1/*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9#include "includes.h"
10#include <openssl/opensslv.h>
11#include <openssl/err.h>
12#include <openssl/des.h>
13#include <openssl/aes.h>
14#include <openssl/bn.h>
15#include <openssl/evp.h>
16#include <openssl/dh.h>
17#include <openssl/hmac.h>
18#include <openssl/rand.h>
19#ifdef CONFIG_OPENSSL_CMAC
20#include <openssl/cmac.h>
21#endif /* CONFIG_OPENSSL_CMAC */
22#ifdef CONFIG_ECC
23#include <openssl/ec.h>
24#endif /* CONFIG_ECC */
25
26#include "common.h"
27#include "wpabuf.h"
28#include "dh_group5.h"
29#include "sha1.h"
30#include "sha256.h"
31#include "sha384.h"
32#include "crypto.h"
33
34static BIGNUM * get_group5_prime(void)
35{
36#ifdef OPENSSL_IS_BORINGSSL
37	static const unsigned char RFC3526_PRIME_1536[] = {
38		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
39		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
40		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
41		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
42		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
43		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
44		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
45		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
46		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
47		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
48		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
49		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
50		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
51		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
52		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
53		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
54	};
55        return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
56#else /* OPENSSL_IS_BORINGSSL */
57	return get_rfc3526_prime_1536(NULL);
58#endif /* OPENSSL_IS_BORINGSSL */
59}
60
61#ifdef OPENSSL_NO_SHA256
62#define NO_SHA256_WRAPPER
63#endif
64
65static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
66				 const u8 *addr[], const size_t *len, u8 *mac)
67{
68	EVP_MD_CTX ctx;
69	size_t i;
70	unsigned int mac_len;
71
72	EVP_MD_CTX_init(&ctx);
73	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
74		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
75			   ERR_error_string(ERR_get_error(), NULL));
76		return -1;
77	}
78	for (i = 0; i < num_elem; i++) {
79		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
80			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
81				   "failed: %s",
82				   ERR_error_string(ERR_get_error(), NULL));
83			return -1;
84		}
85	}
86	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
87		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
88			   ERR_error_string(ERR_get_error(), NULL));
89		return -1;
90	}
91
92	return 0;
93}
94
95
96int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
97{
98	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
99}
100
101
102void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
103{
104	u8 pkey[8], next, tmp;
105	int i;
106	DES_key_schedule ks;
107
108	/* Add parity bits to the key */
109	next = 0;
110	for (i = 0; i < 7; i++) {
111		tmp = key[i];
112		pkey[i] = (tmp >> i) | next | 1;
113		next = tmp << (7 - i);
114	}
115	pkey[i] = next | 1;
116
117	DES_set_key((DES_cblock *) &pkey, &ks);
118	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
119			DES_ENCRYPT);
120}
121
122
123int rc4_skip(const u8 *key, size_t keylen, size_t skip,
124	     u8 *data, size_t data_len)
125{
126#ifdef OPENSSL_NO_RC4
127	return -1;
128#else /* OPENSSL_NO_RC4 */
129	EVP_CIPHER_CTX ctx;
130	int outl;
131	int res = -1;
132	unsigned char skip_buf[16];
133
134	EVP_CIPHER_CTX_init(&ctx);
135	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
136	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
137	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
138	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
139		goto out;
140
141	while (skip >= sizeof(skip_buf)) {
142		size_t len = skip;
143		if (len > sizeof(skip_buf))
144			len = sizeof(skip_buf);
145		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
146			goto out;
147		skip -= len;
148	}
149
150	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
