1// hashtable.h header -*- C++ -*-
2
3// Copyright (C) 2007-2014 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/hashtable.h
26 *  This is an internal header file, included by other library headers.
27 *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30#ifndef _HASHTABLE_H
31#define _HASHTABLE_H 1
32
33#pragma GCC system_header
34
35#include <bits/hashtable_policy.h>
36
37namespace std _GLIBCXX_VISIBILITY(default)
38{
39_GLIBCXX_BEGIN_NAMESPACE_VERSION
40
41  template<typename _Tp, typename _Hash>
42    using __cache_default
43      =  __not_<__and_<// Do not cache for fast hasher.
44		       __is_fast_hash<_Hash>,
45		       // Mandatory to have erase not throwing.
46		       __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47
48  /**
49   *  Primary class template _Hashtable.
50   *
51   *  @ingroup hashtable-detail
52   *
53   *  @tparam _Value  CopyConstructible type.
54   *
55   *  @tparam _Key    CopyConstructible type.
56   *
57   *  @tparam _Alloc  An allocator type
58   *  ([lib.allocator.requirements]) whose _Alloc::value_type is
59   *  _Value.  As a conforming extension, we allow for
60   *  _Alloc::value_type != _Value.
61   *
62   *  @tparam _ExtractKey  Function object that takes an object of type
63   *  _Value and returns a value of type _Key.
64   *
65   *  @tparam _Equal  Function object that takes two objects of type k
66   *  and returns a bool-like value that is true if the two objects
67   *  are considered equal.
68   *
69   *  @tparam _H1  The hash function. A unary function object with
70   *  argument type _Key and result type size_t. Return values should
71   *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72   *
73   *  @tparam _H2  The range-hashing function (in the terminology of
74   *  Tavori and Dreizin).  A binary function object whose argument
75   *  types and result type are all size_t.  Given arguments r and N,
76   *  the return value is in the range [0, N).
77   *
78   *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
79   *  binary function whose argument types are _Key and size_t and
80   *  whose result type is size_t.  Given arguments k and N, the
81   *  return value is in the range [0, N).  Default: hash(k, N) =
82   *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
83   *  and _H2 are ignored.
84   *
85   *  @tparam _RehashPolicy  Policy class with three members, all of
86   *  which govern the bucket count. _M_next_bkt(n) returns a bucket
87   *  count no smaller than n.  _M_bkt_for_elements(n) returns a
88   *  bucket count appropriate for an element count of n.
89   *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90   *  current bucket count is n_bkt and the current element count is
91   *  n_elt, we need to increase the bucket count.  If so, returns
92   *  make_pair(true, n), where n is the new bucket count.  If not,
93   *  returns make_pair(false, <anything>)
94   *
95   *  @tparam _Traits  Compile-time class with three boolean
96   *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
97   *   __unique_keys.
98   *
99   *  Each _Hashtable data structure has:
100   *
101   *  - _Bucket[]       _M_buckets
102   *  - _Hash_node_base _M_before_begin
103   *  - size_type       _M_bucket_count
104   *  - size_type       _M_element_count
105   *
106   *  with _Bucket being _Hash_node* and _Hash_node containing:
107   *
108   *  - _Hash_node*   _M_next
109   *  - Tp            _M_value
110   *  - size_t        _M_hash_code if cache_hash_code is true
111   *
112   *  In terms of Standard containers the hashtable is like the aggregation of:
113   *
114   *  - std::forward_list<_Node> containing the elements
115   *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116   *
117   *  The non-empty buckets contain the node before the first node in the
118   *  bucket. This design makes it possible to implement something like a
119   *  std::forward_list::insert_after on container insertion and
120   *  std::forward_list::erase_after on container erase
121   *  calls. _M_before_begin is equivalent to
122   *  std::forward_list::before_begin. Empty buckets contain
123   *  nullptr.  Note that one of the non-empty buckets contains
124   *  &_M_before_begin which is not a dereferenceable node so the
125   *  node pointer in a bucket shall never be dereferenced, only its
126   *  next node can be.
127   *
128   *  Walking through a bucket's nodes requires a check on the hash code to
129   *  see if each node is still in the bucket. Such a design assumes a
130   *  quite efficient hash functor and is one of the reasons it is
131   *  highly advisable to set __cache_hash_code to true.
132   *
133   *  The container iterators are simply built from nodes. This way
134   *  incrementing the iterator is perfectly efficient independent of
135   *  how many empty buckets there are in the container.
136   *
137   *  On insert we compute the element's hash code and use it to find the
138   *  bucket index. If the element must be inserted in an empty bucket
139   *  we add it at the beginning of the singly linked list and make the
140   *  bucket point to _M_before_begin. The bucket that used to point to
141   *  _M_before_begin, if any, is updated to point to its new before
142   *  begin node.
143   *
144   *  On erase, the simple iterator design requires using the hash
145   *  functor to get the index of the bucket to update. For this
146   *  reason, when __cache_hash_code is set to false the hash functor must
147   *  not throw and this is enforced by a static assertion.
148   *
149   *  Functionality is implemented by decomposition into base classes,
150   *  where the derived _Hashtable class is used in _Map_base,
151   *  _Insert, _Rehash_base, and _Equality base classes to access the
152   *  "this" pointer. _Hashtable_base is used in the base classes as a
153   *  non-recursive, fully-completed-type so that detailed nested type
154   *  information, such as iterator type and node type, can be
155   *  used. This is similar to the "Curiously Recurring Template
156   *  Pattern" (CRTP) technique, but uses a reconstructed, not
157   *  explicitly passed, template pattern.
158   *
159   *  Base class templates are:
160   *    - __detail::_Hashtable_base
161   *    - __detail::_Map_base
162   *    - __detail::_Insert
163   *    - __detail::_Rehash_base
164   *    - __detail::_Equality
165   */
166  template<typename _Key, typename _Value, typename _Alloc,
167	   typename _ExtractKey, typename _Equal,
168	   typename _H1, typename _H2, typename _Hash,
169	   typename _RehashPolicy, typename _Traits>
170    class _Hashtable
171    : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172				       _H1, _H2, _Hash, _Traits>,
173      public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175      public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177      public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179      public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181      private __detail::_Hashtable_alloc<
182	typename __alloctr_rebind<_Alloc,
183	  __detail::_Hash_node<_Value,
184			       _Traits::__hash_cached::value> >::__type>
185    {
186      using __traits_type = _Traits;
187      using __hash_cached = typename __traits_type::__hash_cached;
188      using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189      using __node_alloc_type =
190	typename __alloctr_rebind<_Alloc, __node_type>::__type;
191
192      using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
193
194      using __value_alloc_traits =
195	typename __hashtable_alloc::__value_alloc_traits;
196      using __node_alloc_traits =
197	typename __hashtable_alloc::__node_alloc_traits;
198      using __node_base = typename __hashtable_alloc::__node_base;
199      using __bucket_type = typename __hashtable_alloc::__bucket_type;
200
201    public:
202      typedef _Key						key_type;
203      typedef _Value						value_type;
204      typedef _Alloc						allocator_type;
205      typedef _Equal						key_equal;
206
207      // mapped_type, if present, comes from _Map_base.
208      // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
209      typedef typename __value_alloc_traits::pointer		pointer;
210      typedef typename __value_alloc_traits::const_pointer	const_pointer;
211      typedef value_type&					reference;
212      typedef const value_type&					const_reference;
213
214    private:
215      using __rehash_type = _RehashPolicy;
216      using __rehash_state = typename __rehash_type::_State;
217
218      using __constant_iterators = typename __traits_type::__constant_iterators;
219      using __unique_keys = typename __traits_type::__unique_keys;
220
221      using __key_extract = typename std::conditional<
222					     __constant_iterators::value,
223				       	     __detail::_Identity,
224					     __detail::_Select1st>::type;
225
226      using __hashtable_base = __detail::
227			       _Hashtable_base<_Key, _Value, _ExtractKey,
228					      _Equal, _H1, _H2, _Hash, _Traits>;
229
230      using __hash_code_base =  typename __hashtable_base::__hash_code_base;
231      using __hash_code =  typename __hashtable_base::__hash_code;
232      using __ireturn_type = typename __hashtable_base::__ireturn_type;
233
234      using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
235					     _Equal, _H1, _H2, _Hash,
236					     _RehashPolicy, _Traits>;
237
238      using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
239						   _ExtractKey, _Equal,
240						   _H1, _H2, _Hash,
241						   _RehashPolicy, _Traits>;
242
243      using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
244					    _Equal, _H1, _H2, _Hash,
245					    _RehashPolicy, _Traits>;
246
247      using __reuse_or_alloc_node_type =
248	__detail::_ReuseOrAllocNode<__node_alloc_type>;
249
250      // Metaprogramming for picking apart hash caching.
