1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines structures to encapsulate information gleaned from the 11// target register and register class definitions. 12// 13//===----------------------------------------------------------------------===// 14 15#include "CodeGenRegisters.h" 16#include "CodeGenTarget.h" 17#include "llvm/ADT/IntEqClasses.h" 18#include "llvm/ADT/STLExtras.h" 19#include "llvm/ADT/SmallVector.h" 20#include "llvm/ADT/StringExtras.h" 21#include "llvm/ADT/Twine.h" 22#include "llvm/Support/Debug.h" 23#include "llvm/TableGen/Error.h" 24 25using namespace llvm; 26 27#define DEBUG_TYPE "regalloc-emitter" 28 29//===----------------------------------------------------------------------===// 30// CodeGenSubRegIndex 31//===----------------------------------------------------------------------===// 32 33CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 35 Name = R->getName(); 36 if (R->getValue("Namespace")) 37 Namespace = R->getValueAsString("Namespace"); 38 Size = R->getValueAsInt("Size"); 39 Offset = R->getValueAsInt("Offset"); 40} 41 42CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 43 unsigned Enum) 44 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 46} 47 48std::string CodeGenSubRegIndex::getQualifiedName() const { 49 std::string N = getNamespace(); 50 if (!N.empty()) 51 N += "::"; 52 N += getName(); 53 return N; 54} 55 56void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 57 if (!TheDef) 58 return; 59 60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 61 if (!Comps.empty()) { 62 if (Comps.size() != 2) 63 PrintFatalError(TheDef->getLoc(), 64 "ComposedOf must have exactly two entries"); 65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 67 CodeGenSubRegIndex *X = A->addComposite(B, this); 68 if (X) 69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 70 } 71 72 std::vector<Record*> Parts = 73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 74 if (!Parts.empty()) { 75 if (Parts.size() < 2) 76 PrintFatalError(TheDef->getLoc(), 77 "CoveredBySubRegs must have two or more entries"); 78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 79 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 81 RegBank.addConcatSubRegIndex(IdxParts, this); 82 } 83} 84 85unsigned CodeGenSubRegIndex::computeLaneMask() const { 86 // Already computed? 87 if (LaneMask) 88 return LaneMask; 89 90 // Recursion guard, shouldn't be required. 91 LaneMask = ~0u; 92 93 // The lane mask is simply the union of all sub-indices. 94 unsigned M = 0; 95 for (const auto &C : Composed) 96 M |= C.second->computeLaneMask(); 97 assert(M && "Missing lane mask, sub-register cycle?"); 98 LaneMask = M; 99 return LaneMask; 100} 101 102//===----------------------------------------------------------------------===// 103// CodeGenRegister 104//===----------------------------------------------------------------------===// 105 106CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 107 : TheDef(R), 108 EnumValue(Enum), 109 CostPerUse(R->getValueAsInt("CostPerUse")), 110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 111 HasDisjunctSubRegs(false), 112 SubRegsComplete(false), 113 SuperRegsComplete(false), 114 TopoSig(~0u) 115{} 116 117void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 120 121 if (SRIs.size() != SRs.size()) 122 PrintFatalError(TheDef->getLoc(), 123 "SubRegs and SubRegIndices must have the same size"); 124 125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 128 } 129 130 // Also compute leading super-registers. Each register has a list of 131 // covered-by-subregs super-registers where it appears as the first explicit 132 // sub-register. 133 // 134 // This is used by computeSecondarySubRegs() to find candidates. 135 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 137 138 // Add ad hoc alias links. This is a symmetric relationship between two 139 // registers, so build a symmetric graph by adding links in both ends. 140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 143 ExplicitAliases.push_back(Reg); 144 Reg->ExplicitAliases.push_back(this); 145 } 146} 147 148const std::string &CodeGenRegister::getName() const { 149 assert(TheDef && "no def"); 150 return TheDef->getName(); 151} 152 153namespace { 154// Iterate over all register units in a set of registers. 155class RegUnitIterator { 156 CodeGenRegister::Vec::const_iterator RegI, RegE; 157 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 158 159public: 160 RegUnitIterator(const CodeGenRegister::Vec &Regs): 161 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { 162 163 if (RegI != RegE) { 164 UnitI = (*RegI)->getRegUnits().begin(); 165 UnitE = (*RegI)->getRegUnits().end(); 166 advance(); 167 } 168 } 169 170 bool isValid() const { return UnitI != UnitE; } 171 172 unsigned operator* () const { assert(isValid()); return *UnitI; } 173 174 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 175 176 /// Preincrement. Move to the next unit. 177 void operator++() { 178 assert(isValid() && "Cannot advance beyond the last operand"); 179 ++UnitI; 180 advance(); 181 } 182 183protected: 184 void advance() { 185 while (UnitI == UnitE) { 186 if (++RegI == RegE) 187 break; 188 UnitI = (*RegI)->getRegUnits().begin(); 189 UnitE = (*RegI)->getRegUnits().end(); 190 } 191 } 192}; 193} // namespace 194 195// Return true of this unit appears in RegUnits. 196static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 197 return RegUnits.test(Unit); 198} 199 200// Inherit register units from subregisters. 201// Return true if the RegUnits changed. 202bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 203 bool changed = false; 204 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 205 I != E; ++I) { 206 CodeGenRegister *SR = I->second; 207 // Merge the subregister's units into this register's RegUnits. 208 changed |= (RegUnits |= SR->RegUnits); 209 } 210 211 return changed; 212} 213 214const CodeGenRegister::SubRegMap & 215CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 216 // Only compute this map once. 217 if (SubRegsComplete) 218 return SubRegs; 219 SubRegsComplete = true; 220 221 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 222 223 // First insert the explicit subregs and make sure they are fully indexed. 224 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 225 CodeGenRegister *SR = ExplicitSubRegs[i]; 226 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 227 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 228 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 229 " appears twice in Register " + getName()); 230 // Map explicit sub-registers first, so the names take precedence. 231 // The inherited sub-registers are mapped below. 232 SubReg2Idx.insert(std::make_pair(SR, Idx)); 233 } 234 235 // Keep track of inherited subregs and how they can be reached. 236 SmallPtrSet<CodeGenRegister*, 8> Orphans; 237 238 // Clone inherited subregs and place duplicate entries in Orphans. 239 // Here the order is important - earlier subregs take precedence. 240 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 241 CodeGenRegister *SR = ExplicitSubRegs[i]; 242 const SubRegMap &Map = SR->computeSubRegs(RegBank); 243 HasDisjunctSubRegs |= SR->HasDisjunctSubRegs; 244 245 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 246 ++SI) { 247 if (!SubRegs.insert(*SI).second) 248 Orphans.insert(SI->second); 249 } 250 } 251 252 // Expand any composed subreg indices. 253 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 254 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 255 // expanded subreg indices recursively. 256 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 257 for (unsigned i = 0; i != Indices.size(); ++i) { 258 CodeGenSubRegIndex *Idx = Indices[i]; 259 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 260 CodeGenRegister *SR = SubRegs[Idx]; 261 const SubRegMap &Map = SR->computeSubRegs(RegBank); 262 263 // Look at the possible compositions of Idx. 264 // They may not all be supported by SR. 265 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 266 E = Comps.end(); I != E; ++I) { 267 SubRegMap::const_iterator SRI = Map.find(I->first); 268 if (SRI == Map.end()) 269 continue; // Idx + I->first doesn't exist in SR. 270 // Add I->second as a name for the subreg SRI->second, assuming it is 271 // orphaned, and the name isn't already used for something else. 272 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 273 continue; 274 // We found a new name for the orphaned sub-register. 275 SubRegs.insert(std::make_pair(I->second, SRI->second)); 276 Indices.push_back(I->second); 277 } 278 } 279 280 // Now Orphans contains the inherited subregisters without a direct index. 281 // Create inferred indexes for all missing entries. 282 // Work backwards in the Indices vector in order to compose subregs bottom-up. 283 // Consider this subreg sequence: 284 // 285 // qsub_1 -> dsub_0 -> ssub_0 286 // 287 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 288 // can be reached in two different ways: 289 // 290 // qsub_1 -> ssub_0 291 // dsub_2 -> ssub_0 292 // 293 // We pick the latter composition because another register may have [dsub_0, 294 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 295 // dsub_2 -> ssub_0 composition can be shared. 296 while (!Indices.empty() && !Orphans.empty()) { 297 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 298 CodeGenRegister *SR = SubRegs[Idx]; 299 const SubRegMap &Map = SR->computeSubRegs(RegBank); 300 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 301 ++SI) 302 if (Orphans.erase(SI->second)) 303 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 304 } 305 306 // Compute the inverse SubReg -> Idx map. 307 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 308 SI != SE; ++SI) { 309 if (SI->second == this) { 310 ArrayRef<SMLoc> Loc; 311 if (TheDef) 312 Loc = TheDef->getLoc(); 313 PrintFatalError(Loc, "Register " + getName() + 314 " has itself as a sub-register"); 315 } 316 317 // Compute AllSuperRegsCovered. 