1// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#include "src/accessors.h"
8#include "src/codegen.h"
9#include "src/deoptimizer.h"
10#include "src/disasm.h"
11#include "src/full-codegen.h"
12#include "src/global-handles.h"
13#include "src/macro-assembler.h"
14#include "src/prettyprinter.h"
15
16
17namespace v8 {
18namespace internal {
19
20static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
21  return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
22                                  base::OS::CommitPageSize(),
23#if defined(__native_client__)
24  // The Native Client port of V8 uses an interpreter,
25  // so code pages don't need PROT_EXEC.
26                                  NOT_EXECUTABLE,
27#else
28                                  EXECUTABLE,
29#endif
30                                  NULL);
31}
32
33
34DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
35    : allocator_(allocator),
36      deoptimized_frame_info_(NULL),
37      current_(NULL) {
38  for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
39    deopt_entry_code_entries_[i] = -1;
40    deopt_entry_code_[i] = AllocateCodeChunk(allocator);
41  }
42}
43
44
45DeoptimizerData::~DeoptimizerData() {
46  for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
47    allocator_->Free(deopt_entry_code_[i]);
48    deopt_entry_code_[i] = NULL;
49  }
50}
51
52
53void DeoptimizerData::Iterate(ObjectVisitor* v) {
54  if (deoptimized_frame_info_ != NULL) {
55    deoptimized_frame_info_->Iterate(v);
56  }
57}
58
59
60Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
61  if (function_->IsHeapObject()) {
62    // Search all deoptimizing code in the native context of the function.
63    Context* native_context = function_->context()->native_context();
64    Object* element = native_context->DeoptimizedCodeListHead();
65    while (!element->IsUndefined()) {
66      Code* code = Code::cast(element);
67      CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
68      if (code->contains(addr)) return code;
69      element = code->next_code_link();
70    }
71  }
72  return NULL;
73}
74
75
76// We rely on this function not causing a GC.  It is called from generated code
77// without having a real stack frame in place.
78Deoptimizer* Deoptimizer::New(JSFunction* function,
79                              BailoutType type,
80                              unsigned bailout_id,
81                              Address from,
82                              int fp_to_sp_delta,
83                              Isolate* isolate) {
84  Deoptimizer* deoptimizer = new Deoptimizer(isolate,
85                                             function,
86                                             type,
87                                             bailout_id,
88                                             from,
89                                             fp_to_sp_delta,
90                                             NULL);
91  CHECK(isolate->deoptimizer_data()->current_ == NULL);
92  isolate->deoptimizer_data()->current_ = deoptimizer;
93  return deoptimizer;
94}
95
96
97// No larger than 2K on all platforms
98static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
99
100
101size_t Deoptimizer::GetMaxDeoptTableSize() {
102  int entries_size =
103      Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
104  int commit_page_size = static_cast<int>(base::OS::CommitPageSize());
105  int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
106                    commit_page_size) + 1;
107  return static_cast<size_t>(commit_page_size * page_count);
108}
109
110
111Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
112  Deoptimizer* result = isolate->deoptimizer_data()->current_;
113  CHECK_NE(result, NULL);
114  result->DeleteFrameDescriptions();
115  isolate->deoptimizer_data()->current_ = NULL;
116  return result;
117}
118
119
120int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
121  if (jsframe_index == 0) return 0;
122
123  int frame_index = 0;
124  while (jsframe_index >= 0) {
125    FrameDescription* frame = output_[frame_index];
126    if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
127      jsframe_index--;
128    }
129    frame_index++;
130  }
131
132  return frame_index - 1;
133}
134
135
136DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
137    JavaScriptFrame* frame,
138    int jsframe_index,
139    Isolate* isolate) {
140  CHECK(frame->is_optimized());
141  CHECK(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL);
142
143  // Get the function and code from the frame.
144  JSFunction* function = frame->function();
145  Code* code = frame->LookupCode();
146
147  // Locate the deoptimization point in the code. As we are at a call the
148  // return address must be at a place in the code with deoptimization support.
149  SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc());
150  int deoptimization_index = safepoint_entry.deoptimization_index();
151  CHECK_NE(deoptimization_index, Safepoint::kNoDeoptimizationIndex);
152
153  // Always use the actual stack slots when calculating the fp to sp
154  // delta adding two for the function and context.
155  unsigned stack_slots = code->stack_slots();
156  unsigned fp_to_sp_delta = (stack_slots * kPointerSize) +
157      StandardFrameConstants::kFixedFrameSizeFromFp;
158
159  Deoptimizer* deoptimizer = new Deoptimizer(isolate,
160                                             function,
161                                             Deoptimizer::DEBUGGER,
162                                             deoptimization_index,
163                                             frame->pc(),
164                                             fp_to_sp_delta,
165                                             code);
166  Address tos = frame->fp() - fp_to_sp_delta;
167  deoptimizer->FillInputFrame(tos, frame);
168
169  // Calculate the output frames.
170  Deoptimizer::ComputeOutputFrames(deoptimizer);
171
172  // Create the GC safe output frame information and register it for GC
173  // handling.
174  CHECK_LT(jsframe_index, deoptimizer->jsframe_count());
175
176  // Convert JS frame index into frame index.
177  int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index);
178
179  bool has_arguments_adaptor =
180      frame_index > 0 &&
181      deoptimizer->output_[frame_index - 1]->GetFrameType() ==
182      StackFrame::ARGUMENTS_ADAPTOR;
183
184  int construct_offset = has_arguments_adaptor ? 2 : 1;
185  bool has_construct_stub =
186      frame_index >= construct_offset &&
187      deoptimizer->output_[frame_index - construct_offset]->GetFrameType() ==
188      StackFrame::CONSTRUCT;
189
190  DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer,
191                                                        frame_index,
192                                                        has_arguments_adaptor,
193                                                        has_construct_stub);
194  isolate->deoptimizer_data()->deoptimized_frame_info_ = info;
195
196  // Get the "simulated" top and size for the requested frame.
197  FrameDescription* parameters_frame =
198      deoptimizer->output_[
199          has_arguments_adaptor ? (frame_index - 1) : frame_index];
200
201  uint32_t parameters_size = (info->parameters_count() + 1) * kPointerSize;
202  Address parameters_top = reinterpret_cast<Address>(
203      parameters_frame->GetTop() + (parameters_frame->GetFrameSize() -
204                                    parameters_size));
205
206  uint32_t expressions_size = info->expression_count() * kPointerSize;
207  Address expressions_top = reinterpret_cast<Address>(
208      deoptimizer->output_[frame_index]->GetTop());
209
210  // Done with the GC-unsafe frame descriptions. This re-enables allocation.
211  deoptimizer->DeleteFrameDescriptions();
212
213  // Allocate a heap number for the doubles belonging to this frame.
214  deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame(
215      parameters_top, parameters_size, expressions_top, expressions_size, info);
216
217  // Finished using the deoptimizer instance.
218  delete deoptimizer;
219
220  return info;
221}
222
223
224void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
225                                                 Isolate* isolate) {
226  CHECK_EQ(isolate->deoptimizer_data()->deoptimized_frame_info_, info);
227  delete info;
228  isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL;
229}
230
231
232void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
233                                                int count,
234                                                BailoutType type) {
235  TableEntryGenerator generator(masm, type, count);
236  generator.Generate();
237}
238
239
240void Deoptimizer::VisitAllOptimizedFunctionsForContext(
241    Context* context, OptimizedFunctionVisitor* visitor) {
242  DisallowHeapAllocation no_allocation;
243
244  CHECK(context->IsNativeContext());
245
246  visitor->EnterContext(context);
247
248  // Visit the list of optimized functions, removing elements that
249  // no longer refer to optimized code.
250  JSFunction* prev = NULL;
251  Object* element = context->OptimizedFunctionsListHead();
252  while (!element->IsUndefined()) {
253    JSFunction* function = JSFunction::cast(element);
254    Object* next = function->next_function_link();
255    if (function->code()->kind() != Code::OPTIMIZED_FUNCTION ||
256        (visitor->VisitFunction(function),
257         function->code()->kind() != Code::OPTIMIZED_FUNCTION)) {
258      // The function no longer refers to optimized code, or the visitor
259      // changed the code to which it refers to no longer be optimized code.
260      // Remove the function from this list.
261      if (prev != NULL) {
262        prev->set_next_function_link(next);
263      } else {
264        context->SetOptimizedFunctionsListHead(next);
265      }
266      // The visitor should not alter the link directly.
267      CHECK_EQ(function->next_function_link(), next);
268      // Set the next function link to undefined to indicate it is no longer
269      // in the optimized functions list.
270      function->set_next_function_link(context->GetHeap()->undefined_value());
271    } else {
272      // The visitor should not alter the link directly.
273      CHECK_EQ(function->next_function_link(), next);
274      // preserve this element.
275      prev = function;
276    }
277    element = next;
278  }
279
280  visitor->LeaveContext(context);
281}
282
283
284void Deoptimizer::VisitAllOptimizedFunctions(
285    Isolate* isolate,
286    OptimizedFunctionVisitor* visitor) {
287  DisallowHeapAllocation no_allocation;
288
289  // Run through the list of all native contexts.
290  Object* context = isolate->heap()->native_contexts_list();
291  while (!context->IsUndefined()) {
292    VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
293    context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
294  }
295}
296
297
298// Unlink functions referring to code marked for deoptimization, then move
299// marked code from the optimized code list to the deoptimized code list,
300// and patch code for lazy deopt.
301void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
302  DisallowHeapAllocation no_allocation;
303
304  // A "closure" that unlinks optimized code that is going to be
305  // deoptimized from the functions that refer to it.
306  class SelectedCodeUnlinker: public OptimizedFunctionVisitor {
307   public:
308    virtual void EnterContext(Context* context) { }  // Don't care.
309    virtual void LeaveContext(Context* context)  { }  // Don't care.
310    virtual void VisitFunction(JSFunction* function) {
311      Code* code = function->code();
312      if (!code->marked_for_deoptimization()) return;
313
314      // Unlink this function and evict from optimized code map.
315      SharedFunctionInfo* shared = function->shared();
316      function->set_code(shared->code());
317
318      if (FLAG_trace_deopt) {
319        CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
320        PrintF(scope.file(), "[deoptimizer unlinked: ");
321        function->PrintName(scope.file());
322        PrintF(scope.file(),
323               " / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
324      }
325    }
326  };
327
328  // Unlink all functions that refer to marked code.
329  SelectedCodeUnlinker unlinker;
330  VisitAllOptimizedFunctionsForContext(context, &unlinker);
331
332  Isolate* isolate = context->GetHeap()->isolate();
333#ifdef DEBUG
334  Code* topmost_optimized_code = NULL;
335  bool safe_to_deopt_topmost_optimized_code = false;
336  // Make sure all activations of optimized code can deopt at their current PC.
337  // The topmost optimized code has special handling because it cannot be
338  // deoptimized due to weak object dependency.
339  for (StackFrameIterator it(isolate, isolate->thread_local_top());
340       !it.done(); it.Advance()) {
341    StackFrame::Type type = it.frame()->type();
342    if (type == StackFrame::OPTIMIZED) {
343      Code* code = it.frame()->LookupCode();
344      if (FLAG_trace_deopt) {
345        JSFunction* function =
346            static_cast<OptimizedFrame*>(it.frame())->function();
347        CodeTracer::Scope scope(isolate->GetCodeTracer());
348        PrintF(scope.file(), "[deoptimizer found activation of function: ");
349        function->PrintName(scope.file());
350        PrintF(scope.file(),
351               " / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
352      }
353      SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
354      int deopt_index = safepoint.deoptimization_index();
355      // Turbofan deopt is checked when we are patching addresses on stack.
356      bool turbofanned = code->is_turbofanned() && !FLAG_turbo_deoptimization;
357      bool safe_to_deopt =
358          deopt_index != Safepoint::kNoDeoptimizationIndex || turbofanned;
359      CHECK(topmost_optimized_code == NULL || safe_to_deopt || turbofanned);
360      if (topmost_optimized_code == NULL) {
361        topmost_optimized_code = code;
362        safe_to_deopt_topmost_optimized_code = safe_to_deopt;
363      }
364    }
365  }
366#endif
367
368  // Move marked code from the optimized code list to the deoptimized
369  // code list, collecting them into a ZoneList.
370  Zone zone(isolate);
371  ZoneList<Code*> codes(10, &zone);
372
373  // Walk over all optimized code objects in this native context.
374  Code* prev = NULL;
375  Object* element = context->OptimizedCodeListHead();
376  while (!element->IsUndefined()) {
377    Code* code = Code::cast(element);
378    CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
379    Object* next = code->next_code_link();
380
381    if (code->marked_for_deoptimization() &&
382        (!code->is_turbofanned() || FLAG_turbo_deoptimization)) {
383      // Put the code into the list for later patching.
384      codes.Add(code, &zone);
385
386      if (prev != NULL) {
387        // Skip this code in the optimized code list.
388        prev->set_next_code_link(next);
389      } else {
390        // There was no previous node, the next node is the new head.
391        context->SetOptimizedCodeListHead(next);
392      }
393
394      // Move the code to the _deoptimized_ code list.
395      code->set_next_code_link(context->DeoptimizedCodeListHead());
396      context->SetDeoptimizedCodeListHead(code);
397    } else {
398      // Not marked; preserve this element.
399      prev = code;
400    }
401    element = next;
402  }
403
404  // TODO(titzer): we need a handle scope only because of the macro assembler,
405  // which is only used in EnsureCodeForDeoptimizationEntry.
406  HandleScope scope(isolate);
407
408  // Now patch all the codes for deoptimization.
409  for (int i = 0; i < codes.length(); i++) {
410#ifdef DEBUG
411    if (codes[i] == topmost_optimized_code) {
412      DCHECK(safe_to_deopt_topmost_optimized_code);
413    }
414#endif
415    // It is finally time to die, code object.
416
417    // Remove the code from optimized code map.
418    DeoptimizationInputData* deopt_data =
419        DeoptimizationInputData::cast(codes[i]->deoptimization_data());
420    SharedFunctionInfo* shared =
421        SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo());
422    shared->EvictFromOptimizedCodeMap(codes[i], "deoptimized code");
423
424    // Do platform-specific patching to force any activations to lazy deopt.
425    if (!codes[i]->is_turbofanned() || FLAG_turbo_deoptimization) {
426      PatchCodeForDeoptimization(isolate, codes[i]);
427
428      // We might be in the middle of incremental marking with compaction.
429      // Tell collector to treat this code object in a special way and
430      // ignore all slots that might have been recorded on it.
431      isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]);
432    }
433  }
434}
435
436
437void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
438  if (FLAG_trace_deopt) {
439    CodeTracer::Scope scope(isolate->GetCodeTracer());
440    PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
441  }
442  DisallowHeapAllocation no_allocation;
443  // For all contexts, mark all code, then deoptimize.
444  Object* context = isolate->heap()->native_contexts_list();
445  while (!context->IsUndefined()) {
446    Context* native_context = Context::cast(context);
447    MarkAllCodeForContext(native_context);
448    DeoptimizeMarkedCodeForContext(native_context);
449    context = native_context->get(Context::NEXT_CONTEXT_LINK);
450  }
451}
452
453
454void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
455  if (FLAG_trace_deopt) {
456    CodeTracer::Scope scope(isolate->GetCodeTracer());
457    PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
458  }
459  DisallowHeapAllocation no_allocation;
460  // For all contexts, deoptimize code already marked.
461  Object* context = isolate->heap()->native_contexts_list();
462  while (!context->IsUndefined()) {
463    Context* native_context = Context::cast(context);
464    DeoptimizeMarkedCodeForContext(native_context);
465    context = native_context->get(Context::NEXT_CONTEXT_LINK);
466  }
467}
468
469
470void Deoptimizer::DeoptimizeGlobalObject(JSObject* object) {
471  if (FLAG_trace_deopt) {
472    CodeTracer::Scope scope(object->GetHeap()->isolate()->GetCodeTracer());
473    PrintF(scope.file(), "[deoptimize global object @ 0x%08" V8PRIxPTR "]\n",
474        reinterpret_cast<intptr_t>(object));
475  }
476  if (object->IsJSGlobalProxy()) {
477    PrototypeIterator iter(object->GetIsolate(), object);
478    // TODO(verwaest): This CHECK will be hit if the global proxy is detached.
479    CHECK(iter.GetCurrent()->IsJSGlobalObject());
480    Context* native_context =
481        GlobalObject::cast(iter.GetCurrent())->native_context();
482    MarkAllCodeForContext(native_context);
483    DeoptimizeMarkedCodeForContext(native_context);
484  } else if (object->IsGlobalObject()) {
485    Context* native_context = GlobalObject::cast(object)->native_context();
486    MarkAllCodeForContext(native_context);
487    DeoptimizeMarkedCodeForContext(native_context);
488  }
489}
490
491
492void Deoptimizer::MarkAllCodeForContext(Context* context) {
493  Object* element = context->OptimizedCodeListHead();
494  while (!element->IsUndefined()) {
495    Code* code = Code::cast(element);
496    CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
497    code->set_marked_for_deoptimization(true);
498    element = code->next_code_link();
499  }
500}
501
502
503void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
504  Code* code = function->code();
505  if (code->kind() == Code::OPTIMIZED_FUNCTION) {
506    // Mark the code for deoptimization and unlink any functions that also
507    // refer to that code. The code cannot be shared across native contexts,
508    // so we only need to search one.
