1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jmemmgr.c
4 *
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains the JPEG system-independent memory management
10 * routines.  This code is usable across a wide variety of machines; most
11 * of the system dependencies have been isolated in a separate file.
12 * The major functions provided here are:
13 *   * pool-based allocation and freeing of memory;
14 *   * policy decisions about how to divide available memory among the
15 *     virtual arrays;
16 *   * control logic for swapping virtual arrays between main memory and
17 *     backing storage.
18 * The separate system-dependent file provides the actual backing-storage
19 * access code, and it contains the policy decision about how much total
20 * main memory to use.
21 * This file is system-dependent in the sense that some of its functions
22 * are unnecessary in some systems.  For example, if there is enough virtual
23 * memory so that backing storage will never be used, much of the virtual
24 * array control logic could be removed.  (Of course, if you have that much
25 * memory then you shouldn't care about a little bit of unused code...)
26 */
27
28#define JPEG_INTERNALS
29#define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
30#include "jinclude.h"
31#include "jpeglib.h"
32#include "jmemsys.h"		/* import the system-dependent declarations */
33
34#define NO_GETENV	/* XYQ: 2007-5-22 Don't use it */
35
36#ifndef NO_GETENV
37#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
38extern char * getenv JPP((const char * name));
39#endif
40#endif
41
42
43/*
44 * Some important notes:
45 *   The allocation routines provided here must never return NULL.
46 *   They should exit to error_exit if unsuccessful.
47 *
48 *   It's not a good idea to try to merge the sarray and barray routines,
49 *   even though they are textually almost the same, because samples are
50 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
51 *   in machines where byte pointers have a different representation from
52 *   word pointers, the resulting machine code could not be the same.
53 */
54
55
56/*
57 * Many machines require storage alignment: longs must start on 4-byte
58 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
59 * always returns pointers that are multiples of the worst-case alignment
60 * requirement, and we had better do so too.
61 * There isn't any really portable way to determine the worst-case alignment
62 * requirement.  This module assumes that the alignment requirement is
63 * multiples of sizeof(ALIGN_TYPE).
64 * By default, we define ALIGN_TYPE as double.  This is necessary on some
65 * workstations (where doubles really do need 8-byte alignment) and will work
66 * fine on nearly everything.  If your machine has lesser alignment needs,
67 * you can save a few bytes by making ALIGN_TYPE smaller.
68 * The only place I know of where this will NOT work is certain Macintosh
69 * 680x0 compilers that define double as a 10-byte IEEE extended float.
70 * Doing 10-byte alignment is counterproductive because longwords won't be
71 * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
72 * such a compiler.
73 */
74
75#ifndef ALIGN_TYPE		/* so can override from jconfig.h */
76#define ALIGN_TYPE  double
77#endif
78
79
80/*
81 * We allocate objects from "pools", where each pool is gotten with a single
82 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
83 * overhead within a pool, except for alignment padding.  Each pool has a
84 * header with a link to the next pool of the same class.
85 * Small and large pool headers are identical except that the latter's
86 * link pointer must be FAR on 80x86 machines.
87 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
88 * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
89 * of the alignment requirement of ALIGN_TYPE.
90 */
91
92typedef union small_pool_struct * small_pool_ptr;
93
94typedef union small_pool_struct {
95  struct {
96    small_pool_ptr next;	/* next in list of pools */
97    size_t bytes_used;		/* how many bytes already used within pool */
98    size_t bytes_left;		/* bytes still available in this pool */
99  } hdr;
100  ALIGN_TYPE dummy;		/* included in union to ensure alignment */
101} small_pool_hdr;
102
103typedef union large_pool_struct FAR * large_pool_ptr;
104
105typedef union large_pool_struct {
106  struct {
107    large_pool_ptr next;	/* next in list of pools */
108    size_t bytes_used;		/* how many bytes already used within pool */
109    size_t bytes_left;		/* bytes still available in this pool */
110  } hdr;
111  ALIGN_TYPE dummy;		/* included in union to ensure alignment */
112} large_pool_hdr;
113
114
115/*
116 * Here is the full definition of a memory manager object.
117 */
118
119typedef struct {
120  struct jpeg_memory_mgr pub;	/* public fields */
121
122  /* Each pool identifier (lifetime class) names a linked list of pools. */
123  small_pool_ptr small_list[JPOOL_NUMPOOLS];
124  large_pool_ptr large_list[JPOOL_NUMPOOLS];
125
126  /* Since we only have one lifetime class of virtual arrays, only one
127   * linked list is necessary (for each datatype).  Note that the virtual
128   * array control blocks being linked together are actually stored somewhere
129   * in the small-pool list.