251      template<typename _Cond>
252	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253
254      template<typename _Cond>
255	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256
257      // Compile-time diagnostics.
258
259      // _Hash_code_base has everything protected, so use this derived type to
260      // access it.
261      struct __hash_code_base_access : __hash_code_base
262      { using __hash_code_base::_M_bucket_index; };
263
264      // Getting a bucket index from a node shall not throw because it is used
265      // in methods (erase, swap...) that shall not throw.
266      static_assert(noexcept(declval<const __hash_code_base_access&>()
267			     ._M_bucket_index((const __node_type*)nullptr,
268					      (std::size_t)0)),
269		    "Cache the hash code or qualify your functors involved"
270		    " in hash code and bucket index computation with noexcept");
271
272      // Following two static assertions are necessary to guarantee
273      // that local_iterator will be default constructible.
274
275      // When hash codes are cached local iterator inherits from H2 functor
276      // which must then be default constructible.
277      static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
278		    "Functor used to map hash code to bucket index"
279		    " must be default constructible");
280
281      template<typename _Keya, typename _Valuea, typename _Alloca,
282	       typename _ExtractKeya, typename _Equala,
283	       typename _H1a, typename _H2a, typename _Hasha,
284	       typename _RehashPolicya, typename _Traitsa,
285	       bool _Unique_keysa>
286	friend struct __detail::_Map_base;
287
288      template<typename _Keya, typename _Valuea, typename _Alloca,
289	       typename _ExtractKeya, typename _Equala,
290	       typename _H1a, typename _H2a, typename _Hasha,
291	       typename _RehashPolicya, typename _Traitsa>
292	friend struct __detail::_Insert_base;
293
294      template<typename _Keya, typename _Valuea, typename _Alloca,
295	       typename _ExtractKeya, typename _Equala,
296	       typename _H1a, typename _H2a, typename _Hasha,
297	       typename _RehashPolicya, typename _Traitsa,
298	       bool _Constant_iteratorsa, bool _Unique_keysa>
299	friend struct __detail::_Insert;
300
301    public:
302      using size_type = typename __hashtable_base::size_type;
303      using difference_type = typename __hashtable_base::difference_type;
304
305      using iterator = typename __hashtable_base::iterator;
306      using const_iterator = typename __hashtable_base::const_iterator;
307
308      using local_iterator = typename __hashtable_base::local_iterator;
309      using const_local_iterator = typename __hashtable_base::
310				   const_local_iterator;
311
312    private:
313      __bucket_type*		_M_buckets;
314      size_type			_M_bucket_count;
315      __node_base		_M_before_begin;
316      size_type			_M_element_count;
317      _RehashPolicy		_M_rehash_policy;
318
319      // A single bucket used when only need for 1 bucket. Especially
320      // interesting in move semantic to leave hashtable with only 1 buckets
321      // which is not allocated so that we can have those operations noexcept
322      // qualified.
323      // Note that we can't leave hashtable with 0 bucket without adding
324      // numerous checks in the code to avoid 0 modulus.
325      __bucket_type		_M_single_bucket;
326
327      bool
328      _M_uses_single_bucket(__bucket_type* __bkts) const
329      { return __builtin_expect(_M_buckets == &_M_single_bucket, false); }
330
331      bool
332      _M_uses_single_bucket() const
333      { return _M_uses_single_bucket(_M_buckets); }
334
335      __hashtable_alloc&
336      _M_base_alloc() { return *this; }
337
338      __bucket_type*
339      _M_allocate_buckets(size_type __n)
340      {
341	if (__builtin_expect(__n == 1, false))
342	  {
343	    _M_single_bucket = nullptr;
344	    return &_M_single_bucket;
345	  }
346
347	return __hashtable_alloc::_M_allocate_buckets(__n);
348      }
349
350      void
351      _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352      {
353	if (_M_uses_single_bucket(__bkts))
354	  return;
355
356	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
357      }
358
359      void
360      _M_deallocate_buckets()
361      { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362
363      // Gets bucket begin, deals with the fact that non-empty buckets contain
364      // their before begin node.
365      __node_type*
366      _M_bucket_begin(size_type __bkt) const;
367
368      __node_type*
369      _M_begin() const
370      { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371
372      template<typename _NodeGenerator>
373	void
374	_M_assign(const _Hashtable&, const _NodeGenerator&);
375
376      void
377      _M_move_assign(_Hashtable&&, std::true_type);
378
379      void
380      _M_move_assign(_Hashtable&&, std::false_type);
381
382      void
383      _M_reset() noexcept;
384
385    public:
386      // Constructor, destructor, assignment, swap
387      _Hashtable(size_type __bucket_hint,
388		 const _H1&, const _H2&, const _Hash&,
389		 const _Equal&, const _ExtractKey&,
390		 const allocator_type&);
391
392      template<typename _InputIterator>
393	_Hashtable(_InputIterator __first, _InputIterator __last,
394		   size_type __bucket_hint,
395		   const _H1&, const _H2&, const _Hash&,
396		   const _Equal&, const _ExtractKey&,
397		   const allocator_type&);
398
399      _Hashtable(const _Hashtable&);
400
401      _Hashtable(_Hashtable&&) noexcept;
402
403      _Hashtable(const _Hashtable&, const allocator_type&);
404
405      _Hashtable(_Hashtable&&, const allocator_type&);
406
407      // Use delegating constructors.
408      explicit
409      _Hashtable(const allocator_type& __a)
410      : _Hashtable(10, _H1(), _H2(), _Hash(), key_equal(),
411		   __key_extract(), __a)
412      { }
413
414      explicit
415      _Hashtable(size_type __n = 10,
416		 const _H1& __hf = _H1(),
417		 const key_equal& __eql = key_equal(),
418		 const allocator_type& __a = allocator_type())
419      : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
420		   __key_extract(), __a)
421      { }
422
423      template<typename _InputIterator>
424	_Hashtable(_InputIterator __f, _InputIterator __l,
425		   size_type __n = 0,
426		   const _H1& __hf = _H1(),
427		   const key_equal& __eql = key_equal(),
428		   const allocator_type& __a = allocator_type())
429	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
430		     __key_extract(), __a)
431	{ }
432
433      _Hashtable(initializer_list<value_type> __l,
434		 size_type __n = 0,
435		 const _H1& __hf = _H1(),
436		 const key_equal& __eql = key_equal(),
437		 const allocator_type& __a = allocator_type())
438      : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
439		   __key_extract(), __a)
440      { }
441
442      _Hashtable&
443      operator=(const _Hashtable& __ht);
444
445      _Hashtable&
446      operator=(_Hashtable&& __ht)
447      noexcept(__node_alloc_traits::_S_nothrow_move())
448      {
449        constexpr bool __move_storage =
450          __node_alloc_traits::_S_propagate_on_move_assign()
451          || __node_alloc_traits::_S_always_equal();
452        _M_move_assign(std::move(__ht),
453                       integral_constant<bool, __move_storage>());
454	return *this;
455      }
456
457      _Hashtable&
458      operator=(initializer_list<value_type> __l)
459      {
460	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
461	_M_before_begin._M_nxt = nullptr;
462	clear();
463	this->_M_insert_range(__l.begin(), __l.end(), __roan);
464	return *this;
465      }
466
467      ~_Hashtable() noexcept;
468
469      void
470      swap(_Hashtable&)
471      noexcept(__node_alloc_traits::_S_nothrow_swap());
472
473      // Basic container operations
474      iterator
475      begin() noexcept
476      { return iterator(_M_begin()); }
477
478      const_iterator
479      begin() const noexcept
480      { return const_iterator(_M_begin()); }
481
482      iterator
483      end() noexcept
484      { return iterator(nullptr); }
485
486      const_iterator
487      end() const noexcept
488      { return const_iterator(nullptr); }
489
490      const_iterator
491      cbegin() const noexcept
492      { return const_iterator(_M_begin()); }
493
494      const_iterator
495      cend() const noexcept
496      { return const_iterator(nullptr); }
497
498      size_type
499      size() const noexcept
500      { return _M_element_count; }
501
502      bool
503      empty() const noexcept
504      { return size() == 0; }
505
506      allocator_type
507      get_allocator() const noexcept
508      { return allocator_type(this->_M_node_allocator()); }
509
510      size_type
511      max_size() const noexcept
512      { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
513
514      // Observers
515      key_equal
516      key_eq() const
517      { return this->_M_eq(); }
518
519      // hash_function, if present, comes from _Hash_code_base.