509    code->set_marked_for_deoptimization(true);
510    DeoptimizeMarkedCodeForContext(function->context()->native_context());
511  }
512}
513
514
515void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
516  deoptimizer->DoComputeOutputFrames();
517}
518
519
520bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type,
521                                  StackFrame::Type frame_type) {
522  switch (deopt_type) {
523    case EAGER:
524    case SOFT:
525    case LAZY:
526    case DEBUGGER:
527      return (frame_type == StackFrame::STUB)
528          ? FLAG_trace_stub_failures
529          : FLAG_trace_deopt;
530  }
531  FATAL("Unsupported deopt type");
532  return false;
533}
534
535
536const char* Deoptimizer::MessageFor(BailoutType type) {
537  switch (type) {
538    case EAGER: return "eager";
539    case SOFT: return "soft";
540    case LAZY: return "lazy";
541    case DEBUGGER: return "debugger";
542  }
543  FATAL("Unsupported deopt type");
544  return NULL;
545}
546
547
548Deoptimizer::Deoptimizer(Isolate* isolate,
549                         JSFunction* function,
550                         BailoutType type,
551                         unsigned bailout_id,
552                         Address from,
553                         int fp_to_sp_delta,
554                         Code* optimized_code)
555    : isolate_(isolate),
556      function_(function),
557      bailout_id_(bailout_id),
558      bailout_type_(type),
559      from_(from),
560      fp_to_sp_delta_(fp_to_sp_delta),
561      has_alignment_padding_(0),
562      input_(NULL),
563      output_count_(0),
564      jsframe_count_(0),
565      output_(NULL),
566      deferred_objects_tagged_values_(0),
567      deferred_objects_double_values_(0),
568      deferred_objects_(0),
569      deferred_heap_numbers_(0),
570      jsframe_functions_(0),
571      jsframe_has_adapted_arguments_(0),
572      materialized_values_(NULL),
573      materialized_objects_(NULL),
574      materialization_value_index_(0),
575      materialization_object_index_(0),
576      trace_scope_(NULL) {
577  // For COMPILED_STUBs called from builtins, the function pointer is a SMI
578  // indicating an internal frame.
579  if (function->IsSmi()) {
580    function = NULL;
581  }
582  DCHECK(from != NULL);
583  if (function != NULL && function->IsOptimized()) {
584    function->shared()->increment_deopt_count();
585    if (bailout_type_ == Deoptimizer::SOFT) {
586      isolate->counters()->soft_deopts_executed()->Increment();
587      // Soft deopts shouldn't count against the overall re-optimization count
588      // that can eventually lead to disabling optimization for a function.
589      int opt_count = function->shared()->opt_count();
590      if (opt_count > 0) opt_count--;
591      function->shared()->set_opt_count(opt_count);
592    }
593  }
594  compiled_code_ = FindOptimizedCode(function, optimized_code);
595
596#if DEBUG
597  DCHECK(compiled_code_ != NULL);
598  if (type == EAGER || type == SOFT || type == LAZY) {
599    DCHECK(compiled_code_->kind() != Code::FUNCTION);
600  }
601#endif
602
603  StackFrame::Type frame_type = function == NULL
604      ? StackFrame::STUB
605      : StackFrame::JAVA_SCRIPT;
606  trace_scope_ = TraceEnabledFor(type, frame_type) ?
607      new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL;
608#ifdef DEBUG
609  CHECK(AllowHeapAllocation::IsAllowed());
610  disallow_heap_allocation_ = new DisallowHeapAllocation();
611#endif  // DEBUG
612  unsigned size = ComputeInputFrameSize();
613  input_ = new(size) FrameDescription(size, function);
614  input_->SetFrameType(frame_type);
615}
616
617
618Code* Deoptimizer::FindOptimizedCode(JSFunction* function,
619                                     Code* optimized_code) {
620  switch (bailout_type_) {
621    case Deoptimizer::SOFT:
622    case Deoptimizer::EAGER:
623    case Deoptimizer::LAZY: {
624      Code* compiled_code = FindDeoptimizingCode(from_);
625      return (compiled_code == NULL)
626          ? static_cast<Code*>(isolate_->FindCodeObject(from_))
627          : compiled_code;
628    }
629    case Deoptimizer::DEBUGGER:
630      DCHECK(optimized_code->contains(from_));
631      return optimized_code;
632  }
633  FATAL("Could not find code for optimized function");
634  return NULL;
635}
636
637
638void Deoptimizer::PrintFunctionName() {
639  if (function_->IsJSFunction()) {
640    function_->PrintName(trace_scope_->file());
641  } else {
642    PrintF(trace_scope_->file(),
643           "%s", Code::Kind2String(compiled_code_->kind()));
644  }
645}
646
647
648Deoptimizer::~Deoptimizer() {
649  DCHECK(input_ == NULL && output_ == NULL);
650  DCHECK(disallow_heap_allocation_ == NULL);
651  delete trace_scope_;
652}
653
654
655void Deoptimizer::DeleteFrameDescriptions() {
656  delete input_;
657  for (int i = 0; i < output_count_; ++i) {
658    if (output_[i] != input_) delete output_[i];
659  }
660  delete[] output_;
661  input_ = NULL;
662  output_ = NULL;
663#ifdef DEBUG
664  CHECK(!AllowHeapAllocation::IsAllowed());
665  CHECK(disallow_heap_allocation_ != NULL);
666  delete disallow_heap_allocation_;
667  disallow_heap_allocation_ = NULL;
668#endif  // DEBUG
669}
670
671
672Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
673                                            int id,
674                                            BailoutType type,
675                                            GetEntryMode mode) {
676  CHECK_GE(id, 0);
677  if (id >= kMaxNumberOfEntries) return NULL;
678  if (mode == ENSURE_ENTRY_CODE) {
679    EnsureCodeForDeoptimizationEntry(isolate, type, id);
680  } else {
681    CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS);
682  }
683  DeoptimizerData* data = isolate->deoptimizer_data();
684  CHECK_LT(type, kBailoutTypesWithCodeEntry);
685  MemoryChunk* base = data->deopt_entry_code_[type];
686  return base->area_start() + (id * table_entry_size_);
687}
688
689
690int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
691                                     Address addr,
692                                     BailoutType type) {
693  DeoptimizerData* data = isolate->deoptimizer_data();
694  MemoryChunk* base = data->deopt_entry_code_[type];
695  Address start = base->area_start();
696  if (base == NULL ||
697      addr < start ||
698      addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
699    return kNotDeoptimizationEntry;
700  }
701  DCHECK_EQ(0,
702            static_cast<int>(addr - start) % table_entry_size_);
703  return static_cast<int>(addr - start) / table_entry_size_;
704}
705
706
707int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
708                               BailoutId id,
709                               SharedFunctionInfo* shared) {
710  // TODO(kasperl): For now, we do a simple linear search for the PC
711  // offset associated with the given node id. This should probably be
712  // changed to a binary search.
713  int length = data->DeoptPoints();
714  for (int i = 0; i < length; i++) {
715    if (data->AstId(i) == id) {
716      return data->PcAndState(i)->value();
717    }
718  }
719  OFStream os(stderr);
720  os << "[couldn't find pc offset for node=" << id.ToInt() << "]\n"
721     << "[method: " << shared->DebugName()->ToCString().get() << "]\n"
722     << "[source:\n" << SourceCodeOf(shared) << "\n]" << endl;
723
724  FATAL("unable to find pc offset during deoptimization");
725  return -1;
726}
727
728
729int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
730  int length = 0;
731  // Count all entries in the deoptimizing code list of every context.
732  Object* context = isolate->heap()->native_contexts_list();
733  while (!context->IsUndefined()) {
734    Context* native_context = Context::cast(context);
735    Object* element = native_context->DeoptimizedCodeListHead();
736    while (!element->IsUndefined()) {
737      Code* code = Code::cast(element);
738      DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
739      length++;
740      element = code->next_code_link();
741    }
742    context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
743  }
744  return length;
745}
746
747
748// We rely on this function not causing a GC.  It is called from generated code
749// without having a real stack frame in place.
750void Deoptimizer::DoComputeOutputFrames() {
751  // Print some helpful diagnostic information.
752  if (FLAG_log_timer_events &&
753      compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
754    LOG(isolate(), CodeDeoptEvent(compiled_code_));
755  }
756  base::ElapsedTimer timer;
757
758  // Determine basic deoptimization information.  The optimized frame is
759  // described by the input data.
760  DeoptimizationInputData* input_data =
761      DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
762
763  if (trace_scope_ != NULL) {
764    timer.Start();
765    PrintF(trace_scope_->file(),
766           "[deoptimizing (DEOPT %s): begin 0x%08" V8PRIxPTR " ",
767           MessageFor(bailout_type_),
768           reinterpret_cast<intptr_t>(function_));
769    PrintFunctionName();
770    PrintF(trace_scope_->file(),
771           " (opt #%d) @%d, FP to SP delta: %d]\n",
772           input_data->OptimizationId()->value(),
773           bailout_id_,
774           fp_to_sp_delta_);
775    if (bailout_type_ == EAGER || bailout_type_ == SOFT ||
776        (compiled_code_->is_hydrogen_stub())) {
777      compiled_code_->PrintDeoptLocation(trace_scope_->file(), bailout_id_);
778    }
779  }
780
781  BailoutId node_id = input_data->AstId(bailout_id_);
782  ByteArray* translations = input_data->TranslationByteArray();
783  unsigned translation_index =
784      input_data->TranslationIndex(bailout_id_)->value();
785
786  // Do the input frame to output frame(s) translation.
787  TranslationIterator iterator(translations, translation_index);
788  Translation::Opcode opcode =
789      static_cast<Translation::Opcode>(iterator.Next());
790  DCHECK(Translation::BEGIN == opcode);
791  USE(opcode);
792  // Read the number of output frames and allocate an array for their
793  // descriptions.
794  int count = iterator.Next();
795  iterator.Next();  // Drop JS frames count.
796  DCHECK(output_ == NULL);
797  output_ = new FrameDescription*[count];
798  for (int i = 0; i < count; ++i) {
799    output_[i] = NULL;
800  }
801  output_count_ = count;
802
803  Register fp_reg = JavaScriptFrame::fp_register();
804  stack_fp_ = reinterpret_cast<Address>(
805      input_->GetRegister(fp_reg.code()) +
806          has_alignment_padding_ * kPointerSize);
807
808  // Translate each output frame.
809  for (int i = 0; i < count; ++i) {
810    // Read the ast node id, function, and frame height for this output frame.
811    Translation::Opcode opcode =
812        static_cast<Translation::Opcode>(iterator.Next());
813    switch (opcode) {
814      case Translation::JS_FRAME:
815        DoComputeJSFrame(&iterator, i);
816        jsframe_count_++;
817        break;
818      case Translation::ARGUMENTS_ADAPTOR_FRAME:
819        DoComputeArgumentsAdaptorFrame(&iterator, i);
820        break;
821      case Translation::CONSTRUCT_STUB_FRAME:
822        DoComputeConstructStubFrame(&iterator, i);
823        break;
824      case Translation::GETTER_STUB_FRAME:
825        DoComputeAccessorStubFrame(&iterator, i, false);
826        break;
827      case Translation::SETTER_STUB_FRAME:
828        DoComputeAccessorStubFrame(&iterator, i, true);
829        break;
830      case Translation::COMPILED_STUB_FRAME:
831        DoComputeCompiledStubFrame(&iterator, i);
832        break;
833      case Translation::BEGIN:
834      case Translation::REGISTER:
835      case Translation::INT32_REGISTER:
836      case Translation::UINT32_REGISTER:
837      case Translation::DOUBLE_REGISTER:
838      case Translation::STACK_SLOT:
839      case Translation::INT32_STACK_SLOT:
840      case Translation::UINT32_STACK_SLOT:
841      case Translation::DOUBLE_STACK_SLOT:
842      case Translation::LITERAL:
843      case Translation::ARGUMENTS_OBJECT:
844      default:
845        FATAL("Unsupported translation");
846        break;
847    }
848  }
849
850  // Print some helpful diagnostic information.
851  if (trace_scope_ != NULL) {
852    double ms = timer.Elapsed().InMillisecondsF();
853    int index = output_count_ - 1;  // Index of the topmost frame.
854    JSFunction* function = output_[index]->GetFunction();
855    PrintF(trace_scope_->file(),
856           "[deoptimizing (%s): end 0x%08" V8PRIxPTR " ",
857           MessageFor(bailout_type_),
858           reinterpret_cast<intptr_t>(function));
859    PrintFunctionName();
860    PrintF(trace_scope_->file(),
861           " @%d => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
862           " took %0.3f ms]\n",
863           bailout_id_,
864           node_id.ToInt(),
865           output_[index]->GetPc(),
866           FullCodeGenerator::State2String(
867               static_cast<FullCodeGenerator::State>(
868                   output_[index]->GetState()->value())),
869           has_alignment_padding_ ? "with padding" : "no padding",
870           ms);
871  }
872}
873
874
875void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator,
876                                   int frame_index) {
877  BailoutId node_id = BailoutId(iterator->Next());
878  JSFunction* function;
879  if (frame_index != 0) {
880    function = JSFunction::cast(ComputeLiteral(iterator->Next()));
881  } else {
882    int closure_id = iterator->Next();
883    USE(closure_id);
884    CHECK_EQ(Translation::kSelfLiteralId, closure_id);
885    function = function_;
886  }
887  unsigned height = iterator->Next() - 1;  // Do not count the context.
888  unsigned height_in_bytes = height * kPointerSize;
889  if (trace_scope_ != NULL) {
890    PrintF(trace_scope_->file(), "  translating ");
891    function->PrintName(trace_scope_->file());
892    PrintF(trace_scope_->file(),
893           " => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes);
894  }
895
896  // The 'fixed' part of the frame consists of the incoming parameters and
897  // the part described by JavaScriptFrameConstants.
898  unsigned fixed_frame_size = ComputeFixedSize(function);
899  unsigned input_frame_size = input_->GetFrameSize();
900  unsigned output_frame_size = height_in_bytes + fixed_frame_size;
901
902  // Allocate and store the output frame description.
903  FrameDescription* output_frame =
904      new(output_frame_size) FrameDescription(output_frame_size, function);
905  output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
906
907  bool is_bottommost = (0 == frame_index);
908  bool is_topmost = (output_count_ - 1 == frame_index);
909  CHECK(frame_index >= 0 && frame_index < output_count_);
910  CHECK_EQ(output_[frame_index], NULL);
911  output_[frame_index] = output_frame;
912
913  // The top address for the bottommost output frame can be computed from
914  // the input frame pointer and the output frame's height.  For all
915  // subsequent output frames, it can be computed from the previous one's
916  // top address and the current frame's size.
917  Register fp_reg = JavaScriptFrame::fp_register();
918  intptr_t top_address;
919  if (is_bottommost) {
920    // Determine whether the input frame contains alignment padding.
921    has_alignment_padding_ =
922        (!compiled_code_->is_turbofanned() && HasAlignmentPadding(function))
923            ? 1
924            : 0;
925    // 2 = context and function in the frame.
926    // If the optimized frame had alignment padding, adjust the frame pointer
927    // to point to the new position of the old frame pointer after padding
928    // is removed. Subtract 2 * kPointerSize for the context and function slots.
929    top_address = input_->GetRegister(fp_reg.code()) -
930        StandardFrameConstants::kFixedFrameSizeFromFp -
931        height_in_bytes + has_alignment_padding_ * kPointerSize;
932  } else {
933    top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
934  }
935  output_frame->SetTop(top_address);
936
937  // Compute the incoming parameter translation.
938  int parameter_count = function->shared()->formal_parameter_count() + 1;
939  unsigned output_offset = output_frame_size;
940  unsigned input_offset = input_frame_size;
941  for (int i = 0; i < parameter_count; ++i) {
942    output_offset -= kPointerSize;
943    DoTranslateCommand(iterator, frame_index, output_offset);
944  }
945  input_offset -= (parameter_count * kPointerSize);
946
947  // There are no translation commands for the caller's pc and fp, the
948  // context, and the function.  Synthesize their values and set them up
949  // explicitly.
950  //
951  // The caller's pc for the bottommost output frame is the same as in the
952  // input frame.  For all subsequent output frames, it can be read from the
953  // previous one.  This frame's pc can be computed from the non-optimized
954  // function code and AST id of the bailout.
955  output_offset -= kPCOnStackSize;
956  input_offset -= kPCOnStackSize;
957  intptr_t value;
958  if (is_bottommost) {
959    value = input_->GetFrameSlot(input_offset);
960  } else {
961    value = output_[frame_index - 1]->GetPc();
962  }
963  output_frame->SetCallerPc(output_offset, value);
964  if (trace_scope_ != NULL) {
965    PrintF(trace_scope_->file(),
966           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
967           V8PRIxPTR  " ; caller's pc\n",
968           top_address + output_offset, output_offset, value);
969  }
970
971  // The caller's frame pointer for the bottommost output frame is the same
972  // as in the input frame.  For all subsequent output frames, it can be
973  // read from the previous one.  Also compute and set this frame's frame
974  // pointer.
