brw_curbe.c revision 118a47623a11a374df371d52ed0294224e6a62dc
1/*
2 Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28  * Authors:
29  *   Keith Whitwell <keith@tungstengraphics.com>
30  */
31
32
33
34#include "main/glheader.h"
35#include "main/context.h"
36#include "main/macros.h"
37#include "main/enums.h"
38#include "shader/prog_parameter.h"
39#include "shader/prog_print.h"
40#include "shader/prog_statevars.h"
41#include "intel_batchbuffer.h"
42#include "intel_regions.h"
43#include "brw_context.h"
44#include "brw_defines.h"
45#include "brw_state.h"
46#include "brw_util.h"
47
48
49/**
50 * Partition the CURBE between the various users of constant values:
51 * Note that vertex and fragment shaders can now fetch constants out
52 * of constant buffers.  We no longer allocatea block of the GRF for
53 * constants.  That greatly reduces the demand for space in the CURBE.
54 * Some of the comments within are dated...
55 */
56static void calculate_curbe_offsets( struct brw_context *brw )
57{
58   GLcontext *ctx = &brw->intel.ctx;
59   /* CACHE_NEW_WM_PROG */
60   const GLuint nr_fp_regs = (brw->wm.prog_data->nr_params + 15) / 16;
61
62   /* BRW_NEW_VERTEX_PROGRAM */
63   const GLuint nr_vp_regs = (brw->vs.prog_data->nr_params + 15) / 16;
64   GLuint nr_clip_regs = 0;
65   GLuint total_regs;
66
67   /* _NEW_TRANSFORM */
68   if (ctx->Transform.ClipPlanesEnabled) {
69      GLuint nr_planes = 6 + brw_count_bits(ctx->Transform.ClipPlanesEnabled);
70      nr_clip_regs = (nr_planes * 4 + 15) / 16;
71   }
72
73
74   total_regs = nr_fp_regs + nr_vp_regs + nr_clip_regs;
75
76   /* This can happen - what to do?  Probably rather than falling
77    * back, the best thing to do is emit programs which code the
78    * constants as immediate values.  Could do this either as a static
79    * cap on WM and VS, or adaptively.
80    *
81    * Unfortunately, this is currently dependent on the results of the
82    * program generation process (in the case of wm), so this would
83    * introduce the need to re-generate programs in the event of a
84    * curbe allocation failure.
85    */
86   /* Max size is 32 - just large enough to
87    * hold the 128 parameters allowed by
88    * the fragment and vertex program
89    * api's.  It's not clear what happens
90    * when both VP and FP want to use 128
91    * parameters, though.
92    */
93   assert(total_regs <= 32);
94
95   /* Lazy resize:
96    */
97   if (nr_fp_regs > brw->curbe.wm_size ||
98       nr_vp_regs > brw->curbe.vs_size ||
99       nr_clip_regs != brw->curbe.clip_size ||
100       (total_regs < brw->curbe.total_size / 4 &&
101	brw->curbe.total_size > 16)) {
102
103      GLuint reg = 0;
104
105      /* Calculate a new layout:
106       */
107      reg = 0;
108      brw->curbe.wm_start = reg;
109      brw->curbe.wm_size = nr_fp_regs; reg += nr_fp_regs;
110      brw->curbe.clip_start = reg;
111      brw->curbe.clip_size = nr_clip_regs; reg += nr_clip_regs;
112      brw->curbe.vs_start = reg;
113      brw->curbe.vs_size = nr_vp_regs; reg += nr_vp_regs;
114      brw->curbe.total_size = reg;
115
116      if (0)
117	 printf("curbe wm %d+%d clip %d+%d vs %d+%d\n",
118		brw->curbe.wm_start,
119		brw->curbe.wm_size,
120		brw->curbe.clip_start,
121		brw->curbe.clip_size,
122		brw->curbe.vs_start,
123		brw->curbe.vs_size );
124
125      brw->state.dirty.brw |= BRW_NEW_CURBE_OFFSETS;
126   }
127}
128
129
130const struct brw_tracked_state brw_curbe_offsets = {
131   .dirty = {
132      .mesa = _NEW_TRANSFORM,
133      .brw  = BRW_NEW_VERTEX_PROGRAM | BRW_NEW_CONTEXT,
134      .cache = CACHE_NEW_WM_PROG
135   },
136   .prepare = calculate_curbe_offsets
137};
138
139
140
141
142/* Define the number of curbes within CS's urb allocation.  Multiple
143 * urb entries -> multiple curbes.  These will be used by
144 * fixed-function hardware in a double-buffering scheme to avoid a
145 * pipeline stall each time the contents of the curbe is changed.
146 */
147void brw_upload_cs_urb_state(struct brw_context *brw)
148{
149   struct brw_cs_urb_state cs_urb;
150   memset(&cs_urb, 0, sizeof(cs_urb));
151
152   /* It appears that this is the state packet for the CS unit, ie. the
153    * urb entries detailed here are housed in the CS range from the
154    * URB_FENCE command.