151		res = 0;
152
153out:
154	EVP_CIPHER_CTX_cleanup(&ctx);
155	return res;
156#endif /* OPENSSL_NO_RC4 */
157}
158
159
160int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
161{
162	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
163}
164
165
166int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
167{
168	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
169}
170
171
172#ifndef NO_SHA256_WRAPPER
173int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
174		  u8 *mac)
175{
176	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
177}
178#endif /* NO_SHA256_WRAPPER */
179
180
181static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
182{
183	switch (keylen) {
184	case 16:
185		return EVP_aes_128_ecb();
186#ifndef OPENSSL_IS_BORINGSSL
187	case 24:
188		return EVP_aes_192_ecb();
189#endif /* OPENSSL_IS_BORINGSSL */
190	case 32:
191		return EVP_aes_256_ecb();
192	}
193
194	return NULL;
195}
196
197
198void * aes_encrypt_init(const u8 *key, size_t len)
199{
200	EVP_CIPHER_CTX *ctx;
201	const EVP_CIPHER *type;
202
203	type = aes_get_evp_cipher(len);
204	if (type == NULL)
205		return NULL;
206
207	ctx = os_malloc(sizeof(*ctx));
208	if (ctx == NULL)
209		return NULL;
210	EVP_CIPHER_CTX_init(ctx);
211	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
212		os_free(ctx);
213		return NULL;
214	}
215	EVP_CIPHER_CTX_set_padding(ctx, 0);
216	return ctx;
217}
218
219
220void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
221{
222	EVP_CIPHER_CTX *c = ctx;
223	int clen = 16;
224	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
225		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
226			   ERR_error_string(ERR_get_error(), NULL));
227	}
228}
229
230
231void aes_encrypt_deinit(void *ctx)
232{
233	EVP_CIPHER_CTX *c = ctx;
234	u8 buf[16];
235	int len = sizeof(buf);
236	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
237		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
238			   "%s", ERR_error_string(ERR_get_error(), NULL));
239	}
240	if (len != 0) {
241		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
242			   "in AES encrypt", len);
243	}
244	EVP_CIPHER_CTX_cleanup(c);
245	bin_clear_free(c, sizeof(*c));
246}
247
248
249void * aes_decrypt_init(const u8 *key, size_t len)
250{
251	EVP_CIPHER_CTX *ctx;
252	const EVP_CIPHER *type;
253
254	type = aes_get_evp_cipher(len);
255	if (type == NULL)
256		return NULL;
257
258	ctx = os_malloc(sizeof(*ctx));
259	if (ctx == NULL)
260		return NULL;
261	EVP_CIPHER_CTX_init(ctx);
262	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
263		os_free(ctx);
264		return NULL;
265	}
266	EVP_CIPHER_CTX_set_padding(ctx, 0);
267	return ctx;
268}
269
270
271void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
272{
273	EVP_CIPHER_CTX *c = ctx;
274	int plen = 16;
275	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
276		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
277			   ERR_error_string(ERR_get_error(), NULL));
278	}
279}
280
281
282void aes_decrypt_deinit(void *ctx)
283{
284	EVP_CIPHER_CTX *c = ctx;
285	u8 buf[16];
286	int len = sizeof(buf);
287	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
288		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
289			   "%s", ERR_error_string(ERR_get_error(), NULL));
290	}
291	if (len != 0) {
292		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
293			   "in AES decrypt", len);
294	}
295	EVP_CIPHER_CTX_cleanup(c);
296	bin_clear_free(c, sizeof(*c));
297}
298
299
300int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
301{
302	AES_KEY actx;
303	int res;
304
305	if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
306		return -1;
307	res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
308	OPENSSL_cleanse(&actx, sizeof(actx));
309	return res <= 0 ? -1 : 0;
310}
311
312
313int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
314	       u8 *plain)
315{
316	AES_KEY actx;
317	int res;
318
319	if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
320		return -1;
321	res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
322	OPENSSL_cleanse(&actx, sizeof(actx));
323	return res <= 0 ? -1 : 0;
324}
325
326
327int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
328{