975  output_offset -= kFPOnStackSize;
976  input_offset -= kFPOnStackSize;
977  if (is_bottommost) {
978    value = input_->GetFrameSlot(input_offset);
979  } else {
980    value = output_[frame_index - 1]->GetFp();
981  }
982  output_frame->SetCallerFp(output_offset, value);
983  intptr_t fp_value = top_address + output_offset;
984  DCHECK(!is_bottommost || (input_->GetRegister(fp_reg.code()) +
985      has_alignment_padding_ * kPointerSize) == fp_value);
986  output_frame->SetFp(fp_value);
987  if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value);
988  if (trace_scope_ != NULL) {
989    PrintF(trace_scope_->file(),
990           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
991           V8PRIxPTR " ; caller's fp\n",
992           fp_value, output_offset, value);
993  }
994  DCHECK(!is_bottommost || !has_alignment_padding_ ||
995         (fp_value & kPointerSize) != 0);
996
997  if (FLAG_enable_ool_constant_pool) {
998    // For the bottommost output frame the constant pool pointer can be gotten
999    // from the input frame. For subsequent output frames, it can be read from
1000    // the previous frame.
1001    output_offset -= kPointerSize;
1002    input_offset -= kPointerSize;
1003    if (is_bottommost) {
1004      value = input_->GetFrameSlot(input_offset);
1005    } else {
1006      value = output_[frame_index - 1]->GetConstantPool();
1007    }
1008    output_frame->SetCallerConstantPool(output_offset, value);
1009    if (trace_scope_) {
1010      PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1011             V8PRIxPTR "; caller's constant_pool\n",
1012             top_address + output_offset, output_offset, value);
1013    }
1014  }
1015
1016  // For the bottommost output frame the context can be gotten from the input
1017  // frame. For all subsequent output frames it can be gotten from the function
1018  // so long as we don't inline functions that need local contexts.
1019  Register context_reg = JavaScriptFrame::context_register();
1020  output_offset -= kPointerSize;
1021  input_offset -= kPointerSize;
1022  // Read the context from the translations.
1023  DoTranslateCommand(iterator, frame_index, output_offset);
1024  value = output_frame->GetFrameSlot(output_offset);
1025  // The context should not be a placeholder for a materialized object.
1026  CHECK(value !=
1027        reinterpret_cast<intptr_t>(isolate_->heap()->arguments_marker()));
1028  if (value ==
1029      reinterpret_cast<intptr_t>(isolate_->heap()->undefined_value())) {
1030    // If the context was optimized away, just use the context from
1031    // the activation. This should only apply to Crankshaft code.
1032    CHECK(!compiled_code_->is_turbofanned());
1033    if (is_bottommost) {
1034      value = input_->GetFrameSlot(input_offset);
1035    } else {
1036      value = reinterpret_cast<intptr_t>(function->context());
1037    }
1038    output_frame->SetFrameSlot(output_offset, value);
1039  }
1040  output_frame->SetContext(value);
1041  if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
1042  if (trace_scope_ != NULL) {
1043    PrintF(trace_scope_->file(),
1044           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1045           V8PRIxPTR "; context\n",
1046           top_address + output_offset, output_offset, value);
1047  }
1048
1049  // The function was mentioned explicitly in the BEGIN_FRAME.
1050  output_offset -= kPointerSize;
1051  input_offset -= kPointerSize;
1052  value = reinterpret_cast<intptr_t>(function);
1053  // The function for the bottommost output frame should also agree with the
1054  // input frame.
1055  DCHECK(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
1056  output_frame->SetFrameSlot(output_offset, value);
1057  if (trace_scope_ != NULL) {
1058    PrintF(trace_scope_->file(),
1059           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1060           V8PRIxPTR "; function\n",
1061           top_address + output_offset, output_offset, value);
1062  }
1063
1064  // Translate the rest of the frame.
1065  for (unsigned i = 0; i < height; ++i) {
1066    output_offset -= kPointerSize;
1067    DoTranslateCommand(iterator, frame_index, output_offset);
1068  }
1069  CHECK_EQ(0, output_offset);
1070
1071  // Compute this frame's PC, state, and continuation.
1072  Code* non_optimized_code = function->shared()->code();
1073  FixedArray* raw_data = non_optimized_code->deoptimization_data();
1074  DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
1075  Address start = non_optimized_code->instruction_start();
1076  unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
1077  unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
1078  intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
1079  output_frame->SetPc(pc_value);
1080
1081  // Update constant pool.
1082  if (FLAG_enable_ool_constant_pool) {
1083    intptr_t constant_pool_value =
1084        reinterpret_cast<intptr_t>(non_optimized_code->constant_pool());
1085    output_frame->SetConstantPool(constant_pool_value);
1086    if (is_topmost) {
1087      Register constant_pool_reg =
1088          JavaScriptFrame::constant_pool_pointer_register();
1089      output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
1090    }
1091  }
1092
1093  FullCodeGenerator::State state =
1094      FullCodeGenerator::StateField::decode(pc_and_state);
1095  output_frame->SetState(Smi::FromInt(state));
1096
1097  // Set the continuation for the topmost frame.
1098  if (is_topmost && bailout_type_ != DEBUGGER) {
1099    Builtins* builtins = isolate_->builtins();
1100    Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
1101    if (bailout_type_ == LAZY) {
1102      continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
1103    } else if (bailout_type_ == SOFT) {
1104      continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
1105    } else {
1106      CHECK_EQ(bailout_type_, EAGER);
1107    }
1108    output_frame->SetContinuation(
1109        reinterpret_cast<intptr_t>(continuation->entry()));
1110  }
1111}
1112
1113
1114void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator,
1115                                                 int frame_index) {
1116  JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
1117  unsigned height = iterator->Next();
1118  unsigned height_in_bytes = height * kPointerSize;
1119  if (trace_scope_ != NULL) {
1120    PrintF(trace_scope_->file(),
1121           "  translating arguments adaptor => height=%d\n", height_in_bytes);
1122  }
1123
1124  unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
1125  unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1126
1127  // Allocate and store the output frame description.
1128  FrameDescription* output_frame =
1129      new(output_frame_size) FrameDescription(output_frame_size, function);
1130  output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
1131
1132  // Arguments adaptor can not be topmost or bottommost.
1133  CHECK(frame_index > 0 && frame_index < output_count_ - 1);
1134  CHECK(output_[frame_index] == NULL);
1135  output_[frame_index] = output_frame;
1136
1137  // The top address of the frame is computed from the previous
1138  // frame's top and this frame's size.
1139  intptr_t top_address;
1140  top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1141  output_frame->SetTop(top_address);
1142
1143  // Compute the incoming parameter translation.
1144  int parameter_count = height;
1145  unsigned output_offset = output_frame_size;
1146  for (int i = 0; i < parameter_count; ++i) {
1147    output_offset -= kPointerSize;
1148    DoTranslateCommand(iterator, frame_index, output_offset);
1149  }
1150
1151  // Read caller's PC from the previous frame.
1152  output_offset -= kPCOnStackSize;
1153  intptr_t callers_pc = output_[frame_index - 1]->GetPc();
1154  output_frame->SetCallerPc(output_offset, callers_pc);
1155  if (trace_scope_ != NULL) {
1156    PrintF(trace_scope_->file(),
1157           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1158           V8PRIxPTR " ; caller's pc\n",
1159           top_address + output_offset, output_offset, callers_pc);
1160  }
1161
1162  // Read caller's FP from the previous frame, and set this frame's FP.
1163  output_offset -= kFPOnStackSize;
1164  intptr_t value = output_[frame_index - 1]->GetFp();
1165  output_frame->SetCallerFp(output_offset, value);
1166  intptr_t fp_value = top_address + output_offset;
1167  output_frame->SetFp(fp_value);
1168  if (trace_scope_ != NULL) {
1169    PrintF(trace_scope_->file(),
1170           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1171           V8PRIxPTR " ; caller's fp\n",
1172           fp_value, output_offset, value);
1173  }
1174
1175  if (FLAG_enable_ool_constant_pool) {
1176    // Read the caller's constant pool from the previous frame.
1177    output_offset -= kPointerSize;
1178    value = output_[frame_index - 1]->GetConstantPool();
1179    output_frame->SetCallerConstantPool(output_offset, value);
1180    if (trace_scope_) {
1181      PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1182             V8PRIxPTR "; caller's constant_pool\n",
1183             top_address + output_offset, output_offset, value);
1184    }
1185  }
1186
1187  // A marker value is used in place of the context.
1188  output_offset -= kPointerSize;
1189  intptr_t context = reinterpret_cast<intptr_t>(
1190      Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1191  output_frame->SetFrameSlot(output_offset, context);
1192  if (trace_scope_ != NULL) {
1193    PrintF(trace_scope_->file(),
1194           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1195           V8PRIxPTR " ; context (adaptor sentinel)\n",
1196           top_address + output_offset, output_offset, context);
1197  }
1198
1199  // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
1200  output_offset -= kPointerSize;
1201  value = reinterpret_cast<intptr_t>(function);
1202  output_frame->SetFrameSlot(output_offset, value);
1203  if (trace_scope_ != NULL) {
1204    PrintF(trace_scope_->file(),
1205           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1206           V8PRIxPTR " ; function\n",
1207           top_address + output_offset, output_offset, value);
1208  }
1209
1210  // Number of incoming arguments.
1211  output_offset -= kPointerSize;
1212  value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
1213  output_frame->SetFrameSlot(output_offset, value);
1214  if (trace_scope_ != NULL) {
1215    PrintF(trace_scope_->file(),
1216           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1217           V8PRIxPTR " ; argc (%d)\n",
1218           top_address + output_offset, output_offset, value, height - 1);
1219  }
1220
1221  DCHECK(0 == output_offset);
1222
1223  Builtins* builtins = isolate_->builtins();
1224  Code* adaptor_trampoline =
1225      builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
1226  intptr_t pc_value = reinterpret_cast<intptr_t>(
1227      adaptor_trampoline->instruction_start() +
1228      isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
1229  output_frame->SetPc(pc_value);
1230  if (FLAG_enable_ool_constant_pool) {
1231    intptr_t constant_pool_value =
1232        reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
1233    output_frame->SetConstantPool(constant_pool_value);
1234  }
1235}
1236
1237
1238void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator,
1239                                              int frame_index) {
1240  Builtins* builtins = isolate_->builtins();
1241  Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
1242  JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
1243  unsigned height = iterator->Next();
1244  unsigned height_in_bytes = height * kPointerSize;
1245  if (trace_scope_ != NULL) {
1246    PrintF(trace_scope_->file(),
1247           "  translating construct stub => height=%d\n", height_in_bytes);
1248  }
1249
1250  unsigned fixed_frame_size = ConstructFrameConstants::kFrameSize;
1251  unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1252
1253  // Allocate and store the output frame description.
1254  FrameDescription* output_frame =
1255      new(output_frame_size) FrameDescription(output_frame_size, function);
1256  output_frame->SetFrameType(StackFrame::CONSTRUCT);
1257
1258  // Construct stub can not be topmost or bottommost.
1259  DCHECK(frame_index > 0 && frame_index < output_count_ - 1);
1260  DCHECK(output_[frame_index] == NULL);
1261  output_[frame_index] = output_frame;
1262
1263  // The top address of the frame is computed from the previous
1264  // frame's top and this frame's size.
1265  intptr_t top_address;
1266  top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1267  output_frame->SetTop(top_address);
1268
1269  // Compute the incoming parameter translation.
1270  int parameter_count = height;
1271  unsigned output_offset = output_frame_size;
1272  for (int i = 0; i < parameter_count; ++i) {
1273    output_offset -= kPointerSize;
1274    int deferred_object_index = deferred_objects_.length();
1275    DoTranslateCommand(iterator, frame_index, output_offset);
1276    // The allocated receiver of a construct stub frame is passed as the
1277    // receiver parameter through the translation. It might be encoding
1278    // a captured object, patch the slot address for a captured object.
1279    if (i == 0 && deferred_objects_.length() > deferred_object_index) {
1280      CHECK(!deferred_objects_[deferred_object_index].is_arguments());
1281      deferred_objects_[deferred_object_index].patch_slot_address(top_address);
1282    }
1283  }
1284
1285  // Read caller's PC from the previous frame.
1286  output_offset -= kPCOnStackSize;
1287  intptr_t callers_pc = output_[frame_index - 1]->GetPc();
1288  output_frame->SetCallerPc(output_offset, callers_pc);
1289  if (trace_scope_ != NULL) {
1290    PrintF(trace_scope_->file(),
1291           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1292           V8PRIxPTR " ; caller's pc\n",
1293           top_address + output_offset, output_offset, callers_pc);
1294  }
1295
1296  // Read caller's FP from the previous frame, and set this frame's FP.
1297  output_offset -= kFPOnStackSize;
1298  intptr_t value = output_[frame_index - 1]->GetFp();
1299  output_frame->SetCallerFp(output_offset, value);
1300  intptr_t fp_value = top_address + output_offset;
1301  output_frame->SetFp(fp_value);
1302  if (trace_scope_ != NULL) {
1303    PrintF(trace_scope_->file(),
1304           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1305           V8PRIxPTR " ; caller's fp\n",
1306           fp_value, output_offset, value);
1307  }
1308
1309  if (FLAG_enable_ool_constant_pool) {
1310    // Read the caller's constant pool from the previous frame.
1311    output_offset -= kPointerSize;
1312    value = output_[frame_index - 1]->GetConstantPool();
1313    output_frame->SetCallerConstantPool(output_offset, value);
1314    if (trace_scope_) {
1315      PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1316             V8PRIxPTR " ; caller's constant pool\n",
1317             top_address + output_offset, output_offset, value);
1318    }
1319  }
1320
1321  // The context can be gotten from the previous frame.
1322  output_offset -= kPointerSize;
1323  value = output_[frame_index - 1]->GetContext();
1324  output_frame->SetFrameSlot(output_offset, value);
1325  if (trace_scope_ != NULL) {
1326    PrintF(trace_scope_->file(),
1327           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1328           V8PRIxPTR " ; context\n",
1329           top_address + output_offset, output_offset, value);
1330  }
1331
1332  // A marker value is used in place of the function.
1333  output_offset -= kPointerSize;
1334  value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
1335  output_frame->SetFrameSlot(output_offset, value);
1336  if (trace_scope_ != NULL) {
1337    PrintF(trace_scope_->file(),
1338           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1339           V8PRIxPTR " ; function (construct sentinel)\n",
1340           top_address + output_offset, output_offset, value);
1341  }
1342
1343  // The output frame reflects a JSConstructStubGeneric frame.
1344  output_offset -= kPointerSize;
1345  value = reinterpret_cast<intptr_t>(construct_stub);
1346  output_frame->SetFrameSlot(output_offset, value);
1347  if (trace_scope_ != NULL) {
1348    PrintF(trace_scope_->file(),
1349           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1350           V8PRIxPTR " ; code object\n",
1351           top_address + output_offset, output_offset, value);
1352  }
1353
1354  // Number of incoming arguments.
1355  output_offset -= kPointerSize;
1356  value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
1357  output_frame->SetFrameSlot(output_offset, value);
1358  if (trace_scope_ != NULL) {
1359    PrintF(trace_scope_->file(),
1360           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1361           V8PRIxPTR " ; argc (%d)\n",
1362           top_address + output_offset, output_offset, value, height - 1);
1363  }
1364
1365  // Constructor function being invoked by the stub (only present on some
1366  // architectures, indicated by kConstructorOffset).
1367  if (ConstructFrameConstants::kConstructorOffset != kMinInt) {
1368    output_offset -= kPointerSize;
1369    value = reinterpret_cast<intptr_t>(function);
1370    output_frame->SetFrameSlot(output_offset, value);
1371    if (trace_scope_ != NULL) {
1372      PrintF(trace_scope_->file(),
1373             "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1374             V8PRIxPTR " ; constructor function\n",
1375             top_address + output_offset, output_offset, value);
1376    }
1377  }
1378
1379  // The newly allocated object was passed as receiver in the artificial
1380  // constructor stub environment created by HEnvironment::CopyForInlining().
1381  output_offset -= kPointerSize;
1382  value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
1383  output_frame->SetFrameSlot(output_offset, value);
1384  if (trace_scope_ != NULL) {
1385    PrintF(trace_scope_->file(),
1386           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1387           V8PRIxPTR " ; allocated receiver\n",
1388           top_address + output_offset, output_offset, value);
1389  }
1390
1391  CHECK_EQ(0, output_offset);
1392
1393  intptr_t pc = reinterpret_cast<intptr_t>(
1394      construct_stub->instruction_start() +
1395      isolate_->heap()->construct_stub_deopt_pc_offset()->value());
1396  output_frame->SetPc(pc);
1397  if (FLAG_enable_ool_constant_pool) {
1398    intptr_t constant_pool_value =
1399        reinterpret_cast<intptr_t>(construct_stub->constant_pool());
1400    output_frame->SetConstantPool(constant_pool_value);
1401  }
1402}
1403
1404
1405void Deoptimizer::DoComputeAccessorStubFrame(TranslationIterator* iterator,
1406                                             int frame_index,
1407                                             bool is_setter_stub_frame) {
1408  JSFunction* accessor = JSFunction::cast(ComputeLiteral(iterator->Next()));
1409  // The receiver (and the implicit return value, if any) are expected in
1410  // registers by the LoadIC/StoreIC, so they don't belong to the output stack
1411  // frame. This means that we have to use a height of 0.
1412  unsigned height = 0;
1413  unsigned height_in_bytes = height * kPointerSize;
1414  const char* kind = is_setter_stub_frame ? "setter" : "getter";
1415  if (trace_scope_ != NULL) {
1416    PrintF(trace_scope_->file(),
1417           "  translating %s stub => height=%u\n", kind, height_in_bytes);
1418  }
1419
1420  // We need 1 stack entry for the return address and enough entries for the
1421  // StackFrame::INTERNAL (FP, context, frame type, code object and constant
1422  // pool (if FLAG_enable_ool_constant_pool)- see MacroAssembler::EnterFrame).