318 if (!CoveredBySubRegs) 319 SI->first->AllSuperRegsCovered = false; 320 321 // Ensure that every sub-register has a unique name. 322 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 323 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 324 if (Ins->second == SI->first) 325 continue; 326 // Trouble: Two different names for SI->second. 327 ArrayRef<SMLoc> Loc; 328 if (TheDef) 329 Loc = TheDef->getLoc(); 330 PrintFatalError(Loc, "Sub-register can't have two names: " + 331 SI->second->getName() + " available as " + 332 SI->first->getName() + " and " + Ins->second->getName()); 333 } 334 335 // Derive possible names for sub-register concatenations from any explicit 336 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 337 // that getConcatSubRegIndex() won't invent any concatenated indices that the 338 // user already specified. 339 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 340 CodeGenRegister *SR = ExplicitSubRegs[i]; 341 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 342 continue; 343 344 // SR is composed of multiple sub-regs. Find their names in this register. 345 SmallVector<CodeGenSubRegIndex*, 8> Parts; 346 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 347 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 348 349 // Offer this as an existing spelling for the concatenation of Parts. 350 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 351 } 352 353 // Initialize RegUnitList. Because getSubRegs is called recursively, this 354 // processes the register hierarchy in postorder. 355 // 356 // Inherit all sub-register units. It is good enough to look at the explicit 357 // sub-registers, the other registers won't contribute any more units. 358 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 359 CodeGenRegister *SR = ExplicitSubRegs[i]; 360 RegUnits |= SR->RegUnits; 361 } 362 363 // Absent any ad hoc aliasing, we create one register unit per leaf register. 364 // These units correspond to the maximal cliques in the register overlap 365 // graph which is optimal. 366 // 367 // When there is ad hoc aliasing, we simply create one unit per edge in the 368 // undirected ad hoc aliasing graph. Technically, we could do better by 369 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 370 // are extremely rare anyway (I've never seen one), so we don't bother with 371 // the added complexity. 372 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 373 CodeGenRegister *AR = ExplicitAliases[i]; 374 // Only visit each edge once. 375 if (AR->SubRegsComplete) 376 continue; 377 // Create a RegUnit representing this alias edge, and add it to both 378 // registers. 379 unsigned Unit = RegBank.newRegUnit(this, AR); 380 RegUnits.set(Unit); 381 AR->RegUnits.set(Unit); 382 } 383 384 // Finally, create units for leaf registers without ad hoc aliases. Note that 385 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 386 // necessary. This means the aliasing leaf registers can share a single unit. 387 if (RegUnits.empty()) 388 RegUnits.set(RegBank.newRegUnit(this)); 389 390 // We have now computed the native register units. More may be adopted later 391 // for balancing purposes. 392 NativeRegUnits = RegUnits; 393 394 return SubRegs; 395} 396 397// In a register that is covered by its sub-registers, try to find redundant 398// sub-registers. For example: 399// 400// QQ0 = {Q0, Q1} 401// Q0 = {D0, D1} 402// Q1 = {D2, D3} 403// 404// We can infer that D1_D2 is also a sub-register, even if it wasn't named in 405// the register definition. 406// 407// The explicitly specified registers form a tree. This function discovers 408// sub-register relationships that would force a DAG. 409// 410void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 411 // Collect new sub-registers first, add them later. 412 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 413 414 // Look at the leading super-registers of each sub-register. Those are the 415 // candidates for new sub-registers, assuming they are fully contained in 416 // this register. 417 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 418 const CodeGenRegister *SubReg = I->second; 419 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 420 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 421 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 422 // Already got this sub-register? 423 if (Cand == this || getSubRegIndex(Cand)) 424 continue; 425 // Check if each component of Cand is already a sub-register. 426 // We know that the first component is I->second, and is present with the 427 // name I->first. 428 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 429 assert(!Cand->ExplicitSubRegs.empty() && 430 "Super-register has no sub-registers"); 431 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 432 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 433 Parts.push_back(Idx); 434 else { 435 // Sub-register doesn't exist. 436 Parts.clear(); 437 break; 438 } 439 } 440 // If some Cand sub-register is not part of this register, or if Cand only 441 // has one sub-register, there is nothing to do. 442 if (Parts.size() <= 1) 443 continue; 444 445 // Each part of Cand is a sub-register of this. Make the full Cand also 446 // a sub-register with a concatenated sub-register index. 447 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 448 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 449 } 450 } 451 452 // Now add all the new sub-registers. 453 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 454 // Don't add Cand if another sub-register is already using the index. 455 if (!SubRegs.insert(NewSubRegs[i]).second) 456 continue; 457 458 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 459 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 460 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 461 } 462 463 // Create sub-register index composition maps for the synthesized indices. 464 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 465 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 466 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 467 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 468 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 469 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 470 if (!SubIdx) 471 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 472 SI->second->getName() + " in " + getName()); 473 NewIdx->addComposite(SI->first, SubIdx); 474 } 475 } 476} 477 478void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 479 // Only visit each register once. 480 if (SuperRegsComplete) 481 return; 482 SuperRegsComplete = true; 483 484 // Make sure all sub-registers have been visited first, so the super-reg 485 // lists will be topologically ordered. 486 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 487 I != E; ++I) 488 I->second->computeSuperRegs(RegBank); 489 490 // Now add this as a super-register on all sub-registers. 491 // Also compute the TopoSigId in post-order. 492 TopoSigId Id; 493 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 494 I != E; ++I) { 495 // Topological signature computed from SubIdx, TopoId(SubReg). 496 // Loops and idempotent indices have TopoSig = ~0u. 497 Id.push_back(I->first->EnumValue); 498 Id.push_back(I->second->TopoSig); 499 500 // Don't add duplicate entries. 501 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 502 continue; 503 I->second->SuperRegs.push_back(this); 504 } 505 TopoSig = RegBank.getTopoSig(Id); 506} 507 508void 509CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 510 CodeGenRegBank &RegBank) const { 511 assert(SubRegsComplete && "Must precompute sub-registers"); 512 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 513 CodeGenRegister *SR = ExplicitSubRegs[i]; 514 if (OSet.insert(SR)) 515 SR->addSubRegsPreOrder(OSet, RegBank); 516 } 517 // Add any secondary sub-registers that weren't part of the explicit tree. 518 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 519 I != E; ++I) 520 OSet.insert(I->second); 521} 522 523// Get the sum of this register's unit weights. 524unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 525 unsigned Weight = 0; 526 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 527 I != E; ++I) { 528 Weight += RegBank.getRegUnit(*I).Weight; 529 } 530 return Weight; 531} 532 533//===----------------------------------------------------------------------===// 534// RegisterTuples 535//===----------------------------------------------------------------------===// 536 537// A RegisterTuples def is used to generate pseudo-registers from lists of 538// sub-registers. We provide a SetTheory expander class that returns the new 539// registers. 540namespace { 541struct TupleExpander : SetTheory::Expander { 542 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 543 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 544 unsigned Dim = Indices.size(); 545 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 546 if (Dim != SubRegs->getSize()) 547 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 548 if (Dim < 2) 549 PrintFatalError(Def->getLoc(), 550 "Tuples must have at least 2 sub-registers"); 551 552 // Evaluate the sub-register lists to be zipped. 