1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrAAHairLinePathRenderer.h"
9
10#include "GrBatch.h"
11#include "GrBatchTarget.h"
12#include "GrBatchTest.h"
13#include "GrContext.h"
14#include "GrDefaultGeoProcFactory.h"
15#include "GrDrawTargetCaps.h"
16#include "GrIndexBuffer.h"
17#include "GrPathUtils.h"
18#include "GrPipelineBuilder.h"
19#include "GrProcessor.h"
20#include "GrResourceProvider.h"
21#include "GrVertexBuffer.h"
22#include "SkGeometry.h"
23#include "SkStroke.h"
24#include "SkTemplates.h"
25
26#include "effects/GrBezierEffect.h"
27
28#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
29
30// quadratics are rendered as 5-sided polys in order to bound the
31// AA stroke around the center-curve. See comments in push_quad_index_buffer and
32// bloat_quad. Quadratics and conics share an index buffer
33
34// lines are rendered as:
35//      *______________*
36//      |\ -_______   /|
37//      | \        \ / |
38//      |  *--------*  |
39//      | /  ______/ \ |
40//      */_-__________\*
41// For: 6 vertices and 18 indices (for 6 triangles)
42
43// Each quadratic is rendered as a five sided polygon. This poly bounds
44// the quadratic's bounding triangle but has been expanded so that the
45// 1-pixel wide area around the curve is inside the poly.
46// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
47// that is rendered would look like this:
48//              b0
49//              b
50//
51//     a0              c0
52//      a            c
53//       a1       c1
54// Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
55// specified by these 9 indices:
56static const uint16_t kQuadIdxBufPattern[] = {
57    0, 1, 2,
58    2, 4, 3,
59    1, 4, 2
60};
61
62static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
63static const int kQuadNumVertices = 5;
64static const int kQuadsNumInIdxBuffer = 256;
65GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
66
67static const GrIndexBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
68    GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
69    return resourceProvider->refOrCreateInstancedIndexBuffer(
70        kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
71        gQuadsIndexBufferKey);
72}
73
74
75// Each line segment is rendered as two quads and two triangles.
76// p0 and p1 have alpha = 1 while all other points have alpha = 0.
77// The four external points are offset 1 pixel perpendicular to the
78// line and half a pixel parallel to the line.
79//
80// p4                  p5
81//      p0         p1
82// p2                  p3
83//
84// Each is drawn as six triangles specified by these 18 indices:
85
86static const uint16_t kLineSegIdxBufPattern[] = {
87    0, 1, 3,
88    0, 3, 2,
89    0, 4, 5,
90    0, 5, 1,
91    0, 2, 4,
92    1, 5, 3
93};
94
95static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
96static const int kLineSegNumVertices = 6;
97static const int kLineSegsNumInIdxBuffer = 256;
98
99GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
100
101static const GrIndexBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
102    GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
103    return resourceProvider->refOrCreateInstancedIndexBuffer(
104        kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
105        gLinesIndexBufferKey);
106}
107
108// Takes 178th time of logf on Z600 / VC2010
109static int get_float_exp(float x) {
110    GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
111#ifdef SK_DEBUG
112    static bool tested;
113    if (!tested) {
114        tested = true;
115        SkASSERT(get_float_exp(0.25f) == -2);
116        SkASSERT(get_float_exp(0.3f) == -2);
117        SkASSERT(get_float_exp(0.5f) == -1);
118        SkASSERT(get_float_exp(1.f) == 0);
119        SkASSERT(get_float_exp(2.f) == 1);
120        SkASSERT(get_float_exp(2.5f) == 1);
121        SkASSERT(get_float_exp(8.f) == 3);
122        SkASSERT(get_float_exp(100.f) == 6);
123        SkASSERT(get_float_exp(1000.f) == 9);
124        SkASSERT(get_float_exp(1024.f) == 10);
125        SkASSERT(get_float_exp(3000000.f) == 21);
126    }
127#endif
128    const int* iptr = (const int*)&x;
129    return (((*iptr) & 0x7f800000) >> 23) - 127;
130}
131
132// Uses the max curvature function for quads to estimate
133// where to chop the conic. If the max curvature is not
134// found along the curve segment it will return 1 and
135// dst[0] is the original conic. If it returns 2 the dst[0]
136// and dst[1] are the two new conics.
