1// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/base/platform/time.h"
6
7#if V8_OS_POSIX
8#include <fcntl.h>  // for O_RDONLY
9#include <sys/time.h>
10#include <unistd.h>
11#endif
12#if V8_OS_MACOSX
13#include <mach/mach_time.h>
14#endif
15
16#include <string.h>
17
18#if V8_OS_WIN
19#include "src/base/lazy-instance.h"
20#include "src/base/win32-headers.h"
21#endif
22#include "src/base/cpu.h"
23#include "src/base/logging.h"
24#include "src/base/platform/platform.h"
25
26namespace v8 {
27namespace base {
28
29TimeDelta TimeDelta::FromDays(int days) {
30  return TimeDelta(days * Time::kMicrosecondsPerDay);
31}
32
33
34TimeDelta TimeDelta::FromHours(int hours) {
35  return TimeDelta(hours * Time::kMicrosecondsPerHour);
36}
37
38
39TimeDelta TimeDelta::FromMinutes(int minutes) {
40  return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
41}
42
43
44TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
45  return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
46}
47
48
49TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
50  return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
51}
52
53
54TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
55  return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
56}
57
58
59int TimeDelta::InDays() const {
60  return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
61}
62
63
64int TimeDelta::InHours() const {
65  return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
66}
67
68
69int TimeDelta::InMinutes() const {
70  return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
71}
72
73
74double TimeDelta::InSecondsF() const {
75  return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
76}
77
78
79int64_t TimeDelta::InSeconds() const {
80  return delta_ / Time::kMicrosecondsPerSecond;
81}
82
83
84double TimeDelta::InMillisecondsF() const {
85  return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
86}
87
88
89int64_t TimeDelta::InMilliseconds() const {
90  return delta_ / Time::kMicrosecondsPerMillisecond;
91}
92
93
94int64_t TimeDelta::InNanoseconds() const {
95  return delta_ * Time::kNanosecondsPerMicrosecond;
96}
97
98
99#if V8_OS_MACOSX
100
101TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) {
102  DCHECK_GE(ts.tv_nsec, 0);
103  DCHECK_LT(ts.tv_nsec,
104            static_cast<long>(Time::kNanosecondsPerSecond));  // NOLINT
105  return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
106                   ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
107}
108
109
110struct mach_timespec TimeDelta::ToMachTimespec() const {
111  struct mach_timespec ts;
112  DCHECK(delta_ >= 0);
113  ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond;
114  ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
115      Time::kNanosecondsPerMicrosecond;
116  return ts;
117}
118
119#endif  // V8_OS_MACOSX
120
121
122#if V8_OS_POSIX
123
124TimeDelta TimeDelta::FromTimespec(struct timespec ts) {
125  DCHECK_GE(ts.tv_nsec, 0);
126  DCHECK_LT(ts.tv_nsec,
127            static_cast<long>(Time::kNanosecondsPerSecond));  // NOLINT
128  return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
129                   ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
130}
131
132
133struct timespec TimeDelta::ToTimespec() const {
134  struct timespec ts;
135  ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond;
136  ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
137      Time::kNanosecondsPerMicrosecond;
138  return ts;
139}
140
141#endif  // V8_OS_POSIX
142
143
144#if V8_OS_WIN
145
146// We implement time using the high-resolution timers so that we can get
147// timeouts which are smaller than 10-15ms. To avoid any drift, we
148// periodically resync the internal clock to the system clock.
149class Clock FINAL {
150 public:
151  Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {}
152
153  Time Now() {
154    // Time between resampling the un-granular clock for this API (1 minute).
155    const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1);
156
157    LockGuard<Mutex> lock_guard(&mutex_);
158
159    // Determine current time and ticks.
160    TimeTicks ticks = GetSystemTicks();
161    Time time = GetSystemTime();
162
163    // Check if we need to synchronize with the system clock due to a backwards
164    // time change or the amount of time elapsed.