155    */
156   cs_urb.header.opcode = CMD_CS_URB_STATE;
157   cs_urb.header.length = sizeof(cs_urb)/4 - 2;
158
159   /* BRW_NEW_URB_FENCE */
160   cs_urb.bits0.nr_urb_entries = brw->urb.nr_cs_entries;
161   cs_urb.bits0.urb_entry_size = brw->urb.csize - 1;
162
163   assert(brw->urb.nr_cs_entries);
164   BRW_CACHED_BATCH_STRUCT(brw, &cs_urb);
165}
166
167static GLfloat fixed_plane[6][4] = {
168   { 0,    0,   -1, 1 },
169   { 0,    0,    1, 1 },
170   { 0,   -1,    0, 1 },
171   { 0,    1,    0, 1 },
172   {-1,    0,    0, 1 },
173   { 1,    0,    0, 1 }
174};
175
176/* Upload a new set of constants.  Too much variability to go into the
177 * cache mechanism, but maybe would benefit from a comparison against
178 * the current uploaded set of constants.
179 */
180static void prepare_constant_buffer(struct brw_context *brw)
181{
182   GLcontext *ctx = &brw->intel.ctx;
183   const struct brw_vertex_program *vp =
184      brw_vertex_program_const(brw->vertex_program);
185   const struct brw_fragment_program *fp =
186      brw_fragment_program_const(brw->fragment_program);
187   const GLuint sz = brw->curbe.total_size;
188   const GLuint bufsz = sz * 16 * sizeof(GLfloat);
189   GLfloat *buf;
190   GLuint i;
191
192   if (sz == 0) {
193      brw->curbe.last_bufsz  = 0;
194      return;
195   }
196
197   buf = brw->curbe.next_buf;
198
199   /* fragment shader constants */
200   if (brw->curbe.wm_size) {
201      GLuint offset = brw->curbe.wm_start * 16;
202
203      /* copy float constants */
204      for (i = 0; i < brw->wm.prog_data->nr_params; i++)
205	 buf[offset + i] = *brw->wm.prog_data->param[i];
206   }
207
208
209   /* The clipplanes are actually delivered to both CLIP and VS units.
210    * VS uses them to calculate the outcode bitmasks.
211    */
212   if (brw->curbe.clip_size) {
213      GLuint offset = brw->curbe.clip_start * 16;
214      GLuint j;
215
216      /* If any planes are going this way, send them all this way:
217       */
218      for (i = 0; i < 6; i++) {
219	 buf[offset + i * 4 + 0] = fixed_plane[i][0];
220	 buf[offset + i * 4 + 1] = fixed_plane[i][1];
221	 buf[offset + i * 4 + 2] = fixed_plane[i][2];
222	 buf[offset + i * 4 + 3] = fixed_plane[i][3];
223      }
224
225      /* Clip planes: _NEW_TRANSFORM plus _NEW_PROJECTION to get to
226       * clip-space:
227       */
228      assert(MAX_CLIP_PLANES == 6);
229      for (j = 0; j < MAX_CLIP_PLANES; j++) {
230	 if (ctx->Transform.ClipPlanesEnabled & (1<<j)) {
231	    buf[offset + i * 4 + 0] = ctx->Transform._ClipUserPlane[j][0];
232	    buf[offset + i * 4 + 1] = ctx->Transform._ClipUserPlane[j][1];
233	    buf[offset + i * 4 + 2] = ctx->Transform._ClipUserPlane[j][2];
234	    buf[offset + i * 4 + 3] = ctx->Transform._ClipUserPlane[j][3];
235	    i++;
236	 }
237      }
238   }
239
240   /* vertex shader constants */
241   if (brw->curbe.vs_size) {
242      GLuint offset = brw->curbe.vs_start * 16;
243      GLuint nr = brw->vs.prog_data->nr_params / 4;
244
245      if (vp->use_const_buffer) {
246	 /* Load the subset of push constants that will get used when
247	  * we also have a pull constant buffer.