137static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
138    SkScalar t = SkFindQuadMaxCurvature(src);
139    if (t == 0) {
140        if (dst) {
141            dst[0].set(src, weight);
142        }
143        return 1;
144    } else {
145        if (dst) {
146            SkConic conic;
147            conic.set(src, weight);
148            conic.chopAt(t, dst);
149        }
150        return 2;
151    }
152}
153
154// Calls split_conic on the entire conic and then once more on each subsection.
155// Most cases will result in either 1 conic (chop point is not within t range)
156// or 3 points (split once and then one subsection is split again).
157static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
158    SkConic dstTemp[2];
159    int conicCnt = split_conic(src, dstTemp, weight);
160    if (2 == conicCnt) {
161        int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
162        conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
163    } else {
164        dst[0] = dstTemp[0];
165    }
166    return conicCnt;
167}
168
169// returns 0 if quad/conic is degen or close to it
170// in this case approx the path with lines
171// otherwise returns 1
172static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
173    static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
174    static const SkScalar gDegenerateToLineTolSqd =
175        SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
176
177    if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
178        p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
179        return 1;
180    }
181
182    *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
183    if (*dsqd < gDegenerateToLineTolSqd) {
184        return 1;
185    }
186
187    if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
188        return 1;
189    }
190    return 0;
191}
192
193static int is_degen_quad_or_conic(const SkPoint p[3]) {
194    SkScalar dsqd;
195    return is_degen_quad_or_conic(p, &dsqd);
196}
197
198// we subdivide the quads to avoid huge overfill
199// if it returns -1 then should be drawn as lines
200static int num_quad_subdivs(const SkPoint p[3]) {
201    SkScalar dsqd;
202    if (is_degen_quad_or_conic(p, &dsqd)) {
203        return -1;
204    }
205
206    // tolerance of triangle height in pixels
207    // tuned on windows  Quadro FX 380 / Z600
208    // trade off of fill vs cpu time on verts
209    // maybe different when do this using gpu (geo or tess shaders)
210    static const SkScalar gSubdivTol = 175 * SK_Scalar1;
211
212    if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
213        return 0;
214    } else {
215        static const int kMaxSub = 4;
216        // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
217        // = log4(d*d/tol*tol)/2
218        // = log2(d*d/tol*tol)
219
220        // +1 since we're ignoring the mantissa contribution.
221        int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
222        log = SkTMin(SkTMax(0, log), kMaxSub);
223        return log;
224    }
225}
226
227/**
228 * Generates the lines and quads to be rendered. Lines are always recorded in
229 * device space. We will do a device space bloat to account for the 1pixel
230 * thickness.
231 * Quads are recorded in device space unless m contains
232 * perspective, then in they are in src space. We do this because we will
233 * subdivide large quads to reduce over-fill. This subdivision has to be
234 * performed before applying the perspective matrix.
235 */
236static int gather_lines_and_quads(const SkPath& path,
237                                  const SkMatrix& m,
238                                  const SkIRect& devClipBounds,
239                                  GrAAHairLinePathRenderer::PtArray* lines,
240                                  GrAAHairLinePathRenderer::PtArray* quads,
241                                  GrAAHairLinePathRenderer::PtArray* conics,
242                                  GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
243                                  GrAAHairLinePathRenderer::FloatArray* conicWeights) {
244    SkPath::Iter iter(path, false);
245
246    int totalQuadCount = 0;
247    SkRect bounds;
248    SkIRect ibounds;
249
250    bool persp = m.hasPerspective();
251
252    for (;;) {
253        SkPoint pathPts[4];
254        SkPoint devPts[4];
255        SkPath::Verb verb = iter.next(pathPts);
256        switch (verb) {
257            case SkPath::kConic_Verb: {
258                SkConic dst[4];
259                // We chop the conics to create tighter clipping to hide error
260                // that appears near max curvature of very thin conics. Thin
261                // hyperbolas with high weight still show error.