165    TimeDelta elapsed = ticks - initial_ticks_;
166    if (time < initial_time_ || elapsed > kMaxElapsedTime) {
167      initial_ticks_ = ticks;
168      initial_time_ = time;
169      return time;
170    }
171
172    return initial_time_ + elapsed;
173  }
174
175  Time NowFromSystemTime() {
176    LockGuard<Mutex> lock_guard(&mutex_);
177    initial_ticks_ = GetSystemTicks();
178    initial_time_ = GetSystemTime();
179    return initial_time_;
180  }
181
182 private:
183  static TimeTicks GetSystemTicks() {
184    return TimeTicks::Now();
185  }
186
187  static Time GetSystemTime() {
188    FILETIME ft;
189    ::GetSystemTimeAsFileTime(&ft);
190    return Time::FromFiletime(ft);
191  }
192
193  TimeTicks initial_ticks_;
194  Time initial_time_;
195  Mutex mutex_;
196};
197
198
199static LazyStaticInstance<Clock, DefaultConstructTrait<Clock>,
200                          ThreadSafeInitOnceTrait>::type clock =
201    LAZY_STATIC_INSTANCE_INITIALIZER;
202
203
204Time Time::Now() {
205  return clock.Pointer()->Now();
206}
207
208
209Time Time::NowFromSystemTime() {
210  return clock.Pointer()->NowFromSystemTime();
211}
212
213
214// Time between windows epoch and standard epoch.
215static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
216
217
218Time Time::FromFiletime(FILETIME ft) {
219  if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
220    return Time();
221  }
222  if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
223      ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
224    return Max();
225  }
226  int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
227                (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10;
228  return Time(us - kTimeToEpochInMicroseconds);
229}
230
231
232FILETIME Time::ToFiletime() const {
233  DCHECK(us_ >= 0);
234  FILETIME ft;
235  if (IsNull()) {
236    ft.dwLowDateTime = 0;
237    ft.dwHighDateTime = 0;
238    return ft;
239  }
240  if (IsMax()) {
241    ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
242    ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
243    return ft;
244  }
245  uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
246  ft.dwLowDateTime = static_cast<DWORD>(us);
247  ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
248  return ft;
249}
250
251#elif V8_OS_POSIX
252
253Time Time::Now() {
254  struct timeval tv;
255  int result = gettimeofday(&tv, NULL);
256  DCHECK_EQ(0, result);
257  USE(result);
258  return FromTimeval(tv);
259}
260
261
262Time Time::NowFromSystemTime() {
263  return Now();
264}
265
266
267Time Time::FromTimespec(struct timespec ts) {
268  DCHECK(ts.tv_nsec >= 0);
269  DCHECK(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond));  // NOLINT
270  if (ts.tv_nsec == 0 && ts.tv_sec == 0) {
271    return Time();
272  }
273  if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) &&  // NOLINT
274      ts.tv_sec == std::numeric_limits<time_t>::max()) {
275    return Max();
276  }
277  return Time(ts.tv_sec * kMicrosecondsPerSecond +
278              ts.tv_nsec / kNanosecondsPerMicrosecond);
279}
280
281
282struct timespec Time::ToTimespec() const {
283  struct timespec ts;
284  if (IsNull()) {
285    ts.tv_sec = 0;
286    ts.tv_nsec = 0;
287    return ts;
288  }
289  if (IsMax()) {
290    ts.tv_sec = std::numeric_limits<time_t>::max();
291    ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1);  // NOLINT
292    return ts;
293  }
294  ts.tv_sec = us_ / kMicrosecondsPerSecond;
295  ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond;
296  return ts;
297}
298
299
300Time Time::FromTimeval(struct timeval tv) {
301  DCHECK(tv.tv_usec >= 0);
302  DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
303  if (tv.tv_usec == 0 && tv.tv_sec == 0) {
304    return Time();
305  }
306  if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
307      tv.tv_sec == std::numeric_limits<time_t>::max()) {
308    return Max();
309  }
310  return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
311}
312
313
314struct timeval Time::ToTimeval() const {
315  struct timeval tv;
316  if (IsNull()) {
317    tv.tv_sec = 0;
318    tv.tv_usec = 0;
319    return tv;
320  }
321  if (IsMax()) {
322    tv.tv_sec = std::numeric_limits<time_t>::max();
323    tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
324    return tv;
325  }
326  tv.tv_sec = us_ / kMicrosecondsPerSecond;
327  tv.tv_usec = us_ % kMicrosecondsPerSecond;
328  return tv;
329}
330
331#endif  // V8_OS_WIN
332
333
334Time Time::FromJsTime(double ms_since_epoch) {
335  // The epoch is a valid time, so this constructor doesn't interpret
336  // 0 as the null time.