329	EVP_CIPHER_CTX ctx;
330	int clen, len;
331	u8 buf[16];
332
333	EVP_CIPHER_CTX_init(&ctx);
334	if (EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1)
335		return -1;
336	EVP_CIPHER_CTX_set_padding(&ctx, 0);
337
338	clen = data_len;
339	if (EVP_EncryptUpdate(&ctx, data, &clen, data, data_len) != 1 ||
340	    clen != (int) data_len)
341		return -1;
342
343	len = sizeof(buf);
344	if (EVP_EncryptFinal_ex(&ctx, buf, &len) != 1 || len != 0)
345		return -1;
346	EVP_CIPHER_CTX_cleanup(&ctx);
347
348	return 0;
349}
350
351
352int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
353{
354	EVP_CIPHER_CTX ctx;
355	int plen, len;
356	u8 buf[16];
357
358	EVP_CIPHER_CTX_init(&ctx);
359	if (EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1)
360		return -1;
361	EVP_CIPHER_CTX_set_padding(&ctx, 0);
362
363	plen = data_len;
364	if (EVP_DecryptUpdate(&ctx, data, &plen, data, data_len) != 1 ||
365	    plen != (int) data_len)
366		return -1;
367
368	len = sizeof(buf);
369	if (EVP_DecryptFinal_ex(&ctx, buf, &len) != 1 || len != 0)
370		return -1;
371	EVP_CIPHER_CTX_cleanup(&ctx);
372
373	return 0;
374}
375
376
377int crypto_mod_exp(const u8 *base, size_t base_len,
378		   const u8 *power, size_t power_len,
379		   const u8 *modulus, size_t modulus_len,
380		   u8 *result, size_t *result_len)
381{
382	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
383	int ret = -1;
384	BN_CTX *ctx;
385
386	ctx = BN_CTX_new();
387	if (ctx == NULL)
388		return -1;
389
390	bn_base = BN_bin2bn(base, base_len, NULL);
391	bn_exp = BN_bin2bn(power, power_len, NULL);
392	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
393	bn_result = BN_new();
394
395	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
396	    bn_result == NULL)
397		goto error;
398
399	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
400		goto error;
401
402	*result_len = BN_bn2bin(bn_result, result);
403	ret = 0;
404
405error:
406	BN_clear_free(bn_base);
407	BN_clear_free(bn_exp);
408	BN_clear_free(bn_modulus);
409	BN_clear_free(bn_result);
410	BN_CTX_free(ctx);
411	return ret;
412}
413
414
415struct crypto_cipher {
416	EVP_CIPHER_CTX enc;
417	EVP_CIPHER_CTX dec;
418};
419
420
421struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
422					  const u8 *iv, const u8 *key,
423					  size_t key_len)
424{
425	struct crypto_cipher *ctx;
426	const EVP_CIPHER *cipher;
427
428	ctx = os_zalloc(sizeof(*ctx));
429	if (ctx == NULL)
430		return NULL;
431
432	switch (alg) {
433#ifndef OPENSSL_NO_RC4
434	case CRYPTO_CIPHER_ALG_RC4:
435		cipher = EVP_rc4();
436		break;
437#endif /* OPENSSL_NO_RC4 */
438#ifndef OPENSSL_NO_AES
439	case CRYPTO_CIPHER_ALG_AES:
440		switch (key_len) {
441		case 16:
442			cipher = EVP_aes_128_cbc();
443			break;
444#ifndef OPENSSL_IS_BORINGSSL
445		case 24:
446			cipher = EVP_aes_192_cbc();
447			break;
448#endif /* OPENSSL_IS_BORINGSSL */
449		case 32:
450			cipher = EVP_aes_256_cbc();
451			break;
452		default:
453			os_free(ctx);
454			return NULL;
455		}
456		break;
457#endif /* OPENSSL_NO_AES */
458#ifndef OPENSSL_NO_DES
459	case CRYPTO_CIPHER_ALG_3DES:
460		cipher = EVP_des_ede3_cbc();
461		break;
462	case CRYPTO_CIPHER_ALG_DES:
463		cipher = EVP_des_cbc();
464		break;
465#endif /* OPENSSL_NO_DES */
466#ifndef OPENSSL_NO_RC2
467	case CRYPTO_CIPHER_ALG_RC2:
468		cipher = EVP_rc2_ecb();
469		break;
470#endif /* OPENSSL_NO_RC2 */
471	default:
472		os_free(ctx);
473		return NULL;
474	}
475
476	EVP_CIPHER_CTX_init(&ctx->enc);
477	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
478	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
479	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
480	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
481		EVP_CIPHER_CTX_cleanup(&ctx->enc);
482		os_free(ctx);
483		return NULL;
484	}
485
486	EVP_CIPHER_CTX_init(&ctx->dec);
487	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
488	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
489	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
490	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
491		EVP_CIPHER_CTX_cleanup(&ctx->enc);
492		EVP_CIPHER_CTX_cleanup(&ctx->dec);
493		os_free(ctx);
494		return NULL;
495	}
496
497	return ctx;
498}
499
500
501int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