262                int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
263                for (int i = 0; i < conicCnt; ++i) {
264                    SkPoint* chopPnts = dst[i].fPts;
265                    m.mapPoints(devPts, chopPnts, 3);
266                    bounds.setBounds(devPts, 3);
267                    bounds.outset(SK_Scalar1, SK_Scalar1);
268                    bounds.roundOut(&ibounds);
269                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
270                        if (is_degen_quad_or_conic(devPts)) {
271                            SkPoint* pts = lines->push_back_n(4);
272                            pts[0] = devPts[0];
273                            pts[1] = devPts[1];
274                            pts[2] = devPts[1];
275                            pts[3] = devPts[2];
276                        } else {
277                            // when in perspective keep conics in src space
278                            SkPoint* cPts = persp ? chopPnts : devPts;
279                            SkPoint* pts = conics->push_back_n(3);
280                            pts[0] = cPts[0];
281                            pts[1] = cPts[1];
282                            pts[2] = cPts[2];
283                            conicWeights->push_back() = dst[i].fW;
284                        }
285                    }
286                }
287                break;
288            }
289            case SkPath::kMove_Verb:
290                break;
291            case SkPath::kLine_Verb:
292                m.mapPoints(devPts, pathPts, 2);
293                bounds.setBounds(devPts, 2);
294                bounds.outset(SK_Scalar1, SK_Scalar1);
295                bounds.roundOut(&ibounds);
296                if (SkIRect::Intersects(devClipBounds, ibounds)) {
297                    SkPoint* pts = lines->push_back_n(2);
298                    pts[0] = devPts[0];
299                    pts[1] = devPts[1];
300                }
301                break;
302            case SkPath::kQuad_Verb: {
303                SkPoint choppedPts[5];
304                // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
305                // When it is degenerate it allows the approximation with lines to work since the
306                // chop point (if there is one) will be at the parabola's vertex. In the nearly
307                // degenerate the QuadUVMatrix computed for the points is almost singular which
308                // can cause rendering artifacts.
309                int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
310                for (int i = 0; i < n; ++i) {
311                    SkPoint* quadPts = choppedPts + i * 2;
312                    m.mapPoints(devPts, quadPts, 3);
313                    bounds.setBounds(devPts, 3);
314                    bounds.outset(SK_Scalar1, SK_Scalar1);
315                    bounds.roundOut(&ibounds);
316
317                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
318                        int subdiv = num_quad_subdivs(devPts);
319                        SkASSERT(subdiv >= -1);
320                        if (-1 == subdiv) {
321                            SkPoint* pts = lines->push_back_n(4);
322                            pts[0] = devPts[0];
323                            pts[1] = devPts[1];
324                            pts[2] = devPts[1];
325                            pts[3] = devPts[2];
326                        } else {
327                            // when in perspective keep quads in src space
328                            SkPoint* qPts = persp ? quadPts : devPts;
329                            SkPoint* pts = quads->push_back_n(3);
330                            pts[0] = qPts[0];
331                            pts[1] = qPts[1];
332                            pts[2] = qPts[2];
333                            quadSubdivCnts->push_back() = subdiv;
334                            totalQuadCount += 1 << subdiv;
335                        }
336                    }
337                }
338                break;
339            }
340            case SkPath::kCubic_Verb:
341                m.mapPoints(devPts, pathPts, 4);
342                bounds.setBounds(devPts, 4);
343                bounds.outset(SK_Scalar1, SK_Scalar1);
344                bounds.roundOut(&ibounds);
345                if (SkIRect::Intersects(devClipBounds, ibounds)) {
346                    PREALLOC_PTARRAY(32) q;
347                    // we don't need a direction if we aren't constraining the subdivision
348                    static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
349                    // We convert cubics to quadratics (for now).
350                    // In perspective have to do conversion in src space.
351                    if (persp) {
352                        SkScalar tolScale =
353                            GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
354                                                             path.getBounds());
355                        GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
356                    } else {
357                        GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
358                    }
359                    for (int i = 0; i < q.count(); i += 3) {
360                        SkPoint* qInDevSpace;
361                        // bounds has to be calculated in device space, but q is
362                        // in src space when there is perspective.
363                        if (persp) {
364                            m.mapPoints(devPts, &q[i], 3);
365                            bounds.setBounds(devPts, 3);
366                            qInDevSpace = devPts;
367                        } else {
368                            bounds.setBounds(&q[i], 3);
369                            qInDevSpace = &q[i];
370                        }
371                        bounds.outset(SK_Scalar1, SK_Scalar1);
372                        bounds.roundOut(&ibounds);
373                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
374                            int subdiv = num_quad_subdivs(qInDevSpace);
375                            SkASSERT(subdiv >= -1);
376                            if (-1 == subdiv) {
377                                SkPoint* pts = lines->push_back_n(4);
378                                // lines should always be in device coords
379                                pts[0] = qInDevSpace[0];
380                                pts[1] = qInDevSpace[1];
381                                pts[2] = qInDevSpace[1];
382                                pts[3] = qInDevSpace[2];
383                            } else {
384                                SkPoint* pts = quads->push_back_n(3);
385                                // q is already in src space when there is no
386                                // perspective and dev coords otherwise.