1423  // For a setter stub frame we need one additional entry for the implicit
1424  // return value, see StoreStubCompiler::CompileStoreViaSetter.
1425  unsigned fixed_frame_entries =
1426      (StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 +
1427      (is_setter_stub_frame ? 1 : 0);
1428  unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
1429  unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1430
1431  // Allocate and store the output frame description.
1432  FrameDescription* output_frame =
1433      new(output_frame_size) FrameDescription(output_frame_size, accessor);
1434  output_frame->SetFrameType(StackFrame::INTERNAL);
1435
1436  // A frame for an accessor stub can not be the topmost or bottommost one.
1437  CHECK(frame_index > 0 && frame_index < output_count_ - 1);
1438  CHECK_EQ(output_[frame_index], NULL);
1439  output_[frame_index] = output_frame;
1440
1441  // The top address of the frame is computed from the previous frame's top and
1442  // this frame's size.
1443  intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1444  output_frame->SetTop(top_address);
1445
1446  unsigned output_offset = output_frame_size;
1447
1448  // Read caller's PC from the previous frame.
1449  output_offset -= kPCOnStackSize;
1450  intptr_t callers_pc = output_[frame_index - 1]->GetPc();
1451  output_frame->SetCallerPc(output_offset, callers_pc);
1452  if (trace_scope_ != NULL) {
1453    PrintF(trace_scope_->file(),
1454           "    0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1455           " ; caller's pc\n",
1456           top_address + output_offset, output_offset, callers_pc);
1457  }
1458
1459  // Read caller's FP from the previous frame, and set this frame's FP.
1460  output_offset -= kFPOnStackSize;
1461  intptr_t value = output_[frame_index - 1]->GetFp();
1462  output_frame->SetCallerFp(output_offset, value);
1463  intptr_t fp_value = top_address + output_offset;
1464  output_frame->SetFp(fp_value);
1465  if (trace_scope_ != NULL) {
1466    PrintF(trace_scope_->file(),
1467           "    0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1468           " ; caller's fp\n",
1469           fp_value, output_offset, value);
1470  }
1471
1472  if (FLAG_enable_ool_constant_pool) {
1473    // Read the caller's constant pool from the previous frame.
1474    output_offset -= kPointerSize;
1475    value = output_[frame_index - 1]->GetConstantPool();
1476    output_frame->SetCallerConstantPool(output_offset, value);
1477    if (trace_scope_) {
1478      PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1479             V8PRIxPTR " ; caller's constant pool\n",
1480             top_address + output_offset, output_offset, value);
1481    }
1482  }
1483
1484  // The context can be gotten from the previous frame.
1485  output_offset -= kPointerSize;
1486  value = output_[frame_index - 1]->GetContext();
1487  output_frame->SetFrameSlot(output_offset, value);
1488  if (trace_scope_ != NULL) {
1489    PrintF(trace_scope_->file(),
1490           "    0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1491           " ; context\n",
1492           top_address + output_offset, output_offset, value);
1493  }
1494
1495  // A marker value is used in place of the function.
1496  output_offset -= kPointerSize;
1497  value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
1498  output_frame->SetFrameSlot(output_offset, value);
1499  if (trace_scope_ != NULL) {
1500    PrintF(trace_scope_->file(),
1501           "    0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1502           " ; function (%s sentinel)\n",
1503           top_address + output_offset, output_offset, value, kind);
1504  }
1505
1506  // Get Code object from accessor stub.
1507  output_offset -= kPointerSize;
1508  Builtins::Name name = is_setter_stub_frame ?
1509      Builtins::kStoreIC_Setter_ForDeopt :
1510      Builtins::kLoadIC_Getter_ForDeopt;
1511  Code* accessor_stub = isolate_->builtins()->builtin(name);
1512  value = reinterpret_cast<intptr_t>(accessor_stub);
1513  output_frame->SetFrameSlot(output_offset, value);
1514  if (trace_scope_ != NULL) {
1515    PrintF(trace_scope_->file(),
1516           "    0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
1517           " ; code object\n",
1518           top_address + output_offset, output_offset, value);
1519  }
1520
1521  // Skip receiver.
1522  DoTranslateObjectAndSkip(iterator);
1523
1524  if (is_setter_stub_frame) {
1525    // The implicit return value was part of the artificial setter stub
1526    // environment.
1527    output_offset -= kPointerSize;
1528    DoTranslateCommand(iterator, frame_index, output_offset);
1529  }
1530
1531  CHECK_EQ(output_offset, 0);
1532
1533  Smi* offset = is_setter_stub_frame ?
1534      isolate_->heap()->setter_stub_deopt_pc_offset() :
1535      isolate_->heap()->getter_stub_deopt_pc_offset();
1536  intptr_t pc = reinterpret_cast<intptr_t>(
1537      accessor_stub->instruction_start() + offset->value());
1538  output_frame->SetPc(pc);
1539  if (FLAG_enable_ool_constant_pool) {
1540    intptr_t constant_pool_value =
1541        reinterpret_cast<intptr_t>(accessor_stub->constant_pool());
1542    output_frame->SetConstantPool(constant_pool_value);
1543  }
1544}
1545
1546
1547void Deoptimizer::DoComputeCompiledStubFrame(TranslationIterator* iterator,
1548                                             int frame_index) {
1549  //
1550  //               FROM                                  TO
1551  //    |          ....           |          |          ....           |
1552  //    +-------------------------+          +-------------------------+
1553  //    | JSFunction continuation |          | JSFunction continuation |
1554  //    +-------------------------+          +-------------------------+
1555  // |  |    saved frame (FP)     |          |    saved frame (FP)     |
1556  // |  +=========================+<-fpreg   +=========================+<-fpreg
1557  // |  |constant pool (if ool_cp)|          |constant pool (if ool_cp)|
1558  // |  +-------------------------+          +-------------------------|
1559  // |  |   JSFunction context    |          |   JSFunction context    |
1560  // v  +-------------------------+          +-------------------------|
1561  //    |   COMPILED_STUB marker  |          |   STUB_FAILURE marker   |
1562  //    +-------------------------+          +-------------------------+
1563  //    |                         |          |  caller args.arguments_ |
1564  //    | ...                     |          +-------------------------+
1565  //    |                         |          |  caller args.length_    |
1566  //    |-------------------------|<-spreg   +-------------------------+
1567  //                                         |  caller args pointer    |
1568  //                                         +-------------------------+
1569  //                                         |  caller stack param 1   |
1570  //      parameters in registers            +-------------------------+
1571  //       and spilled to stack              |           ....          |
1572  //                                         +-------------------------+
1573  //                                         |  caller stack param n   |
1574  //                                         +-------------------------+<-spreg
1575  //                                         reg = number of parameters
1576  //                                         reg = failure handler address
1577  //                                         reg = saved frame
1578  //                                         reg = JSFunction context
1579  //
1580
1581  CHECK(compiled_code_->is_hydrogen_stub());
1582  int major_key = CodeStub::GetMajorKey(compiled_code_);
1583  CodeStubDescriptor descriptor(isolate_, compiled_code_->stub_key());
1584
1585  // The output frame must have room for all pushed register parameters
1586  // and the standard stack frame slots.  Include space for an argument
1587  // object to the callee and optionally the space to pass the argument
1588  // object to the stub failure handler.
1589  int param_count = descriptor.GetEnvironmentParameterCount();
1590  CHECK_GE(param_count, 0);
1591
1592  int height_in_bytes = kPointerSize * param_count + sizeof(Arguments) +
1593      kPointerSize;
1594  int fixed_frame_size = StandardFrameConstants::kFixedFrameSize;
1595  int input_frame_size = input_->GetFrameSize();
1596  int output_frame_size = height_in_bytes + fixed_frame_size;
1597  if (trace_scope_ != NULL) {
1598    PrintF(trace_scope_->file(),
1599           "  translating %s => StubFailureTrampolineStub, height=%d\n",
1600           CodeStub::MajorName(static_cast<CodeStub::Major>(major_key), false),
1601           height_in_bytes);
1602  }
1603
1604  // The stub failure trampoline is a single frame.
1605  FrameDescription* output_frame =
1606      new(output_frame_size) FrameDescription(output_frame_size, NULL);
1607  output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
1608  CHECK_EQ(frame_index, 0);
1609  output_[frame_index] = output_frame;
1610
1611  // The top address for the output frame can be computed from the input
1612  // frame pointer and the output frame's height. Subtract space for the
1613  // context and function slots.
1614  Register fp_reg = StubFailureTrampolineFrame::fp_register();
1615  intptr_t top_address = input_->GetRegister(fp_reg.code()) -
1616      StandardFrameConstants::kFixedFrameSizeFromFp - height_in_bytes;
1617  output_frame->SetTop(top_address);
1618
1619  // Read caller's PC (JSFunction continuation) from the input frame.
1620  unsigned input_frame_offset = input_frame_size - kPCOnStackSize;
1621  unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
1622  intptr_t value = input_->GetFrameSlot(input_frame_offset);
1623  output_frame->SetCallerPc(output_frame_offset, value);
1624  if (trace_scope_ != NULL) {
1625    PrintF(trace_scope_->file(),
1626           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1627           V8PRIxPTR " ; caller's pc\n",
1628           top_address + output_frame_offset, output_frame_offset, value);
1629  }
1630
1631  // Read caller's FP from the input frame, and set this frame's FP.
1632  input_frame_offset -= kFPOnStackSize;
1633  value = input_->GetFrameSlot(input_frame_offset);
1634  output_frame_offset -= kFPOnStackSize;
1635  output_frame->SetCallerFp(output_frame_offset, value);
1636  intptr_t frame_ptr = input_->GetRegister(fp_reg.code());
1637  output_frame->SetRegister(fp_reg.code(), frame_ptr);
1638  output_frame->SetFp(frame_ptr);
1639  if (trace_scope_ != NULL) {
1640    PrintF(trace_scope_->file(),
1641           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1642           V8PRIxPTR " ; caller's fp\n",
1643           top_address + output_frame_offset, output_frame_offset, value);
1644  }
1645
1646  if (FLAG_enable_ool_constant_pool) {
1647    // Read the caller's constant pool from the input frame.
1648    input_frame_offset -= kPointerSize;
1649    value = input_->GetFrameSlot(input_frame_offset);
1650    output_frame_offset -= kPointerSize;
1651    output_frame->SetCallerConstantPool(output_frame_offset, value);
1652    if (trace_scope_) {
1653      PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1654             V8PRIxPTR " ; caller's constant_pool\n",
1655             top_address + output_frame_offset, output_frame_offset, value);
1656    }
1657  }
1658
1659  // The context can be gotten from the input frame.
1660  Register context_reg = StubFailureTrampolineFrame::context_register();
1661  input_frame_offset -= kPointerSize;
1662  value = input_->GetFrameSlot(input_frame_offset);
1663  output_frame->SetRegister(context_reg.code(), value);
1664  output_frame_offset -= kPointerSize;
1665  output_frame->SetFrameSlot(output_frame_offset, value);
1666  CHECK(reinterpret_cast<Object*>(value)->IsContext());
1667  if (trace_scope_ != NULL) {
1668    PrintF(trace_scope_->file(),
1669           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1670           V8PRIxPTR " ; context\n",
1671           top_address + output_frame_offset, output_frame_offset, value);
1672  }
1673
1674  // A marker value is used in place of the function.
1675  output_frame_offset -= kPointerSize;
1676  value = reinterpret_cast<intptr_t>(
1677      Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
1678  output_frame->SetFrameSlot(output_frame_offset, value);
1679  if (trace_scope_ != NULL) {
1680    PrintF(trace_scope_->file(),
1681           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1682           V8PRIxPTR " ; function (stub failure sentinel)\n",
1683           top_address + output_frame_offset, output_frame_offset, value);
1684  }
1685
1686  intptr_t caller_arg_count = 0;
1687  bool arg_count_known = !descriptor.stack_parameter_count().is_valid();
1688
1689  // Build the Arguments object for the caller's parameters and a pointer to it.
1690  output_frame_offset -= kPointerSize;
1691  int args_arguments_offset = output_frame_offset;
1692  intptr_t the_hole = reinterpret_cast<intptr_t>(
1693      isolate_->heap()->the_hole_value());
1694  if (arg_count_known) {
1695    value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
1696        (caller_arg_count - 1) * kPointerSize;
1697  } else {
1698    value = the_hole;
1699  }
1700
1701  output_frame->SetFrameSlot(args_arguments_offset, value);
1702  if (trace_scope_ != NULL) {
1703    PrintF(trace_scope_->file(),
1704           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1705           V8PRIxPTR " ; args.arguments %s\n",
1706           top_address + args_arguments_offset, args_arguments_offset, value,
1707           arg_count_known ? "" : "(the hole)");
1708  }
1709
1710  output_frame_offset -= kPointerSize;
1711  int length_frame_offset = output_frame_offset;
1712  value = arg_count_known ? caller_arg_count : the_hole;
1713  output_frame->SetFrameSlot(length_frame_offset, value);
1714  if (trace_scope_ != NULL) {
1715    PrintF(trace_scope_->file(),
1716           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1717           V8PRIxPTR " ; args.length %s\n",
1718           top_address + length_frame_offset, length_frame_offset, value,
1719           arg_count_known ? "" : "(the hole)");
1720  }
1721
1722  output_frame_offset -= kPointerSize;
1723  value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
1724      (output_frame_size - output_frame_offset) + kPointerSize;
1725  output_frame->SetFrameSlot(output_frame_offset, value);
1726  if (trace_scope_ != NULL) {
1727    PrintF(trace_scope_->file(),
1728           "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1729           V8PRIxPTR " ; args*\n",
1730           top_address + output_frame_offset, output_frame_offset, value);
1731  }
1732
1733  // Copy the register parameters to the failure frame.
1734  int arguments_length_offset = -1;
1735  for (int i = 0; i < param_count; ++i) {
1736    output_frame_offset -= kPointerSize;
1737    DoTranslateCommand(iterator, 0, output_frame_offset);
1738
1739    if (!arg_count_known && descriptor.IsEnvironmentParameterCountRegister(i)) {
1740      arguments_length_offset = output_frame_offset;
1741    }
1742  }
1743
1744  CHECK_EQ(output_frame_offset, 0);
1745
1746  if (!arg_count_known) {
1747    CHECK_GE(arguments_length_offset, 0);
1748    // We know it's a smi because 1) the code stub guarantees the stack
1749    // parameter count is in smi range, and 2) the DoTranslateCommand in the
1750    // parameter loop above translated that to a tagged value.
1751    Smi* smi_caller_arg_count = reinterpret_cast<Smi*>(
1752        output_frame->GetFrameSlot(arguments_length_offset));
1753    caller_arg_count = smi_caller_arg_count->value();
1754    output_frame->SetFrameSlot(length_frame_offset, caller_arg_count);
1755    if (trace_scope_ != NULL) {
1756      PrintF(trace_scope_->file(),
1757             "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1758             V8PRIxPTR " ; args.length\n",
1759             top_address + length_frame_offset, length_frame_offset,
1760             caller_arg_count);
1761    }
1762    value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
1763        (caller_arg_count - 1) * kPointerSize;
1764    output_frame->SetFrameSlot(args_arguments_offset, value);
1765    if (trace_scope_ != NULL) {
1766      PrintF(trace_scope_->file(),
1767             "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
1768             V8PRIxPTR " ; args.arguments\n",
1769             top_address + args_arguments_offset, args_arguments_offset,
1770             value);
1771    }
1772  }
1773
1774  // Copy the double registers from the input into the output frame.
1775  CopyDoubleRegisters(output_frame);
1776
1777  // Fill registers containing handler and number of parameters.
1778  SetPlatformCompiledStubRegisters(output_frame, &descriptor);
1779
1780  // Compute this frame's PC, state, and continuation.
1781  Code* trampoline = NULL;
1782  StubFunctionMode function_mode = descriptor.function_mode();
1783  StubFailureTrampolineStub(isolate_,
1784                            function_mode).FindCodeInCache(&trampoline);
1785  DCHECK(trampoline != NULL);
1786  output_frame->SetPc(reinterpret_cast<intptr_t>(
1787      trampoline->instruction_start()));
1788  if (FLAG_enable_ool_constant_pool) {
1789    Register constant_pool_reg =
1790        StubFailureTrampolineFrame::constant_pool_pointer_register();
1791    intptr_t constant_pool_value =
1792        reinterpret_cast<intptr_t>(trampoline->constant_pool());
1793    output_frame->SetConstantPool(constant_pool_value);
1794    output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
1795  }
1796  output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS));
1797  Code* notify_failure =
1798      isolate_->builtins()->builtin(Builtins::kNotifyStubFailureSaveDoubles);
1799  output_frame->SetContinuation(
1800      reinterpret_cast<intptr_t>(notify_failure->entry()));
1801}
1802
1803
1804Handle<Object> Deoptimizer::MaterializeNextHeapObject() {
1805  int object_index = materialization_object_index_++;
1806  ObjectMaterializationDescriptor desc = deferred_objects_[object_index];
1807  const int length = desc.object_length();
1808
1809  if (desc.duplicate_object() >= 0) {
1810    // Found a previously materialized object by de-duplication.
1811    object_index = desc.duplicate_object();
1812    materialized_objects_->Add(Handle<Object>());
1813  } else if (desc.is_arguments() && ArgumentsObjectIsAdapted(object_index)) {
1814    // Use the arguments adapter frame we just built to materialize the
1815    // arguments object. FunctionGetArguments can't throw an exception.