502			  u8 *crypt, size_t len)
503{
504	int outl;
505	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
506		return -1;
507	return 0;
508}
509
510
511int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
512			  u8 *plain, size_t len)
513{
514	int outl;
515	outl = len;
516	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
517		return -1;
518	return 0;
519}
520
521
522void crypto_cipher_deinit(struct crypto_cipher *ctx)
523{
524	EVP_CIPHER_CTX_cleanup(&ctx->enc);
525	EVP_CIPHER_CTX_cleanup(&ctx->dec);
526	os_free(ctx);
527}
528
529
530void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
531{
532	DH *dh;
533	struct wpabuf *pubkey = NULL, *privkey = NULL;
534	size_t publen, privlen;
535
536	*priv = NULL;
537	*publ = NULL;
538
539	dh = DH_new();
540	if (dh == NULL)
541		return NULL;
542
543	dh->g = BN_new();
544	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
545		goto err;
546
547	dh->p = get_group5_prime();
548	if (dh->p == NULL)
549		goto err;
550
551	if (DH_generate_key(dh) != 1)
552		goto err;
553
554	publen = BN_num_bytes(dh->pub_key);
555	pubkey = wpabuf_alloc(publen);
556	if (pubkey == NULL)
557		goto err;
558	privlen = BN_num_bytes(dh->priv_key);
559	privkey = wpabuf_alloc(privlen);
560	if (privkey == NULL)
561		goto err;
562
563	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
564	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
565
566	*priv = privkey;
567	*publ = pubkey;
568	return dh;
569
570err:
571	wpabuf_clear_free(pubkey);
572	wpabuf_clear_free(privkey);
573	DH_free(dh);
574	return NULL;
575}
576
577
578void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
579{
580	DH *dh;
581
582	dh = DH_new();
583	if (dh == NULL)
584		return NULL;
585
586	dh->g = BN_new();
587	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
588		goto err;
589
590	dh->p = get_group5_prime();
591	if (dh->p == NULL)
592		goto err;
593
594	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
595	if (dh->priv_key == NULL)
596		goto err;
597
598	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
599	if (dh->pub_key == NULL)
600		goto err;
601
602	if (DH_generate_key(dh) != 1)
603		goto err;
604
605	return dh;
606
607err:
608	DH_free(dh);
609	return NULL;
610}
611
612
613struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
614				  const struct wpabuf *own_private)
615{
616	BIGNUM *pub_key;
617	struct wpabuf *res = NULL;
618	size_t rlen;
619	DH *dh = ctx;
620	int keylen;
621
622	if (ctx == NULL)
623		return NULL;
624
625	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
626			    NULL);
627	if (pub_key == NULL)
628		return NULL;
629
630	rlen = DH_size(dh);
631	res = wpabuf_alloc(rlen);
632	if (res == NULL)
633		goto err;
634
635	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
636	if (keylen < 0)
637		goto err;
638	wpabuf_put(res, keylen);
639	BN_clear_free(pub_key);
640
641	return res;
642
643err:
644	BN_clear_free(pub_key);
645	wpabuf_clear_free(res);
646	return NULL;
647}
648
649
650void dh5_free(void *ctx)
651{
652	DH *dh;
653	if (ctx == NULL)
654		return;
655	dh = ctx;
656	DH_free(dh);
657}
658
659
660struct crypto_hash {
661	HMAC_CTX ctx;
662};
663
664
665struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
666				      size_t key_len)
667{
668	struct crypto_hash *ctx;
669	const EVP_MD *md;
670
671	switch (alg) {
672#ifndef OPENSSL_NO_MD5
673	case CRYPTO_HASH_ALG_HMAC_MD5:
674		md = EVP_md5();
675		break;
676#endif /* OPENSSL_NO_MD5 */
677#ifndef OPENSSL_NO_SHA
678	case CRYPTO_HASH_ALG_HMAC_SHA1:
679		md = EVP_sha1();
680		break;
681#endif /* OPENSSL_NO_SHA */
682#ifndef OPENSSL_NO_SHA256
683#ifdef CONFIG_SHA256
684	case CRYPTO_HASH_ALG_HMAC_SHA256:
685		md = EVP_sha256();
686		break;
687#endif /* CONFIG_SHA256 */
688#endif /* OPENSSL_NO_SHA256 */
689	default:
690		return NULL;
691	}
692
693	ctx = os_zalloc(sizeof(*ctx));
694	if (ctx == NULL)
695		return NULL;
696	HMAC_CTX_init(&ctx->ctx);
697
698#if OPENSSL_VERSION_NUMBER < 0x00909000
699	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
700#else /* openssl < 0.9.9 */
701	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
702		bin_clear_free(ctx, sizeof(*ctx));
703		return NULL;
704	}
705#endif /* openssl < 0.9.9 */
706