387                                pts[0] = q[0 + i];
388                                pts[1] = q[1 + i];
389                                pts[2] = q[2 + i];
390                                quadSubdivCnts->push_back() = subdiv;
391                                totalQuadCount += 1 << subdiv;
392                            }
393                        }
394                    }
395                }
396                break;
397            case SkPath::kClose_Verb:
398                break;
399            case SkPath::kDone_Verb:
400                return totalQuadCount;
401        }
402    }
403}
404
405struct LineVertex {
406    SkPoint fPos;
407    float fCoverage;
408};
409
410struct BezierVertex {
411    SkPoint fPos;
412    union {
413        struct {
414            SkScalar fK;
415            SkScalar fL;
416            SkScalar fM;
417        } fConic;
418        SkVector   fQuadCoord;
419        struct {
420            SkScalar fBogus[4];
421        };
422    };
423};
424
425GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
426
427static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
428                            const SkPoint& ptB, const SkVector& normB,
429                            SkPoint* result) {
430
431    SkScalar lineAW = -normA.dot(ptA);
432    SkScalar lineBW = -normB.dot(ptB);
433
434    SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
435        SkScalarMul(normA.fY, normB.fX);
436    wInv = SkScalarInvert(wInv);
437
438    result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
439    result->fX = SkScalarMul(result->fX, wInv);
440
441    result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
442    result->fY = SkScalarMul(result->fY, wInv);
443}
444
445static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
446    // this should be in the src space, not dev coords, when we have perspective
447    GrPathUtils::QuadUVMatrix DevToUV(qpts);
448    DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
449}
450
451static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
452                       const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
453    SkASSERT(!toDevice == !toSrc);
454    // original quad is specified by tri a,b,c
455    SkPoint a = qpts[0];
456    SkPoint b = qpts[1];
457    SkPoint c = qpts[2];
458
459    if (toDevice) {
460        toDevice->mapPoints(&a, 1);
461        toDevice->mapPoints(&b, 1);
462        toDevice->mapPoints(&c, 1);
463    }
464    // make a new poly where we replace a and c by a 1-pixel wide edges orthog
465    // to edges ab and bc:
466    //
467    //   before       |        after
468    //                |              b0
469    //         b      |
470    //                |
471    //                |     a0            c0
472    // a         c    |        a1       c1
473    //
474    // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
475    // respectively.
476    BezierVertex& a0 = verts[0];
477    BezierVertex& a1 = verts[1];
478    BezierVertex& b0 = verts[2];
479    BezierVertex& c0 = verts[3];
480    BezierVertex& c1 = verts[4];
481
482    SkVector ab = b;
483    ab -= a;
484    SkVector ac = c;
485    ac -= a;
486    SkVector cb = b;
487    cb -= c;
488
489    // We should have already handled degenerates
490    SkASSERT(ab.length() > 0 && cb.length() > 0);
491
492    ab.normalize();
493    SkVector abN;
494    abN.setOrthog(ab, SkVector::kLeft_Side);
495    if (abN.dot(ac) > 0) {
496        abN.negate();
497    }
498
499    cb.normalize();
500    SkVector cbN;
501    cbN.setOrthog(cb, SkVector::kLeft_Side);
502    if (cbN.dot(ac) < 0) {
503        cbN.negate();
504    }
505
506    a0.fPos = a;
507    a0.fPos += abN;
508    a1.fPos = a;
509    a1.fPos -= abN;
510
511    c0.fPos = c;
512    c0.fPos += cbN;
513    c1.fPos = c;
514    c1.fPos -= cbN;
515
516    intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
517
518    if (toSrc) {
519        toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
520    }
521}
522
523// Equations based off of Loop-Blinn Quadratic GPU Rendering
524// Input Parametric:
525// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
526// Output Implicit:
527// f(x, y, w) = f(P) = K^2 - LM
528// K = dot(k, P), L = dot(l, P), M = dot(m, P)
529// k, l, m are calculated in function GrPathUtils::getConicKLM
530static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
531                             const SkScalar weight) {
532    SkScalar klm[9];
533
534    GrPathUtils::getConicKLM(p, weight, klm);
535
536    for (int i = 0; i < kQuadNumVertices; ++i) {