520
521      // Bucket operations
522      size_type
523      bucket_count() const noexcept
524      { return _M_bucket_count; }
525
526      size_type
527      max_bucket_count() const noexcept
528      { return max_size(); }
529
530      size_type
531      bucket_size(size_type __n) const
532      { return std::distance(begin(__n), end(__n)); }
533
534      size_type
535      bucket(const key_type& __k) const
536      { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
537
538      local_iterator
539      begin(size_type __n)
540      {
541	return local_iterator(*this, _M_bucket_begin(__n),
542			      __n, _M_bucket_count);
543      }
544
545      local_iterator
546      end(size_type __n)
547      { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
548
549      const_local_iterator
550      begin(size_type __n) const
551      {
552	return const_local_iterator(*this, _M_bucket_begin(__n),
553				    __n, _M_bucket_count);
554      }
555
556      const_local_iterator
557      end(size_type __n) const
558      { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
559
560      // DR 691.
561      const_local_iterator
562      cbegin(size_type __n) const
563      {
564	return const_local_iterator(*this, _M_bucket_begin(__n),
565				    __n, _M_bucket_count);
566      }
567
568      const_local_iterator
569      cend(size_type __n) const
570      { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
571
572      float
573      load_factor() const noexcept
574      {
575	return static_cast<float>(size()) / static_cast<float>(bucket_count());
576      }
577
578      // max_load_factor, if present, comes from _Rehash_base.
579
580      // Generalization of max_load_factor.  Extension, not found in
581      // TR1.  Only useful if _RehashPolicy is something other than
582      // the default.
583      const _RehashPolicy&
584      __rehash_policy() const
585      { return _M_rehash_policy; }
586
587      void
588      __rehash_policy(const _RehashPolicy&);
589
590      // Lookup.
591      iterator
592      find(const key_type& __k);
593
594      const_iterator
595      find(const key_type& __k) const;
596
597      size_type
598      count(const key_type& __k) const;
599
600      std::pair<iterator, iterator>
601      equal_range(const key_type& __k);
602
603      std::pair<const_iterator, const_iterator>
604      equal_range(const key_type& __k) const;
605
606    protected:
607      // Bucket index computation helpers.
608      size_type
609      _M_bucket_index(__node_type* __n) const noexcept
610      { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
611
612      size_type
613      _M_bucket_index(const key_type& __k, __hash_code __c) const
614      { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
615
616      // Find and insert helper functions and types
617      // Find the node before the one matching the criteria.
618      __node_base*
619      _M_find_before_node(size_type, const key_type&, __hash_code) const;
620
621      __node_type*
622      _M_find_node(size_type __bkt, const key_type& __key,
623		   __hash_code __c) const
624      {
625	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
626	if (__before_n)
627	  return static_cast<__node_type*>(__before_n->_M_nxt);
628	return nullptr;
629      }
630
631      // Insert a node at the beginning of a bucket.
632      void
633      _M_insert_bucket_begin(size_type, __node_type*);
634
635      // Remove the bucket first node
636      void
637      _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
638			     size_type __next_bkt);
639
640      // Get the node before __n in the bucket __bkt
641      __node_base*
642      _M_get_previous_node(size_type __bkt, __node_base* __n);
643
644      // Insert node with hash code __code, in bucket bkt if no rehash (assumes
645      // no element with its key already present). Take ownership of the node,
646      // deallocate it on exception.
647      iterator
648      _M_insert_unique_node(size_type __bkt, __hash_code __code,
649			    __node_type* __n);
650
651      // Insert node with hash code __code. Take ownership of the node,
652      // deallocate it on exception.
653      iterator
654      _M_insert_multi_node(__node_type* __hint,
655			   __hash_code __code, __node_type* __n);
656
657      template<typename... _Args>
658	std::pair<iterator, bool>
659	_M_emplace(std::true_type, _Args&&... __args);
660
661      template<typename... _Args>
662	iterator
663	_M_emplace(std::false_type __uk, _Args&&... __args)
664	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
665
666      // Emplace with hint, useless when keys are unique.
667      template<typename... _Args>
668	iterator
669	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
670	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
671
672      template<typename... _Args>
673	iterator
674	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
675
676      template<typename _Arg, typename _NodeGenerator>
677	std::pair<iterator, bool>
678	_M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
679
680      template<typename _Arg, typename _NodeGenerator>
681	iterator
682	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
683		  std::false_type __uk)
684	{
685	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
686			   __uk);
687	}
688
689      // Insert with hint, not used when keys are unique.
690      template<typename _Arg, typename _NodeGenerator>
691	iterator
692	_M_insert(const_iterator, _Arg&& __arg, const _NodeGenerator& __node_gen,
693		  std::true_type __uk)
694	{
695	  return
696	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
697	}
698
699      // Insert with hint when keys are not unique.
700      template<typename _Arg, typename _NodeGenerator>
701	iterator
702	_M_insert(const_iterator, _Arg&&, const _NodeGenerator&, std::false_type);
703
704      size_type
705      _M_erase(std::true_type, const key_type&);
706
707      size_type
708      _M_erase(std::false_type, const key_type&);
709
710      iterator
711      _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
712
713    public:
714      // Emplace
715      template<typename... _Args>
716	__ireturn_type
717	emplace(_Args&&... __args)
718	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
719
720      template<typename... _Args>
721	iterator
722	emplace_hint(const_iterator __hint, _Args&&... __args)
723	{
724	  return _M_emplace(__hint, __unique_keys(),
725			    std::forward<_Args>(__args)...);
726	}
727
728      // Insert member functions via inheritance.
729
730      // Erase
731      iterator
732      erase(const_iterator);
733
734      // LWG 2059.
735      iterator
736      erase(iterator __it)
737      { return erase(const_iterator(__it)); }
738
739      size_type
740      erase(const key_type& __k)
741      { return _M_erase(__unique_keys(), __k); }
742
743      iterator
744      erase(const_iterator, const_iterator);
745
746      void
747      clear() noexcept;
748
749      // Set number of buckets to be appropriate for container of n element.
750      void rehash(size_type __n);
751
752      // DR 1189.
753      // reserve, if present, comes from _Rehash_base.
754
755    private:
756      // Helper rehash method used when keys are unique.
757      void _M_rehash_aux(size_type __n, std::true_type);
758
759      // Helper rehash method used when keys can be non-unique.
760      void _M_rehash_aux(size_type __n, std::false_type);
761
762      // Unconditionally change size of bucket array to n, restore
763      // hash policy state to __state on exception.
764      void _M_rehash(size_type __n, const __rehash_state& __state);
765    };
766
767
768  // Definitions of class template _Hashtable's out-of-line member functions.