1816    Handle<JSFunction> function = ArgumentsObjectFunction(object_index);
1817    Handle<JSObject> arguments = Handle<JSObject>::cast(
1818        Accessors::FunctionGetArguments(function));
1819    materialized_objects_->Add(arguments);
1820    // To keep consistent object counters, we still materialize the
1821    // nested values (but we throw them away).
1822    for (int i = 0; i < length; ++i) {
1823      MaterializeNextValue();
1824    }
1825  } else if (desc.is_arguments()) {
1826    // Construct an arguments object and copy the parameters to a newly
1827    // allocated arguments object backing store.
1828    Handle<JSFunction> function = ArgumentsObjectFunction(object_index);
1829    Handle<JSObject> arguments =
1830        isolate_->factory()->NewArgumentsObject(function, length);
1831    Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
1832    DCHECK_EQ(array->length(), length);
1833    arguments->set_elements(*array);
1834    materialized_objects_->Add(arguments);
1835    for (int i = 0; i < length; ++i) {
1836      Handle<Object> value = MaterializeNextValue();
1837      array->set(i, *value);
1838    }
1839  } else {
1840    // Dispatch on the instance type of the object to be materialized.
1841    // We also need to make sure that the representation of all fields
1842    // in the given object are general enough to hold a tagged value.
1843    Handle<Map> map = Map::GeneralizeAllFieldRepresentations(
1844        Handle<Map>::cast(MaterializeNextValue()));
1845    switch (map->instance_type()) {
1846      case MUTABLE_HEAP_NUMBER_TYPE:
1847      case HEAP_NUMBER_TYPE: {
1848        // Reuse the HeapNumber value directly as it is already properly
1849        // tagged and skip materializing the HeapNumber explicitly. Turn mutable
1850        // heap numbers immutable.
1851        Handle<Object> object = MaterializeNextValue();
1852        if (object_index < prev_materialized_count_) {
1853          materialized_objects_->Add(Handle<Object>(
1854              previously_materialized_objects_->get(object_index), isolate_));
1855        } else {
1856          materialized_objects_->Add(object);
1857        }
1858        materialization_value_index_ += kDoubleSize / kPointerSize - 1;
1859        break;
1860      }
1861      case JS_OBJECT_TYPE: {
1862        Handle<JSObject> object =
1863            isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
1864        if (object_index < prev_materialized_count_) {
1865          materialized_objects_->Add(Handle<Object>(
1866              previously_materialized_objects_->get(object_index), isolate_));
1867        } else {
1868          materialized_objects_->Add(object);
1869        }
1870        Handle<Object> properties = MaterializeNextValue();
1871        Handle<Object> elements = MaterializeNextValue();
1872        object->set_properties(FixedArray::cast(*properties));
1873        object->set_elements(FixedArrayBase::cast(*elements));
1874        for (int i = 0; i < length - 3; ++i) {
1875          Handle<Object> value = MaterializeNextValue();
1876          FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
1877          object->FastPropertyAtPut(index, *value);
1878        }
1879        break;
1880      }
1881      case JS_ARRAY_TYPE: {
1882        Handle<JSArray> object =
1883            isolate_->factory()->NewJSArray(0, map->elements_kind());
1884        if (object_index < prev_materialized_count_) {
1885          materialized_objects_->Add(Handle<Object>(
1886              previously_materialized_objects_->get(object_index), isolate_));
1887        } else {
1888          materialized_objects_->Add(object);
1889        }
1890        Handle<Object> properties = MaterializeNextValue();
1891        Handle<Object> elements = MaterializeNextValue();
1892        Handle<Object> length = MaterializeNextValue();
1893        object->set_properties(FixedArray::cast(*properties));
1894        object->set_elements(FixedArrayBase::cast(*elements));
1895        object->set_length(*length);
1896        break;
1897      }
1898      default:
1899        PrintF(stderr,
1900               "[couldn't handle instance type %d]\n", map->instance_type());
1901        FATAL("Unsupported instance type");
1902    }
1903  }
1904
1905  return materialized_objects_->at(object_index);
1906}
1907
1908
1909Handle<Object> Deoptimizer::MaterializeNextValue() {
1910  int value_index = materialization_value_index_++;
1911  Handle<Object> value = materialized_values_->at(value_index);
1912  if (value->IsMutableHeapNumber()) {
1913    HeapNumber::cast(*value)->set_map(isolate_->heap()->heap_number_map());
1914  }
1915  if (*value == isolate_->heap()->arguments_marker()) {
1916    value = MaterializeNextHeapObject();
1917  }
1918  return value;
1919}
1920
1921
1922void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
1923  DCHECK_NE(DEBUGGER, bailout_type_);
1924
1925  MaterializedObjectStore* materialized_store =
1926      isolate_->materialized_object_store();
1927  previously_materialized_objects_ = materialized_store->Get(stack_fp_);
1928  prev_materialized_count_ = previously_materialized_objects_.is_null() ?
1929      0 : previously_materialized_objects_->length();
1930
1931  // Walk all JavaScript output frames with the given frame iterator.
1932  for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
1933    if (frame_index != 0) it->Advance();
1934    JavaScriptFrame* frame = it->frame();
1935    jsframe_functions_.Add(handle(frame->function(), isolate_));
1936    jsframe_has_adapted_arguments_.Add(frame->has_adapted_arguments());
1937  }
1938
1939  // Handlify all tagged object values before triggering any allocation.
1940  List<Handle<Object> > values(deferred_objects_tagged_values_.length());
1941  for (int i = 0; i < deferred_objects_tagged_values_.length(); ++i) {
1942    values.Add(Handle<Object>(deferred_objects_tagged_values_[i], isolate_));
1943  }
1944
1945  // Play it safe and clear all unhandlified values before we continue.
1946  deferred_objects_tagged_values_.Clear();
1947
1948  // Materialize all heap numbers before looking at arguments because when the
1949  // output frames are used to materialize arguments objects later on they need
1950  // to already contain valid heap numbers.
1951  for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
1952    HeapNumberMaterializationDescriptor<Address> d = deferred_heap_numbers_[i];
1953    Handle<Object> num = isolate_->factory()->NewNumber(d.value());
1954    if (trace_scope_ != NULL) {
1955      PrintF(trace_scope_->file(),
1956             "Materialized a new heap number %p [%e] in slot %p\n",
1957             reinterpret_cast<void*>(*num),
1958             d.value(),
1959             d.destination());
1960    }
1961    Memory::Object_at(d.destination()) = *num;
1962  }
1963
1964  // Materialize all heap numbers required for arguments/captured objects.
1965  for (int i = 0; i < deferred_objects_double_values_.length(); i++) {
1966    HeapNumberMaterializationDescriptor<int> d =
1967        deferred_objects_double_values_[i];
1968    Handle<Object> num = isolate_->factory()->NewNumber(d.value());
1969    if (trace_scope_ != NULL) {
1970      PrintF(trace_scope_->file(),
1971             "Materialized a new heap number %p [%e] for object at %d\n",
1972             reinterpret_cast<void*>(*num),
1973             d.value(),
1974             d.destination());
1975    }
1976    DCHECK(values.at(d.destination())->IsTheHole());
1977    values.Set(d.destination(), num);
1978  }
1979
1980  // Play it safe and clear all object double values before we continue.
1981  deferred_objects_double_values_.Clear();
1982
1983  // Materialize arguments/captured objects.
1984  if (!deferred_objects_.is_empty()) {
1985    List<Handle<Object> > materialized_objects(deferred_objects_.length());
1986    materialized_objects_ = &materialized_objects;
1987    materialized_values_ = &values;
1988
1989    while (materialization_object_index_ < deferred_objects_.length()) {
1990      int object_index = materialization_object_index_;
1991      ObjectMaterializationDescriptor descriptor =
1992          deferred_objects_.at(object_index);
1993
1994      // Find a previously materialized object by de-duplication or
1995      // materialize a new instance of the object if necessary. Store
1996      // the materialized object into the frame slot.
1997      Handle<Object> object = MaterializeNextHeapObject();
1998      if (descriptor.slot_address() != NULL) {
1999        Memory::Object_at(descriptor.slot_address()) = *object;
2000      }
2001      if (trace_scope_ != NULL) {
2002        if (descriptor.is_arguments()) {
2003          PrintF(trace_scope_->file(),
2004                 "Materialized %sarguments object of length %d for %p: ",
2005                 ArgumentsObjectIsAdapted(object_index) ? "(adapted) " : "",
2006                 Handle<JSObject>::cast(object)->elements()->length(),
2007                 reinterpret_cast<void*>(descriptor.slot_address()));
2008        } else {
2009          PrintF(trace_scope_->file(),
2010                 "Materialized captured object of size %d for %p: ",
2011                 Handle<HeapObject>::cast(object)->Size(),
2012                 reinterpret_cast<void*>(descriptor.slot_address()));
2013        }
2014        object->ShortPrint(trace_scope_->file());
2015        PrintF(trace_scope_->file(), "\n");
2016      }
2017    }
2018
2019    CHECK_EQ(materialization_object_index_, materialized_objects_->length());
2020    CHECK_EQ(materialization_value_index_, materialized_values_->length());
2021  }
2022
2023  if (prev_materialized_count_ > 0) {
2024    materialized_store->Remove(stack_fp_);
2025  }
2026}
2027
2028
2029void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
2030    Address parameters_top,
2031    uint32_t parameters_size,
2032    Address expressions_top,
2033    uint32_t expressions_size,
2034    DeoptimizedFrameInfo* info) {
2035  CHECK_EQ(DEBUGGER, bailout_type_);
2036  Address parameters_bottom = parameters_top + parameters_size;
2037  Address expressions_bottom = expressions_top + expressions_size;
2038  for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
2039    HeapNumberMaterializationDescriptor<Address> d = deferred_heap_numbers_[i];
2040
2041    // Check of the heap number to materialize actually belong to the frame
2042    // being extracted.
2043    Address slot = d.destination();
2044    if (parameters_top <= slot && slot < parameters_bottom) {
2045      Handle<Object> num = isolate_->factory()->NewNumber(d.value());
2046
2047      int index = (info->parameters_count() - 1) -
2048          static_cast<int>(slot - parameters_top) / kPointerSize;
2049
2050      if (trace_scope_ != NULL) {
2051        PrintF(trace_scope_->file(),
2052               "Materializing a new heap number %p [%e] in slot %p"
2053               "for parameter slot #%d\n",
2054               reinterpret_cast<void*>(*num),
2055               d.value(),
2056               d.destination(),
2057               index);
2058      }
2059
2060      info->SetParameter(index, *num);
2061    } else if (expressions_top <= slot && slot < expressions_bottom) {
2062      Handle<Object> num = isolate_->factory()->NewNumber(d.value());
2063
2064      int index = info->expression_count() - 1 -
2065          static_cast<int>(slot - expressions_top) / kPointerSize;
2066
2067      if (trace_scope_ != NULL) {
2068        PrintF(trace_scope_->file(),
2069               "Materializing a new heap number %p [%e] in slot %p"
2070               "for expression slot #%d\n",
2071               reinterpret_cast<void*>(*num),
2072               d.value(),
2073               d.destination(),
2074               index);
2075      }
2076
2077      info->SetExpression(index, *num);
2078    }
2079  }
2080}
2081
2082
2083static const char* TraceValueType(bool is_smi) {
2084  if (is_smi) {
2085    return "smi";
2086  }
2087
2088  return "heap number";
2089}
2090
2091
2092void Deoptimizer::DoTranslateObjectAndSkip(TranslationIterator* iterator) {
2093  Translation::Opcode opcode =
2094      static_cast<Translation::Opcode>(iterator->Next());
2095
2096  switch (opcode) {
2097    case Translation::BEGIN:
2098    case Translation::JS_FRAME:
2099    case Translation::ARGUMENTS_ADAPTOR_FRAME:
2100    case Translation::CONSTRUCT_STUB_FRAME:
2101    case Translation::GETTER_STUB_FRAME:
2102    case Translation::SETTER_STUB_FRAME:
2103    case Translation::COMPILED_STUB_FRAME: {
2104      FATAL("Unexpected frame start translation opcode");
2105      return;
2106    }
2107
2108    case Translation::REGISTER:
2109    case Translation::INT32_REGISTER:
2110    case Translation::UINT32_REGISTER:
2111    case Translation::DOUBLE_REGISTER:
2112    case Translation::STACK_SLOT:
2113    case Translation::INT32_STACK_SLOT:
2114    case Translation::UINT32_STACK_SLOT:
2115    case Translation::DOUBLE_STACK_SLOT:
2116    case Translation::LITERAL: {
2117      // The value is not part of any materialized object, so we can ignore it.
2118      iterator->Skip(Translation::NumberOfOperandsFor(opcode));
2119      return;
2120    }
2121
2122    case Translation::DUPLICATED_OBJECT: {
2123      int object_index = iterator->Next();
2124      if (trace_scope_ != NULL) {
2125        PrintF(trace_scope_->file(), "      skipping object ");
2126        PrintF(trace_scope_->file(),
2127               " ; duplicate of object #%d\n", object_index);
2128      }
2129      AddObjectDuplication(0, object_index);
2130      return;
2131    }
2132
2133    case Translation::ARGUMENTS_OBJECT:
2134    case Translation::CAPTURED_OBJECT: {
2135      int length = iterator->Next();
2136      bool is_args = opcode == Translation::ARGUMENTS_OBJECT;
2137      if (trace_scope_ != NULL) {
2138        PrintF(trace_scope_->file(), "    skipping object ");
2139        PrintF(trace_scope_->file(),
2140               " ; object (length = %d, is_args = %d)\n", length, is_args);
2141      }
2142
2143      AddObjectStart(0, length, is_args);
2144
2145      // We save the object values on the side and materialize the actual
2146      // object after the deoptimized frame is built.