553 unsigned Length = ~0u; 554 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 555 for (unsigned i = 0; i != Dim; ++i) { 556 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 557 Length = std::min(Length, unsigned(Lists[i].size())); 558 } 559 560 if (Length == 0) 561 return; 562 563 // Precompute some types. 564 Record *RegisterCl = Def->getRecords().getClass("Register"); 565 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 566 StringInit *BlankName = StringInit::get(""); 567 568 // Zip them up. 569 for (unsigned n = 0; n != Length; ++n) { 570 std::string Name; 571 Record *Proto = Lists[0][n]; 572 std::vector<Init*> Tuple; 573 unsigned CostPerUse = 0; 574 for (unsigned i = 0; i != Dim; ++i) { 575 Record *Reg = Lists[i][n]; 576 if (i) Name += '_'; 577 Name += Reg->getName(); 578 Tuple.push_back(DefInit::get(Reg)); 579 CostPerUse = std::max(CostPerUse, 580 unsigned(Reg->getValueAsInt("CostPerUse"))); 581 } 582 583 // Create a new Record representing the synthesized register. This record 584 // is only for consumption by CodeGenRegister, it is not added to the 585 // RecordKeeper. 586 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 587 Elts.insert(NewReg); 588 589 // Copy Proto super-classes. 590 ArrayRef<Record *> Supers = Proto->getSuperClasses(); 591 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); 592 for (unsigned i = 0, e = Supers.size(); i != e; ++i) 593 NewReg->addSuperClass(Supers[i], Ranges[i]); 594 595 // Copy Proto fields. 596 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 597 RecordVal RV = Proto->getValues()[i]; 598 599 // Skip existing fields, like NAME. 600 if (NewReg->getValue(RV.getNameInit())) 601 continue; 602 603 StringRef Field = RV.getName(); 604 605 // Replace the sub-register list with Tuple. 606 if (Field == "SubRegs") 607 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 608 609 // Provide a blank AsmName. MC hacks are required anyway. 610 if (Field == "AsmName") 611 RV.setValue(BlankName); 612 613 // CostPerUse is aggregated from all Tuple members. 614 if (Field == "CostPerUse") 615 RV.setValue(IntInit::get(CostPerUse)); 616 617 // Composite registers are always covered by sub-registers. 618 if (Field == "CoveredBySubRegs") 619 RV.setValue(BitInit::get(true)); 620 621 // Copy fields from the RegisterTuples def. 622 if (Field == "SubRegIndices" || 623 Field == "CompositeIndices") { 624 NewReg->addValue(*Def->getValue(Field)); 625 continue; 626 } 627 628 // Some fields get their default uninitialized value. 629 if (Field == "DwarfNumbers" || 630 Field == "DwarfAlias" || 631 Field == "Aliases") { 632 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 633 NewReg->addValue(*DefRV); 634 continue; 635 } 636 637 // Everything else is copied from Proto. 638 NewReg->addValue(RV); 639 } 640 } 641 } 642}; 643} 644 645//===----------------------------------------------------------------------===// 646// CodeGenRegisterClass 647//===----------------------------------------------------------------------===// 648 649static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 650 std::sort(M.begin(), M.end(), deref<llvm::less>()); 651 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 652} 653 654CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 655 : TheDef(R), 656 Name(R->getName()), 657 TopoSigs(RegBank.getNumTopoSigs()), 658 EnumValue(-1), 659 LaneMask(0) { 660 // Rename anonymous register classes. 661 if (R->getName().size() > 9 && R->getName()[9] == '.') { 662 static unsigned AnonCounter = 0; 663 R->setName("AnonRegClass_" + utostr(AnonCounter++)); 664 } 665 666 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 667 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 668 Record *Type = TypeList[i]; 669 if (!Type->isSubClassOf("ValueType")) 670 PrintFatalError("RegTypes list member '" + Type->getName() + 671 "' does not derive from the ValueType class!"); 672 VTs.push_back(getValueType(Type)); 673 } 674 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 675 676 // Allocation order 0 is the full set. AltOrders provides others. 677 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 678 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 679 Orders.resize(1 + AltOrders->size()); 680 681 // Default allocation order always contains all registers. 682 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 683 Orders[0].push_back((*Elements)[i]); 684 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 685 Members.push_back(Reg); 686 TopoSigs.set(Reg->getTopoSig()); 687 } 688 sortAndUniqueRegisters(Members); 689 690 // Alternative allocation orders may be subsets. 691 SetTheory::RecSet Order; 692 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 693 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 694 Orders[1 + i].append(Order.begin(), Order.end()); 695 // Verify that all altorder members are regclass members. 696 while (!Order.empty()) { 697 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 698 Order.pop_back(); 699 if (!contains(Reg)) 700 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 701 " is not a class member"); 702 } 703 } 704 705 // Allow targets to override the size in bits of the RegisterClass. 706 unsigned Size = R->getValueAsInt("Size"); 707 708 Namespace = R->getValueAsString("Namespace"); 709 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits(); 710 SpillAlignment = R->getValueAsInt("Alignment"); 711 CopyCost = R->getValueAsInt("CopyCost"); 712 Allocatable = R->getValueAsBit("isAllocatable"); 713 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 714 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 715 if (AllocationPriority < 0 || AllocationPriority > 63) 716 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 717 this->AllocationPriority = AllocationPriority; 718} 719 720// Create an inferred register class that was missing from the .td files. 721// Most properties will be inherited from the closest super-class after the 722// class structure has been computed. 723CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 724 StringRef Name, Key Props) 725 : Members(*Props.Members), 726 TheDef(nullptr), 727 Name(Name), 728 TopoSigs(RegBank.getNumTopoSigs()), 729 EnumValue(-1), 730 SpillSize(Props.SpillSize), 731 SpillAlignment(Props.SpillAlignment), 732 CopyCost(0), 733 Allocatable(true), 734 AllocationPriority(0) { 735 for (const auto R : Members) 736 TopoSigs.set(R->getTopoSig()); 737} 738 739// Compute inherited propertied for a synthesized register class. 740void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 741 assert(!getDef() && "Only synthesized classes can inherit properties"); 742 assert(!SuperClasses.empty() && "Synthesized class without super class"); 743 744 // The last super-class is the smallest one. 745 CodeGenRegisterClass &Super = *SuperClasses.back(); 746 747 // Most properties are copied directly. 748 // Exceptions are members, size, and alignment 749 Namespace = Super.Namespace; 750 VTs = Super.VTs; 751 CopyCost = Super.CopyCost; 752 Allocatable = Super.Allocatable; 753 AltOrderSelect = Super.AltOrderSelect; 754 AllocationPriority = Super.AllocationPriority; 755 756 // Copy all allocation orders, filter out foreign registers from the larger 757 // super-class. 758 Orders.resize(Super.Orders.size()); 759 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 760 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 761 if (contains(RegBank.getReg(Super.Orders[i][j]))) 762 Orders[i].push_back(Super.Orders[i][j]); 763} 764 765bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 766 return std::binary_search(Members.begin(), Members.end(), Reg, 767 deref<llvm::less>()); 768} 769 770namespace llvm { 771 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 772 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 773 for (const auto R : *K.Members) 774 OS << ", " << R->getName(); 775 return OS << " }"; 776 } 777} 778 779// This is a simple lexicographical order that can be used to search for sets. 780// It is not the same as the topological order provided by TopoOrderRC. 781bool CodeGenRegisterClass::Key:: 782operator<(const CodeGenRegisterClass::Key &B) const { 783 assert(Members && B.Members); 784 return std::tie(*Members, SpillSize, SpillAlignment) < 785 std::tie(*B.Members, B.SpillSize, B.SpillAlignment); 786} 787 788// Returns true if RC is a strict subclass. 789// RC is a sub-class of this class if it is a valid replacement for any 790// instruction operand where a register of this classis required. It must 791// satisfy these conditions: 792// 793// 1. All RC registers are also in this. 794// 2. The RC spill size must not be smaller than our spill size. 795// 3. RC spill alignment must be compatible with ours. 796// 797static bool testSubClass(const CodeGenRegisterClass *A, 798 const CodeGenRegisterClass *B) { 799 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 800 A->SpillSize <= B->SpillSize && 801 std::includes(A->getMembers().begin(), A->getMembers().end(), 802 B->getMembers().begin(), B->getMembers().end(), 803 deref<llvm::less>()); 804} 805 806/// Sorting predicate for register classes. This provides a topological 807/// ordering that arranges all register classes before their sub-classes. 808/// 809/// Register classes with the same registers, spill size, and alignment form a 810/// clique. They will be ordered alphabetically. 811/// 812static bool TopoOrderRC(const CodeGenRegisterClass &PA, 813 const CodeGenRegisterClass &PB) { 814 auto *A = &PA; 815 auto *B = &PB; 816 if (A == B) 817 return 0; 818 819 // Order by ascending spill size. 820 if (A->SpillSize < B->SpillSize) 821 return true; 822 if (A->SpillSize > B->SpillSize) 823 return false; 824 825 // Order by ascending spill alignment. 