769  template<typename _Key, typename _Value,
770	   typename _Alloc, typename _ExtractKey, typename _Equal,
771	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
772	   typename _Traits>
773    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
774			_Equal, _H1, _H2, _Hash, _RehashPolicy,
775			_Traits>::__node_type*
776    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
777	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
778    _M_bucket_begin(size_type __bkt) const
779    {
780      __node_base* __n = _M_buckets[__bkt];
781      return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
782    }
783
784  template<typename _Key, typename _Value,
785	   typename _Alloc, typename _ExtractKey, typename _Equal,
786	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
787	   typename _Traits>
788    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
789	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
790    _Hashtable(size_type __bucket_hint,
791	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
792	       const _Equal& __eq, const _ExtractKey& __exk,
793	       const allocator_type& __a)
794    : __hashtable_base(__exk, __h1, __h2, __h, __eq),
795      __map_base(),
796      __rehash_base(),
797      __hashtable_alloc(__node_alloc_type(__a)),
798      _M_element_count(0),
799      _M_rehash_policy()
800    {
801      _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
802      _M_buckets = _M_allocate_buckets(_M_bucket_count);
803    }
804
805  template<typename _Key, typename _Value,
806	   typename _Alloc, typename _ExtractKey, typename _Equal,
807	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
808	   typename _Traits>
809    template<typename _InputIterator>
810      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
811		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
812      _Hashtable(_InputIterator __f, _InputIterator __l,
813		 size_type __bucket_hint,
814		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
815		 const _Equal& __eq, const _ExtractKey& __exk,
816		 const allocator_type& __a)
817      : __hashtable_base(__exk, __h1, __h2, __h, __eq),
818	__map_base(),
819	__rehash_base(),
820	__hashtable_alloc(__node_alloc_type(__a)),
821	_M_element_count(0),
822	_M_rehash_policy()
823      {
824	auto __nb_elems = __detail::__distance_fw(__f, __l);
825	_M_bucket_count =
826	  _M_rehash_policy._M_next_bkt(
827	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
828		     __bucket_hint));
829
830	_M_buckets = _M_allocate_buckets(_M_bucket_count);
831	__try
832	  {
833	    for (; __f != __l; ++__f)
834	      this->insert(*__f);
835	  }
836	__catch(...)
837	  {
838	    clear();
839	    _M_deallocate_buckets();
840	    __throw_exception_again;
841	  }
842      }
843
844  template<typename _Key, typename _Value,
845	   typename _Alloc, typename _ExtractKey, typename _Equal,
846	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
847	   typename _Traits>
848    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
849	       _H1, _H2, _Hash, _RehashPolicy, _Traits>&
850    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
851	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::operator=(
852		const _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
853				 _H1, _H2, _Hash, _RehashPolicy, _Traits>& __ht)
854      {
855	if (&__ht == this)
856	  return *this;
857
858	if (__node_alloc_traits::_S_propagate_on_copy_assign())
859	  {
860	    auto& __this_alloc = this->_M_node_allocator();
861	    auto& __that_alloc = __ht._M_node_allocator();
862	    if (!__node_alloc_traits::_S_always_equal()
863		&& __this_alloc != __that_alloc)
864	      {
865		// Replacement allocator cannot free existing storage.
866		this->_M_deallocate_nodes(_M_begin());
867		_M_before_begin._M_nxt = nullptr;
868		_M_deallocate_buckets();
869		_M_buckets = nullptr;
870		std::__alloc_on_copy(__this_alloc, __that_alloc);
871		__hashtable_base::operator=(__ht);
872		_M_bucket_count = __ht._M_bucket_count;
873		_M_element_count = __ht._M_element_count;
874		_M_rehash_policy = __ht._M_rehash_policy;
875		__try
876		  {
877		    _M_assign(__ht,
878			      [this](const __node_type* __n)
879			      { return this->_M_allocate_node(__n->_M_v()); });
880		  }
881		__catch(...)
882		  {
883		    // _M_assign took care of deallocating all memory. Now we
884		    // must make sure this instance remains in a usable state.
885		    _M_reset();
886		    __throw_exception_again;
887		  }
888		return *this;
889	      }
890	    std::__alloc_on_copy(__this_alloc, __that_alloc);
891	  }
892
893	// Reuse allocated buckets and nodes.
894	__bucket_type* __former_buckets = nullptr;
895	std::size_t __former_bucket_count = _M_bucket_count;
896	const __rehash_state& __former_state = _M_rehash_policy._M_state();
897
898	if (_M_bucket_count != __ht._M_bucket_count)
899	  {
900	    __former_buckets = _M_buckets;
901	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
902	    _M_bucket_count = __ht._M_bucket_count;
903	  }
904	else
905	  __builtin_memset(_M_buckets, 0,
906			   _M_bucket_count * sizeof(__bucket_type));
907
908	__try
909	  {
910	    __hashtable_base::operator=(__ht);
911	    _M_element_count = __ht._M_element_count;
912	    _M_rehash_policy = __ht._M_rehash_policy;
913	    __reuse_or_alloc_node_type __roan(_M_begin(), *this);
914	    _M_before_begin._M_nxt = nullptr;
915	    _M_assign(__ht,
916		      [&__roan](const __node_type* __n)
917		      { return __roan(__n->_M_v()); });
918	    if (__former_buckets)
919	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
920	  }
921	__catch(...)
922	  {
923	    if (__former_buckets)
924	      {
925		// Restore previous buckets.
926		_M_deallocate_buckets();
927		_M_rehash_policy._M_reset(__former_state);
928		_M_buckets = __former_buckets;
929		_M_bucket_count = __former_bucket_count;
930	      }
931	    __builtin_memset(_M_buckets, 0,
932			     _M_bucket_count * sizeof(__bucket_type));
933	    __throw_exception_again;
934	  }
935	return *this;
936      }
937
938  template<typename _Key, typename _Value,
939	   typename _Alloc, typename _ExtractKey, typename _Equal,
940	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
941	   typename _Traits>
942    template<typename _NodeGenerator>
943      void
944      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
945		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
946      _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
947      {
948	__bucket_type* __buckets = nullptr;
949	if (!_M_buckets)
950	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
951
952	__try
953	  {
954	    if (!__ht._M_before_begin._M_nxt)
955	      return;
956
957	    // First deal with the special first node pointed to by
958	    // _M_before_begin.
959	    __node_type* __ht_n = __ht._M_begin();
960	    __node_type* __this_n = __node_gen(__ht_n);
961	    this->_M_copy_code(__this_n, __ht_n);
962	    _M_before_begin._M_nxt = __this_n;
963	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
964
965	    // Then deal with other nodes.
966	    __node_base* __prev_n = __this_n;
967	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
968	      {
969		__this_n = __node_gen(__ht_n);
970		__prev_n->_M_nxt = __this_n;
971		this->_M_copy_code(__this_n, __ht_n);
972		size_type __bkt = _M_bucket_index(__this_n);
973		if (!_M_buckets[__bkt])
974		  _M_buckets[__bkt] = __prev_n;
975		__prev_n = __this_n;
976	      }
977	  }
978	__catch(...)
979	  {
980	    clear();
981	    if (__buckets)
982	      _M_deallocate_buckets();
983	    __throw_exception_again;
984	  }
985      }
986
987  template<typename _Key, typename _Value,
988	   typename _Alloc, typename _ExtractKey, typename _Equal,
989	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
990	   typename _Traits>
991    void
992    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
993	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
994    _M_reset() noexcept
995    {
996      _M_rehash_policy._M_reset();
997      _M_bucket_count = 1;
998      _M_single_bucket = nullptr;
999      _M_buckets = &_M_single_bucket;
1000      _M_before_begin._M_nxt = nullptr;
1001      _M_element_count = 0;
1002    }
1003
1004  template<typename _Key, typename _Value,
1005	   typename _Alloc, typename _ExtractKey, typename _Equal,
1006	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1007	   typename _Traits>
1008    void
1009    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1010	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1011    _M_move_assign(_Hashtable&& __ht, std::true_type)
1012    {
1013      this->_M_deallocate_nodes(_M_begin());
1014      _M_deallocate_buckets();
1015      __hashtable_base::operator=(std::move(__ht));
1016      _M_rehash_policy = __ht._M_rehash_policy;
1017      if (!__ht._M_uses_single_bucket())
1018	_M_buckets = __ht._M_buckets;
1019      else
1020	{
1021	  _M_buckets = &_M_single_bucket;
1022	  _M_single_bucket = __ht._M_single_bucket;
1023	}
1024      _M_bucket_count = __ht._M_bucket_count;
1025      _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1026      _M_element_count = __ht._M_element_count;
1027      std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1028
1029      // Fix buckets containing the _M_before_begin pointers that can't be
1030      // moved.
1031      if (_M_begin())
1032	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1033      __ht._M_reset();
1034    }
1035
1036  template<typename _Key, typename _Value,
1037	   typename _Alloc, typename _ExtractKey, typename _Equal,
1038	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1039	   typename _Traits>
1040    void
1041    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1042	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1043    _M_move_assign(_Hashtable&& __ht, std::false_type)
1044    {
1045      if (__ht._M_node_allocator() == this->_M_node_allocator())
1046	_M_move_assign(std::move(__ht), std::true_type());
1047      else
1048	{
1049	  // Can't move memory, move elements then.