337  if (ms_since_epoch == std::numeric_limits<double>::max()) {
338    return Max();
339  }
340  return Time(
341      static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
342}
343
344
345double Time::ToJsTime() const {
346  if (IsNull()) {
347    // Preserve 0 so the invalid result doesn't depend on the platform.
348    return 0;
349  }
350  if (IsMax()) {
351    // Preserve max without offset to prevent overflow.
352    return std::numeric_limits<double>::max();
353  }
354  return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
355}
356
357
358#if V8_OS_WIN
359
360class TickClock {
361 public:
362  virtual ~TickClock() {}
363  virtual int64_t Now() = 0;
364  virtual bool IsHighResolution() = 0;
365};
366
367
368// Overview of time counters:
369// (1) CPU cycle counter. (Retrieved via RDTSC)
370// The CPU counter provides the highest resolution time stamp and is the least
371// expensive to retrieve. However, the CPU counter is unreliable and should not
372// be used in production. Its biggest issue is that it is per processor and it
373// is not synchronized between processors. Also, on some computers, the counters
374// will change frequency due to thermal and power changes, and stop in some
375// states.
376//
377// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
378// resolution (100 nanoseconds) time stamp but is comparatively more expensive
379// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
380// (with some help from ACPI).
381// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
382// in the worst case, it gets the counter from the rollover interrupt on the
383// programmable interrupt timer. In best cases, the HAL may conclude that the
384// RDTSC counter runs at a constant frequency, then it uses that instead. On
385// multiprocessor machines, it will try to verify the values returned from
386// RDTSC on each processor are consistent with each other, and apply a handful
387// of workarounds for known buggy hardware. In other words, QPC is supposed to
388// give consistent result on a multiprocessor computer, but it is unreliable in
389// reality due to bugs in BIOS or HAL on some, especially old computers.
390// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
391// it should be used with caution.
392//
393// (3) System time. The system time provides a low-resolution (typically 10ms
394// to 55 milliseconds) time stamp but is comparatively less expensive to
395// retrieve and more reliable.
396class HighResolutionTickClock FINAL : public TickClock {
397 public:
398  explicit HighResolutionTickClock(int64_t ticks_per_second)
399      : ticks_per_second_(ticks_per_second) {
400    DCHECK_LT(0, ticks_per_second);
401  }
402  virtual ~HighResolutionTickClock() {}
403
404  virtual int64_t Now() OVERRIDE {
405    LARGE_INTEGER now;
406    BOOL result = QueryPerformanceCounter(&now);
407    DCHECK(result);
408    USE(result);
409
410    // Intentionally calculate microseconds in a round about manner to avoid
411    // overflow and precision issues. Think twice before simplifying!
412    int64_t whole_seconds = now.QuadPart / ticks_per_second_;
413    int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
414    int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
415        ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
416
417    // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow()
418    // will never return 0.