130   */
131  jvirt_sarray_ptr virt_sarray_list;
132  jvirt_barray_ptr virt_barray_list;
133
134  /* This counts total space obtained from jpeg_get_small/large */
135  long total_space_allocated;
136
137  /* alloc_sarray and alloc_barray set this value for use by virtual
138   * array routines.
139   */
140  JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
141} my_memory_mgr;
142
143typedef my_memory_mgr * my_mem_ptr;
144
145
146/*
147 * The control blocks for virtual arrays.
148 * Note that these blocks are allocated in the "small" pool area.
149 * System-dependent info for the associated backing store (if any) is hidden
150 * inside the backing_store_info struct.
151 */
152
153struct jvirt_sarray_control {
154  JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
155  JDIMENSION rows_in_array;	/* total virtual array height */
156  JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
157  JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
158  JDIMENSION rows_in_mem;	/* height of memory buffer */
159  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
160  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
161  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
162  boolean pre_zero;		/* pre-zero mode requested? */
163  boolean dirty;		/* do current buffer contents need written? */
164  boolean b_s_open;		/* is backing-store data valid? */
165  jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
166  backing_store_info b_s_info;	/* System-dependent control info */
167};
168
169struct jvirt_barray_control {
170  JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
171  JDIMENSION rows_in_array;	/* total virtual array height */
172  JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
173  JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
174  JDIMENSION rows_in_mem;	/* height of memory buffer */
175  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
176  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
177  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
178  boolean pre_zero;		/* pre-zero mode requested? */
179  boolean dirty;		/* do current buffer contents need written? */
180  boolean b_s_open;		/* is backing-store data valid? */
181  jvirt_barray_ptr next;	/* link to next virtual barray control block */
182  backing_store_info b_s_info;	/* System-dependent control info */
183};
184
185
186#ifdef MEM_STATS		/* optional extra stuff for statistics */
187
188LOCAL(void)
189print_mem_stats (j_common_ptr cinfo, int pool_id)
190{
191  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
192  small_pool_ptr shdr_ptr;
193  large_pool_ptr lhdr_ptr;
194
195  /* Since this is only a debugging stub, we can cheat a little by using
196   * fprintf directly rather than going through the trace message code.
197   * This is helpful because message parm array can't handle longs.
198   */
199  FXSYS_fprintf(stderr, "Freeing pool %d, total space = %ld\n",
200	  pool_id, mem->total_space_allocated);
201
202  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
203       lhdr_ptr = lhdr_ptr->hdr.next) {
204    FXSYS_fprintf(stderr, "  Large chunk used %ld\n",
205	    (long) lhdr_ptr->hdr.bytes_used);
206  }
207
208  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
209       shdr_ptr = shdr_ptr->hdr.next) {
210    FXSYS_fprintf(stderr, "  Small chunk used %ld free %ld\n",
211	    (long) shdr_ptr->hdr.bytes_used,
212	    (long) shdr_ptr->hdr.bytes_left);
213  }
214}
215
216#endif /* MEM_STATS */
217
218
219LOCAL(void)
220out_of_memory (j_common_ptr cinfo, int which)
221/* Report an out-of-memory error and stop execution */
222/* If we compiled MEM_STATS support, report alloc requests before dying */
223{
224#ifdef MEM_STATS
225  cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
226#endif
227  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
228}
229
230
231/*
232 * Allocation of "small" objects.
233 *
234 * For these, we use pooled storage.  When a new pool must be created,
235 * we try to get enough space for the current request plus a "slop" factor,
236 * where the slop will be the amount of leftover space in the new pool.
237 * The speed vs. space tradeoff is largely determined by the slop values.
238 * A different slop value is provided for each pool class (lifetime),
239 * and we also distinguish the first pool of a class from later ones.
240 * NOTE: the values given work fairly well on both 16- and 32-bit-int
241 * machines, but may be too small if longs are 64 bits or more.