1050	  __bucket_type* __former_buckets = nullptr;
1051	  size_type __former_bucket_count = _M_bucket_count;
1052	  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1053
1054	  if (_M_bucket_count != __ht._M_bucket_count)
1055	    {
1056	      __former_buckets = _M_buckets;
1057	      _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1058	      _M_bucket_count = __ht._M_bucket_count;
1059	    }
1060	  else
1061	    __builtin_memset(_M_buckets, 0,
1062			     _M_bucket_count * sizeof(__bucket_type));
1063
1064	  __try
1065	    {
1066	      __hashtable_base::operator=(std::move(__ht));
1067	      _M_element_count = __ht._M_element_count;
1068	      _M_rehash_policy = __ht._M_rehash_policy;
1069	      __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1070	      _M_before_begin._M_nxt = nullptr;
1071	      _M_assign(__ht,
1072			[&__roan](__node_type* __n)
1073			{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1074	      __ht.clear();
1075	    }
1076	  __catch(...)
1077	    {
1078	      if (__former_buckets)
1079		{
1080		  _M_deallocate_buckets();
1081		  _M_rehash_policy._M_reset(__former_state);
1082		  _M_buckets = __former_buckets;
1083		  _M_bucket_count = __former_bucket_count;
1084		}
1085	      __builtin_memset(_M_buckets, 0,
1086			       _M_bucket_count * sizeof(__bucket_type));
1087	      __throw_exception_again;
1088	    }
1089	}
1090    }
1091
1092  template<typename _Key, typename _Value,
1093	   typename _Alloc, typename _ExtractKey, typename _Equal,
1094	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1095	   typename _Traits>
1096    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1097	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1098    _Hashtable(const _Hashtable& __ht)
1099    : __hashtable_base(__ht),
1100      __map_base(__ht),
1101      __rehash_base(__ht),
1102      __hashtable_alloc(
1103	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1104      _M_buckets(),
1105      _M_bucket_count(__ht._M_bucket_count),
1106      _M_element_count(__ht._M_element_count),
1107      _M_rehash_policy(__ht._M_rehash_policy)
1108    {
1109      _M_assign(__ht,
1110		[this](const __node_type* __n)
1111		{ return this->_M_allocate_node(__n->_M_v()); });
1112    }
1113
1114  template<typename _Key, typename _Value,
1115	   typename _Alloc, typename _ExtractKey, typename _Equal,
1116	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1117	   typename _Traits>
1118    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1119	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1120    _Hashtable(_Hashtable&& __ht) noexcept
1121    : __hashtable_base(__ht),
1122      __map_base(__ht),
1123      __rehash_base(__ht),
1124      __hashtable_alloc(std::move(__ht._M_base_alloc())),
1125      _M_buckets(__ht._M_buckets),
1126      _M_bucket_count(__ht._M_bucket_count),
1127      _M_before_begin(__ht._M_before_begin._M_nxt),
1128      _M_element_count(__ht._M_element_count),
1129      _M_rehash_policy(__ht._M_rehash_policy)
1130    {
1131      // Update, if necessary, buckets if __ht is using its single bucket.
1132      if (__ht._M_uses_single_bucket())
1133	{
1134	  _M_buckets = &_M_single_bucket;
1135	  _M_single_bucket = __ht._M_single_bucket;
1136	}
1137
1138      // Update, if necessary, bucket pointing to before begin that hasn't
1139      // moved.
1140      if (_M_begin())
1141	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1142
1143      __ht._M_reset();
1144    }
1145
1146  template<typename _Key, typename _Value,
1147	   typename _Alloc, typename _ExtractKey, typename _Equal,
1148	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1149	   typename _Traits>
1150    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1151	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1152    _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1153    : __hashtable_base(__ht),
1154      __map_base(__ht),
1155      __rehash_base(__ht),
1156      __hashtable_alloc(__node_alloc_type(__a)),
1157      _M_buckets(),
1158      _M_bucket_count(__ht._M_bucket_count),
1159      _M_element_count(__ht._M_element_count),
1160      _M_rehash_policy(__ht._M_rehash_policy)
1161    {
1162      _M_assign(__ht,
1163		[this](const __node_type* __n)
1164		{ return this->_M_allocate_node(__n->_M_v()); });
1165    }
1166
1167  template<typename _Key, typename _Value,
1168	   typename _Alloc, typename _ExtractKey, typename _Equal,
1169	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1170	   typename _Traits>
1171    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1172	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1173    _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1174    : __hashtable_base(__ht),
1175      __map_base(__ht),
1176      __rehash_base(__ht),
1177      __hashtable_alloc(__node_alloc_type(__a)),
1178      _M_buckets(),
1179      _M_bucket_count(__ht._M_bucket_count),
1180      _M_element_count(__ht._M_element_count),
1181      _M_rehash_policy(__ht._M_rehash_policy)
1182    {
1183      if (__ht._M_node_allocator() == this->_M_node_allocator())
1184	{
1185	  if (__ht._M_uses_single_bucket())
1186	    {
1187	      _M_buckets = &_M_single_bucket;
1188	      _M_single_bucket = __ht._M_single_bucket;
1189	    }
1190	  else
1191	    _M_buckets = __ht._M_buckets;
1192
1193	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1194	  // Update, if necessary, bucket pointing to before begin that hasn't
1195	  // moved.
1196	  if (_M_begin())
1197	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1198	  __ht._M_reset();
1199	}
1200      else
1201	{
1202	  _M_assign(__ht,
1203		    [this](__node_type* __n)
1204		    {
1205		      return this->_M_allocate_node(
1206					std::move_if_noexcept(__n->_M_v()));
1207		    });
1208	  __ht.clear();
1209	}
1210    }
1211
1212  template<typename _Key, typename _Value,
1213	   typename _Alloc, typename _ExtractKey, typename _Equal,
1214	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1215	   typename _Traits>
1216    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1217	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1218    ~_Hashtable() noexcept
1219    {
1220      clear();
1221      if (_M_buckets)
1222	_M_deallocate_buckets();
1223    }
1224
1225  template<typename _Key, typename _Value,
1226	   typename _Alloc, typename _ExtractKey, typename _Equal,
1227	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1228	   typename _Traits>
1229    void
1230    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1231	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1232    swap(_Hashtable& __x)
1233    noexcept(__node_alloc_traits::_S_nothrow_swap())
1234    {
1235      // The only base class with member variables is hash_code_base.
1236      // We define _Hash_code_base::_M_swap because different
1237      // specializations have different members.
1238      this->_M_swap(__x);
1239
1240      std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1241      std::swap(_M_rehash_policy, __x._M_rehash_policy);
1242
1243      // Deal properly with potentially moved instances.
1244      if (this->_M_uses_single_bucket())
1245	{
1246	  if (!__x._M_uses_single_bucket())
1247	    {
1248	      _M_buckets = __x._M_buckets;
1249	      __x._M_buckets = &__x._M_single_bucket;
1250	    }
1251	}
1252      else if (__x._M_uses_single_bucket())
1253	{
1254	  __x._M_buckets = _M_buckets;
1255	  _M_buckets = &_M_single_bucket;
1256	}
1257      else
1258	std::swap(_M_buckets, __x._M_buckets);
1259
1260      std::swap(_M_bucket_count, __x._M_bucket_count);
1261      std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1262      std::swap(_M_element_count, __x._M_element_count);
1263      std::swap(_M_single_bucket, __x._M_single_bucket);
1264
1265      // Fix buckets containing the _M_before_begin pointers that can't be
1266      // swapped.