2147      int object_index = deferred_objects_.length() - 1;
2148      for (int i = 0; i < length; i++) {
2149        DoTranslateObject(iterator, object_index, i);
2150      }
2151      return;
2152    }
2153  }
2154
2155  FATAL("Unexpected translation opcode");
2156}
2157
2158
2159void Deoptimizer::DoTranslateObject(TranslationIterator* iterator,
2160                                    int object_index,
2161                                    int field_index) {
2162  disasm::NameConverter converter;
2163  Address object_slot = deferred_objects_[object_index].slot_address();
2164
2165  Translation::Opcode opcode =
2166      static_cast<Translation::Opcode>(iterator->Next());
2167
2168  switch (opcode) {
2169    case Translation::BEGIN:
2170    case Translation::JS_FRAME:
2171    case Translation::ARGUMENTS_ADAPTOR_FRAME:
2172    case Translation::CONSTRUCT_STUB_FRAME:
2173    case Translation::GETTER_STUB_FRAME:
2174    case Translation::SETTER_STUB_FRAME:
2175    case Translation::COMPILED_STUB_FRAME:
2176      FATAL("Unexpected frame start translation opcode");
2177      return;
2178
2179    case Translation::REGISTER: {
2180      int input_reg = iterator->Next();
2181      intptr_t input_value = input_->GetRegister(input_reg);
2182      if (trace_scope_ != NULL) {
2183        PrintF(trace_scope_->file(),
2184               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2185               reinterpret_cast<intptr_t>(object_slot),
2186               field_index);
2187        PrintF(trace_scope_->file(),
2188               "0x%08" V8PRIxPTR " ; %s ", input_value,
2189               converter.NameOfCPURegister(input_reg));
2190        reinterpret_cast<Object*>(input_value)->ShortPrint(
2191            trace_scope_->file());
2192        PrintF(trace_scope_->file(),
2193               "\n");
2194      }
2195      AddObjectTaggedValue(input_value);
2196      return;
2197    }
2198
2199    case Translation::INT32_REGISTER: {
2200      int input_reg = iterator->Next();
2201      intptr_t value = input_->GetRegister(input_reg);
2202      bool is_smi = Smi::IsValid(value);
2203      if (trace_scope_ != NULL) {
2204        PrintF(trace_scope_->file(),
2205               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2206               reinterpret_cast<intptr_t>(object_slot),
2207               field_index);
2208        PrintF(trace_scope_->file(),
2209               "%" V8PRIdPTR " ; %s (%s)\n", value,
2210               converter.NameOfCPURegister(input_reg),
2211               TraceValueType(is_smi));
2212      }
2213      if (is_smi) {
2214        intptr_t tagged_value =
2215            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2216        AddObjectTaggedValue(tagged_value);
2217      } else {
2218        double double_value = static_cast<double>(static_cast<int32_t>(value));
2219        AddObjectDoubleValue(double_value);
2220      }
2221      return;
2222    }
2223
2224    case Translation::UINT32_REGISTER: {
2225      int input_reg = iterator->Next();
2226      uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
2227      bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
2228      if (trace_scope_ != NULL) {
2229        PrintF(trace_scope_->file(),
2230               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2231               reinterpret_cast<intptr_t>(object_slot),
2232               field_index);
2233        PrintF(trace_scope_->file(),
2234               "%" V8PRIdPTR " ; uint %s (%s)\n", value,
2235               converter.NameOfCPURegister(input_reg),
2236               TraceValueType(is_smi));
2237      }
2238      if (is_smi) {
2239        intptr_t tagged_value =
2240            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2241        AddObjectTaggedValue(tagged_value);
2242      } else {
2243        double double_value = static_cast<double>(static_cast<uint32_t>(value));
2244        AddObjectDoubleValue(double_value);
2245      }
2246      return;
2247    }
2248
2249    case Translation::DOUBLE_REGISTER: {
2250      int input_reg = iterator->Next();
2251      double value = input_->GetDoubleRegister(input_reg);
2252      if (trace_scope_ != NULL) {
2253        PrintF(trace_scope_->file(),
2254               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2255               reinterpret_cast<intptr_t>(object_slot),
2256               field_index);
2257        PrintF(trace_scope_->file(),
2258               "%e ; %s\n", value,
2259               DoubleRegister::AllocationIndexToString(input_reg));
2260      }
2261      AddObjectDoubleValue(value);
2262      return;
2263    }
2264
2265    case Translation::STACK_SLOT: {
2266      int input_slot_index = iterator->Next();
2267      unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2268      intptr_t input_value = input_->GetFrameSlot(input_offset);
2269      if (trace_scope_ != NULL) {
2270        PrintF(trace_scope_->file(),
2271               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2272               reinterpret_cast<intptr_t>(object_slot),
2273               field_index);
2274        PrintF(trace_scope_->file(),
2275               "0x%08" V8PRIxPTR " ; [sp + %d] ", input_value, input_offset);
2276        reinterpret_cast<Object*>(input_value)->ShortPrint(
2277            trace_scope_->file());
2278        PrintF(trace_scope_->file(),
2279               "\n");
2280      }
2281      AddObjectTaggedValue(input_value);
2282      return;
2283    }
2284
2285    case Translation::INT32_STACK_SLOT: {
2286      int input_slot_index = iterator->Next();
2287      unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2288      intptr_t value = input_->GetFrameSlot(input_offset);
2289      bool is_smi = Smi::IsValid(value);
2290      if (trace_scope_ != NULL) {
2291        PrintF(trace_scope_->file(),
2292               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2293               reinterpret_cast<intptr_t>(object_slot),
2294               field_index);
2295        PrintF(trace_scope_->file(),
2296               "%" V8PRIdPTR " ; [sp + %d] (%s)\n",
2297               value, input_offset, TraceValueType(is_smi));
2298      }
2299      if (is_smi) {
2300        intptr_t tagged_value =
2301            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2302        AddObjectTaggedValue(tagged_value);
2303      } else {
2304        double double_value = static_cast<double>(static_cast<int32_t>(value));
2305        AddObjectDoubleValue(double_value);
2306      }
2307      return;
2308    }
2309
2310    case Translation::UINT32_STACK_SLOT: {
2311      int input_slot_index = iterator->Next();
2312      unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2313      uintptr_t value =
2314          static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
2315      bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
2316      if (trace_scope_ != NULL) {
2317        PrintF(trace_scope_->file(),
2318               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2319               reinterpret_cast<intptr_t>(object_slot),
2320               field_index);
2321        PrintF(trace_scope_->file(),
2322               "%" V8PRIdPTR " ; [sp + %d] (uint %s)\n",
2323               value, input_offset, TraceValueType(is_smi));
2324      }
2325      if (is_smi) {
2326        intptr_t tagged_value =
2327            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2328        AddObjectTaggedValue(tagged_value);
2329      } else {
2330        double double_value = static_cast<double>(static_cast<uint32_t>(value));
2331        AddObjectDoubleValue(double_value);
2332      }
2333      return;
2334    }
2335
2336    case Translation::DOUBLE_STACK_SLOT: {
2337      int input_slot_index = iterator->Next();
2338      unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2339      double value = input_->GetDoubleFrameSlot(input_offset);
2340      if (trace_scope_ != NULL) {
2341        PrintF(trace_scope_->file(),
2342               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2343               reinterpret_cast<intptr_t>(object_slot),
2344               field_index);
2345        PrintF(trace_scope_->file(),
2346               "%e ; [sp + %d]\n", value, input_offset);
2347      }
2348      AddObjectDoubleValue(value);
2349      return;
2350    }
2351
2352    case Translation::LITERAL: {
2353      Object* literal = ComputeLiteral(iterator->Next());
2354      if (trace_scope_ != NULL) {
2355        PrintF(trace_scope_->file(),
2356               "      object @0x%08" V8PRIxPTR ": [field #%d] <- ",
2357               reinterpret_cast<intptr_t>(object_slot),
2358               field_index);
2359        literal->ShortPrint(trace_scope_->file());
2360        PrintF(trace_scope_->file(),
2361               " ; literal\n");
2362      }
2363      intptr_t value = reinterpret_cast<intptr_t>(literal);
2364      AddObjectTaggedValue(value);
2365      return;
2366    }
2367
2368    case Translation::DUPLICATED_OBJECT: {
2369      int object_index = iterator->Next();
2370      if (trace_scope_ != NULL) {
2371        PrintF(trace_scope_->file(),
2372               "      nested @0x%08" V8PRIxPTR ": [field #%d] <- ",
2373               reinterpret_cast<intptr_t>(object_slot),
2374               field_index);
2375        isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
2376        PrintF(trace_scope_->file(),
2377               " ; duplicate of object #%d\n", object_index);
2378      }
2379      // Use the materialization marker value as a sentinel and fill in
2380      // the object after the deoptimized frame is built.
2381      intptr_t value = reinterpret_cast<intptr_t>(
2382          isolate_->heap()->arguments_marker());
2383      AddObjectDuplication(0, object_index);
2384      AddObjectTaggedValue(value);
2385      return;
2386    }
2387
2388    case Translation::ARGUMENTS_OBJECT:
2389    case Translation::CAPTURED_OBJECT: {
2390      int length = iterator->Next();
2391      bool is_args = opcode == Translation::ARGUMENTS_OBJECT;
2392      if (trace_scope_ != NULL) {
2393        PrintF(trace_scope_->file(),
2394               "      nested @0x%08" V8PRIxPTR ": [field #%d] <- ",
2395               reinterpret_cast<intptr_t>(object_slot),
2396               field_index);
2397        isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
2398        PrintF(trace_scope_->file(),
2399               " ; object (length = %d, is_args = %d)\n", length, is_args);
2400      }
2401      // Use the materialization marker value as a sentinel and fill in
2402      // the object after the deoptimized frame is built.
2403      intptr_t value = reinterpret_cast<intptr_t>(
2404          isolate_->heap()->arguments_marker());
2405      AddObjectStart(0, length, is_args);
2406      AddObjectTaggedValue(value);
2407      // We save the object values on the side and materialize the actual
2408      // object after the deoptimized frame is built.
2409      int object_index = deferred_objects_.length() - 1;
2410      for (int i = 0; i < length; i++) {
2411        DoTranslateObject(iterator, object_index, i);
2412      }
2413      return;
2414    }
2415  }
2416
2417  FATAL("Unexpected translation opcode");
2418}
2419
2420
2421void Deoptimizer::DoTranslateCommand(TranslationIterator* iterator,
2422                                     int frame_index,
2423                                     unsigned output_offset) {
2424  disasm::NameConverter converter;
2425  // A GC-safe temporary placeholder that we can put in the output frame.
2426  const intptr_t kPlaceholder = reinterpret_cast<intptr_t>(Smi::FromInt(0));
2427
2428  Translation::Opcode opcode =
2429      static_cast<Translation::Opcode>(iterator->Next());
2430
2431  switch (opcode) {
2432    case Translation::BEGIN:
2433    case Translation::JS_FRAME:
2434    case Translation::ARGUMENTS_ADAPTOR_FRAME:
2435    case Translation::CONSTRUCT_STUB_FRAME:
2436    case Translation::GETTER_STUB_FRAME:
2437    case Translation::SETTER_STUB_FRAME:
2438    case Translation::COMPILED_STUB_FRAME:
2439      FATAL("Unexpected translation opcode");
2440      return;
2441
2442    case Translation::REGISTER: {
2443      int input_reg = iterator->Next();
2444      intptr_t input_value = input_->GetRegister(input_reg);
2445      if (trace_scope_ != NULL) {
2446        PrintF(
2447            trace_scope_->file(),
2448            "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s ",
2449            output_[frame_index]->GetTop() + output_offset,
2450            output_offset,
2451            input_value,
2452            converter.NameOfCPURegister(input_reg));
2453        reinterpret_cast<Object*>(input_value)->ShortPrint(
2454            trace_scope_->file());
2455        PrintF(trace_scope_->file(), "\n");
2456      }
2457      output_[frame_index]->SetFrameSlot(output_offset, input_value);
2458      return;
2459    }
2460
2461    case Translation::INT32_REGISTER: {
2462      int input_reg = iterator->Next();
2463      intptr_t value = input_->GetRegister(input_reg);
2464      bool is_smi = Smi::IsValid(value);
2465      if (trace_scope_ != NULL) {
2466        PrintF(
2467            trace_scope_->file(),
2468            "    0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIdPTR " ; %s (%s)\n",
2469            output_[frame_index]->GetTop() + output_offset,
2470            output_offset,
2471            value,
2472            converter.NameOfCPURegister(input_reg),
2473            TraceValueType(is_smi));
2474      }
2475      if (is_smi) {
2476        intptr_t tagged_value =
2477            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2478        output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
2479      } else {
2480        // We save the untagged value on the side and store a GC-safe
2481        // temporary placeholder in the frame.
2482        AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
2483                       static_cast<double>(static_cast<int32_t>(value)));
2484        output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2485      }
2486      return;
2487    }
2488
2489    case Translation::UINT32_REGISTER: {
2490      int input_reg = iterator->Next();
2491      uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
2492      bool is_smi = value <= static_cast<uintptr_t>(Smi::kMaxValue);
2493      if (trace_scope_ != NULL) {
2494        PrintF(
2495            trace_scope_->file(),
2496            "    0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIuPTR
2497            " ; uint %s (%s)\n",
2498            output_[frame_index]->GetTop() + output_offset,
2499            output_offset,
2500            value,
2501            converter.NameOfCPURegister(input_reg),
2502            TraceValueType(is_smi));
2503      }
2504      if (is_smi) {
2505        intptr_t tagged_value =
2506            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2507        output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
2508      } else {
2509        // We save the untagged value on the side and store a GC-safe
2510        // temporary placeholder in the frame.
2511        AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
2512                       static_cast<double>(static_cast<uint32_t>(value)));
2513        output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2514      }
2515      return;
2516    }
2517
2518    case Translation::DOUBLE_REGISTER: {
2519      int input_reg = iterator->Next();
2520      double value = input_->GetDoubleRegister(input_reg);
2521      if (trace_scope_ != NULL) {
2522        PrintF(trace_scope_->file(),
2523               "    0x%08" V8PRIxPTR ": [top + %d] <- %e ; %s\n",
2524               output_[frame_index]->GetTop() + output_offset,
2525               output_offset,
2526               value,
2527               DoubleRegister::AllocationIndexToString(input_reg));
2528      }
2529      // We save the untagged value on the side and store a GC-safe
2530      // temporary placeholder in the frame.
2531      AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
2532      output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2533      return;
2534    }
2535
2536    case Translation::STACK_SLOT: {
2537      int input_slot_index = iterator->Next();
2538      unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2539      intptr_t input_value = input_->GetFrameSlot(input_offset);
2540      if (trace_scope_ != NULL) {
2541        PrintF(trace_scope_->file(),
2542               "    0x%08" V8PRIxPTR ": ",
2543               output_[frame_index]->GetTop() + output_offset);
2544        PrintF(trace_scope_->file(),
2545               "[top + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
2546               output_offset,
2547               input_value,
2548               input_offset);
2549        reinterpret_cast<Object*>(input_value)->ShortPrint(
2550            trace_scope_->file());
2551        PrintF(trace_scope_->file(), "\n");
2552      }
2553      output_[frame_index]->SetFrameSlot(output_offset, input_value);
2554      return;
2555    }
2556
2557    case Translation::INT32_STACK_SLOT: {
2558      int input_slot_index = iterator->Next();
2559      unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2560      intptr_t value = input_->GetFrameSlot(input_offset);
2561      bool is_smi = Smi::IsValid(value);
2562      if (trace_scope_ != NULL) {
2563        PrintF(trace_scope_->file(),
2564               "    0x%08" V8PRIxPTR ": ",
2565               output_[frame_index]->GetTop() + output_offset);
2566        PrintF(trace_scope_->file(),
2567               "[top + %d] <- %" V8PRIdPTR " ; [sp + %d] (%s)\n",
2568               output_offset,
2569               value,
2570               input_offset,
2571               TraceValueType(is_smi));
2572      }
2573      if (is_smi) {
2574        intptr_t tagged_value =
2575            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2576        output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
2577      } else {
2578        // We save the untagged value on the side and store a GC-safe
2579        // temporary placeholder in the frame.
2580        AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
2581                       static_cast<double>(static_cast<int32_t>(value)));
2582        output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2583      }
2584      return;
2585    }
2586
2587    case Translation::UINT32_STACK_SLOT: {
2588      int input_slot_index = iterator->Next();
2589      unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2590      uintptr_t value =
2591          static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
2592      bool is_smi = value <= static_cast<uintptr_t>(Smi::kMaxValue);
2593      if (trace_scope_ != NULL) {
2594        PrintF(trace_scope_->file(),
2595               "    0x%08" V8PRIxPTR ": ",
2596               output_[frame_index]->GetTop() + output_offset);
2597        PrintF(trace_scope_->file(),
2598               "[top + %d] <- %" V8PRIuPTR " ; [sp + %d] (uint32 %s)\n",
2599               output_offset,
2600               value,
2601               input_offset,
2602               TraceValueType(is_smi));
2603      }
2604      if (is_smi) {
2605        intptr_t tagged_value =
2606            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
2607        output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
2608      } else {
2609        // We save the untagged value on the side and store a GC-safe
2610        // temporary placeholder in the frame.
2611        AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
2612                       static_cast<double>(static_cast<uint32_t>(value)));
2613        output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2614      }
2615      return;
2616    }
2617
2618    case Translation::DOUBLE_STACK_SLOT: {
2619      int input_slot_index = iterator->Next();
2620      unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
2621      double value = input_->GetDoubleFrameSlot(input_offset);
2622      if (trace_scope_ != NULL) {
2623        PrintF(trace_scope_->file(),
2624               "    0x%08" V8PRIxPTR ": [top + %d] <- %e ; [sp + %d]\n",
2625               output_[frame_index]->GetTop() + output_offset,
2626               output_offset,
2627               value,
2628               input_offset);
2629      }
2630      // We save the untagged value on the side and store a GC-safe
2631      // temporary placeholder in the frame.
2632      AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
2633      output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
2634      return;
2635    }
2636
2637    case Translation::LITERAL: {
2638      Object* literal = ComputeLiteral(iterator->Next());
2639      if (trace_scope_ != NULL) {
2640        PrintF(trace_scope_->file(),
2641               "    0x%08" V8PRIxPTR ": [top + %d] <- ",
2642               output_[frame_index]->GetTop() + output_offset,
2643               output_offset);
2644        literal->ShortPrint(trace_scope_->file());
2645        PrintF(trace_scope_->file(), " ; literal\n");
2646      }
2647      intptr_t value = reinterpret_cast<intptr_t>(literal);
2648      output_[frame_index]->SetFrameSlot(output_offset, value);
2649      return;
2650    }
2651
2652    case Translation::DUPLICATED_OBJECT: {
2653      int object_index = iterator->Next();
2654      if (trace_scope_ != NULL) {
2655        PrintF(trace_scope_->file(),
2656               "    0x%08" V8PRIxPTR ": [top + %d] <- ",
2657               output_[frame_index]->GetTop() + output_offset,
2658               output_offset);
2659        isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
2660        PrintF(trace_scope_->file(),
2661               " ; duplicate of object #%d\n", object_index);
2662      }
2663      // Use the materialization marker value as a sentinel and fill in
2664      // the object after the deoptimized frame is built.
2665      intptr_t value = reinterpret_cast<intptr_t>(
2666          isolate_->heap()->arguments_marker());
2667      AddObjectDuplication(output_[frame_index]->GetTop() + output_offset,
2668                           object_index);
2669      output_[frame_index]->SetFrameSlot(output_offset, value);
2670      return;
2671    }
2672
2673    case Translation::ARGUMENTS_OBJECT:
2674    case Translation::CAPTURED_OBJECT: {
2675      int length = iterator->Next();
2676      bool is_args = opcode == Translation::ARGUMENTS_OBJECT;
2677      if (trace_scope_ != NULL) {
2678        PrintF(trace_scope_->file(),
2679               "    0x%08" V8PRIxPTR ": [top + %d] <- ",
2680               output_[frame_index]->GetTop() + output_offset,
2681               output_offset);
2682        isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
2683        PrintF(trace_scope_->file(),
2684               " ; object (length = %d, is_args = %d)\n", length, is_args);
2685      }
2686      // Use the materialization marker value as a sentinel and fill in
2687      // the object after the deoptimized frame is built.
2688      intptr_t value = reinterpret_cast<intptr_t>(
2689          isolate_->heap()->arguments_marker());
2690      AddObjectStart(output_[frame_index]->GetTop() + output_offset,
2691                     length, is_args);
2692      output_[frame_index]->SetFrameSlot(output_offset, value);
2693      // We save the object values on the side and materialize the actual
2694      // object after the deoptimized frame is built.
2695      int object_index = deferred_objects_.length() - 1;
2696      for (int i = 0; i < length; i++) {
2697        DoTranslateObject(iterator, object_index, i);
2698      }
2699      return;
2700    }
2701  }
2702}
2703
2704
2705unsigned Deoptimizer::ComputeInputFrameSize() const {
2706  unsigned fixed_size = ComputeFixedSize(function_);
2707  // The fp-to-sp delta already takes the context, constant pool pointer and the
2708  // function into account so we have to avoid double counting them.