242 */
243
244static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
245{
246	1600,			/* first PERMANENT pool */
247	16000			/* first IMAGE pool */
248};
249
250static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
251{
252	0,			/* additional PERMANENT pools */
253	5000			/* additional IMAGE pools */
254};
255
256#define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
257
258
259METHODDEF(void *)
260alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
261/* Allocate a "small" object */
262{
263  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
264  small_pool_ptr hdr_ptr, prev_hdr_ptr;
265  char * data_ptr;
266  size_t odd_bytes, min_request, slop;
267
268  /* Check for unsatisfiable request (do now to ensure no overflow below) */
269  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
270    out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
271
272  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
273  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
274  if (odd_bytes > 0)
275    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
276
277  /* See if space is available in any existing pool */
278  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
279    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
280  prev_hdr_ptr = NULL;
281  hdr_ptr = mem->small_list[pool_id];
282  while (hdr_ptr != NULL) {
283    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
284      break;			/* found pool with enough space */
285    prev_hdr_ptr = hdr_ptr;
286    hdr_ptr = hdr_ptr->hdr.next;
287  }
288
289  /* Time to make a new pool? */
290  if (hdr_ptr == NULL) {
291    /* min_request is what we need now, slop is what will be leftover */
292    min_request = sizeofobject + SIZEOF(small_pool_hdr);
293    if (prev_hdr_ptr == NULL)	/* first pool in class? */
294      slop = first_pool_slop[pool_id];
295    else
296      slop = extra_pool_slop[pool_id];
297    /* Don't ask for more than MAX_ALLOC_CHUNK */
298    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
299      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
300    /* Try to get space, if fail reduce slop and try again */
301    for (;;) {
302      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
303      if (hdr_ptr != NULL)
304	break;
305      slop /= 2;
306      if (slop < MIN_SLOP)	/* give up when it gets real small */
307	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
308    }
309    mem->total_space_allocated += min_request + slop;
310    /* Success, initialize the new pool header and add to end of list */
311    hdr_ptr->hdr.next = NULL;
312    hdr_ptr->hdr.bytes_used = 0;
313    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
314    if (prev_hdr_ptr == NULL)	/* first pool in class? */
315      mem->small_list[pool_id] = hdr_ptr;
316    else
317      prev_hdr_ptr->hdr.next = hdr_ptr;
318  }
319
320  /* OK, allocate the object from the current pool */
321  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
322  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
323  hdr_ptr->hdr.bytes_used += sizeofobject;
324  hdr_ptr->hdr.bytes_left -= sizeofobject;
325
326  return (void *) data_ptr;
327}
328
329
330/*
331 * Allocation of "large" objects.
332 *
333 * The external semantics of these are the same as "small" objects,
334 * except that FAR pointers are used on 80x86.  However the pool
335 * management heuristics are quite different.  We assume that each
336 * request is large enough that it may as well be passed directly to
337 * jpeg_get_large; the pool management just links everything together
338 * so that we can free it all on demand.
339 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
340 * structures.  The routines that create these structures (see below)
341 * deliberately bunch rows together to ensure a large request size.
342 */
343
344METHODDEF(void FAR *)
345alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
346/* Allocate a "large" object */
347{
348  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
349  large_pool_ptr hdr_ptr;
350  size_t odd_bytes;
351
352  /* Check for unsatisfiable request (do now to ensure no overflow below) */
353  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
354    out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
355
356  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
357  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
358  if (odd_bytes > 0)
359    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
360
361  /* Always make a new pool */
362  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
363    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
364
365  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
366					    SIZEOF(large_pool_hdr));
367  if (hdr_ptr == NULL)
368    out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
369  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
370
371  /* Success, initialize the new pool header and add to list */
372  hdr_ptr->hdr.next = mem->large_list[pool_id];
373  /* We maintain space counts in each pool header for statistical purposes,
374   * even though they are not needed for allocation.
375   */
376  hdr_ptr->hdr.bytes_used = sizeofobject;
377  hdr_ptr->hdr.bytes_left = 0;
378  mem->large_list[pool_id] = hdr_ptr;
379
380  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
381}
382
383
384/*
385 * Creation of 2-D sample arrays.
386 * The pointers are in near heap, the samples themselves in FAR heap.
387 *
388 * To minimize allocation overhead and to allow I/O of large contiguous
389 * blocks, we allocate the sample rows in groups of as many rows as possible
390 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
391 * NB: the virtual array control routines, later in this file, know about
392 * this chunking of rows.  The rowsperchunk value is left in the mem manager
393 * object so that it can be saved away if this sarray is the workspace for
394 * a virtual array.