537        const SkPoint pnt = verts[i].fPos;
538        verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
539        verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
540        verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
541    }
542}
543
544static void add_conics(const SkPoint p[3],
545                       const SkScalar weight,
546                       const SkMatrix* toDevice,
547                       const SkMatrix* toSrc,
548                       BezierVertex** vert) {
549    bloat_quad(p, toDevice, toSrc, *vert);
550    set_conic_coeffs(p, *vert, weight);
551    *vert += kQuadNumVertices;
552}
553
554static void add_quads(const SkPoint p[3],
555                      int subdiv,
556                      const SkMatrix* toDevice,
557                      const SkMatrix* toSrc,
558                      BezierVertex** vert) {
559    SkASSERT(subdiv >= 0);
560    if (subdiv) {
561        SkPoint newP[5];
562        SkChopQuadAtHalf(p, newP);
563        add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
564        add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
565    } else {
566        bloat_quad(p, toDevice, toSrc, *vert);
567        set_uv_quad(p, *vert);
568        *vert += kQuadNumVertices;
569    }
570}
571
572static void add_line(const SkPoint p[2],
573                     const SkMatrix* toSrc,
574                     uint8_t coverage,
575                     LineVertex** vert) {
576    const SkPoint& a = p[0];
577    const SkPoint& b = p[1];
578
579    SkVector ortho, vec = b;
580    vec -= a;
581
582    if (vec.setLength(SK_ScalarHalf)) {
583        // Create a vector orthogonal to 'vec' and of unit length
584        ortho.fX = 2.0f * vec.fY;
585        ortho.fY = -2.0f * vec.fX;
586
587        float floatCoverage = GrNormalizeByteToFloat(coverage);
588
589        (*vert)[0].fPos = a;
590        (*vert)[0].fCoverage = floatCoverage;
591        (*vert)[1].fPos = b;
592        (*vert)[1].fCoverage = floatCoverage;
593        (*vert)[2].fPos = a - vec + ortho;
594        (*vert)[2].fCoverage = 0;
595        (*vert)[3].fPos = b + vec + ortho;
596        (*vert)[3].fCoverage = 0;
597        (*vert)[4].fPos = a - vec - ortho;
598        (*vert)[4].fCoverage = 0;
599        (*vert)[5].fPos = b + vec - ortho;
600        (*vert)[5].fCoverage = 0;
601
602        if (toSrc) {
603            toSrc->mapPointsWithStride(&(*vert)->fPos,
604                                       sizeof(LineVertex),
605                                       kLineSegNumVertices);
606        }
607    } else {
608        // just make it degenerate and likely offscreen
609        for (int i = 0; i < kLineSegNumVertices; ++i) {
610            (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
611        }
612    }
613
614    *vert += kLineSegNumVertices;
615}
616
617///////////////////////////////////////////////////////////////////////////////
618
619bool GrAAHairLinePathRenderer::canDrawPath(const GrDrawTarget* target,
620                                           const GrPipelineBuilder* pipelineBuilder,
621                                           const SkMatrix& viewMatrix,
622                                           const SkPath& path,
623                                           const GrStrokeInfo& stroke,
624                                           bool antiAlias) const {
625    if (!antiAlias) {
626        return false;
627    }
628
629    if (!IsStrokeHairlineOrEquivalent(stroke, viewMatrix, NULL)) {
630        return false;
631    }
632
633    if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
634        target->caps()->shaderCaps()->shaderDerivativeSupport()) {
635        return true;
636    }
637    return false;
638}
639
640template <class VertexType>
641bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
642{
643    SkRect tolDevBounds = devBounds;
644    // The bounds ought to be tight, but in perspective the below code runs the verts
645    // through the view matrix to get back to dev coords, which can introduce imprecision.
646    if (viewMatrix.hasPerspective()) {
647        tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
648    } else {
649        // Non-persp matrices cause this path renderer to draw in device space.
650        SkASSERT(viewMatrix.isIdentity());
651    }
652    SkRect actualBounds;
653
654    VertexType* verts = reinterpret_cast<VertexType*>(vertices);
655    bool first = true;
656    for (int i = 0; i < vCount; ++i) {
657        SkPoint pos = verts[i].fPos;
658        // This is a hack to workaround the fact that we move some degenerate segments offscreen.