826 if (A->SpillAlignment < B->SpillAlignment) 827 return true; 828 if (A->SpillAlignment > B->SpillAlignment) 829 return false; 830 831 // Order by descending set size. Note that the classes' allocation order may 832 // not have been computed yet. The Members set is always vaild. 833 if (A->getMembers().size() > B->getMembers().size()) 834 return true; 835 if (A->getMembers().size() < B->getMembers().size()) 836 return false; 837 838 // Finally order by name as a tie breaker. 839 return StringRef(A->getName()) < B->getName(); 840} 841 842std::string CodeGenRegisterClass::getQualifiedName() const { 843 if (Namespace.empty()) 844 return getName(); 845 else 846 return Namespace + "::" + getName(); 847} 848 849// Compute sub-classes of all register classes. 850// Assume the classes are ordered topologically. 851void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 852 auto &RegClasses = RegBank.getRegClasses(); 853 854 // Visit backwards so sub-classes are seen first. 855 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 856 CodeGenRegisterClass &RC = *I; 857 RC.SubClasses.resize(RegClasses.size()); 858 RC.SubClasses.set(RC.EnumValue); 859 860 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 861 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 862 CodeGenRegisterClass &SubRC = *I2; 863 if (RC.SubClasses.test(SubRC.EnumValue)) 864 continue; 865 if (!testSubClass(&RC, &SubRC)) 866 continue; 867 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 868 // check them again. 869 RC.SubClasses |= SubRC.SubClasses; 870 } 871 872 // Sweep up missed clique members. They will be immediately preceding RC. 873 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 874 RC.SubClasses.set(I2->EnumValue); 875 } 876 877 // Compute the SuperClasses lists from the SubClasses vectors. 878 for (auto &RC : RegClasses) { 879 const BitVector &SC = RC.getSubClasses(); 880 auto I = RegClasses.begin(); 881 for (int s = 0, next_s = SC.find_first(); next_s != -1; 882 next_s = SC.find_next(s)) { 883 std::advance(I, next_s - s); 884 s = next_s; 885 if (&*I == &RC) 886 continue; 887 I->SuperClasses.push_back(&RC); 888 } 889 } 890 891 // With the class hierarchy in place, let synthesized register classes inherit 892 // properties from their closest super-class. The iteration order here can 893 // propagate properties down multiple levels. 894 for (auto &RC : RegClasses) 895 if (!RC.getDef()) 896 RC.inheritProperties(RegBank); 897} 898 899void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 900 BitVector &Out) const { 901 auto FindI = SuperRegClasses.find(SubIdx); 902 if (FindI == SuperRegClasses.end()) 903 return; 904 for (CodeGenRegisterClass *RC : FindI->second) 905 Out.set(RC->EnumValue); 906} 907 908// Populate a unique sorted list of units from a register set. 909void CodeGenRegisterClass::buildRegUnitSet( 910 std::vector<unsigned> &RegUnits) const { 911 std::vector<unsigned> TmpUnits; 912 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 913 TmpUnits.push_back(*UnitI); 914 std::sort(TmpUnits.begin(), TmpUnits.end()); 915 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 916 std::back_inserter(RegUnits)); 917} 918 919//===----------------------------------------------------------------------===// 920// CodeGenRegBank 921//===----------------------------------------------------------------------===// 922 923CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 924 // Configure register Sets to understand register classes and tuples. 925 Sets.addFieldExpander("RegisterClass", "MemberList"); 926 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 927 Sets.addExpander("RegisterTuples", new TupleExpander()); 928 929 // Read in the user-defined (named) sub-register indices. 930 // More indices will be synthesized later. 931 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 932 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 933 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 934 getSubRegIdx(SRIs[i]); 935 // Build composite maps from ComposedOf fields. 936 for (auto &Idx : SubRegIndices) 937 Idx.updateComponents(*this); 938 939 // Read in the register definitions. 940 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 941 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 942 // Assign the enumeration values. 943 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 944 getReg(Regs[i]); 945 946 // Expand tuples and number the new registers. 947 std::vector<Record*> Tups = 948 Records.getAllDerivedDefinitions("RegisterTuples"); 949 950 for (Record *R : Tups) { 951 std::vector<Record *> TupRegs = *Sets.expand(R); 952 std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 953 for (Record *RC : TupRegs) 954 getReg(RC); 955 } 956 957 // Now all the registers are known. Build the object graph of explicit 958 // register-register references. 959 for (auto &Reg : Registers) 960 Reg.buildObjectGraph(*this); 961 962 // Compute register name map. 963 for (auto &Reg : Registers) 964 // FIXME: This could just be RegistersByName[name] = register, except that 965 // causes some failures in MIPS - perhaps they have duplicate register name 966 // entries? (or maybe there's a reason for it - I don't know much about this 967 // code, just drive-by refactoring) 968 RegistersByName.insert( 969 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 970 971 // Precompute all sub-register maps. 972 // This will create Composite entries for all inferred sub-register indices. 973 for (auto &Reg : Registers) 974 Reg.computeSubRegs(*this); 975 976 // Infer even more sub-registers by combining leading super-registers. 977 for (auto &Reg : Registers) 978 if (Reg.CoveredBySubRegs) 979 Reg.computeSecondarySubRegs(*this); 980 981 // After the sub-register graph is complete, compute the topologically 982 // ordered SuperRegs list. 983 for (auto &Reg : Registers) 984 Reg.computeSuperRegs(*this); 985 986 // Native register units are associated with a leaf register. They've all been 987 // discovered now. 988 NumNativeRegUnits = RegUnits.size(); 989 990 // Read in register class definitions. 991 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 992 if (RCs.empty()) 993 PrintFatalError("No 'RegisterClass' subclasses defined!"); 994 995 // Allocate user-defined register classes. 996 for (auto *RC : RCs) { 997 RegClasses.push_back(CodeGenRegisterClass(*this, RC)); 998 addToMaps(&RegClasses.back()); 999 } 1000 1001 // Infer missing classes to create a full algebra. 1002 computeInferredRegisterClasses(); 1003 1004 // Order register classes topologically and assign enum values. 1005 RegClasses.sort(TopoOrderRC); 1006 unsigned i = 0; 1007 for (auto &RC : RegClasses) 1008 RC.EnumValue = i++; 1009 CodeGenRegisterClass::computeSubClasses(*this); 1010} 1011 1012// Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1013CodeGenSubRegIndex* 1014CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1015 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1016 return &SubRegIndices.back(); 1017} 1018 1019CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1020 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1021 if (Idx) 1022 return Idx; 1023 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1024 Idx = &SubRegIndices.back(); 1025 return Idx; 1026} 1027 1028CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1029 CodeGenRegister *&Reg = Def2Reg[Def]; 1030 if (Reg) 1031 return Reg; 1032 Registers.emplace_back(Def, Registers.size() + 1); 1033 Reg = &Registers.back(); 1034 return Reg; 1035} 1036 1037void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1038 if (Record *Def = RC->getDef()) 1039 Def2RC.insert(std::make_pair(Def, RC)); 1040 1041 // Duplicate classes are rejected by insert(). 1042 // That's OK, we only care about the properties handled by CGRC::Key. 1043 CodeGenRegisterClass::Key K(*RC); 1044 Key2RC.insert(std::make_pair(K, RC)); 1045} 1046 1047// Create a synthetic sub-class if it is missing. 1048CodeGenRegisterClass* 1049CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1050 const CodeGenRegister::Vec *Members, 1051 StringRef Name) { 1052 // Synthetic sub-class has the same size and alignment as RC. 1053 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1054 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1055 if (FoundI != Key2RC.end()) 1056 return FoundI->second; 1057 1058 // Sub-class doesn't exist, create a new one. 1059 RegClasses.push_back(CodeGenRegisterClass(*this, Name, K)); 1060 addToMaps(&RegClasses.back()); 1061 return &RegClasses.back(); 1062} 1063 1064CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1065 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1066 return RC; 1067 1068 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1069} 1070 1071CodeGenSubRegIndex* 1072CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1073 CodeGenSubRegIndex *B) { 1074 // Look for an existing entry. 1075 CodeGenSubRegIndex *Comp = A->compose(B); 1076 if (Comp) 1077 return Comp; 1078 1079 // None exists, synthesize one. 1080 std::string Name = A->getName() + "_then_" + B->getName(); 1081 Comp = createSubRegIndex(Name, A->getNamespace()); 1082 A->addComposite(B, Comp); 1083 return Comp; 1084} 1085 1086CodeGenSubRegIndex *CodeGenRegBank:: 1087getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1088 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1089 1090 // Look for an existing entry. 1091 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1092 if (Idx) 1093 return Idx; 1094 1095 // None exists, synthesize one. 1096 std::string Name = Parts.front()->getName(); 1097 // Determine whether all parts are contiguous. 