395 */
396
397METHODDEF(JSAMPARRAY)
398alloc_sarray (j_common_ptr cinfo, int pool_id,
399	      JDIMENSION samplesperrow, JDIMENSION numrows)
400/* Allocate a 2-D sample array */
401{
402  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
403  JSAMPARRAY result;
404  JSAMPROW workspace;
405  JDIMENSION rowsperchunk, currow, i;
406  long ltemp;
407
408  /* Calculate max # of rows allowed in one allocation chunk */
409  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
410	  ((long) samplesperrow * SIZEOF(JSAMPLE));
411  if (ltemp <= 0)
412    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
413  if (ltemp < (long) numrows)
414    rowsperchunk = (JDIMENSION) ltemp;
415  else
416    rowsperchunk = numrows;
417  mem->last_rowsperchunk = rowsperchunk;
418
419  /* Get space for row pointers (small object) */
420  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
421				    (size_t) (numrows * SIZEOF(JSAMPROW)));
422
423  /* Get the rows themselves (large objects) */
424  currow = 0;
425  while (currow < numrows) {
426    rowsperchunk = MIN(rowsperchunk, numrows - currow);
427    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
428	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
429		  * SIZEOF(JSAMPLE)));
430    for (i = rowsperchunk; i > 0; i--) {
431      result[currow++] = workspace;
432      workspace += samplesperrow;
433    }
434  }
435
436  return result;
437}
438
439
440/*
441 * Creation of 2-D coefficient-block arrays.
442 * This is essentially the same as the code for sample arrays, above.
443 */
444
445METHODDEF(JBLOCKARRAY)
446alloc_barray (j_common_ptr cinfo, int pool_id,
447	      JDIMENSION blocksperrow, JDIMENSION numrows)
448/* Allocate a 2-D coefficient-block array */
449{
450  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
451  JBLOCKARRAY result;
452  JBLOCKROW workspace;
453  JDIMENSION rowsperchunk, currow, i;
454  long ltemp;
455
456  /* Calculate max # of rows allowed in one allocation chunk */
457  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
458	  ((long) blocksperrow * SIZEOF(JBLOCK));
459  if (ltemp <= 0)
460    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
461  if (ltemp < (long) numrows)
462    rowsperchunk = (JDIMENSION) ltemp;
463  else
464    rowsperchunk = numrows;
465  mem->last_rowsperchunk = rowsperchunk;
466
467  /* Get space for row pointers (small object) */
468  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
469				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
470
471  /* Get the rows themselves (large objects) */
472  currow = 0;
473  while (currow < numrows) {
474    rowsperchunk = MIN(rowsperchunk, numrows - currow);
475    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
476	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
477		  * SIZEOF(JBLOCK)));
478    for (i = rowsperchunk; i > 0; i--) {
479      result[currow++] = workspace;
480      workspace += blocksperrow;
481    }
482  }
483
484  return result;
485}
486
487
488/*
489 * About virtual array management:
490 *
491 * The above "normal" array routines are only used to allocate strip buffers
492 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
493 * are handled as "virtual" arrays.  The array is still accessed a strip at a
494 * time, but the memory manager must save the whole array for repeated
495 * accesses.  The intended implementation is that there is a strip buffer in
496 * memory (as high as is possible given the desired memory limit), plus a
497 * backing file that holds the rest of the array.
498 *
499 * The request_virt_array routines are told the total size of the image and
500 * the maximum number of rows that will be accessed at once.  The in-memory
501 * buffer must be at least as large as the maxaccess value.
502 *
503 * The request routines create control blocks but not the in-memory buffers.
504 * That is postponed until realize_virt_arrays is called.  At that time the
505 * total amount of space needed is known (approximately, anyway), so free
506 * memory can be divided up fairly.
507 *
508 * The access_virt_array routines are responsible for making a specific strip
509 * area accessible (after reading or writing the backing file, if necessary).
510 * Note that the access routines are told whether the caller intends to modify
511 * the accessed strip; during a read-only pass this saves having to rewrite
512 * data to disk.  The access routines are also responsible for pre-zeroing
513 * any newly accessed rows, if pre-zeroing was requested.
514 *
515 * In current usage, the access requests are usually for nonoverlapping
516 * strips; that is, successive access start_row numbers differ by exactly
517 * num_rows = maxaccess.  This means we can get good performance with simple
518 * buffer dump/reload logic, by making the in-memory buffer be a multiple
519 * of the access height; then there will never be accesses across bufferload
520 * boundaries.  The code will still work with overlapping access requests,
521 * but it doesn't handle bufferload overlaps very efficiently.