2709  unsigned result = fixed_size + fp_to_sp_delta_ -
2710      StandardFrameConstants::kFixedFrameSizeFromFp;
2711  if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
2712    unsigned stack_slots = compiled_code_->stack_slots();
2713    unsigned outgoing_size = ComputeOutgoingArgumentSize();
2714    CHECK(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size);
2715  }
2716  return result;
2717}
2718
2719
2720unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const {
2721  // The fixed part of the frame consists of the return address, frame
2722  // pointer, function, context, and all the incoming arguments.
2723  return ComputeIncomingArgumentSize(function) +
2724      StandardFrameConstants::kFixedFrameSize;
2725}
2726
2727
2728unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const {
2729  // The incoming arguments is the values for formal parameters and
2730  // the receiver. Every slot contains a pointer.
2731  if (function->IsSmi()) {
2732    CHECK_EQ(Smi::cast(function), Smi::FromInt(StackFrame::STUB));
2733    return 0;
2734  }
2735  unsigned arguments = function->shared()->formal_parameter_count() + 1;
2736  return arguments * kPointerSize;
2737}
2738
2739
2740unsigned Deoptimizer::ComputeOutgoingArgumentSize() const {
2741  DeoptimizationInputData* data = DeoptimizationInputData::cast(
2742      compiled_code_->deoptimization_data());
2743  unsigned height = data->ArgumentsStackHeight(bailout_id_)->value();
2744  return height * kPointerSize;
2745}
2746
2747
2748Object* Deoptimizer::ComputeLiteral(int index) const {
2749  DeoptimizationInputData* data = DeoptimizationInputData::cast(
2750      compiled_code_->deoptimization_data());
2751  FixedArray* literals = data->LiteralArray();
2752  return literals->get(index);
2753}
2754
2755
2756void Deoptimizer::AddObjectStart(intptr_t slot, int length, bool is_args) {
2757  ObjectMaterializationDescriptor object_desc(
2758      reinterpret_cast<Address>(slot), jsframe_count_, length, -1, is_args);
2759  deferred_objects_.Add(object_desc);
2760}
2761
2762
2763void Deoptimizer::AddObjectDuplication(intptr_t slot, int object_index) {
2764  ObjectMaterializationDescriptor object_desc(
2765      reinterpret_cast<Address>(slot), jsframe_count_, -1, object_index, false);
2766  deferred_objects_.Add(object_desc);
2767}
2768
2769
2770void Deoptimizer::AddObjectTaggedValue(intptr_t value) {
2771  deferred_objects_tagged_values_.Add(reinterpret_cast<Object*>(value));
2772}
2773
2774
2775void Deoptimizer::AddObjectDoubleValue(double value) {
2776  deferred_objects_tagged_values_.Add(isolate()->heap()->the_hole_value());
2777  HeapNumberMaterializationDescriptor<int> value_desc(
2778      deferred_objects_tagged_values_.length() - 1, value);
2779  deferred_objects_double_values_.Add(value_desc);
2780}
2781
2782
2783void Deoptimizer::AddDoubleValue(intptr_t slot_address, double value) {
2784  HeapNumberMaterializationDescriptor<Address> value_desc(
2785      reinterpret_cast<Address>(slot_address), value);
2786  deferred_heap_numbers_.Add(value_desc);
2787}
2788
2789
2790void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
2791                                                   BailoutType type,
2792                                                   int max_entry_id) {
2793  // We cannot run this if the serializer is enabled because this will
2794  // cause us to emit relocation information for the external
2795  // references. This is fine because the deoptimizer's code section
2796  // isn't meant to be serialized at all.
2797  CHECK(type == EAGER || type == SOFT || type == LAZY);
2798  DeoptimizerData* data = isolate->deoptimizer_data();
2799  int entry_count = data->deopt_entry_code_entries_[type];
2800  if (max_entry_id < entry_count) return;
2801  entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
2802  while (max_entry_id >= entry_count) entry_count *= 2;
2803  CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries);
2804
2805  MacroAssembler masm(isolate, NULL, 16 * KB);
2806  masm.set_emit_debug_code(false);
2807  GenerateDeoptimizationEntries(&masm, entry_count, type);
2808  CodeDesc desc;
2809  masm.GetCode(&desc);
2810  DCHECK(!RelocInfo::RequiresRelocation(desc));
2811
2812  MemoryChunk* chunk = data->deopt_entry_code_[type];
2813  CHECK(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
2814        desc.instr_size);
2815  chunk->CommitArea(desc.instr_size);
2816  CopyBytes(chunk->area_start(), desc.buffer,
2817      static_cast<size_t>(desc.instr_size));
2818  CpuFeatures::FlushICache(chunk->area_start(), desc.instr_size);
2819
2820  data->deopt_entry_code_entries_[type] = entry_count;
2821}
2822
2823
2824FrameDescription::FrameDescription(uint32_t frame_size,
2825                                   JSFunction* function)
2826    : frame_size_(frame_size),
2827      function_(function),
2828      top_(kZapUint32),
2829      pc_(kZapUint32),
2830      fp_(kZapUint32),
2831      context_(kZapUint32),
2832      constant_pool_(kZapUint32) {
2833  // Zap all the registers.
2834  for (int r = 0; r < Register::kNumRegisters; r++) {
2835    // TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
2836    // isn't used before the next safepoint, the GC will try to scan it as a
2837    // tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
2838    SetRegister(r, kZapUint32);
2839  }
2840
2841  // Zap all the slots.
2842  for (unsigned o = 0; o < frame_size; o += kPointerSize) {
2843    SetFrameSlot(o, kZapUint32);
2844  }
2845}
2846
2847
2848int FrameDescription::ComputeFixedSize() {
2849  return StandardFrameConstants::kFixedFrameSize +
2850      (ComputeParametersCount() + 1) * kPointerSize;
2851}
2852
2853
2854unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
2855  if (slot_index >= 0) {
2856    // Local or spill slots. Skip the fixed part of the frame
2857    // including all arguments.
2858    unsigned base = GetFrameSize() - ComputeFixedSize();
2859    return base - ((slot_index + 1) * kPointerSize);
2860  } else {
2861    // Incoming parameter.
2862    int arg_size = (ComputeParametersCount() + 1) * kPointerSize;
2863    unsigned base = GetFrameSize() - arg_size;
2864    return base - ((slot_index + 1) * kPointerSize);
2865  }
2866}
2867
2868
2869int FrameDescription::ComputeParametersCount() {
2870  switch (type_) {
2871    case StackFrame::JAVA_SCRIPT:
2872      return function_->shared()->formal_parameter_count();
2873    case StackFrame::ARGUMENTS_ADAPTOR: {
2874      // Last slot contains number of incomming arguments as a smi.
2875      // Can't use GetExpression(0) because it would cause infinite recursion.
2876      return reinterpret_cast<Smi*>(*GetFrameSlotPointer(0))->value();
2877    }
2878    case StackFrame::STUB:
2879      return -1;  // Minus receiver.
2880    default:
2881      FATAL("Unexpected stack frame type");
2882      return 0;
2883  }
2884}
2885
2886
2887Object* FrameDescription::GetParameter(int index) {
2888  CHECK_GE(index, 0);
2889  CHECK_LT(index, ComputeParametersCount());
2890  // The slot indexes for incoming arguments are negative.
2891  unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount());
2892  return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
2893}
2894
2895
2896unsigned FrameDescription::GetExpressionCount() {
2897  CHECK_EQ(StackFrame::JAVA_SCRIPT, type_);
2898  unsigned size = GetFrameSize() - ComputeFixedSize();
2899  return size / kPointerSize;
2900}
2901
2902
2903Object* FrameDescription::GetExpression(int index) {
2904  DCHECK_EQ(StackFrame::JAVA_SCRIPT, type_);
2905  unsigned offset = GetOffsetFromSlotIndex(index);
2906  return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
2907}
2908
2909
2910void TranslationBuffer::Add(int32_t value, Zone* zone) {
2911  // Encode the sign bit in the least significant bit.
2912  bool is_negative = (value < 0);
2913  uint32_t bits = ((is_negative ? -value : value) << 1) |
2914      static_cast<int32_t>(is_negative);
2915  // Encode the individual bytes using the least significant bit of
2916  // each byte to indicate whether or not more bytes follow.
2917  do {
2918    uint32_t next = bits >> 7;
2919    contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
2920    bits = next;
2921  } while (bits != 0);
2922}
2923
2924
2925int32_t TranslationIterator::Next() {
2926  // Run through the bytes until we reach one with a least significant
2927  // bit of zero (marks the end).
2928  uint32_t bits = 0;
2929  for (int i = 0; true; i += 7) {
2930    DCHECK(HasNext());
2931    uint8_t next = buffer_->get(index_++);
2932    bits |= (next >> 1) << i;
2933    if ((next & 1) == 0) break;
2934  }
2935  // The bits encode the sign in the least significant bit.
2936  bool is_negative = (bits & 1) == 1;
2937  int32_t result = bits >> 1;
2938  return is_negative ? -result : result;
2939}
2940
2941
2942Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
2943  int length = contents_.length();
2944  Handle<ByteArray> result = factory->NewByteArray(length, TENURED);
2945  MemCopy(result->GetDataStartAddress(), contents_.ToVector().start(), length);
2946  return result;
2947}
2948
2949
2950void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
2951  buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
2952  buffer_->Add(literal_id, zone());
2953  buffer_->Add(height, zone());
2954}
2955
2956
2957void Translation::BeginGetterStubFrame(int literal_id) {
2958  buffer_->Add(GETTER_STUB_FRAME, zone());
2959  buffer_->Add(literal_id, zone());
2960}
2961
2962
2963void Translation::BeginSetterStubFrame(int literal_id) {
2964  buffer_->Add(SETTER_STUB_FRAME, zone());
2965  buffer_->Add(literal_id, zone());
2966}
2967
2968
2969void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
2970  buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
2971  buffer_->Add(literal_id, zone());
2972  buffer_->Add(height, zone());
2973}
2974
2975
2976void Translation::BeginJSFrame(BailoutId node_id,
2977                               int literal_id,
2978                               unsigned height) {
2979  buffer_->Add(JS_FRAME, zone());
2980  buffer_->Add(node_id.ToInt(), zone());
2981  buffer_->Add(literal_id, zone());
2982  buffer_->Add(height, zone());
2983}
2984
2985
2986void Translation::BeginCompiledStubFrame() {
2987  buffer_->Add(COMPILED_STUB_FRAME, zone());
2988}
2989
2990
2991void Translation::BeginArgumentsObject(int args_length) {
2992  buffer_->Add(ARGUMENTS_OBJECT, zone());
2993  buffer_->Add(args_length, zone());
2994}
2995
2996
2997void Translation::BeginCapturedObject(int length) {
2998  buffer_->Add(CAPTURED_OBJECT, zone());
2999  buffer_->Add(length, zone());
3000}
3001
3002
3003void Translation::DuplicateObject(int object_index) {
3004  buffer_->Add(DUPLICATED_OBJECT, zone());
3005  buffer_->Add(object_index, zone());
3006}
3007
3008
3009void Translation::StoreRegister(Register reg) {
3010  buffer_->Add(REGISTER, zone());
3011  buffer_->Add(reg.code(), zone());
3012}
3013
3014
3015void Translation::StoreInt32Register(Register reg) {
3016  buffer_->Add(INT32_REGISTER, zone());
3017  buffer_->Add(reg.code(), zone());
3018}
3019
3020
3021void Translation::StoreUint32Register(Register reg) {
3022  buffer_->Add(UINT32_REGISTER, zone());
3023  buffer_->Add(reg.code(), zone());
3024}
3025
3026
3027void Translation::StoreDoubleRegister(DoubleRegister reg) {
3028  buffer_->Add(DOUBLE_REGISTER, zone());
3029  buffer_->Add(DoubleRegister::ToAllocationIndex(reg), zone());
3030}
3031
3032
3033void Translation::StoreStackSlot(int index) {
3034  buffer_->Add(STACK_SLOT, zone());
3035  buffer_->Add(index, zone());
3036}
3037
3038
3039void Translation::StoreInt32StackSlot(int index) {
3040  buffer_->Add(INT32_STACK_SLOT, zone());
3041  buffer_->Add(index, zone());
3042}
3043
3044
3045void Translation::StoreUint32StackSlot(int index) {
3046  buffer_->Add(UINT32_STACK_SLOT, zone());
3047  buffer_->Add(index, zone());
3048}
3049
3050
3051void Translation::StoreDoubleStackSlot(int index) {
3052  buffer_->Add(DOUBLE_STACK_SLOT, zone());
3053  buffer_->Add(index, zone());
3054}
3055
3056
3057void Translation::StoreLiteral(int literal_id) {
3058  buffer_->Add(LITERAL, zone());
3059  buffer_->Add(literal_id, zone());
3060}
3061
3062
3063void Translation::StoreArgumentsObject(bool args_known,
3064                                       int args_index,
3065                                       int args_length) {
3066  buffer_->Add(ARGUMENTS_OBJECT, zone());
3067  buffer_->Add(args_known, zone());
3068  buffer_->Add(args_index, zone());
3069  buffer_->Add(args_length, zone());
3070}
3071
3072
3073int Translation::NumberOfOperandsFor(Opcode opcode) {
3074  switch (opcode) {
3075    case GETTER_STUB_FRAME:
3076    case SETTER_STUB_FRAME:
3077    case DUPLICATED_OBJECT:
3078    case ARGUMENTS_OBJECT:
3079    case CAPTURED_OBJECT:
3080    case REGISTER:
3081    case INT32_REGISTER:
3082    case UINT32_REGISTER:
3083    case DOUBLE_REGISTER:
3084    case STACK_SLOT:
3085    case INT32_STACK_SLOT:
3086    case UINT32_STACK_SLOT:
3087    case DOUBLE_STACK_SLOT:
3088    case LITERAL:
3089    case COMPILED_STUB_FRAME:
3090      return 1;
3091    case BEGIN:
3092    case ARGUMENTS_ADAPTOR_FRAME:
3093    case CONSTRUCT_STUB_FRAME:
3094      return 2;
3095    case JS_FRAME:
3096      return 3;
3097  }
3098  FATAL("Unexpected translation type");
3099  return -1;
3100}
3101
3102
3103#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
3104
3105const char* Translation::StringFor(Opcode opcode) {
3106#define TRANSLATION_OPCODE_CASE(item)   case item: return #item;
3107  switch (opcode) {
3108    TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
3109  }
3110#undef TRANSLATION_OPCODE_CASE
3111  UNREACHABLE();
3112  return "";
3113}
3114
3115#endif
3116
3117
3118// We can't intermix stack decoding and allocations because
3119// deoptimization infrastracture is not GC safe.
3120// Thus we build a temporary structure in malloced space.
3121SlotRef SlotRefValueBuilder::ComputeSlotForNextArgument(
3122    Translation::Opcode opcode,
3123    TranslationIterator* iterator,
3124    DeoptimizationInputData* data,
3125    JavaScriptFrame* frame) {
3126  switch (opcode) {
3127    case Translation::BEGIN:
3128    case Translation::JS_FRAME:
3129    case Translation::ARGUMENTS_ADAPTOR_FRAME:
3130    case Translation::CONSTRUCT_STUB_FRAME:
3131    case Translation::GETTER_STUB_FRAME:
3132    case Translation::SETTER_STUB_FRAME:
3133      // Peeled off before getting here.
3134      break;
3135
3136    case Translation::DUPLICATED_OBJECT: {
3137      return SlotRef::NewDuplicateObject(iterator->Next());
3138    }
3139
3140    case Translation::ARGUMENTS_OBJECT:
3141      return SlotRef::NewArgumentsObject(iterator->Next());
3142
3143    case Translation::CAPTURED_OBJECT: {
3144      return SlotRef::NewDeferredObject(iterator->Next());
3145    }
3146
3147    case Translation::REGISTER:
3148    case Translation::INT32_REGISTER:
3149    case Translation::UINT32_REGISTER:
3150    case Translation::DOUBLE_REGISTER:
3151      // We are at safepoint which corresponds to call.  All registers are
3152      // saved by caller so there would be no live registers at this
3153      // point. Thus these translation commands should not be used.
3154      break;
3155
3156    case Translation::STACK_SLOT: {
3157      int slot_index = iterator->Next();
3158      Address slot_addr = SlotAddress(frame, slot_index);
3159      return SlotRef(slot_addr, SlotRef::TAGGED);
3160    }
3161
3162    case Translation::INT32_STACK_SLOT: {
3163      int slot_index = iterator->Next();
3164      Address slot_addr = SlotAddress(frame, slot_index);
3165      return SlotRef(slot_addr, SlotRef::INT32);
3166    }
3167
3168    case Translation::UINT32_STACK_SLOT: {
3169      int slot_index = iterator->Next();
3170      Address slot_addr = SlotAddress(frame, slot_index);
3171      return SlotRef(slot_addr, SlotRef::UINT32);
3172    }
3173
3174    case Translation::DOUBLE_STACK_SLOT: {
3175      int slot_index = iterator->Next();
3176      Address slot_addr = SlotAddress(frame, slot_index);
3177      return SlotRef(slot_addr, SlotRef::DOUBLE);
3178    }
3179
3180    case Translation::LITERAL: {
3181      int literal_index = iterator->Next();
3182      return SlotRef(data->GetIsolate(),
3183                     data->LiteralArray()->get(literal_index));
3184    }
3185
3186    case Translation::COMPILED_STUB_FRAME:
3187      UNREACHABLE();
3188      break;
3189  }
3190
3191  FATAL("We should never get here - unexpected deopt info.");
3192  return SlotRef();
3193}
3194
3195
3196SlotRefValueBuilder::SlotRefValueBuilder(JavaScriptFrame* frame,
3197                                         int inlined_jsframe_index,
3198                                         int formal_parameter_count)
3199    : current_slot_(0), args_length_(-1), first_slot_index_(-1) {
3200  DisallowHeapAllocation no_gc;
3201
3202  int deopt_index = Safepoint::kNoDeoptimizationIndex;
3203  DeoptimizationInputData* data =
3204      static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
3205  TranslationIterator it(data->TranslationByteArray(),
3206                         data->TranslationIndex(deopt_index)->value());
3207  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
3208  CHECK_EQ(opcode, Translation::BEGIN);
3209  it.Next();  // Drop frame count.
