real subset.  See if we have a matching class.
1919    CodeGenRegisterClass *SubRC =
1920      getOrCreateSubClass(RC, &I->second,
1921                          RC->getName() + "_with_" + I->first->getName());
1922    RC->setSubClassWithSubReg(&SubIdx, SubRC);
1923  }
1924}
1925
1926//
1927// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1928//
1929// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1930// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1931//
1932
1933void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1934                                                std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
1935  SmallVector<std::pair<const CodeGenRegister*,
1936                        const CodeGenRegister*>, 16> SSPairs;
1937  BitVector TopoSigs(getNumTopoSigs());
1938
1939  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1940  for (auto &SubIdx : SubRegIndices) {
1941    // Skip indexes that aren't fully supported by RC's registers. This was
1942    // computed by inferSubClassWithSubReg() above which should have been
1943    // called first.
1944    if (RC->getSubClassWithSubReg(&SubIdx) != RC)
1945      continue;
1946
1947    // Build list of (Super, Sub) pairs for this SubIdx.
1948    SSPairs.clear();
1949    TopoSigs.reset();
1950    for (const auto Super : RC->getMembers()) {
1951      const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
1952      assert(Sub && "Missing sub-register");
1953      SSPairs.push_back(std::make_pair(Super, Sub));
1954      TopoSigs.set(Sub->getTopoSig());
1955    }
1956
1957    // Iterate over sub-register class candidates.  Ignore classes created by
1958    // this loop. They will never be useful.
1959    // Store an iterator to the last element (not end) so that this loop doesn't
1960    // visit newly inserted elements.
1961    assert(!RegClasses.empty());
1962    for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
1963         I != std::next(E); ++I) {
1964      CodeGenRegisterClass &SubRC = *I;
1965      // Topological shortcut: SubRC members have the wrong shape.
1966      if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
1967        continue;
1968      // Compute the subset of RC that maps into SubRC.
1969      CodeGenRegister::Vec SubSetVec;
1970      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1971        if (SubRC.contains(SSPairs[i].second))
1972          SubSetVec.push_back(SSPairs[i].first);
1973
1974      if (SubSetVec.empty())
1975        continue;
1976
1977      // RC injects completely into SubRC.
1978      sortAndUniqueRegisters(SubSetVec);
1979      if (SubSetVec.size() == SSPairs.size()) {
1980        SubRC.addSuperRegClass(&SubIdx, RC);
1981        continue;
1982      }
1983
1984      // Only a subset of RC maps into SubRC. Make sure it is represented by a
1985      // class.
1986      getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
1987                                          SubIdx.getName() + "_in_" +
1988                                          SubRC.getName());
1989    }
1990  }
1991}
1992
1993
1994//
1995// Infer missing register classes.
1996//
1997void CodeGenRegBank::computeInferredRegisterClasses() {
1998  assert(!RegClasses.empty());
1999  // When this function is called, the register classes have not been sorted
2000  // and assigned EnumValues yet.  That means getSubClasses(),
2001  // getSuperClasses(), and hasSubClass() functions are defunct.
2002
2003  // Use one-before-the-end so it doesn't move forward when new elements are
2004  // added.
2005  auto FirstNewRC = std::prev(RegClasses.end());
2006
2007  // Visit all register classes, including the ones being added by the loop.
2008  // Watch out for iterator invalidation here.
2009  for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2010    CodeGenRegisterClass *RC = &*I;
2011
2012    // Synthesize answers for getSubClassWithSubReg().
2013    inferSubClassWithSubReg(RC);
2014
2015    // Synthesize answers for getCommonSubClass().
2016    inferCommonSubClass(RC);
2017
2018    // Synthesize answers for getMatchingSuperRegClass().
2019    inferMatchingSuperRegClass(RC);
2020
2021    // New register classes are created while this loop is running, and we need
2022    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2023    // to match old super-register classes with sub-register classes created
2024    // after inferMatchingSuperRegClass was called.  At this point,
2025    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2026    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2027    if (I == FirstNewRC) {
2028      auto NextNewRC = std::prev(RegClasses.end());
2029      for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2030           ++I2)
2031        inferMatchingSuperRegClass(&*I2, E2);
2032      FirstNewRC = NextNewRC;
2033    }
2034  }
2035}
2036
2037/// getRegisterClassForRegister - Find the register class that contains the
2038/// specified physical register.  If the register is not in a register class,
2039/// return null. If the register is in multiple classes, and the classes have a
2040/// superset-subset relationship and the same set of types, return the
2041/// superclass.  Otherwise return null.
2042const CodeGenRegisterClass*
2043CodeGenRegBank::getRegClassForRegister(Record *R) {
2044  const CodeGenRegister *Reg = getReg(R);
2045  const CodeGenRegisterClass *FoundRC = nullptr;
2046  for (const auto &RC : getRegClasses()) {
2047    if (!RC.contains(Reg))
2048      continue;
2049
2050    // If this is the first class that contains the register,
2051    // make a note of it and go on to the next class.
2052    if (!FoundRC) {
2053      FoundRC = &RC;
2054      continue;
2055    }
2056
2057    // If a register's classes have different types, return null.
2058    if (RC.getValueTypes() != FoundRC->getValueTypes())
2059      return nullptr;
2060
2061    // Check to see if the previously found class that contains
2062    // the register is a subclass of the current class. If so,
2063    // prefer the superclass.
2064    if (RC.hasSubClass(FoundRC)) {
2065      FoundRC = &RC;
2066      continue;
2067    }
2068
2069    // Check to see if the previously found class that contains
2070    // the register is a superclass of the current class. If so,
2071    // prefer the superclass.
2072    if (FoundRC->hasSubClass(&RC))
2073      continue;
2074
2075    // Multiple classes, and neither is a superclass of the other.
2076    // Return null.
2077    return nullptr;
2078  }
2079  return FoundRC;
2080}
2081
2082BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2083  SetVector<const CodeGenRegister*> Set;
2084
2085  // First add Regs with all sub-registers.
2086  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2087    CodeGenRegister *Reg = getReg(Regs[i]);
2088    if (Set.insert(Reg))
2089      // Reg is new, add all sub-registers.
2090      // The pre-ordering is not important here.
2091      Reg->addSubRegsPreOrder(Set, *this);
2092  }
2093
2094  // Second, find all super-registers that are completely covered by the set.
2095  for (unsigned i = 0; i != Set.size(); ++i) {
2096    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2097    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2098      const CodeGenRegister *Super = SR[j];
2099      if (!Super->CoveredBySubRegs || Set.count(Super))
2100        continue;
2101      // This new super-register is covered by its sub-registers.
2102      bool AllSubsInSet = true;
2103      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2104      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2105             E = SRM.end(); I != E; ++I)
2106        if (!Set.count(I->second)) {
2107          AllSubsInSet = false;
2108          break;
2109        }
2110      // All sub-registers in Set, add Super as well.
2111      // We will visit Super later to recheck its super-registers.
2112      if (AllSubsInSet)
2113        Set.insert(Super);
2114    }
2115  }
2116
2117  // Convert to BitVector.
2118  BitVector BV(Registers.size() + 1);
2119  for (unsigned i = 0, e = Set.size(); i != e; ++i)
2120    BV.set(Set[i]->EnumValue);
2121  return BV;
2122}
2123