522 */
523
524
525METHODDEF(jvirt_sarray_ptr)
526request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
527		     JDIMENSION samplesperrow, JDIMENSION numrows,
528		     JDIMENSION maxaccess)
529/* Request a virtual 2-D sample array */
530{
531  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
532  jvirt_sarray_ptr result;
533
534  /* Only IMAGE-lifetime virtual arrays are currently supported */
535  if (pool_id != JPOOL_IMAGE)
536    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
537
538  /* get control block */
539  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
540					  SIZEOF(struct jvirt_sarray_control));
541
542  result->mem_buffer = NULL;	/* marks array not yet realized */
543  result->rows_in_array = numrows;
544  result->samplesperrow = samplesperrow;
545  result->maxaccess = maxaccess;
546  result->pre_zero = pre_zero;
547  result->b_s_open = FALSE;	/* no associated backing-store object */
548  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
549  mem->virt_sarray_list = result;
550
551  return result;
552}
553
554
555METHODDEF(jvirt_barray_ptr)
556request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
557		     JDIMENSION blocksperrow, JDIMENSION numrows,
558		     JDIMENSION maxaccess)
559/* Request a virtual 2-D coefficient-block array */
560{
561  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
562  jvirt_barray_ptr result;
563
564  /* Only IMAGE-lifetime virtual arrays are currently supported */
565  if (pool_id != JPOOL_IMAGE)
566    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
567
568  /* get control block */
569  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
570					  SIZEOF(struct jvirt_barray_control));
571
572  result->mem_buffer = NULL;	/* marks array not yet realized */
573  result->rows_in_array = numrows;
574  result->blocksperrow = blocksperrow;
575  result->maxaccess = maxaccess;
576  result->pre_zero = pre_zero;
577  result->b_s_open = FALSE;	/* no associated backing-store object */
578  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
579  mem->virt_barray_list = result;
580
581  return result;
582}
583
584
585METHODDEF(void)
586realize_virt_arrays (j_common_ptr cinfo)
587/* Allocate the in-memory buffers for any unrealized virtual arrays */
588{
589  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
590  long space_per_minheight, maximum_space, avail_mem;
591  long minheights, max_minheights;
592  jvirt_sarray_ptr sptr;
593  jvirt_barray_ptr bptr;
594
595  /* Compute the minimum space needed (maxaccess rows in each buffer)
596   * and the maximum space needed (full image height in each buffer).
597   * These may be of use to the system-dependent jpeg_mem_available routine.
598   */
599  space_per_minheight = 0;
600  maximum_space = 0;
601  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
602    if (sptr->mem_buffer == NULL) { /* if not realized yet */
603      space_per_minheight += (long) sptr->maxaccess *
604			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
605      maximum_space += (long) sptr->rows_in_array *
606		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
607    }
608  }
609  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
610    if (bptr->mem_buffer == NULL) { /* if not realized yet */
611      space_per_minheight += (long) bptr->maxaccess *
612			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
613      maximum_space += (long) bptr->rows_in_array *
614		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
615    }
616  }
617
618  if (space_per_minheight <= 0)
619    return;			/* no unrealized arrays, no work */
620
621  /* Determine amount of memory to actually use; this is system-dependent. */
622  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
623				 mem->total_space_allocated);
624
625  /* If the maximum space needed is available, make all the buffers full
626   * height; otherwise parcel it out with the same number of minheights
627   * in each buffer.
628   */
629  if (avail_mem >= maximum_space)
630    max_minheights = 1000000000L;
631  else {
632    max_minheights = avail_mem / space_per_minheight;
633    /* If there doesn't seem to be enough space, try to get the minimum
634     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
635     */
636    if (max_minheights <= 0)
637      max_minheights = 1;
638  }
639
640  /* Allocate the in-memory buffers and initialize backing store as needed. */
641
642  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
643    if (sptr->mem_buffer == NULL) { /* if not realized yet */
644      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
645      if (minheights <= max_minheights) {
646	/* This buffer fits in memory */
647	sptr->rows_in_mem = sptr->rows_in_array;
648      } else {
649	/* It doesn't fit in memory, create backing store. */
650	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
651	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
652				(long) sptr->rows_in_array *
653				(long) sptr->samplesperrow *
654				(long) SIZEOF(JSAMPLE));
655	sptr->b_s_open = TRUE;
656      }
657      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
658				      sptr->samplesperrow, sptr->rows_in_mem);
659      sptr->rowsperchunk = mem->last_rowsperchunk;
660      sptr->cur_start_row = 0;
661      sptr->first_undef_row = 0;
662      sptr->dirty = FALSE;
663    }
664  }
665
666  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
667    if (bptr->mem_buffer == NULL) { /* if not realized yet */
668      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
669      if (minheights <= max_minheights) {
670	/* This buffer fits in memory */
671	bptr->rows_in_mem = bptr->rows_in_array;
672      } else {
