1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jccoefct.c
4 *
5 * Copyright (C) 1994-1997, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains the coefficient buffer controller for compression.
10 * This controller is the top level of the JPEG compressor proper.
11 * The coefficient buffer lies between forward-DCT and entropy encoding steps.
12 */
13
14#define JPEG_INTERNALS
15#include "jinclude.h"
16#include "jpeglib.h"
17
18
19/* We use a full-image coefficient buffer when doing Huffman optimization,
20 * and also for writing multiple-scan JPEG files.  In all cases, the DCT
21 * step is run during the first pass, and subsequent passes need only read
22 * the buffered coefficients.
23 */
24#ifdef ENTROPY_OPT_SUPPORTED
25#define FULL_COEF_BUFFER_SUPPORTED
26#else
27#ifdef C_MULTISCAN_FILES_SUPPORTED
28#define FULL_COEF_BUFFER_SUPPORTED
29#endif
30#endif
31
32
33/* Private buffer controller object */
34
35typedef struct {
36  struct jpeg_c_coef_controller pub; /* public fields */
37
38  JDIMENSION iMCU_row_num;	/* iMCU row # within image */
39  JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
40  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
41  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
42
43  /* For single-pass compression, it's sufficient to buffer just one MCU
44   * (although this may prove a bit slow in practice).  We allocate a
45   * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
46   * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
47   * it's not really very big; this is to keep the module interfaces unchanged
48   * when a large coefficient buffer is necessary.)
49   * In multi-pass modes, this array points to the current MCU's blocks
50   * within the virtual arrays.
51   */
52  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
53
54  /* In multi-pass modes, we need a virtual block array for each component. */
55  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
56} my_coef_controller;
57
58typedef my_coef_controller * my_coef_ptr;
59
60
61/* Forward declarations */
62METHODDEF(boolean) compress_data
63    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
64#ifdef FULL_COEF_BUFFER_SUPPORTED
65METHODDEF(boolean) compress_first_pass
66    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
67METHODDEF(boolean) compress_output
68    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
69#endif
70
71
72LOCAL(void)
73start_iMCU_row (j_compress_ptr cinfo)
74/* Reset within-iMCU-row counters for a new row */
75{
76  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
77
78  /* In an interleaved scan, an MCU row is the same as an iMCU row.
79   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
80   * But at the bottom of the image, process only what's left.
81   */
82  if (cinfo->comps_in_scan > 1) {
83    coef->MCU_rows_per_iMCU_row = 1;
84  } else {
85    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
86      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
87    else
88      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
89  }
90
91  coef->mcu_ctr = 0;
92  coef->MCU_vert_offset = 0;
93}
94
95
96/*
97 * Initialize for a processing pass.
98 */
99
100METHODDEF(void)
101start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
102{
103  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
104
105  coef->iMCU_row_num = 0;
106  start_iMCU_row(cinfo);
107
108  switch (pass_mode) {
109  case JBUF_PASS_THRU:
110    if (coef->whole_image[0] != NULL)
111      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
112    coef->pub.compress_data = compress_data;
113    break;
114#ifdef FULL_COEF_BUFFER_SUPPORTED
115  case JBUF_SAVE_AND_PASS:
116    if (coef->whole_image[0] == NULL)
117      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
118    coef->pub.compress_data = compress_first_pass;
119    break;
120  case JBUF_CRANK_DEST:
121    if (coef->whole_image[0] == NULL)
122      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
123    coef->pub.compress_data = compress_output;
124    break;
125#endif
126  default:
127    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
128    break;
129  }
130}
131
132
133/*
134 * Process some data in the single-pass case.
135 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
136 * per call, ie, v_samp_factor block rows for each component in the image.
137 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
138 *
139 * NB: input_buf contains a plane for each component in image,
140 * which we index according to the component's SOF position.
141 */
142
143METHODDEF(boolean)
144compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
145{
146  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
147  JDIMENSION MCU_col_num;	/* index of current MCU within row */
148  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
149  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
150  int blkn, bi, ci, yindex, yoffset, blockcnt;
151  JDIMENSION ypos, xpos;
152  jpeg_component_info *compptr;
153
154  /* Loop to write as much as one whole iMCU row */
155  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
156       yoffset++) {
157    for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
158	 MCU_col_num++) {
159      /* Determine where data comes from in input_buf and do the DCT thing.