419    return ticks + 1;
420  }
421
422  virtual bool IsHighResolution() OVERRIDE {
423    return true;
424  }
425
426 private:
427  int64_t ticks_per_second_;
428};
429
430
431class RolloverProtectedTickClock FINAL : public TickClock {
432 public:
433  // We initialize rollover_ms_ to 1 to ensure that we will never
434  // return 0 from TimeTicks::HighResolutionNow() and TimeTicks::Now() below.
435  RolloverProtectedTickClock() : last_seen_now_(0), rollover_ms_(1) {}
436  virtual ~RolloverProtectedTickClock() {}
437
438  virtual int64_t Now() OVERRIDE {
439    LockGuard<Mutex> lock_guard(&mutex_);
440    // We use timeGetTime() to implement TimeTicks::Now(), which rolls over
441    // every ~49.7 days. We try to track rollover ourselves, which works if
442    // TimeTicks::Now() is called at least every 49 days.
443    // Note that we do not use GetTickCount() here, since timeGetTime() gives
444    // more predictable delta values, as described here:
445    // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
446    // timeGetTime() provides 1ms granularity when combined with
447    // timeBeginPeriod(). If the host application for V8 wants fast timers, it
448    // can use timeBeginPeriod() to increase the resolution.
449    DWORD now = timeGetTime();
450    if (now < last_seen_now_) {
451      rollover_ms_ += V8_INT64_C(0x100000000);  // ~49.7 days.
452    }
453    last_seen_now_ = now;
454    return (now + rollover_ms_) * Time::kMicrosecondsPerMillisecond;
455  }
456
457  virtual bool IsHighResolution() OVERRIDE {
458    return false;
459  }
460
461 private:
462  Mutex mutex_;
463  DWORD last_seen_now_;
464  int64_t rollover_ms_;
465};
466
467
468static LazyStaticInstance<RolloverProtectedTickClock,
469                          DefaultConstructTrait<RolloverProtectedTickClock>,
470                          ThreadSafeInitOnceTrait>::type tick_clock =
471    LAZY_STATIC_INSTANCE_INITIALIZER;
472
473
474struct CreateHighResTickClockTrait {
475  static TickClock* Create() {
476    // Check if the installed hardware supports a high-resolution performance
477    // counter, and if not fallback to the low-resolution tick clock.
478    LARGE_INTEGER ticks_per_second;
479    if (!QueryPerformanceFrequency(&ticks_per_second)) {
480      return tick_clock.Pointer();
481    }
482
483    // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
484    // is unreliable, fallback to the low-resolution tick clock.
485    CPU cpu;
486    if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
487      return tick_clock.Pointer();
488    }
489
490    return new HighResolutionTickClock(ticks_per_second.QuadPart);
491  }
492};
493
494
495static LazyDynamicInstance<TickClock, CreateHighResTickClockTrait,
496                           ThreadSafeInitOnceTrait>::type high_res_tick_clock =
497    LAZY_DYNAMIC_INSTANCE_INITIALIZER;
498
499
500TimeTicks TimeTicks::Now() {
501  // Make sure we never return 0 here.
502  TimeTicks ticks(tick_clock.Pointer()->Now());
503  DCHECK(!ticks.IsNull());
504  return ticks;
505}
506
507
508TimeTicks TimeTicks::HighResolutionNow() {
509  // Make sure we never return 0 here.