673	/* It doesn't fit in memory, create backing store. */
674	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
675	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
676				(long) bptr->rows_in_array *
677				(long) bptr->blocksperrow *
678				(long) SIZEOF(JBLOCK));
679	bptr->b_s_open = TRUE;
680      }
681      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
682				      bptr->blocksperrow, bptr->rows_in_mem);
683      bptr->rowsperchunk = mem->last_rowsperchunk;
684      bptr->cur_start_row = 0;
685      bptr->first_undef_row = 0;
686      bptr->dirty = FALSE;
687    }
688  }
689}
690
691
692LOCAL(void)
693do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
694/* Do backing store read or write of a virtual sample array */
695{
696  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
697
698  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
699  file_offset = ptr->cur_start_row * bytesperrow;
700  /* Loop to read or write each allocation chunk in mem_buffer */
701  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
702    /* One chunk, but check for short chunk at end of buffer */
703    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
704    /* Transfer no more than is currently defined */
705    thisrow = (long) ptr->cur_start_row + i;
706    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
707    /* Transfer no more than fits in file */
708    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
709    if (rows <= 0)		/* this chunk might be past end of file! */
710      break;
711    byte_count = rows * bytesperrow;
712    if (writing)
713      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
714					    (void FAR *) ptr->mem_buffer[i],
715					    file_offset, byte_count);
716    else
717      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
718					   (void FAR *) ptr->mem_buffer[i],
719					   file_offset, byte_count);
720    file_offset += byte_count;
721  }
722}
723
724
725LOCAL(void)
726do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
727/* Do backing store read or write of a virtual coefficient-block array */
728{
729  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
730
731  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
732  file_offset = ptr->cur_start_row * bytesperrow;
733  /* Loop to read or write each allocation chunk in mem_buffer */
734  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
735    /* One chunk, but check for short chunk at end of buffer */
736    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
737    /* Transfer no more than is currently defined */
738    thisrow = (long) ptr->cur_start_row + i;
739    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
740    /* Transfer no more than fits in file */
741    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
742    if (rows <= 0)		/* this chunk might be past end of file! */
743      break;
744    byte_count = rows * bytesperrow;
745    if (writing)
746      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
747					    (void FAR *) ptr->mem_buffer[i],
748					    file_offset, byte_count);
749    else
750      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
751					   (void FAR *) ptr->mem_buffer[i],
752					   file_offset, byte_count);
753    file_offset += byte_count;
754  }
755}
756
757
758METHODDEF(JSAMPARRAY)
759access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
760		    JDIMENSION start_row, JDIMENSION num_rows,
761		    boolean writable)
762/* Access the part of a virtual sample array starting at start_row */
763/* and extending for num_rows rows.  writable is true if  */
764/* caller intends to modify the accessed area. */
765{
766  JDIMENSION end_row = start_row + num_rows;
767  JDIMENSION undef_row;
768
769  /* debugging check */
770  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
771      ptr->mem_buffer == NULL)
772    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
773
774  /* Make the desired part of the virtual array accessible */
775  if (start_row < ptr->cur_start_row ||
776      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
777    if (! ptr->b_s_open)
778      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
779    /* Flush old buffer contents if necessary */
780    if (ptr->dirty) {
781      do_sarray_io(cinfo, ptr, TRUE);
782      ptr->dirty = FALSE;
783    }
784    /* Decide what part of virtual array to access.
785     * Algorithm: if target address > current window, assume forward scan,
786     * load starting at target address.  If target address < current window,
787     * assume backward scan, load so that target area is top of window.
788     * Note that when switching from forward write to forward read, will have
789     * start_row = 0, so the limiting case applies and we load from 0 anyway.
790     */
791    if (start_row > ptr->cur_start_row) {
792      ptr->cur_start_row = start_row;
793    } else {
794      /* use long arithmetic here to avoid overflow & unsigned problems */
795      long ltemp;
796
797      ltemp = (long) end_row - (long) ptr->rows_in_mem;
798      if (ltemp < 0)
799	ltemp = 0;		/* don't fall off front end of file */
800      ptr->cur_start_row = (JDIMENSION) ltemp;
801    }
802    /* Read in the selected part of the array.
803     * During the initial write pass, we will do no actual read
804     * because the selected part is all undefined.
805     */
806    do_sarray_io(cinfo, ptr, FALSE);
807  }
808  /* Ensure the accessed part of the array is defined; prezero if needed.
809   * To improve locality of access, we only prezero the part of the array
810   * that the caller is about to access, not the entire in-memory array.