160       * Each call on forward_DCT processes a horizontal row of DCT blocks
161       * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
162       * sequentially.  Dummy blocks at the right or bottom edge are filled in
163       * specially.  The data in them does not matter for image reconstruction,
164       * so we fill them with values that will encode to the smallest amount of
165       * data, viz: all zeroes in the AC entries, DC entries equal to previous
166       * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
167       */
168      blkn = 0;
169      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
170	compptr = cinfo->cur_comp_info[ci];
171	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
172						: compptr->last_col_width;
173	xpos = MCU_col_num * compptr->MCU_sample_width;
174	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
175	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
176	  if (coef->iMCU_row_num < last_iMCU_row ||
177	      yoffset+yindex < compptr->last_row_height) {
178	    (*cinfo->fdct->forward_DCT) (cinfo, compptr,
179					 input_buf[compptr->component_index],
180					 coef->MCU_buffer[blkn],
181					 ypos, xpos, (JDIMENSION) blockcnt);
182	    if (blockcnt < compptr->MCU_width) {
183	      /* Create some dummy blocks at the right edge of the image. */
184	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
185			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
186	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
187		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
188	      }
189	    }
190	  } else {
191	    /* Create a row of dummy blocks at the bottom of the image. */
192	    jzero_far((void FAR *) coef->MCU_buffer[blkn],
193		      compptr->MCU_width * SIZEOF(JBLOCK));
194	    for (bi = 0; bi < compptr->MCU_width; bi++) {
195	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
196	    }
197	  }
198	  blkn += compptr->MCU_width;
199	  ypos += DCTSIZE;
200	}
201      }
202      /* Try to write the MCU.  In event of a suspension failure, we will
203       * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
204       */
205      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
206	/* Suspension forced; update state counters and exit */
207	coef->MCU_vert_offset = yoffset;
208	coef->mcu_ctr = MCU_col_num;
209	return FALSE;
210      }
211    }
212    /* Completed an MCU row, but perhaps not an iMCU row */
213    coef->mcu_ctr = 0;
214  }
215  /* Completed the iMCU row, advance counters for next one */
216  coef->iMCU_row_num++;
217  start_iMCU_row(cinfo);
218  return TRUE;
219}
220
221
222#ifdef FULL_COEF_BUFFER_SUPPORTED
223
224/*
225 * Process some data in the first pass of a multi-pass case.
226 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
227 * per call, ie, v_samp_factor block rows for each component in the image.
228 * This amount of data is read from the source buffer, DCT'd and quantized,
229 * and saved into the virtual arrays.  We also generate suitable dummy blocks
230 * as needed at the right and lower edges.  (The dummy blocks are constructed
231 * in the virtual arrays, which have been padded appropriately.)  This makes
232 * it possible for subsequent passes not to worry about real vs. dummy blocks.
233 *
234 * We must also emit the data to the entropy encoder.  This is conveniently
235 * done by calling compress_output() after we've loaded the current strip
236 * of the virtual arrays.
237 *
238 * NB: input_buf contains a plane for each component in image.  All
239 * components are DCT'd and loaded into the virtual arrays in this pass.
240 * However, it may be that only a subset of the components are emitted to
241 * the entropy encoder during this first pass; be careful about looking
242 * at the scan-dependent variables (MCU dimensions, etc).
243 */
244
245METHODDEF(boolean)
246compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
247{
248  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
249  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
250  JDIMENSION blocks_across, MCUs_across, MCUindex;
251  int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
252  JCOEF lastDC;
253  jpeg_component_info *compptr;
254  JBLOCKARRAY buffer;
255  JBLOCKROW thisblockrow, lastblockrow;
256
257  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
258       ci++, compptr++) {
259    /* Align the virtual buffer for this component. */
260    buffer = (*cinfo->mem->access_virt_barray)
261      ((j_common_ptr) cinfo, coef->whole_image[ci],
262       coef->iMCU_row_num * compptr->v_samp_factor,
263       (JDIMENSION) compptr->v_samp_factor, TRUE);
264    /* Count non-dummy DCT block rows in this iMCU row. */
265    if (coef->iMCU_row_num < last_iMCU_row)
266      block_rows = compptr->v_samp_factor;
267    else {
268      /* NB: can't use last_row_height here, since may not be set! */
269      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
270      if (block_rows == 0) block_rows = compptr->v_samp_factor;
271    }
272    blocks_across = compptr->width_in_blocks;
273    h_samp_factor = compptr->h_samp_factor;
274    /* Count number of dummy blocks to be added at the right margin. */
275    ndummy = (int) (blocks_across % h_samp_factor);
276    if (ndummy > 0)
277      ndummy = h_samp_factor - ndummy;
278    /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
279     * on forward_DCT processes a complete horizontal row of DCT blocks.
280     */
281    for (block_row = 0; block_row < block_rows; block_row++) {
282      thisblockrow = buffer[block_row];
283      (*cinfo->fdct->forward_DCT) (cinfo, compptr,
284				   input_buf[ci], thisblockrow,
285				   (JDIMENSION) (block_row * DCTSIZE),
286				   (JDIMENSION) 0, blocks_across);
287      if (ndummy > 0) {
288	/* Create dummy blocks at the right edge of the image. */
289	thisblockrow += blocks_across; /* => first dummy block */
290	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
291	lastDC = thisblockrow[-1][0];
292	for (bi = 0; bi < ndummy; bi++) {
293	  thisblockrow[bi][0] = lastDC;
294	}
295      }
296    }
297    /* If at end of image, create dummy block rows as needed.