659        if (SK_ScalarMax == pos.fX) {
660            continue;
661        }
662        viewMatrix.mapPoints(&pos, 1);
663        if (first) {
664            actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
665            first = false;
666        } else {
667            actualBounds.growToInclude(pos.fX, pos.fY);
668        }
669    }
670    if (!first) {
671        return tolDevBounds.contains(actualBounds);
672    }
673
674    return true;
675}
676
677class AAHairlineBatch : public GrBatch {
678public:
679    struct Geometry {
680        GrColor fColor;
681        uint8_t fCoverage;
682        SkMatrix fViewMatrix;
683        SkPath fPath;
684        SkIRect fDevClipBounds;
685    };
686
687    static GrBatch* Create(const Geometry& geometry) {
688        return SkNEW_ARGS(AAHairlineBatch, (geometry));
689    }
690
691    const char* name() const override { return "AAHairlineBatch"; }
692
693    void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
694        // When this is called on a batch, there is only one geometry bundle
695        out->setKnownFourComponents(fGeoData[0].fColor);
696    }
697    void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
698        out->setUnknownSingleComponent();
699    }
700
701    void initBatchTracker(const GrPipelineInfo& init) override {
702        // Handle any color overrides
703        if (init.fColorIgnored) {
704            fGeoData[0].fColor = GrColor_ILLEGAL;
705        } else if (GrColor_ILLEGAL != init.fOverrideColor) {
706            fGeoData[0].fColor = init.fOverrideColor;
707        }
708
709        // setup batch properties
710        fBatch.fColorIgnored = init.fColorIgnored;
711        fBatch.fColor = fGeoData[0].fColor;
712        fBatch.fUsesLocalCoords = init.fUsesLocalCoords;
713        fBatch.fCoverageIgnored = init.fCoverageIgnored;
714        fBatch.fCoverage = fGeoData[0].fCoverage;
715    }
716
717    void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override;
718
719    SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
720
721private:
722    typedef SkTArray<SkPoint, true> PtArray;
723    typedef SkTArray<int, true> IntArray;
724    typedef SkTArray<float, true> FloatArray;
725
726    AAHairlineBatch(const Geometry& geometry) {
727        this->initClassID<AAHairlineBatch>();
728        fGeoData.push_back(geometry);
729
730        // compute bounds
731        fBounds = geometry.fPath.getBounds();
732        geometry.fViewMatrix.mapRect(&fBounds);
733
734        // This is b.c. hairlines are notionally infinitely thin so without expansion
735        // two overlapping lines could be reordered even though they hit the same pixels.
736        fBounds.outset(0.5f, 0.5f);
737    }
738
739    bool onCombineIfPossible(GrBatch* t) override {
740        AAHairlineBatch* that = t->cast<AAHairlineBatch>();
741
742        if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
743            return false;
744        }
745
746        // We go to identity if we don't have perspective
747        if (this->viewMatrix().hasPerspective() &&
748            !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
749            return false;
750        }
751
752        // TODO we can actually batch hairlines if they are the same color in a kind of bulk method
753        // but we haven't implemented this yet
754        // TODO investigate going to vertex color and coverage?