811   */
812  if (ptr->first_undef_row < end_row) {
813    if (ptr->first_undef_row < start_row) {
814      if (writable)		/* writer skipped over a section of array */
815	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
816      undef_row = start_row;	/* but reader is allowed to read ahead */
817    } else {
818      undef_row = ptr->first_undef_row;
819    }
820    if (writable)
821      ptr->first_undef_row = end_row;
822    if (ptr->pre_zero) {
823      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
824      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
825      end_row -= ptr->cur_start_row;
826      while (undef_row < end_row) {
827	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
828	undef_row++;
829      }
830    } else {
831      if (! writable)		/* reader looking at undefined data */
832	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
833    }
834  }
835  /* Flag the buffer dirty if caller will write in it */
836  if (writable)
837    ptr->dirty = TRUE;
838  /* Return address of proper part of the buffer */
839  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
840}
841
842
843METHODDEF(JBLOCKARRAY)
844access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
845		    JDIMENSION start_row, JDIMENSION num_rows,
846		    boolean writable)
847/* Access the part of a virtual block array starting at start_row */
848/* and extending for num_rows rows.  writable is true if  */
849/* caller intends to modify the accessed area. */
850{
851  JDIMENSION end_row = start_row + num_rows;
852  JDIMENSION undef_row;
853
854  /* debugging check */
855  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
856      ptr->mem_buffer == NULL)
857    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
858
859  /* Make the desired part of the virtual array accessible */
860  if (start_row < ptr->cur_start_row ||
861      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
862    if (! ptr->b_s_open)
863      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
864    /* Flush old buffer contents if necessary */
865    if (ptr->dirty) {
866      do_barray_io(cinfo, ptr, TRUE);
867      ptr->dirty = FALSE;
868    }
869    /* Decide what part of virtual array to access.
870     * Algorithm: if target address > current window, assume forward scan,
871     * load starting at target address.  If target address < current window,
872     * assume backward scan, load so that target area is top of window.
873     * Note that when switching from forward write to forward read, will have
874     * start_row = 0, so the limiting case applies and we load from 0 anyway.
875     */
876    if (start_row > ptr->cur_start_row) {
877      ptr->cur_start_row = start_row;
878    } else {
879      /* use long arithmetic here to avoid overflow & unsigned problems */
880      long ltemp;
881
882      ltemp = (long) end_row - (long) ptr->rows_in_mem;
883      if (ltemp < 0)
884	ltemp = 0;		/* don't fall off front end of file */
885      ptr->cur_start_row = (JDIMENSION) ltemp;
886    }
887    /* Read in the selected part of the array.
888     * During the initial write pass, we will do no actual read
889     * because the selected part is all undefined.
890     */
891    do_barray_io(cinfo, ptr, FALSE);
892  }
893  /* Ensure the accessed part of the array is defined; prezero if needed.
894   * To improve locality of access, we only prezero the part of the array
895   * that the caller is about to access, not the entire in-memory array.
896   */
897  if (ptr->first_undef_row < end_row) {
898    if (ptr->first_undef_row < start_row) {
899      if (writable)		/* writer skipped over a section of array */
900	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
901      undef_row = start_row;	/* but reader is allowed to read ahead */
902    } else {
903      undef_row = ptr->first_undef_row;
904    }
905    if (writable)
906      ptr->first_undef_row = end_row;
907    if (ptr->pre_zero) {
908      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
909      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
910      end_row -= ptr->cur_start_row;
911      while (undef_row < end_row) {
912	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
913	undef_row++;
914      }
915    } else {
916      if (! writable)		/* reader looking at undefined data */
917	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
918    }
919  }
920  /* Flag the buffer dirty if caller will write in it */
921  if (writable)
922    ptr->dirty = TRUE;
923  /* Return address of proper part of the buffer */
924  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
925}
926
927
928/*
929 * Release all objects belonging to a specified pool.
930 */
931
932METHODDEF(void)
933free_pool (j_common_ptr cinfo, int pool_id)
934{
935  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
936  small_pool_ptr shdr_ptr;
937  large_pool_ptr lhdr_ptr;
938  size_t space_freed;
939
940  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
941    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
942
943#ifdef MEM_STATS
944  if (cinfo->err->trace_level > 1)
945    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
946#endif
947
948  /* If freeing IMAGE pool, close any virtual arrays first */
949  if (pool_id == JPOOL_IMAGE) {
950    jvirt_sarray_ptr sptr;
951    jvirt_barray_ptr bptr;
952
953    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
954      if (sptr->b_s_open) {	/* there may be no backing store */
955	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
956	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
957      }
958    }
959    mem->virt_sarray_list = NULL;
960    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
961      if (bptr->b_s_open) {	/* there may be no backing store */
962	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
963	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
964      }
965    }
966    mem->virt_barray_list = NULL;
967  }
968
969  /* Release large objects */
970  lhdr_ptr = mem->large_list[pool_id];
971  mem->large_list[pool_id] = NULL;
972
973  while (lhdr_ptr != NULL) {
974    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
975    space_freed = lhdr_ptr->hdr.bytes_used +
976		  lhdr_ptr->hdr.bytes_left +
977		  SIZEOF(large_pool_hdr);
978    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
979    mem->total_space_allocated -= space_freed;
980    lhdr_ptr = next_lhdr_ptr;
981  }
982
983  /* Release small objects */
984  shdr_ptr = mem->small_list[pool_id];
985  mem->small_list[pool_id] = NULL;
986
987  while (shdr_ptr != NULL) {
988    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
989    space_freed = shdr_ptr->hdr.bytes_used +
990		  shdr_ptr->hdr.bytes_left +
991		  SIZEOF(small_pool_hdr);
992    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
993    mem->total_space_allocated -= space_freed;
994    shdr_ptr = next_shdr_ptr;
995  }
996}
997
998
999/*
1000 * Close up shop entirely.