707	return ctx;
708}
709
710
711void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
712{
713	if (ctx == NULL)
714		return;
715	HMAC_Update(&ctx->ctx, data, len);
716}
717
718
719int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
720{
721	unsigned int mdlen;
722	int res;
723
724	if (ctx == NULL)
725		return -2;
726
727	if (mac == NULL || len == NULL) {
728		bin_clear_free(ctx, sizeof(*ctx));
729		return 0;
730	}
731
732	mdlen = *len;
733#if OPENSSL_VERSION_NUMBER < 0x00909000
734	HMAC_Final(&ctx->ctx, mac, &mdlen);
735	res = 1;
736#else /* openssl < 0.9.9 */
737	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
738#endif /* openssl < 0.9.9 */
739	HMAC_CTX_cleanup(&ctx->ctx);
740	bin_clear_free(ctx, sizeof(*ctx));
741
742	if (res == 1) {
743		*len = mdlen;
744		return 0;
745	}
746
747	return -1;
748}
749
750
751static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
752			       size_t key_len, size_t num_elem,
753			       const u8 *addr[], const size_t *len, u8 *mac,
754			       unsigned int mdlen)
755{
756	HMAC_CTX ctx;
757	size_t i;
758	int res;
759
760	HMAC_CTX_init(&ctx);
761#if OPENSSL_VERSION_NUMBER < 0x00909000
762	HMAC_Init_ex(&ctx, key, key_len, type, NULL);
763#else /* openssl < 0.9.9 */
764	if (HMAC_Init_ex(&ctx, key, key_len, type, NULL) != 1)
765		return -1;
766#endif /* openssl < 0.9.9 */
767
768	for (i = 0; i < num_elem; i++)
769		HMAC_Update(&ctx, addr[i], len[i]);
770
771#if OPENSSL_VERSION_NUMBER < 0x00909000
772	HMAC_Final(&ctx, mac, &mdlen);
773	res = 1;
774#else /* openssl < 0.9.9 */
775	res = HMAC_Final(&ctx, mac, &mdlen);
776#endif /* openssl < 0.9.9 */
777	HMAC_CTX_cleanup(&ctx);
778
779	return res == 1 ? 0 : -1;
780}
781
782
783#ifndef CONFIG_FIPS
784
785int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
786		    const u8 *addr[], const size_t *len, u8 *mac)
787{
788	return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
789				   mac, 16);
790}
791
792
793int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
794	     u8 *mac)
795{
796	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
797}
798
799#endif /* CONFIG_FIPS */
800
801
802int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
803		int iterations, u8 *buf, size_t buflen)
804{
805	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
806				   ssid_len, iterations, buflen, buf) != 1)
807		return -1;
808	return 0;
809}
810
811
812int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
813		     const u8 *addr[], const size_t *len, u8 *mac)
814{
815	return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
816				   len, mac, 20);
817}
818
819
820int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
821	       u8 *mac)
822{
823	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
824}
825
826
827#ifdef CONFIG_SHA256
828
829int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
830		       const u8 *addr[], const size_t *len, u8 *mac)
831{
832	return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
833				   len, mac, 32);
834}
835
836
837int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
838		size_t data_len, u8 *mac)
839{
840	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
841}
842
843#endif /* CONFIG_SHA256 */
844
845
846#ifdef CONFIG_SHA384
847
848int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
849		       const u8 *addr[], const size_t *len, u8 *mac)
850{
851	return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
852				   len, mac, 32);
853}
854
855
856int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
857		size_t data_len, u8 *mac)
858{
859	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
860}
861
862#endif /* CONFIG_SHA384 */
863
864
865int crypto_get_random(void *buf, size_t len)
866{
867	if (RAND_bytes(buf, len) != 1)
868		return -1;
869	return 0;
870}
871
872
873#ifdef CONFIG_OPENSSL_CMAC
874int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
875		     const u8 *addr[], const size_t *len, u8 *mac)
876{
877	CMAC_CTX *ctx;
878	int ret = -1;
879	size_t outlen, i;
880
881	ctx = CMAC_CTX_new();
882	if (ctx == NULL)
883		return -1;
884
885	if (key_len == 32) {
886		if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
887			goto fail;
888	} else if (key_len == 16) {