248	  */
249	 for (i = 0; i < vp->program.Base.Parameters->NumParameters; i++) {
250	    if (brw->vs.constant_map[i] != -1) {
251	       assert(brw->vs.constant_map[i] <= nr);
252	       memcpy(buf + offset + brw->vs.constant_map[i] * 4,
253		      vp->program.Base.Parameters->ParameterValues[i],
254		      4 * sizeof(float));
255	    }
256	 }
257      } else {
258	 for (i = 0; i < nr; i++) {
259	    memcpy(buf + offset + i * 4,
260		   vp->program.Base.Parameters->ParameterValues[i],
261		   4 * sizeof(float));
262	 }
263      }
264   }
265
266   if (0) {
267      for (i = 0; i < sz*16; i+=4)
268	 printf("curbe %d.%d: %f %f %f %f\n", i/8, i&4,
269		buf[i+0], buf[i+1], buf[i+2], buf[i+3]);
270
271      printf("last_buf %p buf %p sz %d/%d cmp %d\n",
272	     brw->curbe.last_buf, buf,
273	     bufsz, brw->curbe.last_bufsz,
274	     brw->curbe.last_buf ? memcmp(buf, brw->curbe.last_buf, bufsz) : -1);
275   }
276
277   if (brw->curbe.curbe_bo != NULL &&
278       bufsz == brw->curbe.last_bufsz &&
279       memcmp(buf, brw->curbe.last_buf, bufsz) == 0) {
280      /* constants have not changed */
281   } else {
282      /* Update the record of what our last set of constants was.  We
283       * don't just flip the pointers because we don't fill in the
284       * data in the padding between the entries.
285       */
286      memcpy(brw->curbe.last_buf, buf, bufsz);
287      brw->curbe.last_bufsz = bufsz;
288
289      if (brw->curbe.curbe_bo != NULL &&
290	  brw->curbe.curbe_next_offset + bufsz > brw->curbe.curbe_bo->size)
291      {
292	 drm_intel_gem_bo_unmap_gtt(brw->curbe.curbe_bo);
293	 drm_intel_bo_unreference(brw->curbe.curbe_bo);
294	 brw->curbe.curbe_bo = NULL;
295      }
296
297      if (brw->curbe.curbe_bo == NULL) {
298	 /* Allocate a single page for CURBE entries for this batchbuffer.
299	  * They're generally around 64b.
300	  */
301	 brw->curbe.curbe_bo = drm_intel_bo_alloc(brw->intel.bufmgr, "CURBE",
302						  4096, 1 << 6);
303	 brw->curbe.curbe_next_offset = 0;
304	 drm_intel_gem_bo_map_gtt(brw->curbe.curbe_bo);
305	 assert(bufsz < 4096);
306      }
307
308      brw->curbe.curbe_offset = brw->curbe.curbe_next_offset;
309      brw->curbe.curbe_next_offset += bufsz;
310      brw->curbe.curbe_next_offset = ALIGN(brw->curbe.curbe_next_offset, 64);
311
312      /* Copy data to the buffer:
313       */
314      memcpy(brw->curbe.curbe_bo->virtual + brw->curbe.curbe_offset,
315	     buf,
316	     bufsz);
317   }
318
319   brw_add_validated_bo(brw, brw->curbe.curbe_bo);
320
321   /* Because this provokes an action (ie copy the constants into the
322    * URB), it shouldn't be shortcircuited if identical to the
323    * previous time - because eg. the urb destination may have
324    * changed, or the urb contents different to last time.
325    *
326    * Note that the data referred to is actually copied internally,
327    * not just used in place according to passed pointer.
328    *
329    * It appears that the CS unit takes care of using each available
330    * URB entry (Const URB Entry == CURBE) in turn, and issuing
331    * flushes as necessary when doublebuffering of CURBEs isn't
332    * possible.
333    */
334}
335
336static void emit_constant_buffer(struct brw_context *brw)
337{
338   struct intel_context *intel = &brw->intel;
339   GLuint sz = brw->curbe.total_size;
340
341   BEGIN_BATCH(2);
342   if (sz == 0) {
343      OUT_BATCH((CMD_CONST_BUFFER << 16) | (2 - 2));
344      OUT_BATCH(0);
345   } else {
346      OUT_BATCH((CMD_CONST_BUFFER << 16) | (1 << 8) | (2 - 2));
347      OUT_RELOC(brw->curbe.curbe_bo,
348		I915_GEM_DOMAIN_INSTRUCTION, 0,
349		(sz - 1) + brw->curbe.curbe_offset);
350   }
351   ADVANCE_BATCH();
352}
353
354/* This tracked state is unique in that the state it monitors varies
355 * dynamically depending on the parameters tracked by the fragment and
356 * vertex programs.  This is the template used as a starting point,
357 * each context will maintain a copy of this internally and update as
358 * required.
359 */
360const struct brw_tracked_state brw_constant_buffer = {
361   .dirty = {
362      .mesa = _NEW_PROGRAM_CONSTANTS,
363      .brw  = (BRW_NEW_FRAGMENT_PROGRAM |
364	       BRW_NEW_VERTEX_PROGRAM |
365	       BRW_NEW_URB_FENCE | /* Implicit - hardware requires this, not used above */
366	       BRW_NEW_PSP | /* Implicit - hardware requires this, not used above */
367	       BRW_NEW_CURBE_OFFSETS |
368	       BRW_NEW_BATCH),
369      .cache = (CACHE_NEW_WM_PROG)
370   },
371   .prepare = prepare_constant_buffer,
372   .emit = emit_constant_buffer,
373};
374
375