1001 * Note that this cannot be called unless cinfo->mem is non-NULL.
1002 */
1003
1004METHODDEF(void)
1005self_destruct (j_common_ptr cinfo)
1006{
1007  int pool;
1008
1009  /* Close all backing store, release all memory.
1010   * Releasing pools in reverse order might help avoid fragmentation
1011   * with some (brain-damaged) malloc libraries.
1012   */
1013  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1014    free_pool(cinfo, pool);
1015  }
1016
1017  /* Release the memory manager control block too. */
1018  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1019  cinfo->mem = NULL;		/* ensures I will be called only once */
1020
1021  jpeg_mem_term(cinfo);		/* system-dependent cleanup */
1022}
1023
1024
1025/*
1026 * Memory manager initialization.
1027 * When this is called, only the error manager pointer is valid in cinfo!
1028 */
1029
1030GLOBAL(void)
1031jinit_memory_mgr (j_common_ptr cinfo)
1032{
1033  my_mem_ptr mem;
1034  long max_to_use;
1035  int pool;
1036  size_t test_mac;
1037
1038  cinfo->mem = NULL;		/* for safety if init fails */
1039
1040  /* Check for configuration errors.
1041   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1042   * doesn't reflect any real hardware alignment requirement.
1043   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1044   * in common if and only if X is a power of 2, ie has only one one-bit.
1045   * Some compilers may give an "unreachable code" warning here; ignore it.
1046   */
1047  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1048    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1049  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1050   * a multiple of SIZEOF(ALIGN_TYPE).
1051   * Again, an "unreachable code" warning may be ignored here.
1052   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1053   */
1054  test_mac = (size_t) MAX_ALLOC_CHUNK;
1055  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1056      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1057    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1058
1059  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1060
1061  /* Attempt to allocate memory manager's control block */
1062  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1063
1064  if (mem == NULL) {
1065    jpeg_mem_term(cinfo);	/* system-dependent cleanup */
1066    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1067  }
1068
1069  /* OK, fill in the method pointers */
1070  mem->pub.alloc_small = alloc_small;
1071  mem->pub.alloc_large = alloc_large;
1072  mem->pub.alloc_sarray = alloc_sarray;
1073  mem->pub.alloc_barray = alloc_barray;
1074  mem->pub.request_virt_sarray = request_virt_sarray;
1075  mem->pub.request_virt_barray = request_virt_barray;
1076  mem->pub.realize_virt_arrays = realize_virt_arrays;
1077  mem->pub.access_virt_sarray = access_virt_sarray;
1078  mem->pub.access_virt_barray = access_virt_barray;
1079  mem->pub.free_pool = free_pool;
1080  mem->pub.self_destruct = self_destruct;
1081
1082  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1083  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1084
1085  /* Initialize working state */
1086  mem->pub.max_memory_to_use = max_to_use;
1087
1088  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1089    mem->small_list[pool] = NULL;
1090    mem->large_list[pool] = NULL;
1091  }
1092  mem->virt_sarray_list = NULL;
1093  mem->virt_barray_list = NULL;
1094
1095  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1096
1097  /* Declare ourselves open for business */
1098  cinfo->mem = & mem->pub;
1099
1100  /* Check for an environment variable JPEGMEM; if found, override the
1101   * default max_memory setting from jpeg_mem_init.  Note that the
1102   * surrounding application may again override this value.
1103   * If your system doesn't support getenv(), define NO_GETENV to disable
1104   * this feature.
1105   */
1106#ifndef NO_GETENV
1107  { char * memenv;
1108
1109    if ((memenv = getenv("JPEGMEM")) != NULL) {
1110      char ch = 'x';
1111
1112      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1113	if (ch == 'm' || ch == 'M')
1114	  max_to_use *= 1000L;
1115	mem->pub.max_memory_to_use = max_to_use * 1000L;
1116      }
1117    }
1118  }
1119#endif
1120
1121}
1122
1123#endif //_FX_JPEG_TURBO_
1124