1098 bool isContinuous = true; 1099 unsigned Size = Parts.front()->Size; 1100 unsigned LastOffset = Parts.front()->Offset; 1101 unsigned LastSize = Parts.front()->Size; 1102 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1103 Name += '_'; 1104 Name += Parts[i]->getName(); 1105 Size += Parts[i]->Size; 1106 if (Parts[i]->Offset != (LastOffset + LastSize)) 1107 isContinuous = false; 1108 LastOffset = Parts[i]->Offset; 1109 LastSize = Parts[i]->Size; 1110 } 1111 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1112 Idx->Size = Size; 1113 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1114 return Idx; 1115} 1116 1117void CodeGenRegBank::computeComposites() { 1118 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1119 // and many registers will share TopoSigs on regular architectures. 1120 BitVector TopoSigs(getNumTopoSigs()); 1121 1122 for (const auto &Reg1 : Registers) { 1123 // Skip identical subreg structures already processed. 1124 if (TopoSigs.test(Reg1.getTopoSig())) 1125 continue; 1126 TopoSigs.set(Reg1.getTopoSig()); 1127 1128 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1129 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1130 e1 = SRM1.end(); i1 != e1; ++i1) { 1131 CodeGenSubRegIndex *Idx1 = i1->first; 1132 CodeGenRegister *Reg2 = i1->second; 1133 // Ignore identity compositions. 1134 if (&Reg1 == Reg2) 1135 continue; 1136 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1137 // Try composing Idx1 with another SubRegIndex. 1138 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1139 e2 = SRM2.end(); i2 != e2; ++i2) { 1140 CodeGenSubRegIndex *Idx2 = i2->first; 1141 CodeGenRegister *Reg3 = i2->second; 1142 // Ignore identity compositions. 1143 if (Reg2 == Reg3) 1144 continue; 1145 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1146 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1147 assert(Idx3 && "Sub-register doesn't have an index"); 1148 1149 // Conflicting composition? Emit a warning but allow it. 1150 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1151 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1152 " and " + Idx2->getQualifiedName() + 1153 " compose ambiguously as " + Prev->getQualifiedName() + 1154 " or " + Idx3->getQualifiedName()); 1155 } 1156 } 1157 } 1158} 1159 1160// Compute lane masks. This is similar to register units, but at the 1161// sub-register index level. Each bit in the lane mask is like a register unit 1162// class, and two lane masks will have a bit in common if two sub-register 1163// indices overlap in some register. 1164// 1165// Conservatively share a lane mask bit if two sub-register indices overlap in 1166// some registers, but not in others. That shouldn't happen a lot. 1167void CodeGenRegBank::computeSubRegLaneMasks() { 1168 // First assign individual bits to all the leaf indices. 1169 unsigned Bit = 0; 1170 // Determine mask of lanes that cover their registers. 1171 CoveringLanes = ~0u; 1172 for (auto &Idx : SubRegIndices) { 1173 if (Idx.getComposites().empty()) { 1174 Idx.LaneMask = 1u << Bit; 1175 // Share bit 31 in the unlikely case there are more than 32 leafs. 1176 // 1177 // Sharing bits is harmless; it allows graceful degradation in targets 1178 // with more than 32 vector lanes. They simply get a limited resolution 1179 // view of lanes beyond the 32nd. 1180 // 1181 // See also the comment for getSubRegIndexLaneMask(). 1182 if (Bit < 31) 1183 ++Bit; 1184 else 1185 // Once bit 31 is shared among multiple leafs, the 'lane' it represents 1186 // is no longer covering its registers. 1187 CoveringLanes &= ~(1u << Bit); 1188 } else { 1189 Idx.LaneMask = 0; 1190 } 1191 } 1192 1193 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1194 // here is that for each possible target subregister we look at the leafs 1195 // in the subregister graph that compose for this target and create 1196 // transformation sequences for the lanemasks. Each step in the sequence 1197 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1198 // are usually the same for many subregisters we can easily combine the steps 1199 // by combining the masks. 1200 for (const auto &Idx : SubRegIndices) { 1201 const auto &Composites = Idx.getComposites(); 1202 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1203 // Go through all leaf subregisters and find the ones that compose with Idx. 1204 // These make out all possible valid bits in the lane mask we want to 1205 // transform. Looking only at the leafs ensure that only a single bit in 1206 // the mask is set. 1207 unsigned NextBit = 0; 1208 for (auto &Idx2 : SubRegIndices) { 1209 // Skip non-leaf subregisters. 1210 if (!Idx2.getComposites().empty()) 1211 continue; 1212 // Replicate the behaviour from the lane mask generation loop above. 1213 unsigned SrcBit = NextBit; 1214 unsigned SrcMask = 1u << SrcBit; 1215 if (NextBit < 31) 1216 ++NextBit; 1217 assert(Idx2.LaneMask == SrcMask); 1218 1219 // Get the composed subregister if there is any. 1220 auto C = Composites.find(&Idx2); 1221 if (C == Composites.end()) 1222 continue; 1223 const CodeGenSubRegIndex *Composite = C->second; 1224 // The Composed subreg should be a leaf subreg too 1225 assert(Composite->getComposites().empty()); 1226 1227 // Create Mask+Rotate operation and merge with existing ops if possible. 1228 unsigned DstBit = Log2_32(Composite->LaneMask); 1229 int Shift = DstBit - SrcBit; 1230 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift; 1231 for (auto &I : LaneTransforms) { 1232 if (I.RotateLeft == RotateLeft) { 1233 I.Mask |= SrcMask; 1234 SrcMask = 0; 1235 } 1236 } 1237 if (SrcMask != 0) { 1238 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1239 LaneTransforms.push_back(MaskRol); 1240 } 1241 } 1242 // Optimize if the transformation consists of one step only: Set mask to 1243 // 0xffffffff (including some irrelevant invalid bits) so that it should 1244 // merge with more entries later while compressing the table. 1245 if (LaneTransforms.size() == 1) 1246 LaneTransforms[0].Mask = ~0u; 1247 1248 // Further compression optimization: For invalid compositions resulting 1249 // in a sequence with 0 entries we can just pick any other. Choose 1250 // Mask 0xffffffff with Rotation 0. 1251 if (LaneTransforms.size() == 0) { 1252 MaskRolPair P = { ~0u, 0 }; 1253 LaneTransforms.push_back(P); 1254 } 1255 } 1256 1257 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1258 // by the sub-register graph? This doesn't occur in any known targets. 1259 1260 // Inherit lanes from composites. 1261 for (const auto &Idx : SubRegIndices) { 1262 unsigned Mask = Idx.computeLaneMask(); 1263 // If some super-registers without CoveredBySubRegs use this index, we can 1264 // no longer assume that the lanes are covering their registers. 1265 if (!Idx.AllSuperRegsCovered) 1266 CoveringLanes &= ~Mask; 1267 } 1268 1269 // Compute lane mask combinations for register classes. 1270 for (auto &RegClass : RegClasses) { 1271 unsigned LaneMask = 0; 1272 for (const auto &SubRegIndex : SubRegIndices) { 1273 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1274 continue; 1275 LaneMask |= SubRegIndex.LaneMask; 1276 } 1277 RegClass.LaneMask = LaneMask; 1278 } 1279} 1280 1281namespace { 1282// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1283// the transitive closure of the union of overlapping register 1284// classes. Together, the UberRegSets form a partition of the registers. If we 1285// consider overlapping register classes to be connected, then each UberRegSet 1286// is a set of connected components. 1287// 1288// An UberRegSet will likely be a horizontal slice of register names of 1289// the same width. Nontrivial subregisters should then be in a separate 1290// UberRegSet. But this property isn't required for valid computation of 1291// register unit weights. 1292// 1293// A Weight field caches the max per-register unit weight in each UberRegSet. 1294// 1295// A set of SingularDeterminants flags single units of some register in this set 1296// for which the unit weight equals the set weight. These units should not have 1297// their weight increased. 1298struct UberRegSet { 1299 CodeGenRegister::Vec Regs; 1300 unsigned Weight; 1301 CodeGenRegister::RegUnitList SingularDeterminants; 1302 1303 UberRegSet(): Weight(0) {} 1304}; 1305} // namespace 1306 1307// Partition registers into UberRegSets, where each set is the transitive 1308// closure of the union of overlapping register classes. 1309// 1310// UberRegSets[0] is a special non-allocatable set. 1311static void computeUberSets(std::vector<UberRegSet> &UberSets, 1312 std::vector<UberRegSet*> &RegSets, 1313 CodeGenRegBank &RegBank) { 1314 1315 const auto &Registers = RegBank.getRegisters(); 1316 1317 // The Register EnumValue is one greater than its index into Registers. 1318 assert(Registers.size() == Registers.back().EnumValue && 1319 "register enum value mismatch"); 1320 1321 // For simplicitly make the SetID the same as EnumValue. 