889		if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
890			goto fail;
891	} else {
892		goto fail;
893	}
894	for (i = 0; i < num_elem; i++) {
895		if (!CMAC_Update(ctx, addr[i], len[i]))
896			goto fail;
897	}
898	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
899		goto fail;
900
901	ret = 0;
902fail:
903	CMAC_CTX_free(ctx);
904	return ret;
905}
906
907
908int omac1_aes_128_vector(const u8 *key, size_t num_elem,
909			 const u8 *addr[], const size_t *len, u8 *mac)
910{
911	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
912}
913
914
915int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
916{
917	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
918}
919
920
921int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
922{
923	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
924}
925#endif /* CONFIG_OPENSSL_CMAC */
926
927
928struct crypto_bignum * crypto_bignum_init(void)
929{
930	return (struct crypto_bignum *) BN_new();
931}
932
933
934struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
935{
936	BIGNUM *bn = BN_bin2bn(buf, len, NULL);
937	return (struct crypto_bignum *) bn;
938}
939
940
941void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
942{
943	if (clear)
944		BN_clear_free((BIGNUM *) n);
945	else
946		BN_free((BIGNUM *) n);
947}
948
949
950int crypto_bignum_to_bin(const struct crypto_bignum *a,
951			 u8 *buf, size_t buflen, size_t padlen)
952{
953	int num_bytes, offset;
954
955	if (padlen > buflen)
956		return -1;
957
958	num_bytes = BN_num_bytes((const BIGNUM *) a);
959	if ((size_t) num_bytes > buflen)
960		return -1;
961	if (padlen > (size_t) num_bytes)
962		offset = padlen - num_bytes;
963	else
964		offset = 0;
965
966	os_memset(buf, 0, offset);
967	BN_bn2bin((const BIGNUM *) a, buf + offset);
968
969	return num_bytes + offset;
970}
971
972
973int crypto_bignum_add(const struct crypto_bignum *a,
974		      const struct crypto_bignum *b,
975		      struct crypto_bignum *c)
976{
977	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
978		0 : -1;
979}
980
981
982int crypto_bignum_mod(const struct crypto_bignum *a,
983		      const struct crypto_bignum *b,
984		      struct crypto_bignum *c)
985{
986	int res;
987	BN_CTX *bnctx;
988
989	bnctx = BN_CTX_new();
990	if (bnctx == NULL)
991		return -1;
992	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
993		     bnctx);
994	BN_CTX_free(bnctx);
995
996	return res ? 0 : -1;
997}
998
999
1000int crypto_bignum_exptmod(const struct crypto_bignum *a,
1001			  const struct crypto_bignum *b,
1002			  const struct crypto_bignum *c,
1003			  struct crypto_bignum *d)
1004{
1005	int res;
1006	BN_CTX *bnctx;
1007
1008	bnctx = BN_CTX_new();
1009	if (bnctx == NULL)
1010		return -1;
1011	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1012			 (const BIGNUM *) c, bnctx);
1013	BN_CTX_free(bnctx);
1014
1015	return res ? 0 : -1;
1016}
1017
1018
1019int crypto_bignum_inverse(const struct crypto_bignum *a,
1020			  const struct crypto_bignum *b,
1021			  struct crypto_bignum *c)
1022{
1023	BIGNUM *res;
1024	BN_CTX *bnctx;
1025
1026	bnctx = BN_CTX_new();
1027	if (bnctx == NULL)
1028		return -1;
1029	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1030			     (const BIGNUM *) b, bnctx);
1031	BN_CTX_free(bnctx);
1032
1033	return res ? 0 : -1;
1034}
1035
1036
1037int crypto_bignum_sub(const struct crypto_bignum *a,
1038		      const struct crypto_bignum *b,
1039		      struct crypto_bignum *c)
1040{
1041	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1042		0 : -1;
1043}
1044
1045
1046int crypto_bignum_div(const struct crypto_bignum *a,
1047		      const struct crypto_bignum *b,
1048		      struct crypto_bignum *c)
1049{
1050	int res;
1051
1052	BN_CTX *bnctx;
1053
1054	bnctx = BN_CTX_new();
1055	if (bnctx == NULL)
1056		return -1;
1057	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1058		     (const BIGNUM *) b, bnctx);
1059	BN_CTX_free(bnctx);
1060
1061	return res ? 0 : -1;
1062}
1063
1064
1065int crypto_bignum_mulmod(const struct crypto_bignum *a,
1066			 const struct crypto_bignum *b,
1067			 const struct crypto_bignum *c,
1068			 struct crypto_bignum *d)
1069{
1070	int res;
1071
1072	BN_CTX *bnctx;
1073
1074	bnctx = BN_CTX_new();
1075	if (bnctx == NULL)
