1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jcdctmgr.c
4 *
5 * Copyright (C) 1994-1996, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains the forward-DCT management logic.
10 * This code selects a particular DCT implementation to be used,
11 * and it performs related housekeeping chores including coefficient
12 * quantization.
13 */
14
15#define JPEG_INTERNALS
16#include "jinclude.h"
17#include "jpeglib.h"
18#include "jdct.h"		/* Private declarations for DCT subsystem */
19
20
21/* Private subobject for this module */
22
23typedef struct {
24  struct jpeg_forward_dct pub;	/* public fields */
25
26  /* Pointer to the DCT routine actually in use */
27  forward_DCT_method_ptr do_dct;
28
29  /* The actual post-DCT divisors --- not identical to the quant table
30   * entries, because of scaling (especially for an unnormalized DCT).
31   * Each table is given in normal array order.
32   */
33  DCTELEM * divisors[NUM_QUANT_TBLS];
34
35#ifdef DCT_FLOAT_SUPPORTED
36  /* Same as above for the floating-point case. */
37  float_DCT_method_ptr do_float_dct;
38  FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
39#endif
40} my_fdct_controller;
41
42typedef my_fdct_controller * my_fdct_ptr;
43
44
45/*
46 * Initialize for a processing pass.
47 * Verify that all referenced Q-tables are present, and set up
48 * the divisor table for each one.
49 * In the current implementation, DCT of all components is done during
50 * the first pass, even if only some components will be output in the
51 * first scan.  Hence all components should be examined here.
52 */
53
54METHODDEF(void)
55start_pass_fdctmgr (j_compress_ptr cinfo)
56{
57  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
58  int ci, qtblno, i;
59  jpeg_component_info *compptr;
60  JQUANT_TBL * qtbl;
61  DCTELEM * dtbl;
62
63  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
64       ci++, compptr++) {
65    qtblno = compptr->quant_tbl_no;
66    /* Make sure specified quantization table is present */
67    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
68	cinfo->quant_tbl_ptrs[qtblno] == NULL)
69      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
70    qtbl = cinfo->quant_tbl_ptrs[qtblno];
71    /* Compute divisors for this quant table */
72    /* We may do this more than once for same table, but it's not a big deal */
73    switch (cinfo->dct_method) {
74#ifdef DCT_ISLOW_SUPPORTED
75    case JDCT_ISLOW:
76      /* For LL&M IDCT method, divisors are equal to raw quantization
77       * coefficients multiplied by 8 (to counteract scaling).
78       */
79      if (fdct->divisors[qtblno] == NULL) {
80	fdct->divisors[qtblno] = (DCTELEM *)
81	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
82				      DCTSIZE2 * SIZEOF(DCTELEM));
83      }
84      dtbl = fdct->divisors[qtblno];
85      for (i = 0; i < DCTSIZE2; i++) {
86	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
87      }
88      break;
89#endif
90#ifdef DCT_IFAST_SUPPORTED
91    case JDCT_IFAST:
92      {
93	/* For AA&N IDCT method, divisors are equal to quantization
94	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
95	 *   scalefactor[0] = 1
96	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
97	 * We apply a further scale factor of 8.
98	 */
99#define CONST_BITS 14
100	static const INT16 aanscales[DCTSIZE2] = {
101	  /* precomputed values scaled up by 14 bits */
102	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
103	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
104	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
105	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
106	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
107	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
108	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
109	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
110	};
111	SHIFT_TEMPS
112
113	if (fdct->divisors[qtblno] == NULL) {
114	  fdct->divisors[qtblno] = (DCTELEM *)
115	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
116					DCTSIZE2 * SIZEOF(DCTELEM));
117	}
118	dtbl = fdct->divisors[qtblno];
119	for (i = 0; i < DCTSIZE2; i++) {
120	  dtbl[i] = (DCTELEM)
121	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
122				  (INT32) aanscales[i]),
123		    CONST_BITS-3);
124	}
125      }
126      break;
127#endif
128#ifdef DCT_FLOAT_SUPPORTED
129    case JDCT_FLOAT:
130      {
131	/* For float AA&N IDCT method, divisors are equal to quantization
132	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
133	 *   scalefactor[0] = 1
134	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
135	 * We apply a further scale factor of 8.