298     * The tricky part here is that within each MCU, we want the DC values
299     * of the dummy blocks to match the last real block's DC value.
300     * This squeezes a few more bytes out of the resulting file...
301     */
302    if (coef->iMCU_row_num == last_iMCU_row) {
303      blocks_across += ndummy;	/* include lower right corner */
304      MCUs_across = blocks_across / h_samp_factor;
305      for (block_row = block_rows; block_row < compptr->v_samp_factor;
306	   block_row++) {
307	thisblockrow = buffer[block_row];
308	lastblockrow = buffer[block_row-1];
309	jzero_far((void FAR *) thisblockrow,
310		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
311	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
312	  lastDC = lastblockrow[h_samp_factor-1][0];
313	  for (bi = 0; bi < h_samp_factor; bi++) {
314	    thisblockrow[bi][0] = lastDC;
315	  }
316	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
317	  lastblockrow += h_samp_factor;
318	}
319      }
320    }
321  }
322  /* NB: compress_output will increment iMCU_row_num if successful.
323   * A suspension return will result in redoing all the work above next time.
324   */
325
326  /* Emit data to the entropy encoder, sharing code with subsequent passes */
327  return compress_output(cinfo, input_buf);
328}
329
330
331/*
332 * Process some data in subsequent passes of a multi-pass case.
333 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
334 * per call, ie, v_samp_factor block rows for each component in the scan.
335 * The data is obtained from the virtual arrays and fed to the entropy coder.
336 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
337 *
338 * NB: input_buf is ignored; it is likely to be a NULL pointer.
339 */
340
341METHODDEF(boolean)
342compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
343{
344  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
345  JDIMENSION MCU_col_num;	/* index of current MCU within row */
346  int blkn, ci, xindex, yindex, yoffset;
347  JDIMENSION start_col;
348  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
349  JBLOCKROW buffer_ptr;
350  jpeg_component_info *compptr;
351
352  /* Align the virtual buffers for the components used in this scan.
353   * NB: during first pass, this is safe only because the buffers will
354   * already be aligned properly, so jmemmgr.c won't need to do any I/O.
355   */
356  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
357    compptr = cinfo->cur_comp_info[ci];
358    buffer[ci] = (*cinfo->mem->access_virt_barray)
359      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
360       coef->iMCU_row_num * compptr->v_samp_factor,
361       (JDIMENSION) compptr->v_samp_factor, FALSE);
362  }
363
364  /* Loop to process one whole iMCU row */
365  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
366       yoffset++) {
367    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
368	 MCU_col_num++) {
369      /* Construct list of pointers to DCT blocks belonging to this MCU */
370      blkn = 0;			/* index of current DCT block within MCU */
371      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
372	compptr = cinfo->cur_comp_info[ci];
373	start_col = MCU_col_num * compptr->MCU_width;
374	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
375	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
376	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
377	    coef->MCU_buffer[blkn++] = buffer_ptr++;
378	  }
379	}
380      }
381      /* Try to write the MCU. */
382      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
383	/* Suspension forced; update state counters and exit */
384	coef->MCU_vert_offset = yoffset;
385	coef->mcu_ctr = MCU_col_num;
386	return FALSE;
387      }
388    }
389    /* Completed an MCU row, but perhaps not an iMCU row */
390    coef->mcu_ctr = 0;
391  }
392  /* Completed the iMCU row, advance counters for next one */
393  coef->iMCU_row_num++;
394  start_iMCU_row(cinfo);
395  return TRUE;
396}
397
398#endif /* FULL_COEF_BUFFER_SUPPORTED */
399
400
401/*
402 * Initialize coefficient buffer controller.
403 */
404
405GLOBAL(void)
406jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
407{
408  my_coef_ptr coef;
409
410  coef = (my_coef_ptr)
411    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
412				SIZEOF(my_coef_controller));
413  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
414  coef->pub.start_pass = start_pass_coef;
415
416  /* Create the coefficient buffer. */
417  if (need_full_buffer) {
418#ifdef FULL_COEF_BUFFER_SUPPORTED
419    /* Allocate a full-image virtual array for each component, */
420    /* padded to a multiple of samp_factor DCT blocks in each direction. */
421    int ci;
422    jpeg_component_info *compptr;
423
424    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
425	 ci++, compptr++) {
426      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
427	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
428	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
429				(long) compptr->h_samp_factor),
430	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
431				(long) compptr->v_samp_factor),
432	 (JDIMENSION) compptr->v_samp_factor);
433    }
434#else
435    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
436#endif
437  } else {
438    /* We only need a single-MCU buffer. */
439    JBLOCKROW buffer;
440    int i;
441
442    buffer = (JBLOCKROW)
443      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
444				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
445    for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
446      coef->MCU_buffer[i] = buffer + i;
447    }
448    coef->whole_image[0] = NULL; /* flag for no virtual arrays */
449  }
450}
451
452#endif //_FX_JPEG_TURBO_
453