755        if (this->coverage() != that->coverage()) {
756            return false;
757        }
758
759        if (this->color() != that->color()) {
760            return false;
761        }
762
763        SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
764        if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
765            return false;
766        }
767
768        fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
769        this->joinBounds(that->bounds());
770        return true;
771    }
772
773    GrColor color() const { return fBatch.fColor; }
774    uint8_t coverage() const { return fBatch.fCoverage; }
775    bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
776    const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
777
778    struct BatchTracker {
779        GrColor fColor;
780        uint8_t fCoverage;
781        SkRect fDevBounds;
782        bool fUsesLocalCoords;
783        bool fColorIgnored;
784        bool fCoverageIgnored;
785    };
786
787    BatchTracker fBatch;
788    SkSTArray<1, Geometry, true> fGeoData;
789};
790
791void AAHairlineBatch::generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) {
792    // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
793    SkMatrix invert;
794    if (!this->viewMatrix().invert(&invert)) {
795        return;
796    }
797
798    // we will transform to identity space if the viewmatrix does not have perspective
799    bool hasPerspective = this->viewMatrix().hasPerspective();
800    const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
801    const SkMatrix* geometryProcessorLocalM = &invert;
802    const SkMatrix* toDevice = NULL;
803    const SkMatrix* toSrc = NULL;
804    if (hasPerspective) {
805        geometryProcessorViewM = &this->viewMatrix();
806        geometryProcessorLocalM = &SkMatrix::I();
807        toDevice = &this->viewMatrix();
808        toSrc = &invert;
809    }
810
811    // Setup geometry processors for worst case
812    uint32_t gpFlags = GrDefaultGeoProcFactory::kPosition_GPType |
813                       GrDefaultGeoProcFactory::kCoverage_GPType;
814
815    SkAutoTUnref<const GrGeometryProcessor> lineGP(
816            GrDefaultGeoProcFactory::Create(gpFlags,
817                                            this->color(),
818                                            *geometryProcessorViewM,
819                                            *geometryProcessorLocalM,
820                                            this->coverage()));
821
822    SkAutoTUnref<const GrGeometryProcessor> quadGP(
823            GrQuadEffect::Create(this->color(),
824                                 *geometryProcessorViewM,
825                                 kHairlineAA_GrProcessorEdgeType,
826                                 batchTarget->caps(),
827                                 *geometryProcessorLocalM,
828                                 this->coverage()));
829
830    SkAutoTUnref<const GrGeometryProcessor> conicGP(
831            GrConicEffect::Create(this->color(),
832                                  *geometryProcessorViewM,
833                                  kHairlineAA_GrProcessorEdgeType,
834                                  batchTarget->caps(),
835                                  *geometryProcessorLocalM,
836                                  this->coverage()));
837
838    // This is hand inlined for maximum performance.
839    PREALLOC_PTARRAY(128) lines;
840    PREALLOC_PTARRAY(128) quads;
841    PREALLOC_PTARRAY(128) conics;
842    IntArray qSubdivs;
843    FloatArray cWeights;
844    int quadCount = 0;
845
846    int instanceCount = fGeoData.count();
847    for (int i = 0; i < instanceCount; i++) {
848        const Geometry& args = fGeoData[i];
849        quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
850                                            &lines, &quads, &conics, &qSubdivs, &cWeights);
851    }
852
853    int lineCount = lines.count() / 2;
854    int conicCount = conics.count() / 3;
855
856    // do lines first
857    if (lineCount) {
858        SkAutoTUnref<const GrIndexBuffer> linesIndexBuffer(
859            ref_lines_index_buffer(batchTarget->resourceProvider()));
860        batchTarget->initDraw(lineGP, pipeline);
861
862        // TODO remove this when batch is everywhere
863        GrPipelineInfo init;
864        init.fColorIgnored = fBatch.fColorIgnored;
865        init.fOverrideColor = GrColor_ILLEGAL;
866        init.fCoverageIgnored = fBatch.fCoverageIgnored;
867        init.fUsesLocalCoords = this->usesLocalCoords();
868        lineGP->initBatchTracker(batchTarget->currentBatchTracker(), init);
869
870        const GrVertexBuffer* vertexBuffer;
871        int firstVertex;
872
873        size_t vertexStride = lineGP->getVertexStride();
874        int vertexCount = kLineSegNumVertices * lineCount;
875        LineVertex* verts = reinterpret_cast<LineVertex*>(
876            batchTarget->makeVertSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
877
878        if (!verts|| !linesIndexBuffer) {
879            SkDebugf("Could not allocate vertices\n");
880            return;
881        }
882
883        SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
884
885        for (int i = 0; i < lineCount; ++i) {
886            add_line(&lines[2*i], toSrc, this->coverage(), &verts);
887        }
888
889        {
890            GrVertices vertices;
891            vertices.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer,
892                                   firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