3210
3211  stack_frame_id_ = frame->fp();
3212
3213  int jsframe_count = it.Next();
3214  CHECK_GT(jsframe_count, inlined_jsframe_index);
3215  int jsframes_to_skip = inlined_jsframe_index;
3216  int number_of_slots = -1;  // Number of slots inside our frame (yet unknown)
3217  bool should_deopt = false;
3218  while (number_of_slots != 0) {
3219    opcode = static_cast<Translation::Opcode>(it.Next());
3220    bool processed = false;
3221    if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) {
3222      if (jsframes_to_skip == 0) {
3223        CHECK_EQ(Translation::NumberOfOperandsFor(opcode), 2);
3224
3225        it.Skip(1);  // literal id
3226        int height = it.Next();
3227
3228        // Skip the translation command for the receiver.
3229        it.Skip(Translation::NumberOfOperandsFor(
3230            static_cast<Translation::Opcode>(it.Next())));
3231
3232        // We reached the arguments adaptor frame corresponding to the
3233        // inlined function in question.  Number of arguments is height - 1.
3234        first_slot_index_ = slot_refs_.length();
3235        args_length_ = height - 1;
3236        number_of_slots = height - 1;
3237        processed = true;
3238      }
3239    } else if (opcode == Translation::JS_FRAME) {
3240      if (jsframes_to_skip == 0) {
3241        // Skip over operands to advance to the next opcode.
3242        it.Skip(Translation::NumberOfOperandsFor(opcode));
3243
3244        // Skip the translation command for the receiver.
3245        it.Skip(Translation::NumberOfOperandsFor(
3246            static_cast<Translation::Opcode>(it.Next())));
3247
3248        // We reached the frame corresponding to the inlined function
3249        // in question.  Process the translation commands for the
3250        // arguments.  Number of arguments is equal to the number of
3251        // format parameter count.
3252        first_slot_index_ = slot_refs_.length();
3253        args_length_ = formal_parameter_count;
3254        number_of_slots = formal_parameter_count;
3255        processed = true;
3256      }
3257      jsframes_to_skip--;
3258    } else if (opcode != Translation::BEGIN &&
3259               opcode != Translation::CONSTRUCT_STUB_FRAME &&
3260               opcode != Translation::GETTER_STUB_FRAME &&
3261               opcode != Translation::SETTER_STUB_FRAME &&
3262               opcode != Translation::COMPILED_STUB_FRAME) {
3263      slot_refs_.Add(ComputeSlotForNextArgument(opcode, &it, data, frame));
3264
3265      if (first_slot_index_ >= 0) {
3266        // We have found the beginning of our frame -> make sure we count
3267        // the nested slots of captured objects
3268        number_of_slots--;
3269        SlotRef& slot = slot_refs_.last();
3270        CHECK_NE(slot.Representation(), SlotRef::ARGUMENTS_OBJECT);
3271        number_of_slots += slot.GetChildrenCount();
3272        if (slot.Representation() == SlotRef::DEFERRED_OBJECT ||
3273            slot.Representation() == SlotRef::DUPLICATE_OBJECT) {
3274          should_deopt = true;
3275        }
3276      }
3277
3278      processed = true;
3279    }
3280    if (!processed) {
3281      // Skip over operands to advance to the next opcode.
3282      it.Skip(Translation::NumberOfOperandsFor(opcode));
3283    }
3284  }
3285  if (should_deopt) {
3286    List<JSFunction*> functions(2);
3287    frame->GetFunctions(&functions);
3288    Deoptimizer::DeoptimizeFunction(functions[0]);
3289  }
3290}
3291
3292
3293Handle<Object> SlotRef::GetValue(Isolate* isolate) {
3294  switch (representation_) {
3295    case TAGGED:
3296      return Handle<Object>(Memory::Object_at(addr_), isolate);
3297
3298    case INT32: {
3299#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
3300      int value = Memory::int32_at(addr_ + kIntSize);
3301#else
3302      int value = Memory::int32_at(addr_);
3303#endif
3304      if (Smi::IsValid(value)) {
3305        return Handle<Object>(Smi::FromInt(value), isolate);
3306      } else {
3307        return isolate->factory()->NewNumberFromInt(value);
3308      }
3309    }
3310
3311    case UINT32: {
3312#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
3313      uint32_t value = Memory::uint32_at(addr_ + kIntSize);
3314#else
3315      uint32_t value = Memory::uint32_at(addr_);
3316#endif
3317      if (value <= static_cast<uint32_t>(Smi::kMaxValue)) {
3318        return Handle<Object>(Smi::FromInt(static_cast<int>(value)), isolate);
3319      } else {
3320        return isolate->factory()->NewNumber(static_cast<double>(value));
3321      }
3322    }
3323
3324    case DOUBLE: {
3325      double value = read_double_value(addr_);
3326      return isolate->factory()->NewNumber(value);
3327    }
3328
3329    case LITERAL:
3330      return literal_;
3331
3332    default:
3333      FATAL("We should never get here - unexpected deopt info.");
3334      return Handle<Object>::null();
3335  }
3336}
3337
3338
3339void SlotRefValueBuilder::Prepare(Isolate* isolate) {
3340  MaterializedObjectStore* materialized_store =
3341      isolate->materialized_object_store();
3342  previously_materialized_objects_ = materialized_store->Get(stack_frame_id_);
3343  prev_materialized_count_ = previously_materialized_objects_.is_null()
3344      ? 0 : previously_materialized_objects_->length();
3345
3346  // Skip any materialized objects of the inlined "parent" frames.
3347  // (Note that we still need to materialize them because they might be
3348  // referred to as duplicated objects.)
3349  while (current_slot_ < first_slot_index_) {
3350    GetNext(isolate, 0);
3351  }
3352  CHECK_EQ(current_slot_, first_slot_index_);
3353}
3354
3355
3356Handle<Object> SlotRefValueBuilder::GetPreviouslyMaterialized(
3357    Isolate* isolate, int length) {
3358  int object_index = materialized_objects_.length();
3359  Handle<Object> return_value = Handle<Object>(
3360      previously_materialized_objects_->get(object_index), isolate);
3361  materialized_objects_.Add(return_value);
3362
3363  // Now need to skip all the nested objects (and possibly read them from
3364  // the materialization store, too).
3365  for (int i = 0; i < length; i++) {
3366    SlotRef& slot = slot_refs_[current_slot_];
3367    current_slot_++;
3368
3369    // We need to read all the nested objects - add them to the
3370    // number of objects we need to process.
3371    length += slot.GetChildrenCount();
3372
3373    // Put the nested deferred/duplicate objects into our materialization
3374    // array.
3375    if (slot.Representation() == SlotRef::DEFERRED_OBJECT ||
3376        slot.Representation() == SlotRef::DUPLICATE_OBJECT) {
3377      int nested_object_index = materialized_objects_.length();
3378      Handle<Object> nested_object = Handle<Object>(
3379          previously_materialized_objects_->get(nested_object_index),
3380          isolate);
3381      materialized_objects_.Add(nested_object);
3382    }
3383  }
3384
3385  return return_value;
3386}
3387
3388
3389Handle<Object> SlotRefValueBuilder::GetNext(Isolate* isolate, int lvl) {
3390  SlotRef& slot = slot_refs_[current_slot_];
3391  current_slot_++;
3392  switch (slot.Representation()) {
3393    case SlotRef::TAGGED:
3394    case SlotRef::INT32:
3395    case SlotRef::UINT32:
3396    case SlotRef::DOUBLE:
3397    case SlotRef::LITERAL: {
3398      return slot.GetValue(isolate);
3399    }
3400    case SlotRef::ARGUMENTS_OBJECT: {
3401      // We should never need to materialize an arguments object,
3402      // but we still need to put something into the array
3403      // so that the indexing is consistent.
3404      materialized_objects_.Add(isolate->factory()->undefined_value());
3405      int length = slot.GetChildrenCount();
3406      for (int i = 0; i < length; ++i) {
3407        // We don't need the argument, just ignore it
3408        GetNext(isolate, lvl + 1);
3409      }
3410      return isolate->factory()->undefined_value();
3411    }
3412    case SlotRef::DEFERRED_OBJECT: {
3413      int length = slot.GetChildrenCount();
3414      CHECK(slot_refs_[current_slot_].Representation() == SlotRef::LITERAL ||
3415            slot_refs_[current_slot_].Representation() == SlotRef::TAGGED);
3416
3417      int object_index = materialized_objects_.length();
3418      if (object_index <  prev_materialized_count_) {
3419        return GetPreviouslyMaterialized(isolate, length);
3420      }
3421
3422      Handle<Object> map_object = slot_refs_[current_slot_].GetValue(isolate);
3423      Handle<Map> map = Map::GeneralizeAllFieldRepresentations(
3424          Handle<Map>::cast(map_object));
3425      current_slot_++;
3426      // TODO(jarin) this should be unified with the code in
3427      // Deoptimizer::MaterializeNextHeapObject()
3428      switch (map->instance_type()) {
3429        case MUTABLE_HEAP_NUMBER_TYPE:
3430        case HEAP_NUMBER_TYPE: {
3431          // Reuse the HeapNumber value directly as it is already properly
3432          // tagged and skip materializing the HeapNumber explicitly.
3433          Handle<Object> object = GetNext(isolate, lvl + 1);
3434          materialized_objects_.Add(object);
3435          // On 32-bit architectures, there is an extra slot there because
3436          // the escape analysis calculates the number of slots as
3437          // object-size/pointer-size. To account for this, we read out
3438          // any extra slots.
3439          for (int i = 0; i < length - 2; i++) {
3440            GetNext(isolate, lvl + 1);
3441          }
3442          return object;
3443        }
3444        case JS_OBJECT_TYPE: {
3445          Handle<JSObject> object =
3446              isolate->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
3447          materialized_objects_.Add(object);
3448          Handle<Object> properties = GetNext(isolate, lvl + 1);
3449          Handle<Object> elements = GetNext(isolate, lvl + 1);
3450          object->set_properties(FixedArray::cast(*properties));
3451          object->set_elements(FixedArrayBase::cast(*elements));
3452          for (int i = 0; i < length - 3; ++i) {
3453            Handle<Object> value = GetNext(isolate, lvl + 1);
3454            FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
3455            object->FastPropertyAtPut(index, *value);
3456          }
3457          return object;
3458        }
3459        case JS_ARRAY_TYPE: {
3460          Handle<JSArray> object =
3461              isolate->factory()->NewJSArray(0, map->elements_kind());
3462          materialized_objects_.Add(object);
3463          Handle<Object> properties = GetNext(isolate, lvl + 1);
3464          Handle<Object> elements = GetNext(isolate, lvl + 1);
3465          Handle<Object> length = GetNext(isolate, lvl + 1);
3466          object->set_properties(FixedArray::cast(*properties));
3467          object->set_elements(FixedArrayBase::cast(*elements));
3468          object->set_length(*length);
3469          return object;
3470        }
3471        default:
3472          PrintF(stderr,
3473                 "[couldn't handle instance type %d]\n", map->instance_type());
3474          UNREACHABLE();
3475          break;
3476      }
3477      UNREACHABLE();
3478      break;
3479    }
3480
3481    case SlotRef::DUPLICATE_OBJECT: {
3482      int object_index = slot.DuplicateObjectId();
3483      Handle<Object> object = materialized_objects_[object_index];
3484      materialized_objects_.Add(object);
3485      return object;
3486    }
3487    default:
3488      UNREACHABLE();
3489      break;
3490  }
3491
3492  FATAL("We should never get here - unexpected deopt slot kind.");
3493  return Handle<Object>::null();
3494}
3495
3496
3497void SlotRefValueBuilder::Finish(Isolate* isolate) {
3498  // We should have processed all the slots
3499  CHECK_EQ(slot_refs_.length(), current_slot_);
3500
3501  if (materialized_objects_.length() > prev_materialized_count_) {
3502    // We have materialized some new objects, so we have to store them
3503    // to prevent duplicate materialization
3504    Handle<FixedArray> array = isolate->factory()->NewFixedArray(
3505        materialized_objects_.length());
3506    for (int i = 0; i < materialized_objects_.length(); i++) {
3507      array->set(i, *(materialized_objects_.at(i)));
3508    }
3509    isolate->materialized_object_store()->Set(stack_frame_id_, array);
3510  }
3511}
3512
3513
3514Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
3515  int index = StackIdToIndex(fp);
3516  if (index == -1) {
3517    return Handle<FixedArray>::null();
3518  }
3519  Handle<FixedArray> array = GetStackEntries();
3520  CHECK_GT(array->length(), index);
3521  return Handle<FixedArray>::cast(Handle<Object>(array->get(index),
3522                                                 isolate()));
3523}
3524
3525
3526void MaterializedObjectStore::Set(Address fp,
3527    Handle<FixedArray> materialized_objects) {
3528  int index = StackIdToIndex(fp);
3529  if (index == -1) {
3530    index = frame_fps_.length();
3531    frame_fps_.Add(fp);
3532  }
3533
3534  Handle<FixedArray> array = EnsureStackEntries(index + 1);
3535  array->set(index, *materialized_objects);
3536}
3537
3538
3539void MaterializedObjectStore::Remove(Address fp) {
3540  int index = StackIdToIndex(fp);
3541  CHECK_GE(index, 0);
3542
3543  frame_fps_.Remove(index);
3544  Handle<FixedArray> array = GetStackEntries();
3545  CHECK_LT(index, array->length());
3546  for (int i = index; i < frame_fps_.length(); i++) {
3547    array->set(i, array->get(i + 1));
3548  }
3549  array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
3550}
3551
3552
3553int MaterializedObjectStore::StackIdToIndex(Address fp) {
3554  for (int i = 0; i < frame_fps_.length(); i++) {
3555    if (frame_fps_[i] == fp) {
3556      return i;
3557    }
3558  }
3559  return -1;
3560}
3561
3562
3563Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
3564  return Handle<FixedArray>(isolate()->heap()->materialized_objects());
3565}
3566
3567
3568Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
3569  Handle<FixedArray> array = GetStackEntries();
3570  if (array->length() >= length) {
3571    return array;
3572  }
3573
3574  int new_length = length > 10 ? length : 10;
3575  if (new_length < 2 * array->length()) {
3576    new_length = 2 * array->length();
3577  }
3578
3579  Handle<FixedArray> new_array =
3580      isolate()->factory()->NewFixedArray(new_length, TENURED);
3581  for (int i = 0; i < array->length(); i++) {
3582    new_array->set(i, array->get(i));
3583  }
3584  for (int i = array->length(); i < length; i++) {
3585    new_array->set(i, isolate()->heap()->undefined_value());
3586  }
3587  isolate()->heap()->public_set_materialized_objects(*new_array);
3588  return new_array;
3589}
3590
3591
3592DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
3593                                           int frame_index,
3594                                           bool has_arguments_adaptor,
3595                                           bool has_construct_stub) {
3596  FrameDescription* output_frame = deoptimizer->output_[frame_index];
3597  function_ = output_frame->GetFunction();
3598  context_ = reinterpret_cast<Object*>(output_frame->GetContext());
3599  has_construct_stub_ = has_construct_stub;
3600  expression_count_ = output_frame->GetExpressionCount();
3601  expression_stack_ = new Object*[expression_count_];
3602  // Get the source position using the unoptimized code.
3603  Address pc = reinterpret_cast<Address>(output_frame->GetPc());
3604  Code* code = Code::cast(deoptimizer->isolate()->FindCodeObject(pc));
3605  source_position_ = code->SourcePosition(pc);
3606
3607  for (int i = 0; i < expression_count_; i++) {
3608    SetExpression(i, output_frame->GetExpression(i));
3609  }
3610
3611  if (has_arguments_adaptor) {
3612    output_frame = deoptimizer->output_[frame_index - 1];
3613    CHECK_EQ(output_frame->GetFrameType(), StackFrame::ARGUMENTS_ADAPTOR);
3614  }
3615
3616  parameters_count_ = output_frame->ComputeParametersCount();
3617  parameters_ = new Object*[parameters_count_];
3618  for (int i = 0; i < parameters_count_; i++) {
3619    SetParameter(i, output_frame->GetParameter(i));
3620  }
3621}
3622
3623
3624DeoptimizedFrameInfo::~DeoptimizedFrameInfo() {
3625  delete[] expression_stack_;
3626  delete[] parameters_;
3627}
3628
3629
3630void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
3631  v->VisitPointer(bit_cast<Object**>(&function_));
3632  v->VisitPointer(&context_);
3633  v->VisitPointers(parameters_, parameters_ + parameters_count_);
3634  v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
3635}
3636
3637} }  // namespace v8::internal
3638