510  TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
511  DCHECK(!ticks.IsNull());
512  return ticks;
513}
514
515
516// static
517bool TimeTicks::IsHighResolutionClockWorking() {
518  return high_res_tick_clock.Pointer()->IsHighResolution();
519}
520
521
522// static
523TimeTicks TimeTicks::KernelTimestampNow() { return TimeTicks(0); }
524
525
526// static
527bool TimeTicks::KernelTimestampAvailable() { return false; }
528
529#else  // V8_OS_WIN
530
531TimeTicks TimeTicks::Now() {
532  return HighResolutionNow();
533}
534
535
536TimeTicks TimeTicks::HighResolutionNow() {
537  int64_t ticks;
538#if V8_OS_MACOSX
539  static struct mach_timebase_info info;
540  if (info.denom == 0) {
541    kern_return_t result = mach_timebase_info(&info);
542    DCHECK_EQ(KERN_SUCCESS, result);
543    USE(result);
544  }
545  ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
546           info.numer / info.denom);
547#elif V8_OS_SOLARIS
548  ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
549#elif V8_LIBRT_NOT_AVAILABLE
550  // TODO(bmeurer): This is a temporary hack to support cross-compiling
551  // Chrome for Android in AOSP. Remove this once AOSP is fixed, also
552  // cleanup the tools/gyp/v8.gyp file.
553  struct timeval tv;
554  int result = gettimeofday(&tv, NULL);
555  DCHECK_EQ(0, result);
556  USE(result);
557  ticks = (tv.tv_sec * Time::kMicrosecondsPerSecond + tv.tv_usec);
558#elif V8_OS_POSIX
559  struct timespec ts;
560  int result = clock_gettime(CLOCK_MONOTONIC, &ts);
561  DCHECK_EQ(0, result);
562  USE(result);
563  ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
564           ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
565#endif  // V8_OS_MACOSX
566  // Make sure we never return 0 here.
567  return TimeTicks(ticks + 1);
568}
569
570
571// static
572bool TimeTicks::IsHighResolutionClockWorking() {
573  return true;
574}
575
576
577#if V8_OS_LINUX && !V8_LIBRT_NOT_AVAILABLE
578
579class KernelTimestampClock {
580 public:
581  KernelTimestampClock() : clock_fd_(-1), clock_id_(kClockInvalid) {
582    clock_fd_ = open(kTraceClockDevice, O_RDONLY);
583    if (clock_fd_ == -1) {
584      return;
585    }
586    clock_id_ = get_clockid(clock_fd_);
587  }
588
589  virtual ~KernelTimestampClock() {
590    if (clock_fd_ != -1) {
591      close(clock_fd_);
592    }
593  }
594
595  int64_t Now() {
596    if (clock_id_ == kClockInvalid) {
597      return 0;
598    }
599
600    struct timespec ts;
601
602    clock_gettime(clock_id_, &ts);
603    return ((int64_t)ts.tv_sec * kNsecPerSec) + ts.tv_nsec;
604  }
605
606  bool Available() { return clock_id_ != kClockInvalid; }
607
608 private:
609  static const clockid_t kClockInvalid = -1;
610  static const char kTraceClockDevice[];
611  static const uint64_t kNsecPerSec = 1000000000;
612
613  int clock_fd_;
614  clockid_t clock_id_;
615
616  static int get_clockid(int fd) { return ((~(clockid_t)(fd) << 3) | 3); }
617};
618
619
620// Timestamp module name
621const char KernelTimestampClock::kTraceClockDevice[] = "/dev/trace_clock";
622
623#else
624
625class KernelTimestampClock {
626 public:
627  KernelTimestampClock() {}
628
629  int64_t Now() { return 0; }
630  bool Available() { return false; }
631};
632
633#endif  // V8_OS_LINUX && !V8_LIBRT_NOT_AVAILABLE
634
635static LazyStaticInstance<KernelTimestampClock,
636                          DefaultConstructTrait<KernelTimestampClock>,
637                          ThreadSafeInitOnceTrait>::type kernel_tick_clock =
638    LAZY_STATIC_INSTANCE_INITIALIZER;
639
640
641// static
642TimeTicks TimeTicks::KernelTimestampNow() {
643  return TimeTicks(kernel_tick_clock.Pointer()->Now());
644}
645
646
647// static
648bool TimeTicks::KernelTimestampAvailable() {
649  return kernel_tick_clock.Pointer()->Available();
650}
651
652#endif  // V8_OS_WIN
653
654} }  // namespace v8::base
655