136	 * What's actually stored is 1/divisor so that the inner loop can
137	 * use a multiplication rather than a division.
138	 */
139	FAST_FLOAT * fdtbl;
140	int row, col;
141	static const double aanscalefactor[DCTSIZE] = {
142	  1.0, 1.387039845, 1.306562965, 1.175875602,
143	  1.0, 0.785694958, 0.541196100, 0.275899379
144	};
145
146	if (fdct->float_divisors[qtblno] == NULL) {
147	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
148	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
149					DCTSIZE2 * SIZEOF(FAST_FLOAT));
150	}
151	fdtbl = fdct->float_divisors[qtblno];
152	i = 0;
153	for (row = 0; row < DCTSIZE; row++) {
154	  for (col = 0; col < DCTSIZE; col++) {
155	    fdtbl[i] = (FAST_FLOAT)
156	      (1.0 / (((double) qtbl->quantval[i] *
157		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
158	    i++;
159	  }
160	}
161      }
162      break;
163#endif
164    default:
165      ERREXIT(cinfo, JERR_NOT_COMPILED);
166      break;
167    }
168  }
169}
170
171
172/*
173 * Perform forward DCT on one or more blocks of a component.
174 *
175 * The input samples are taken from the sample_data[] array starting at
176 * position start_row/start_col, and moving to the right for any additional
177 * blocks. The quantized coefficients are returned in coef_blocks[].
178 */
179
180METHODDEF(void)
181forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
182	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
183	     JDIMENSION start_row, JDIMENSION start_col,
184	     JDIMENSION num_blocks)
185/* This version is used for integer DCT implementations. */
186{
187  /* This routine is heavily used, so it's worth coding it tightly. */
188  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
189  forward_DCT_method_ptr do_dct = fdct->do_dct;
190  DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
191  DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */
192  JDIMENSION bi;
193
194  sample_data += start_row;	/* fold in the vertical offset once */
195
196  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
197    /* Load data into workspace, applying unsigned->signed conversion */
198    { register DCTELEM *workspaceptr;
199      register JSAMPROW elemptr;
200      register int elemr;
201
202      workspaceptr = workspace;
203      for (elemr = 0; elemr < DCTSIZE; elemr++) {
204	elemptr = sample_data[elemr] + start_col;
205#if DCTSIZE == 8		/* unroll the inner loop */
206	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
207	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
208	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
209	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
210	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
211	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
212	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
213	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
214#else
215	{ register int elemc;
216	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
217	    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
218	  }
219	}
220#endif
221      }
222    }
223
224    /* Perform the DCT */
225    (*do_dct) (workspace);
226
227    /* Quantize/descale the coefficients, and store into coef_blocks[] */
228    { register DCTELEM temp, qval;
229      register int i;
230      register JCOEFPTR output_ptr = coef_blocks[bi];
231
232      for (i = 0; i < DCTSIZE2; i++) {
233	qval = divisors[i];
234	temp = workspace[i];
235	/* Divide the coefficient value by qval, ensuring proper rounding.
236	 * Since C does not specify the direction of rounding for negative
237	 * quotients, we have to force the dividend positive for portability.
238	 *
239	 * In most files, at least half of the output values will be zero
240	 * (at default quantization settings, more like three-quarters...)
241	 * so we should ensure that this case is fast.  On many machines,
242	 * a comparison is enough cheaper than a divide to make a special test
243	 * a win.  Since both inputs will be nonnegative, we need only test
244	 * for a < b to discover whether a/b is 0.
245	 * If your machine's division is fast enough, define FAST_DIVIDE.