1267      if (_M_begin())
1268	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1269
1270      if (__x._M_begin())
1271	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1272	  = &__x._M_before_begin;
1273    }
1274
1275  template<typename _Key, typename _Value,
1276	   typename _Alloc, typename _ExtractKey, typename _Equal,
1277	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1278	   typename _Traits>
1279    void
1280    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1281	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1282    __rehash_policy(const _RehashPolicy& __pol)
1283    {
1284      auto __do_rehash =
1285	__pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
1286      if (__do_rehash.first)
1287	_M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
1288      _M_rehash_policy = __pol;
1289    }
1290
1291  template<typename _Key, typename _Value,
1292	   typename _Alloc, typename _ExtractKey, typename _Equal,
1293	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1294	   typename _Traits>
1295    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1296			_H1, _H2, _Hash, _RehashPolicy,
1297			_Traits>::iterator
1298    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1299	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1300    find(const key_type& __k)
1301    {
1302      __hash_code __code = this->_M_hash_code(__k);
1303      std::size_t __n = _M_bucket_index(__k, __code);
1304      __node_type* __p = _M_find_node(__n, __k, __code);
1305      return __p ? iterator(__p) : end();
1306    }
1307
1308  template<typename _Key, typename _Value,
1309	   typename _Alloc, typename _ExtractKey, typename _Equal,
1310	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1311	   typename _Traits>
1312    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1313			_H1, _H2, _Hash, _RehashPolicy,
1314			_Traits>::const_iterator
1315    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1316	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1317    find(const key_type& __k) const
1318    {
1319      __hash_code __code = this->_M_hash_code(__k);
1320      std::size_t __n = _M_bucket_index(__k, __code);
1321      __node_type* __p = _M_find_node(__n, __k, __code);
1322      return __p ? const_iterator(__p) : end();
1323    }
1324
1325  template<typename _Key, typename _Value,
1326	   typename _Alloc, typename _ExtractKey, typename _Equal,
1327	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1328	   typename _Traits>
1329    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1330			_H1, _H2, _Hash, _RehashPolicy,
1331			_Traits>::size_type
1332    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1333	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1334    count(const key_type& __k) const
1335    {
1336      __hash_code __code = this->_M_hash_code(__k);
1337      std::size_t __n = _M_bucket_index(__k, __code);
1338      __node_type* __p = _M_bucket_begin(__n);
1339      if (!__p)
1340	return 0;
1341
1342      std::size_t __result = 0;
1343      for (;; __p = __p->_M_next())
1344	{
1345	  if (this->_M_equals(__k, __code, __p))
1346	    ++__result;
1347	  else if (__result)
1348	    // All equivalent values are next to each other, if we
1349	    // found a non-equivalent value after an equivalent one it
1350	    // means that we won't find any new equivalent value.
1351	    break;
1352	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1353	    break;
1354	}
1355      return __result;
1356    }
1357
1358  template<typename _Key, typename _Value,
1359	   typename _Alloc, typename _ExtractKey, typename _Equal,
1360	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1361	   typename _Traits>
1362    std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1363				  _ExtractKey, _Equal, _H1,
1364				  _H2, _Hash, _RehashPolicy,
1365				  _Traits>::iterator,
1366	      typename _Hashtable<_Key, _Value, _Alloc,
1367				  _ExtractKey, _Equal, _H1,
1368				  _H2, _Hash, _RehashPolicy,
1369				  _Traits>::iterator>
1370    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1371	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1372    equal_range(const key_type& __k)
1373    {
1374      __hash_code __code = this->_M_hash_code(__k);
1375      std::size_t __n = _M_bucket_index(__k, __code);
1376      __node_type* __p = _M_find_node(__n, __k, __code);
1377
1378      if (__p)
1379	{
1380	  __node_type* __p1 = __p->_M_next();
1381	  while (__p1 && _M_bucket_index(__p1) == __n
1382		 && this->_M_equals(__k, __code, __p1))
1383	    __p1 = __p1->_M_next();
1384
1385	  return std::make_pair(iterator(__p), iterator(__p1));
1386	}
1387      else
1388	return std::make_pair(end(), end());
1389    }
1390
1391  template<typename _Key, typename _Value,
1392	   typename _Alloc, typename _ExtractKey, typename _Equal,
1393	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1394	   typename _Traits>
1395    std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1396				  _ExtractKey, _Equal, _H1,
1397				  _H2, _Hash, _RehashPolicy,
1398				  _Traits>::const_iterator,
1399	      typename _Hashtable<_Key, _Value, _Alloc,
1400				  _ExtractKey, _Equal, _H1,
1401				  _H2, _Hash, _RehashPolicy,
1402				  _Traits>::const_iterator>
1403    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1404	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1405    equal_range(const key_type& __k) const
1406    {
1407      __hash_code __code = this->_M_hash_code(__k);
1408      std::size_t __n = _M_bucket_index(__k, __code);
1409      __node_type* __p = _M_find_node(__n, __k, __code);
1410
1411      if (__p)
1412	{
1413	  __node_type* __p1 = __p->_M_next();
1414	  while (__p1 && _M_bucket_index(__p1) == __n
1415		 && this->_M_equals(__k, __code, __p1))
1416	    __p1 = __p1->_M_next();
1417
1418	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1419	}
1420      else
1421	return std::make_pair(end(), end());
1422    }
1423
1424  // Find the node whose key compares equal to k in the bucket n.
1425  // Return nullptr if no node is found.
1426  template<typename _Key, typename _Value,
1427	   typename _Alloc, typename _ExtractKey, typename _Equal,
1428	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1429	   typename _Traits>
1430    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1431			_Equal, _H1, _H2, _Hash, _RehashPolicy,
1432			_Traits>::__node_base*
1433    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1434	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1435    _M_find_before_node(size_type __n, const key_type& __k,
1436			__hash_code __code) const
1437    {
1438      __node_base* __prev_p = _M_buckets[__n];
1439      if (!__prev_p)
1440	return nullptr;
1441
1442      for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1443	   __p = __p->_M_next())
1444	{
1445	  if (this->_M_equals(__k, __code, __p))
1446	    return __prev_p;
1447
1448	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1449	    break;
1450	  __prev_p = __p;
1451	}
1452      return nullptr;
1453    }
1454
1455  template<typename _Key, typename _Value,
1456	   typename _Alloc, typename _ExtractKey, typename _Equal,
1457	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1458	   typename _Traits>
1459    void
1460    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1461	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1462    _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1463    {
1464      if (_M_buckets[__bkt])
1465	{
1466	  // Bucket is not empty, we just need to insert the new node
1467	  // after the bucket before begin.
1468	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1469	  _M_buckets[__bkt]->_M_nxt = __node;
1470	}
1471      else
1472	{
1473	  // The bucket is empty, the new node is inserted at the
1474	  // beginning of the singly-linked list and the bucket will
1475	  // contain _M_before_begin pointer.
1476	  __node->_M_nxt = _M_before_begin._M_nxt;
1477	  _M_before_begin._M_nxt = __node;
1478	  if (__node->_M_nxt)
1479	    // We must update former begin bucket that is pointing to
1480	    // _M_before_begin.
1481	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1482	  _M_buckets[__bkt] = &_M_before_begin;
1483	}
1484    }
1485
1486  template<typename _Key, typename _Value,
1487	   typename _Alloc, typename _ExtractKey, typename _Equal,
1488	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1489	   typename _Traits>
1490    void
1491    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1492	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1493    _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1494			   size_type __next_bkt)
1495    {
1496      if (!__next || __next_bkt != __bkt)
1497	{
1498	  // Bucket is now empty
1499	  // First update next bucket if any
1500	  if (__next)
1501	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1502
1503	  // Second update before begin node if necessary
1504	  if (&_M_before_begin == _M_buckets[__bkt])
1505	    _M_before_begin._M_nxt = __next;
1506	  _M_buckets[__bkt] = nullptr;
1507	}
1508    }
1509
1510  template<typename _Key, typename _Value,
1511	   typename _Alloc, typename _ExtractKey, typename _Equal,
1512	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1513	   typename _Traits>
1514    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1515			_Equal, _H1, _H2, _Hash, _RehashPolicy,
1516			_Traits>::__node_base*
1517    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1518	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1519    _M_get_previous_node(size_type __bkt, __node_base* __n)
1520    {
1521      __node_base* __prev_n = _M_buckets[__bkt];
1522      while (__prev_n->_M_nxt != __n)
1523	__prev_n = __prev_n->_M_nxt;
1524      return __prev_n;
1525    }
1526
1527  template<typename _Key, typename _Value,
1528	   typename _Alloc, typename _ExtractKey, typename _Equal,
1529	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1530	   typename _Traits>
1531    template<typename... _Args>
1532      std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1533				    _ExtractKey, _Equal, _H1,
1534				    _H2, _Hash, _RehashPolicy,
1535				    _Traits>::iterator, bool>
1536      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1537		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1538      _M_emplace(std::true_type, _Args&&... __args)
1539      {
1540	// First build the node to get access to the hash code
1541	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1542	const key_type& __k = this->_M_extract()(__node->_M_v());
1543	__hash_code __code;
1544	__try
1545	  {
1546	    __code = this->_M_hash_code(__k);
1547	  }
1548	__catch(...)