1076		return -1;
1077	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1078			 (const BIGNUM *) c, bnctx);
1079	BN_CTX_free(bnctx);
1080
1081	return res ? 0 : -1;
1082}
1083
1084
1085int crypto_bignum_cmp(const struct crypto_bignum *a,
1086		      const struct crypto_bignum *b)
1087{
1088	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1089}
1090
1091
1092int crypto_bignum_bits(const struct crypto_bignum *a)
1093{
1094	return BN_num_bits((const BIGNUM *) a);
1095}
1096
1097
1098int crypto_bignum_is_zero(const struct crypto_bignum *a)
1099{
1100	return BN_is_zero((const BIGNUM *) a);
1101}
1102
1103
1104int crypto_bignum_is_one(const struct crypto_bignum *a)
1105{
1106	return BN_is_one((const BIGNUM *) a);
1107}
1108
1109
1110int crypto_bignum_legendre(const struct crypto_bignum *a,
1111			   const struct crypto_bignum *p)
1112{
1113	BN_CTX *bnctx;
1114	BIGNUM *exp = NULL, *tmp = NULL;
1115	int res = -2;
1116
1117	bnctx = BN_CTX_new();
1118	if (bnctx == NULL)
1119		return -2;
1120
1121	exp = BN_new();
1122	tmp = BN_new();
1123	if (!exp || !tmp ||
1124	    /* exp = (p-1) / 2 */
1125	    !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1126	    !BN_rshift1(exp, exp) ||
1127	    !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
1128			bnctx))
1129		goto fail;
1130
1131	if (BN_is_word(tmp, 1))
1132		res = 1;
1133	else if (BN_is_zero(tmp))
1134		res = 0;
1135	else
1136		res = -1;
1137
1138fail:
1139	BN_clear_free(tmp);
1140	BN_clear_free(exp);
1141	BN_CTX_free(bnctx);
1142	return res;
1143}
1144
1145
1146#ifdef CONFIG_ECC
1147
1148struct crypto_ec {
1149	EC_GROUP *group;
1150	BN_CTX *bnctx;
1151	BIGNUM *prime;
1152	BIGNUM *order;
1153	BIGNUM *a;
1154	BIGNUM *b;
1155};
1156
1157struct crypto_ec * crypto_ec_init(int group)
1158{
1159	struct crypto_ec *e;
1160	int nid;
1161
1162	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1163	switch (group) {
1164	case 19:
1165		nid = NID_X9_62_prime256v1;
1166		break;
1167	case 20:
1168		nid = NID_secp384r1;
1169		break;
1170	case 21:
1171		nid = NID_secp521r1;
1172		break;
1173	case 25:
1174		nid = NID_X9_62_prime192v1;
1175		break;
1176	case 26:
1177		nid = NID_secp224r1;
1178		break;
1179#ifdef NID_brainpoolP224r1
1180	case 27:
1181		nid = NID_brainpoolP224r1;
1182		break;
1183#endif /* NID_brainpoolP224r1 */
1184#ifdef NID_brainpoolP256r1
1185	case 28:
1186		nid = NID_brainpoolP256r1;
1187		break;
1188#endif /* NID_brainpoolP256r1 */
1189#ifdef NID_brainpoolP384r1
1190	case 29:
1191		nid = NID_brainpoolP384r1;
1192		break;
1193#endif /* NID_brainpoolP384r1 */
1194#ifdef NID_brainpoolP512r1
1195	case 30:
1196		nid = NID_brainpoolP512r1;
1197		break;
1198#endif /* NID_brainpoolP512r1 */
1199	default:
1200		return NULL;
1201	}
1202
1203	e = os_zalloc(sizeof(*e));
1204	if (e == NULL)
1205		return NULL;
1206
1207	e->bnctx = BN_CTX_new();
1208	e->group = EC_GROUP_new_by_curve_name(nid);
1209	e->prime = BN_new();
1210	e->order = BN_new();
1211	e->a = BN_new();
1212	e->b = BN_new();
1213	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1214	    e->order == NULL || e->a == NULL || e->b == NULL ||
1215	    !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1216	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1217		crypto_ec_deinit(e);
1218		e = NULL;
1219	}
1220
1221	return e;
1222}
1223
1224
1225void crypto_ec_deinit(struct crypto_ec *e)
1226{
1227	if (e == NULL)
1228		return;
1229	BN_clear_free(e->b);
1230	BN_clear_free(e->a);
1231	BN_clear_free(e->order);
1232	BN_clear_free(e->prime);
1233	EC_GROUP_free(e->group);
1234	BN_CTX_free(e->bnctx);
1235	os_free(e);
1236}
1237
1238
1239struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1240{
1241	if (e == NULL)
1242		return NULL;
1243	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1244}
1245
1246
1247size_t crypto_ec_prime_len(struct crypto_ec *e)
1248{
1249	return BN_num_bytes(e->prime);
1250}
1251
1252
1253size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1254{
1255	return BN_num_bits(e->prime);
1256}
1257
1258
1259const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1260{
1261	return (const struct crypto_bignum *) e->prime;
1262}
1263
1264
1265const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1266{