246	 */
247#ifdef FAST_DIVIDE
248#define DIVIDE_BY(a,b)	a /= b
249#else
250#define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0
251#endif
252	if (temp < 0) {
253	  temp = -temp;
254	  temp += qval>>1;	/* for rounding */
255	  DIVIDE_BY(temp, qval);
256	  temp = -temp;
257	} else {
258	  temp += qval>>1;	/* for rounding */
259	  DIVIDE_BY(temp, qval);
260	}
261	output_ptr[i] = (JCOEF) temp;
262      }
263    }
264  }
265}
266
267
268#ifdef DCT_FLOAT_SUPPORTED
269
270METHODDEF(void)
271forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
272		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
273		   JDIMENSION start_row, JDIMENSION start_col,
274		   JDIMENSION num_blocks)
275/* This version is used for floating-point DCT implementations. */
276{
277  /* This routine is heavily used, so it's worth coding it tightly. */
278  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
279  float_DCT_method_ptr do_dct = fdct->do_float_dct;
280  FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
281  FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
282  JDIMENSION bi;
283
284  sample_data += start_row;	/* fold in the vertical offset once */
285
286  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
287    /* Load data into workspace, applying unsigned->signed conversion */
288    { register FAST_FLOAT *workspaceptr;
289      register JSAMPROW elemptr;
290      register int elemr;
291
292      workspaceptr = workspace;
293      for (elemr = 0; elemr < DCTSIZE; elemr++) {
294	elemptr = sample_data[elemr] + start_col;
295#if DCTSIZE == 8		/* unroll the inner loop */
296	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
297	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
298	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
299	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
300	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
301	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
302	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
303	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
304#else
305	{ register int elemc;
306	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
307	    *workspaceptr++ = (FAST_FLOAT)
308	      (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
309	  }
310	}
311#endif
312      }
313    }
314
315    /* Perform the DCT */
316    (*do_dct) (workspace);
317
318    /* Quantize/descale the coefficients, and store into coef_blocks[] */
319    { register FAST_FLOAT temp;
320      register int i;
321      register JCOEFPTR output_ptr = coef_blocks[bi];
322
323      for (i = 0; i < DCTSIZE2; i++) {
324	/* Apply the quantization and scaling factor */
325	temp = workspace[i] * divisors[i];
326	/* Round to nearest integer.
327	 * Since C does not specify the direction of rounding for negative
328	 * quotients, we have to force the dividend positive for portability.
329	 * The maximum coefficient size is +-16K (for 12-bit data), so this
330	 * code should work for either 16-bit or 32-bit ints.
331	 */
332	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
333      }
334    }
335  }
336}
337
338#endif /* DCT_FLOAT_SUPPORTED */
339
340
341/*
342 * Initialize FDCT manager.
343 */
344
345GLOBAL(void)
346jinit_forward_dct (j_compress_ptr cinfo)
347{
348  my_fdct_ptr fdct;
349  int i;
350
351  fdct = (my_fdct_ptr)
352    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
353				SIZEOF(my_fdct_controller));
354  cinfo->fdct = (struct jpeg_forward_dct *) fdct;
355  fdct->pub.start_pass = start_pass_fdctmgr;
356
357  switch (cinfo->dct_method) {
358#ifdef DCT_ISLOW_SUPPORTED
359  case JDCT_ISLOW:
360    fdct->pub.forward_DCT = forward_DCT;
361    fdct->do_dct = jpeg_fdct_islow;
362    break;
363#endif
364#ifdef DCT_IFAST_SUPPORTED
365  case JDCT_IFAST:
366    fdct->pub.forward_DCT = forward_DCT;
367    fdct->do_dct = jpeg_fdct_ifast;
368    break;
369#endif
370#ifdef DCT_FLOAT_SUPPORTED
371  case JDCT_FLOAT:
372    fdct->pub.forward_DCT = forward_DCT_float;
373    fdct->do_float_dct = jpeg_fdct_float;
374    break;
375#endif
376  default:
377    ERREXIT(cinfo, JERR_NOT_COMPILED);
378    break;
379  }
380
381  /* Mark divisor tables unallocated */
382  for (i = 0; i < NUM_QUANT_TBLS; i++) {
383    fdct->divisors[i] = NULL;
384#ifdef DCT_FLOAT_SUPPORTED
385    fdct->float_divisors[i] = NULL;
386#endif
387  }
388}
389
390#endif //_FX_JPEG_TURBO_
391