893                                   kLineSegsNumInIdxBuffer);
894            batchTarget->draw(vertices);
895        }
896    }
897
898    if (quadCount || conicCount) {
899        const GrVertexBuffer* vertexBuffer;
900        int firstVertex;
901
902        SkAutoTUnref<const GrIndexBuffer> quadsIndexBuffer(
903            ref_quads_index_buffer(batchTarget->resourceProvider()));
904
905        size_t vertexStride = sizeof(BezierVertex);
906        int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
907        void *vertices = batchTarget->makeVertSpace(vertexStride, vertexCount,
908                                                    &vertexBuffer, &firstVertex);
909
910        if (!vertices || !quadsIndexBuffer) {
911            SkDebugf("Could not allocate vertices\n");
912            return;
913        }
914
915        // Setup vertices
916        BezierVertex* verts = reinterpret_cast<BezierVertex*>(vertices);
917
918        int unsubdivQuadCnt = quads.count() / 3;
919        for (int i = 0; i < unsubdivQuadCnt; ++i) {
920            SkASSERT(qSubdivs[i] >= 0);
921            add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts);
922        }
923
924        // Start Conics
925        for (int i = 0; i < conicCount; ++i) {
926            add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts);
927        }
928
929        if (quadCount > 0) {
930            batchTarget->initDraw(quadGP, pipeline);
931
932            // TODO remove this when batch is everywhere
933            GrPipelineInfo init;
934            init.fColorIgnored = fBatch.fColorIgnored;
935            init.fOverrideColor = GrColor_ILLEGAL;
936            init.fCoverageIgnored = fBatch.fCoverageIgnored;
937            init.fUsesLocalCoords = this->usesLocalCoords();
938            quadGP->initBatchTracker(batchTarget->currentBatchTracker(), init);
939
940            {
941                GrVertices verts;
942                verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer,
943                                    firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
944                                    kQuadsNumInIdxBuffer);
945                batchTarget->draw(verts);
946                firstVertex += quadCount * kQuadNumVertices;
947           }
948        }
949
950        if (conicCount > 0) {
951            batchTarget->initDraw(conicGP, pipeline);
952
953            // TODO remove this when batch is everywhere
954            GrPipelineInfo init;
955            init.fColorIgnored = fBatch.fColorIgnored;
956            init.fOverrideColor = GrColor_ILLEGAL;
957            init.fCoverageIgnored = fBatch.fCoverageIgnored;
958            init.fUsesLocalCoords = this->usesLocalCoords();
959            conicGP->initBatchTracker(batchTarget->currentBatchTracker(), init);
960
961            {
962                GrVertices verts;
963                verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer,
964                                    firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
965                                    kQuadsNumInIdxBuffer);
966                batchTarget->draw(verts);
967            }
968        }
969    }
970}
971
972static GrBatch* create_hairline_batch(GrColor color,
973                                      const SkMatrix& viewMatrix,
974                                      const SkPath& path,
975                                      const GrStrokeInfo& stroke,
976                                      const SkIRect& devClipBounds) {
977    SkScalar hairlineCoverage;
978    uint8_t newCoverage = 0xff;
979    if (GrPathRenderer::IsStrokeHairlineOrEquivalent(stroke, viewMatrix, &hairlineCoverage)) {
980        newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
981    }
982
983    AAHairlineBatch::Geometry geometry;
984    geometry.fColor = color;
985    geometry.fCoverage = newCoverage;
986    geometry.fViewMatrix = viewMatrix;
987    geometry.fPath = path;
988    geometry.fDevClipBounds = devClipBounds;
989
990    return AAHairlineBatch::Create(geometry);
991}
992
993bool GrAAHairLinePathRenderer::onDrawPath(GrDrawTarget* target,
994                                          GrPipelineBuilder* pipelineBuilder,
995                                          GrColor color,
996                                          const SkMatrix& viewMatrix,
997                                          const SkPath& path,
998                                          const GrStrokeInfo& stroke,
999                                          bool) {
1000    SkIRect devClipBounds;
1001    pipelineBuilder->clip().getConservativeBounds(pipelineBuilder->getRenderTarget(),
1002                                                  &devClipBounds);
1003
1004    SkAutoTUnref<GrBatch> batch(create_hairline_batch(color, viewMatrix, path, stroke,
1005                                                      devClipBounds));
1006    target->drawBatch(pipelineBuilder, batch);
1007
1008    return true;
1009}
1010
1011///////////////////////////////////////////////////////////////////////////////////////////////////
1012
1013#ifdef GR_TEST_UTILS
1014
1015BATCH_TEST_DEFINE(AAHairlineBatch) {
1016    GrColor color = GrRandomColor(random);
1017    SkMatrix viewMatrix = GrTest::TestMatrix(random);
1018    GrStrokeInfo stroke(SkStrokeRec::kHairline_InitStyle);
1019    SkPath path = GrTest::TestPath(random);
1020    SkIRect devClipBounds;
1021    devClipBounds.setEmpty();
1022    return create_hairline_batch(color, viewMatrix, path, stroke, devClipBounds);
1023}
1024
1025#endif
1026