1267	return (const struct crypto_bignum *) e->order;
1268}
1269
1270
1271void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1272{
1273	if (clear)
1274		EC_POINT_clear_free((EC_POINT *) p);
1275	else
1276		EC_POINT_free((EC_POINT *) p);
1277}
1278
1279
1280int crypto_ec_point_to_bin(struct crypto_ec *e,
1281			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1282{
1283	BIGNUM *x_bn, *y_bn;
1284	int ret = -1;
1285	int len = BN_num_bytes(e->prime);
1286
1287	x_bn = BN_new();
1288	y_bn = BN_new();
1289
1290	if (x_bn && y_bn &&
1291	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1292						x_bn, y_bn, e->bnctx)) {
1293		if (x) {
1294			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1295					     x, len, len);
1296		}
1297		if (y) {
1298			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1299					     y, len, len);
1300		}
1301		ret = 0;
1302	}
1303
1304	BN_clear_free(x_bn);
1305	BN_clear_free(y_bn);
1306	return ret;
1307}
1308
1309
1310struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1311						  const u8 *val)
1312{
1313	BIGNUM *x, *y;
1314	EC_POINT *elem;
1315	int len = BN_num_bytes(e->prime);
1316
1317	x = BN_bin2bn(val, len, NULL);
1318	y = BN_bin2bn(val + len, len, NULL);
1319	elem = EC_POINT_new(e->group);
1320	if (x == NULL || y == NULL || elem == NULL) {
1321		BN_clear_free(x);
1322		BN_clear_free(y);
1323		EC_POINT_clear_free(elem);
1324		return NULL;
1325	}
1326
1327	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1328						 e->bnctx)) {
1329		EC_POINT_clear_free(elem);
1330		elem = NULL;
1331	}
1332
1333	BN_clear_free(x);
1334	BN_clear_free(y);
1335
1336	return (struct crypto_ec_point *) elem;
1337}
1338
1339
1340int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1341			const struct crypto_ec_point *b,
1342			struct crypto_ec_point *c)
1343{
1344	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1345			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1346}
1347
1348
1349int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1350			const struct crypto_bignum *b,
1351			struct crypto_ec_point *res)
1352{
1353	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1354			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1355		? 0 : -1;
1356}
1357
1358
1359int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1360{
1361	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1362}
1363
1364
1365int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1366				  struct crypto_ec_point *p,
1367				  const struct crypto_bignum *x, int y_bit)
1368{
1369	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1370						     (const BIGNUM *) x, y_bit,
1371						     e->bnctx) ||
1372	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1373		return -1;
1374	return 0;
1375}
1376
1377
1378struct crypto_bignum *
1379crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1380			      const struct crypto_bignum *x)
1381{
1382	BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1383
1384	tmp = BN_new();
1385	tmp2 = BN_new();
1386
1387	/* y^2 = x^3 + ax + b */
1388	if (tmp && tmp2 &&
1389	    BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1390	    BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1391	    BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1392	    BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1393	    BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1394		y_sqr = tmp2;
1395		tmp2 = NULL;
1396	}
1397
1398	BN_clear_free(tmp);
1399	BN_clear_free(tmp2);
1400
1401	return (struct crypto_bignum *) y_sqr;
1402}
1403
1404
1405int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1406				   const struct crypto_ec_point *p)
1407{
1408	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1409}
1410
1411
1412int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1413				const struct crypto_ec_point *p)
1414{
1415	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1416				    e->bnctx) == 1;
1417}
1418
1419
1420int crypto_ec_point_cmp(const struct crypto_ec *e,
1421			const struct crypto_ec_point *a,
1422			const struct crypto_ec_point *b)
1423{
1424	return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1425			    (const EC_POINT *) b, e->bnctx);
1426}
1427
1428#endif /* CONFIG_ECC */
1429