1322 IntEqClasses UberSetIDs(Registers.size()+1); 1323 std::set<unsigned> AllocatableRegs; 1324 for (auto &RegClass : RegBank.getRegClasses()) { 1325 if (!RegClass.Allocatable) 1326 continue; 1327 1328 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1329 if (Regs.empty()) 1330 continue; 1331 1332 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1333 assert(USetID && "register number 0 is invalid"); 1334 1335 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1336 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1337 AllocatableRegs.insert((*I)->EnumValue); 1338 UberSetIDs.join(USetID, (*I)->EnumValue); 1339 } 1340 } 1341 // Combine non-allocatable regs. 1342 for (const auto &Reg : Registers) { 1343 unsigned RegNum = Reg.EnumValue; 1344 if (AllocatableRegs.count(RegNum)) 1345 continue; 1346 1347 UberSetIDs.join(0, RegNum); 1348 } 1349 UberSetIDs.compress(); 1350 1351 // Make the first UberSet a special unallocatable set. 1352 unsigned ZeroID = UberSetIDs[0]; 1353 1354 // Insert Registers into the UberSets formed by union-find. 1355 // Do not resize after this. 1356 UberSets.resize(UberSetIDs.getNumClasses()); 1357 unsigned i = 0; 1358 for (const CodeGenRegister &Reg : Registers) { 1359 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1360 if (!USetID) 1361 USetID = ZeroID; 1362 else if (USetID == ZeroID) 1363 USetID = 0; 1364 1365 UberRegSet *USet = &UberSets[USetID]; 1366 USet->Regs.push_back(&Reg); 1367 sortAndUniqueRegisters(USet->Regs); 1368 RegSets[i++] = USet; 1369 } 1370} 1371 1372// Recompute each UberSet weight after changing unit weights. 1373static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1374 CodeGenRegBank &RegBank) { 1375 // Skip the first unallocatable set. 1376 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1377 E = UberSets.end(); I != E; ++I) { 1378 1379 // Initialize all unit weights in this set, and remember the max units/reg. 1380 const CodeGenRegister *Reg = nullptr; 1381 unsigned MaxWeight = 0, Weight = 0; 1382 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1383 if (Reg != UnitI.getReg()) { 1384 if (Weight > MaxWeight) 1385 MaxWeight = Weight; 1386 Reg = UnitI.getReg(); 1387 Weight = 0; 1388 } 1389 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1390 if (!UWeight) { 1391 UWeight = 1; 1392 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1393 } 1394 Weight += UWeight; 1395 } 1396 if (Weight > MaxWeight) 1397 MaxWeight = Weight; 1398 if (I->Weight != MaxWeight) { 1399 DEBUG( 1400 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; 1401 for (auto &Unit : I->Regs) 1402 dbgs() << " " << Unit->getName(); 1403 dbgs() << "\n"); 1404 // Update the set weight. 1405 I->Weight = MaxWeight; 1406 } 1407 1408 // Find singular determinants. 1409 for (const auto R : I->Regs) { 1410 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1411 I->SingularDeterminants |= R->getRegUnits(); 1412 } 1413 } 1414 } 1415} 1416 1417// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1418// a register and its subregisters so that they have the same weight as their 1419// UberSet. Self-recursion processes the subregister tree in postorder so 1420// subregisters are normalized first. 1421// 1422// Side effects: 1423// - creates new adopted register units 1424// - causes superregisters to inherit adopted units 1425// - increases the weight of "singular" units 1426// - induces recomputation of UberWeights. 1427static bool normalizeWeight(CodeGenRegister *Reg, 1428 std::vector<UberRegSet> &UberSets, 1429 std::vector<UberRegSet*> &RegSets, 1430 SparseBitVector<> &NormalRegs, 1431 CodeGenRegister::RegUnitList &NormalUnits, 1432 CodeGenRegBank &RegBank) { 1433 if (NormalRegs.test(Reg->EnumValue)) 1434 return false; 1435 NormalRegs.set(Reg->EnumValue); 1436 1437 bool Changed = false; 1438 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1439 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1440 SRE = SRM.end(); SRI != SRE; ++SRI) { 1441 if (SRI->second == Reg) 1442 continue; // self-cycles happen 1443 1444 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1445 NormalRegs, NormalUnits, RegBank); 1446 } 1447 // Postorder register normalization. 1448 1449 // Inherit register units newly adopted by subregisters. 1450 if (Reg->inheritRegUnits(RegBank)) 1451 computeUberWeights(UberSets, RegBank); 1452 1453 // Check if this register is too skinny for its UberRegSet. 1454 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1455 1456 unsigned RegWeight = Reg->getWeight(RegBank); 1457 if (UberSet->Weight > RegWeight) { 1458 // A register unit's weight can be adjusted only if it is the singular unit 1459 // for this register, has not been used to normalize a subregister's set, 1460 // and has not already been used to singularly determine this UberRegSet. 1461 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1462 if (Reg->getRegUnits().count() != 1 1463 || hasRegUnit(NormalUnits, AdjustUnit) 1464 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1465 // We don't have an adjustable unit, so adopt a new one. 1466 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1467 Reg->adoptRegUnit(AdjustUnit); 1468 // Adopting a unit does not immediately require recomputing set weights. 1469 } 1470 else { 1471 // Adjust the existing single unit. 1472 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1473 // The unit may be shared among sets and registers within this set. 1474 computeUberWeights(UberSets, RegBank); 1475 } 1476 Changed = true; 1477 } 1478 1479 // Mark these units normalized so superregisters can't change their weights. 1480 NormalUnits |= Reg->getRegUnits(); 1481 1482 return Changed; 1483} 1484 1485// Compute a weight for each register unit created during getSubRegs. 1486// 1487// The goal is that two registers in the same class will have the same weight, 1488// where each register's weight is defined as sum of its units' weights. 1489void CodeGenRegBank::computeRegUnitWeights() { 1490 std::vector<UberRegSet> UberSets; 1491 std::vector<UberRegSet*> RegSets(Registers.size()); 1492 computeUberSets(UberSets, RegSets, *this); 1493 // UberSets and RegSets are now immutable. 1494 1495 computeUberWeights(UberSets, *this); 1496 1497 // Iterate over each Register, normalizing the unit weights until reaching 1498 // a fix point. 1499 unsigned NumIters = 0; 1500 for (bool Changed = true; Changed; ++NumIters) { 1501 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1502 Changed = false; 1503 for (auto &Reg : Registers) { 1504 CodeGenRegister::RegUnitList NormalUnits; 1505 SparseBitVector<> NormalRegs; 1506 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1507 NormalUnits, *this); 1508 } 1509 } 1510} 1511 1512// Find a set in UniqueSets with the same elements as Set. 1513// Return an iterator into UniqueSets. 1514static std::vector<RegUnitSet>::const_iterator 1515findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1516 const RegUnitSet &Set) { 1517 std::vector<RegUnitSet>::const_iterator 1518 I = UniqueSets.begin(), E = UniqueSets.end(); 1519 for(;I != E; ++I) { 1520 if (I->Units == Set.Units) 1521 break; 1522 } 1523 return I; 1524} 1525 1526// Return true if the RUSubSet is a subset of RUSuperSet. 1527static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1528 const std::vector<unsigned> &RUSuperSet) { 1529 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1530 RUSubSet.begin(), RUSubSet.end()); 1531} 1532 1533/// Iteratively prune unit sets. Prune subsets that are close to the superset, 1534/// but with one or two registers removed. We occasionally have registers like 1535/// APSR and PC thrown in with the general registers. We also see many 1536/// special-purpose register subsets, such as tail-call and Thumb 1537/// encodings. Generating all possible overlapping sets is combinatorial and 1538/// overkill for modeling pressure. Ideally we could fix this statically in 1539/// tablegen by (1) having the target define register classes that only include 1540/// the allocatable registers and marking other classes as non-allocatable and 1541/// (2) having a way to mark special purpose classes as "don't-care" classes for 1542/// the purpose of pressure. However, we make an attempt to handle targets that 1543/// are not nicely defined by merging nearly identical register unit sets 1544/// statically. This generates smaller tables. Then, dynamically, we adjust the 1545/// set limit by filtering the reserved registers. 1546/// 1547/// Merge sets only if the units have the same weight. For example, on ARM, 1548/// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1549/// should not expand the S set to include D regs. 1550void CodeGenRegBank::pruneUnitSets() { 1551 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1552 1553 // Form an equivalence class of UnitSets with no significant difference. 1554 std::vector<unsigned> SuperSetIDs; 1555 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1556 SubIdx != EndIdx; ++SubIdx) { 1557 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1558 unsigned SuperIdx = 0; 1559 for (; SuperIdx != EndIdx; ++SuperIdx) { 1560 if (SuperIdx == SubIdx) 1561 continue; 1562 1563 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1564 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1565 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1566 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1567 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1568 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1569 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1570 << "\n"); 1571 break; 1572 } 1573 } 1574 if (SuperIdx == EndIdx) 1575 SuperSetIDs.push_back(SubIdx); 1576 } 1577 // Populate PrunedUnitSets with each equivalence class's superset. 1578 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1579 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1580 unsigned SuperIdx = SuperSetIDs[i]; 1581 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1582 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1583 } 1584 RegUnitSets.swap(PrunedUnitSets); 1585} 1586 1587// Create a RegUnitSet for each RegClass that contains all units in the class 1588// including adopted units that are necessary to model register pressure. Then 1589// iteratively compute RegUnitSets such that the union of any two overlapping 1590// RegUnitSets is repreresented. 