1549	  {
1550	    this->_M_deallocate_node(__node);
1551	    __throw_exception_again;
1552	  }
1553
1554	size_type __bkt = _M_bucket_index(__k, __code);
1555	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1556	  {
1557	    // There is already an equivalent node, no insertion
1558	    this->_M_deallocate_node(__node);
1559	    return std::make_pair(iterator(__p), false);
1560	  }
1561
1562	// Insert the node
1563	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1564			      true);
1565      }
1566
1567  template<typename _Key, typename _Value,
1568	   typename _Alloc, typename _ExtractKey, typename _Equal,
1569	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1570	   typename _Traits>
1571    template<typename... _Args>
1572      typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1573			  _H1, _H2, _Hash, _RehashPolicy,
1574			  _Traits>::iterator
1575      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1576		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1577      _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1578      {
1579	// First build the node to get its hash code.
1580	__node_type* __node =
1581	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1582
1583	__hash_code __code;
1584	__try
1585	  {
1586	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1587	  }
1588	__catch(...)
1589	  {
1590	    this->_M_deallocate_node(__node);
1591	    __throw_exception_again;
1592	  }
1593
1594	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1595      }
1596
1597  template<typename _Key, typename _Value,
1598	   typename _Alloc, typename _ExtractKey, typename _Equal,
1599	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1600	   typename _Traits>
1601    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1602			_H1, _H2, _Hash, _RehashPolicy,
1603			_Traits>::iterator
1604    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1605	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1606    _M_insert_unique_node(size_type __bkt, __hash_code __code,
1607			  __node_type* __node)
1608    {
1609      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1610      std::pair<bool, std::size_t> __do_rehash
1611	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1612
1613      __try
1614	{
1615	  if (__do_rehash.first)
1616	    {
1617	      _M_rehash(__do_rehash.second, __saved_state);
1618	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1619	    }
1620
1621	  this->_M_store_code(__node, __code);
1622
1623	  // Always insert at the beginning of the bucket.
1624	  _M_insert_bucket_begin(__bkt, __node);
1625	  ++_M_element_count;
1626	  return iterator(__node);
1627	}
1628      __catch(...)
1629	{
1630	  this->_M_deallocate_node(__node);
1631	  __throw_exception_again;
1632	}
1633    }
1634
1635  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1636  // already present). Take ownership of the node, deallocate it on exception.
1637  template<typename _Key, typename _Value,
1638	   typename _Alloc, typename _ExtractKey, typename _Equal,
1639	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1640	   typename _Traits>
1641    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1642			_H1, _H2, _Hash, _RehashPolicy,
1643			_Traits>::iterator
1644    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1645	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1646    _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1647			 __node_type* __node)
1648    {
1649      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1650      std::pair<bool, std::size_t> __do_rehash
1651	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1652
1653      __try
1654	{
1655	  if (__do_rehash.first)
1656	    _M_rehash(__do_rehash.second, __saved_state);
1657
1658	  this->_M_store_code(__node, __code);
1659	  const key_type& __k = this->_M_extract()(__node->_M_v());
1660	  size_type __bkt = _M_bucket_index(__k, __code);
1661
1662	  // Find the node before an equivalent one or use hint if it exists and
1663	  // if it is equivalent.
1664	  __node_base* __prev
1665	    = __builtin_expect(__hint != nullptr, false)
1666	      && this->_M_equals(__k, __code, __hint)
1667		? __hint
1668		: _M_find_before_node(__bkt, __k, __code);
1669	  if (__prev)
1670	    {
1671	      // Insert after the node before the equivalent one.
1672	      __node->_M_nxt = __prev->_M_nxt;
1673	      __prev->_M_nxt = __node;
1674	      if (__builtin_expect(__prev == __hint, false))
1675	      	// hint might be the last bucket node, in this case we need to
1676	      	// update next bucket.
1677	      	if (__node->_M_nxt
1678	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1679	      	  {
1680	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1681	      	    if (__next_bkt != __bkt)
1682	      	      _M_buckets[__next_bkt] = __node;
1683	      	  }
1684	    }
1685	  else
1686	    // The inserted node has no equivalent in the
1687	    // hashtable. We must insert the new node at the
1688	    // beginning of the bucket to preserve equivalent
1689	    // elements' relative positions.
1690	    _M_insert_bucket_begin(__bkt, __node);
1691	  ++_M_element_count;
1692	  return iterator(__node);
1693	}
1694      __catch(...)
1695	{
1696	  this->_M_deallocate_node(__node);
1697	  __throw_exception_again;
1698	}
1699    }
1700
1701  // Insert v if no element with its key is already present.
1702  template<typename _Key, typename _Value,
1703	   typename _Alloc, typename _ExtractKey, typename _Equal,
1704	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1705	   typename _Traits>
1706    template<typename _Arg, typename _NodeGenerator>
1707      std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1708				    _ExtractKey, _Equal, _H1,
1709				    _H2, _Hash, _RehashPolicy,
1710				    _Traits>::iterator, bool>
1711      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1712		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1713      _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1714      {
1715	const key_type& __k = this->_M_extract()(__v);
1716	__hash_code __code = this->_M_hash_code(__k);
1717	size_type __bkt = _M_bucket_index(__k, __code);
1718
1719	__node_type* __n = _M_find_node(__bkt, __k, __code);
1720	if (__n)
1721	  return std::make_pair(iterator(__n), false);
1722
1723	__n = __node_gen(std::forward<_Arg>(__v));
1724	return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1725      }
1726
1727  // Insert v unconditionally.
1728  template<typename _Key, typename _Value,
1729	   typename _Alloc, typename _ExtractKey, typename _Equal,
1730	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1731	   typename _Traits>
1732    template<typename _Arg, typename _NodeGenerator>
1733      typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1734			  _H1, _H2, _Hash, _RehashPolicy,
1735			  _Traits>::iterator
1736      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1737		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1738      _M_insert(const_iterator __hint, _Arg&& __v,
1739		const _NodeGenerator& __node_gen,
1740		std::false_type)
1741      {
1742	// First compute the hash code so that we don't do anything if it
1743	// throws.
1744	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1745
1746	// Second allocate new node so that we don't rehash if it throws.
1747	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1748
1749	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1750      }
1751
1752  template<typename _Key, typename _Value,
1753	   typename _Alloc, typename _ExtractKey, typename _Equal,
1754	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1755	   typename _Traits>
1756    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1757			_H1, _H2, _Hash, _RehashPolicy,
1758			_Traits>::iterator
1759    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1760	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1761    erase(const_iterator __it)
1762    {
1763      __node_type* __n = __it._M_cur;
1764      std::size_t __bkt = _M_bucket_index(__n);
1765
1766      // Look for previous node to unlink it from the erased one, this
1767      // is why we need buckets to contain the before begin to make
1768      // this search fast.
1769      __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1770      return _M_erase(__bkt, __prev_n, __n);
1771    }
1772
1773  template<typename _Key, typename _Value,
1774	   typename _Alloc, typename _ExtractKey, typename _Equal,
1775	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1776	   typename _Traits>
1777    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1778			_H1, _H2, _Hash, _RehashPolicy,
1779			_Traits>::iterator
1780    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1781	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1782    _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1783    {
1784      if (__prev_n == _M_buckets[__bkt])
1785	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1786	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1787      else if (__n->_M_nxt)
1788	{
1789	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1790	  if (__next_bkt != __bkt)
1791	    _M_buckets[__next_bkt] = __prev_n;
1792	}
1793
1794      __prev_n->_M_nxt = __n->_M_nxt;
1795      iterator __result(__n->_M_next());
1796      this->_M_deallocate_node(__n);
1797      --_M_element_count;
1798
1799      return __result;
1800    }
1801
1802  template<typename _Key, typename _Value,
1803	   typename _Alloc, typename _ExtractKey, typename _Equal,
1804	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1805	   typename _Traits>
1806    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1807			_H1, _H2, _Hash, _RehashPolicy,
1808			_Traits>::size_type
1809    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1810	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1811    _M_erase(std::true_type, const key_type& __k)
1812    {
1813      __hash_code __code = this->_M_hash_code(__k);
1814      std::size_t __bkt = _M_bucket_index(__k, __code);
1815
1816      // Look for the node before the first matching node.