1591// 1592// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1593// RegUnitSet that is a superset of that RegUnitClass. 1594void CodeGenRegBank::computeRegUnitSets() { 1595 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1596 1597 // Compute a unique RegUnitSet for each RegClass. 1598 auto &RegClasses = getRegClasses(); 1599 for (auto &RC : RegClasses) { 1600 if (!RC.Allocatable) 1601 continue; 1602 1603 // Speculatively grow the RegUnitSets to hold the new set. 1604 RegUnitSets.resize(RegUnitSets.size() + 1); 1605 RegUnitSets.back().Name = RC.getName(); 1606 1607 // Compute a sorted list of units in this class. 1608 RC.buildRegUnitSet(RegUnitSets.back().Units); 1609 1610 // Find an existing RegUnitSet. 1611 std::vector<RegUnitSet>::const_iterator SetI = 1612 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1613 if (SetI != std::prev(RegUnitSets.end())) 1614 RegUnitSets.pop_back(); 1615 } 1616 1617 DEBUG(dbgs() << "\nBefore pruning:\n"; 1618 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1619 USIdx < USEnd; ++USIdx) { 1620 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1621 << ":"; 1622 for (auto &U : RegUnitSets[USIdx].Units) 1623 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1624 dbgs() << "\n"; 1625 }); 1626 1627 // Iteratively prune unit sets. 1628 pruneUnitSets(); 1629 1630 DEBUG(dbgs() << "\nBefore union:\n"; 1631 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1632 USIdx < USEnd; ++USIdx) { 1633 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1634 << ":"; 1635 for (auto &U : RegUnitSets[USIdx].Units) 1636 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1637 dbgs() << "\n"; 1638 } 1639 dbgs() << "\nUnion sets:\n"); 1640 1641 // Iterate over all unit sets, including new ones added by this loop. 1642 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1643 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1644 // In theory, this is combinatorial. In practice, it needs to be bounded 1645 // by a small number of sets for regpressure to be efficient. 1646 // If the assert is hit, we need to implement pruning. 1647 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1648 1649 // Compare new sets with all original classes. 1650 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1651 SearchIdx != EndIdx; ++SearchIdx) { 1652 std::set<unsigned> Intersection; 1653 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1654 RegUnitSets[Idx].Units.end(), 1655 RegUnitSets[SearchIdx].Units.begin(), 1656 RegUnitSets[SearchIdx].Units.end(), 1657 std::inserter(Intersection, Intersection.begin())); 1658 if (Intersection.empty()) 1659 continue; 1660 1661 // Speculatively grow the RegUnitSets to hold the new set. 1662 RegUnitSets.resize(RegUnitSets.size() + 1); 1663 RegUnitSets.back().Name = 1664 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1665 1666 std::set_union(RegUnitSets[Idx].Units.begin(), 1667 RegUnitSets[Idx].Units.end(), 1668 RegUnitSets[SearchIdx].Units.begin(), 1669 RegUnitSets[SearchIdx].Units.end(), 1670 std::inserter(RegUnitSets.back().Units, 1671 RegUnitSets.back().Units.begin())); 1672 1673 // Find an existing RegUnitSet, or add the union to the unique sets. 1674 std::vector<RegUnitSet>::const_iterator SetI = 1675 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1676 if (SetI != std::prev(RegUnitSets.end())) 1677 RegUnitSets.pop_back(); 1678 else { 1679 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 1680 << " " << RegUnitSets.back().Name << ":"; 1681 for (auto &U : RegUnitSets.back().Units) 1682 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1683 dbgs() << "\n";); 1684 } 1685 } 1686 } 1687 1688 // Iteratively prune unit sets after inferring supersets. 1689 pruneUnitSets(); 1690 1691 DEBUG(dbgs() << "\n"; 1692 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1693 USIdx < USEnd; ++USIdx) { 1694 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1695 << ":"; 1696 for (auto &U : RegUnitSets[USIdx].Units) 1697 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1698 dbgs() << "\n"; 1699 }); 1700 1701 // For each register class, list the UnitSets that are supersets. 1702 RegClassUnitSets.resize(RegClasses.size()); 1703 int RCIdx = -1; 1704 for (auto &RC : RegClasses) { 1705 ++RCIdx; 1706 if (!RC.Allocatable) 1707 continue; 1708 1709 // Recompute the sorted list of units in this class. 1710 std::vector<unsigned> RCRegUnits; 1711 RC.buildRegUnitSet(RCRegUnits); 1712 1713 // Don't increase pressure for unallocatable regclasses. 1714 if (RCRegUnits.empty()) 1715 continue; 1716 1717 DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1718 for (auto &U : RCRegUnits) 1719 dbgs() << RegUnits[U].getRoots()[0]->getName() << " "; 1720 dbgs() << "\n UnitSetIDs:"); 1721 1722 // Find all supersets. 1723 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1724 USIdx != USEnd; ++USIdx) { 1725 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1726 DEBUG(dbgs() << " " << USIdx); 1727 RegClassUnitSets[RCIdx].push_back(USIdx); 1728 } 1729 } 1730 DEBUG(dbgs() << "\n"); 1731 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1732 } 1733 1734 // For each register unit, ensure that we have the list of UnitSets that 1735 // contain the unit. Normally, this matches an existing list of UnitSets for a 1736 // register class. If not, we create a new entry in RegClassUnitSets as a 1737 // "fake" register class. 1738 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1739 UnitIdx < UnitEnd; ++UnitIdx) { 1740 std::vector<unsigned> RUSets; 1741 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1742 RegUnitSet &RUSet = RegUnitSets[i]; 1743 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) 1744 == RUSet.Units.end()) 1745 continue; 1746 RUSets.push_back(i); 1747 } 1748 unsigned RCUnitSetsIdx = 0; 1749 for (unsigned e = RegClassUnitSets.size(); 1750 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1751 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1752 break; 1753 } 1754 } 1755 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1756 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1757 // Create a new list of UnitSets as a "fake" register class. 1758 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1759 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1760 } 1761 } 1762} 1763 1764void CodeGenRegBank::computeRegUnitLaneMasks() { 1765 for (auto &Register : Registers) { 1766 // Create an initial lane mask for all register units. 1767 const auto &RegUnits = Register.getRegUnits(); 1768 CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0); 1769 // Iterate through SubRegisters. 1770 typedef CodeGenRegister::SubRegMap SubRegMap; 1771 const SubRegMap &SubRegs = Register.getSubRegs(); 1772 for (SubRegMap::const_iterator S = SubRegs.begin(), 1773 SE = SubRegs.end(); S != SE; ++S) { 1774 CodeGenRegister *SubReg = S->second; 1775 // Ignore non-leaf subregisters, their lane masks are fully covered by 1776 // the leaf subregisters anyway. 1777 if (SubReg->getSubRegs().size() != 0) 1778 continue; 1779 CodeGenSubRegIndex *SubRegIndex = S->first; 1780 const CodeGenRegister *SubRegister = S->second; 1781 unsigned LaneMask = SubRegIndex->LaneMask; 1782 // Distribute LaneMask to Register Units touched. 1783 for (unsigned SUI : SubRegister->getRegUnits()) { 1784 bool Found = false; 1785 unsigned u = 0; 1786 for (unsigned RU : RegUnits) { 1787 if (SUI == RU) { 1788 RegUnitLaneMasks[u] |= LaneMask; 1789 assert(!Found); 1790 Found = true; 1791 } 1792 ++u; 1793 } 1794 (void)Found; 1795 assert(Found); 1796 } 1797 } 1798 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 1799 } 1800} 1801 1802void CodeGenRegBank::computeDerivedInfo() { 1803 computeComposites(); 1804 computeSubRegLaneMasks(); 1805 1806 // Compute a weight for each register unit created during getSubRegs. 1807 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1808 computeRegUnitWeights(); 1809 1810 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1811 // supersets for the union of overlapping sets. 1812 computeRegUnitSets(); 1813 1814 computeRegUnitLaneMasks(); 1815 1816 // Compute register class HasDisjunctSubRegs flag. 1817 for (CodeGenRegisterClass &RC : RegClasses) { 1818 RC.HasDisjunctSubRegs = false; 1819 for (const CodeGenRegister *Reg : RC.getMembers()) 1820 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 1821 } 1822 1823 // Get the weight of each set. 1824 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1825 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 1826 1827 // Find the order of each set. 1828 RegUnitSetOrder.reserve(RegUnitSets.size()); 1829 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1830 RegUnitSetOrder.push_back(Idx); 1831 1832 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 1833 [this](unsigned ID1, unsigned ID2) { 1834 return getRegPressureSet(ID1).Units.size() < 1835 getRegPressureSet(ID2).Units.size(); 1836 }); 1837 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1838 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 1839 } 1840} 1841 1842// 1843// Synthesize missing register class intersections. 1844// 1845// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1846// returns a maximal register class for all X. 1847// 1848void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1849 assert(!RegClasses.empty()); 1850 // Stash the iterator to the last element so that this loop doesn't visit 1851 // elements added by the getOrCreateSubClass call within it. 1852 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 1853 I != std::next(E); ++I) { 1854 CodeGenRegisterClass *RC1 = RC; 1855 CodeGenRegisterClass *RC2 = &*I; 1856 if (RC1 == RC2) 1857 continue; 1858 1859 // Compute the set intersection of RC1 and RC2. 1860 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 1861 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 1862 CodeGenRegister::Vec Intersection; 1863 std::set_intersection( 1864 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 1865 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 1866 1867 // Skip disjoint class pairs. 1868 if (Intersection.empty()) 1869 continue; 1870 1871 // If RC1 and RC2 have different spill sizes or alignments, use the 1872 // larger size for sub-classing. If they are equal, prefer RC1. 1873 if (RC2->SpillSize > RC1->SpillSize || 1874 (RC2->SpillSize == RC1->SpillSize && 1875 RC2->SpillAlignment > RC1->SpillAlignment)) 1876 std::swap(RC1, RC2); 1877 1878 getOrCreateSubClass(RC1, &Intersection, 1879 RC1->getName() + "_and_" + RC2->getName()); 1880 } 1881} 1882 1883// 1884// Synthesize missing sub-classes for getSubClassWithSubReg(). 1885// 1886// Make sure that the set of registers in RC with a given SubIdx sub-register 1887// form a register class. Update RC->SubClassWithSubReg. 1888// 1889void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1890 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1891 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 1892 deref<llvm::less>> SubReg2SetMap; 1893 1894 // Compute the set of registers supporting each SubRegIndex. 1895 SubReg2SetMap SRSets; 1896 for (const auto R : RC->getMembers()) { 1897 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 1898 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1899 E = SRM.end(); I != E; ++I) 1900 SRSets[I->first].push_back(R); 1901 } 1902 1903 for (auto I : SRSets) 1904 sortAndUniqueRegisters(I.second); 1905 1906 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1907 // numerical order to visit synthetic indices last. 1908 for (const auto &SubIdx : SubRegIndices) { 1909 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 1910 // Unsupported SubRegIndex. Skip it. 1911 if (I == SRSets.end()) 1912 continue; 1913 // In most cases, all RC registers support the SubRegIndex. 1914 if (I->second.size() == RC->getMembers().size()) { 1915 RC->setSubClassWithSubReg(&SubIdx, RC); 1916 continue; 1917 } 1918 // This is a real subset. See if we have a matching class. 1919 CodeGenRegisterClass *SubRC = 1920 getOrCreateSubClass(RC, &I->second, 1921 RC->getName() + "_with_" + I->first->getName()); 1922 RC->setSubClassWithSubReg(&SubIdx, SubRC); 1923 } 1924} 1925 1926// 1927// Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1928// 1929// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1930// has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1931// 1932 1933void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1934 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 1935 SmallVector<std::pair<const CodeGenRegister*, 1936 const CodeGenRegister*>, 16> SSPairs; 1937 BitVector TopoSigs(getNumTopoSigs()); 1938 1939 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1940 for (auto &SubIdx : SubRegIndices) { 1941 // Skip indexes that aren't fully supported by RC's registers. This was 1942 // computed by inferSubClassWithSubReg() above which should have been 1943 // called first. 1944 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 1945 continue; 1946 1947 // Build list of (Super, Sub) pairs for this SubIdx. 1948 SSPairs.clear(); 1949 TopoSigs.reset(); 1950 for (const auto Super : RC->getMembers()) { 1951 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 1952 assert(Sub && "Missing sub-register"); 1953 SSPairs.push_back(std::make_pair(Super, Sub)); 1954 TopoSigs.set(Sub->getTopoSig()); 1955 } 1956 1957 // Iterate over sub-register class candidates. Ignore classes created by 1958 // this loop. They will never be useful. 1959 // Store an iterator to the last element (not end) so that this loop doesn't 1960 // visit newly inserted elements. 1961 assert(!RegClasses.empty()); 1962 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 1963 I != std::next(E); ++I) { 1964 CodeGenRegisterClass &SubRC = *I; 1965 // Topological shortcut: SubRC members have the wrong shape. 1966 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 1967 continue; 1968 // Compute the subset of RC that maps into SubRC. 1969 CodeGenRegister::Vec SubSetVec; 1970 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 1971 if (SubRC.contains(SSPairs[i].second)) 1972 SubSetVec.push_back(SSPairs[i].first); 1973 1974 if (SubSetVec.empty()) 1975 continue; 1976 1977 // RC injects completely into SubRC. 1978 sortAndUniqueRegisters(SubSetVec); 1979 if (SubSetVec.size() == SSPairs.size()) { 1980 SubRC.addSuperRegClass(&SubIdx, RC); 1981 continue; 1982 } 1983 1984 // Only a subset of RC maps into SubRC. Make sure it is represented by a 1985 // class. 1986 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 1987 SubIdx.getName() + "_in_" + 1988 SubRC.getName()); 1989 } 1990 } 1991} 1992 1993 1994// 1995// Infer missing register classes. 1996// 1997void CodeGenRegBank::computeInferredRegisterClasses() { 1998 assert(!RegClasses.empty()); 1999 // When this function is called, the register classes have not been sorted 2000 // and assigned EnumValues yet. That means getSubClasses(), 2001 // getSuperClasses(), and hasSubClass() functions are defunct. 2002 2003 // Use one-before-the-end so it doesn't move forward when new elements are 2004 // added. 2005 auto FirstNewRC = std::prev(RegClasses.end()); 2006 2007 // Visit all register classes, including the ones being added by the loop. 2008 // Watch out for iterator invalidation here. 2009 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2010 CodeGenRegisterClass *RC = &*I; 2011 2012 // Synthesize answers for getSubClassWithSubReg(). 2013 inferSubClassWithSubReg(RC); 2014 2015 // Synthesize answers for getCommonSubClass(). 2016 inferCommonSubClass(RC); 2017 2018 // Synthesize answers for getMatchingSuperRegClass(). 2019 inferMatchingSuperRegClass(RC); 2020 2021 // New register classes are created while this loop is running, and we need 2022 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2023 // to match old super-register classes with sub-register classes created 2024 // after inferMatchingSuperRegClass was called. At this point, 2025 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2026 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2027 if (I == FirstNewRC) { 2028 auto NextNewRC = std::prev(RegClasses.end()); 2029 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2030 ++I2) 2031 inferMatchingSuperRegClass(&*I2, E2); 2032 FirstNewRC = NextNewRC; 2033 } 2034 } 2035} 2036 2037/// getRegisterClassForRegister - Find the register class that contains the 2038/// specified physical register. If the register is not in a register class, 2039/// return null. If the register is in multiple classes, and the classes have a 2040/// superset-subset relationship and the same set of types, return the 2041/// superclass. Otherwise return null. 2042const CodeGenRegisterClass* 2043CodeGenRegBank::getRegClassForRegister(Record *R) { 2044 const CodeGenRegister *Reg = getReg(R); 2045 const CodeGenRegisterClass *FoundRC = nullptr; 2046 for (const auto &RC : getRegClasses()) { 2047 if (!RC.contains(Reg)) 2048 continue; 2049 2050 // If this is the first class that contains the register, 2051 // make a note of it and go on to the next class. 2052 if (!FoundRC) { 2053 FoundRC = &RC; 2054 continue; 2055 } 2056 2057 // If a register's classes have different types, return null. 2058 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2059 return nullptr; 2060 2061 // Check to see if the previously found class that contains 2062 // the register is a subclass of the current class. If so, 2063 // prefer the superclass. 2064 if (RC.hasSubClass(FoundRC)) { 2065 FoundRC = &RC; 2066 continue; 2067 } 2068 2069 // Check to see if the previously found class that contains 2070 // the register is a superclass of the current class. If so, 2071 // prefer the superclass. 2072 if (FoundRC->hasSubClass(&RC)) 2073 continue; 2074 2075 // Multiple classes, and neither is a superclass of the other. 2076 // Return null. 2077 return nullptr; 2078 } 2079 return FoundRC; 2080} 2081 2082BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2083 SetVector<const CodeGenRegister*> Set; 2084 2085 // First add Regs with all sub-registers. 2086 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2087 CodeGenRegister *Reg = getReg(Regs[i]); 2088 if (Set.insert(Reg)) 2089 // Reg is new, add all sub-registers. 2090 // The pre-ordering is not important here. 2091 Reg->addSubRegsPreOrder(Set, *this); 2092 } 2093 2094 // Second, find all super-registers that are completely covered by the set. 2095 for (unsigned i = 0; i != Set.size(); ++i) { 2096 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2097 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2098 const CodeGenRegister *Super = SR[j]; 2099 if (!Super->CoveredBySubRegs || Set.count(Super)) 2100 continue; 2101 // This new super-register is covered by its sub-registers. 2102 bool AllSubsInSet = true; 2103 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2104 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2105 E = SRM.end(); I != E; ++I) 2106 if (!Set.count(I->second)) { 2107 AllSubsInSet = false; 2108 break; 2109 } 2110 // All sub-registers in Set, add Super as well. 2111 // We will visit Super later to recheck its super-registers. 2112 if (AllSubsInSet) 2113 Set.insert(Super); 2114 } 2115 } 2116 2117 // Convert to BitVector. 2118 BitVector BV(Registers.size() + 1); 2119 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2120 BV.set(Set[i]->EnumValue); 2121 return BV; 2122} 2123