1817      __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1818      if (!__prev_n)
1819	return 0;
1820
1821      // We found a matching node, erase it.
1822      __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1823      _M_erase(__bkt, __prev_n, __n);
1824      return 1;
1825    }
1826
1827  template<typename _Key, typename _Value,
1828	   typename _Alloc, typename _ExtractKey, typename _Equal,
1829	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1830	   typename _Traits>
1831    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1832			_H1, _H2, _Hash, _RehashPolicy,
1833			_Traits>::size_type
1834    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1835	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1836    _M_erase(std::false_type, const key_type& __k)
1837    {
1838      __hash_code __code = this->_M_hash_code(__k);
1839      std::size_t __bkt = _M_bucket_index(__k, __code);
1840
1841      // Look for the node before the first matching node.
1842      __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1843      if (!__prev_n)
1844	return 0;
1845
1846      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1847      // 526. Is it undefined if a function in the standard changes
1848      // in parameters?
1849      // We use one loop to find all matching nodes and another to deallocate
1850      // them so that the key stays valid during the first loop. It might be
1851      // invalidated indirectly when destroying nodes.
1852      __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1853      __node_type* __n_last = __n;
1854      std::size_t __n_last_bkt = __bkt;
1855      do
1856	{
1857	  __n_last = __n_last->_M_next();
1858	  if (!__n_last)
1859	    break;
1860	  __n_last_bkt = _M_bucket_index(__n_last);
1861	}
1862      while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1863
1864      // Deallocate nodes.
1865      size_type __result = 0;
1866      do
1867	{
1868	  __node_type* __p = __n->_M_next();
1869	  this->_M_deallocate_node(__n);
1870	  __n = __p;
1871	  ++__result;
1872	  --_M_element_count;
1873	}
1874      while (__n != __n_last);
1875
1876      if (__prev_n == _M_buckets[__bkt])
1877	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1878      else if (__n_last && __n_last_bkt != __bkt)
1879	_M_buckets[__n_last_bkt] = __prev_n;
1880      __prev_n->_M_nxt = __n_last;
1881      return __result;
1882    }
1883
1884  template<typename _Key, typename _Value,
1885	   typename _Alloc, typename _ExtractKey, typename _Equal,
1886	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1887	   typename _Traits>
1888    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1889			_H1, _H2, _Hash, _RehashPolicy,
1890			_Traits>::iterator
1891    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1892	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1893    erase(const_iterator __first, const_iterator __last)
1894    {
1895      __node_type* __n = __first._M_cur;
1896      __node_type* __last_n = __last._M_cur;
1897      if (__n == __last_n)
1898	return iterator(__n);
1899
1900      std::size_t __bkt = _M_bucket_index(__n);
1901
1902      __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1903      bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1904      std::size_t __n_bkt = __bkt;
1905      for (;;)
1906	{
1907	  do
1908	    {
1909	      __node_type* __tmp = __n;
1910	      __n = __n->_M_next();
1911	      this->_M_deallocate_node(__tmp);
1912	      --_M_element_count;
1913	      if (!__n)
1914		break;
1915	      __n_bkt = _M_bucket_index(__n);
1916	    }
1917	  while (__n != __last_n && __n_bkt == __bkt);
1918	  if (__is_bucket_begin)
1919	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1920	  if (__n == __last_n)
1921	    break;
1922	  __is_bucket_begin = true;
1923	  __bkt = __n_bkt;
1924	}
1925
1926      if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1927	_M_buckets[__n_bkt] = __prev_n;
1928      __prev_n->_M_nxt = __n;
1929      return iterator(__n);
1930    }
1931
1932  template<typename _Key, typename _Value,
1933	   typename _Alloc, typename _ExtractKey, typename _Equal,
1934	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1935	   typename _Traits>
1936    void
1937    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1938	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1939    clear() noexcept
1940    {
1941      this->_M_deallocate_nodes(_M_begin());
1942      __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1943      _M_element_count = 0;
1944      _M_before_begin._M_nxt = nullptr;
1945    }
1946
1947  template<typename _Key, typename _Value,
1948	   typename _Alloc, typename _ExtractKey, typename _Equal,
1949	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1950	   typename _Traits>
1951    void
1952    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1953	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1954    rehash(size_type __n)
1955    {
1956      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1957      std::size_t __buckets
1958	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1959		   __n);
1960      __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1961
1962      if (__buckets != _M_bucket_count)
1963	_M_rehash(__buckets, __saved_state);
1964      else
1965	// No rehash, restore previous state to keep a consistent state.
1966	_M_rehash_policy._M_reset(__saved_state);
1967    }
1968
1969  template<typename _Key, typename _Value,
1970	   typename _Alloc, typename _ExtractKey, typename _Equal,
1971	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1972	   typename _Traits>
1973    void
1974    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1975	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1976    _M_rehash(size_type __n, const __rehash_state& __state)
1977    {
1978      __try
1979	{
1980	  _M_rehash_aux(__n, __unique_keys());
1981	}
1982      __catch(...)
1983	{
1984	  // A failure here means that buckets allocation failed.  We only
1985	  // have to restore hash policy previous state.
1986	  _M_rehash_policy._M_reset(__state);
1987	  __throw_exception_again;
1988	}
1989    }
1990
1991  // Rehash when there is no equivalent elements.
1992  template<typename _Key, typename _Value,
1993	   typename _Alloc, typename _ExtractKey, typename _Equal,
1994	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1995	   typename _Traits>
1996    void
1997    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1998	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1999    _M_rehash_aux(size_type __n, std::true_type)
2000    {
2001      __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2002      __node_type* __p = _M_begin();
2003      _M_before_begin._M_nxt = nullptr;
2004      std::size_t __bbegin_bkt = 0;
2005      while (__p)
2006	{
2007	  __node_type* __next = __p->_M_next();
2008	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2009	  if (!__new_buckets[__bkt])
2010	    {
2011	      __p->_M_nxt = _M_before_begin._M_nxt;
2012	      _M_before_begin._M_nxt = __p;
2013	      __new_buckets[__bkt] = &_M_before_begin;
2014	      if (__p->_M_nxt)
2015		__new_buckets[__bbegin_bkt] = __p;
2016	      __bbegin_bkt = __bkt;
2017	    }
2018	  else
2019	    {
2020	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2021	      __new_buckets[__bkt]->_M_nxt = __p;
2022	    }
2023	  __p = __next;
2024	}
2025
2026      _M_deallocate_buckets();
2027      _M_bucket_count = __n;
2028      _M_buckets = __new_buckets;
2029    }
2030
2031  // Rehash when there can be equivalent elements, preserve their relative
2032  // order.
2033  template<typename _Key, typename _Value,
2034	   typename _Alloc, typename _ExtractKey, typename _Equal,
2035	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2036	   typename _Traits>
2037    void
2038    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2039	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2040    _M_rehash_aux(size_type __n, std::false_type)
2041    {
2042      __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2043
2044      __node_type* __p = _M_begin();
2045      _M_before_begin._M_nxt = nullptr;
2046      std::size_t __bbegin_bkt = 0;
2047      std::size_t __prev_bkt = 0;
2048      __node_type* __prev_p = nullptr;
2049      bool __check_bucket = false;
2050
2051      while (__p)
2052	{
2053	  __node_type* __next = __p->_M_next();
2054	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2055
2056	  if (__prev_p && __prev_bkt == __bkt)
2057	    {
2058	      // Previous insert was already in this bucket, we insert after
2059	      // the previously inserted one to preserve equivalent elements
2060	      // relative order.
2061	      __p->_M_nxt = __prev_p->_M_nxt;
2062	      __prev_p->_M_nxt = __p;
2063
2064	      // Inserting after a node in a bucket require to check that we
2065	      // haven't change the bucket last node, in this case next
2066	      // bucket containing its before begin node must be updated. We
2067	      // schedule a check as soon as we move out of the sequence of
2068	      // equivalent nodes to limit the number of checks.
2069	      __check_bucket = true;
2070	    }
2071	  else
2072	    {
2073	      if (__check_bucket)
2074		{
2075		  // Check if we shall update the next bucket because of
2076		  // insertions into __prev_bkt bucket.
2077		  if (__prev_p->_M_nxt)
2078		    {
2079		      std::size_t __next_bkt
2080			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2081							    __n);
2082		      if (__next_bkt != __prev_bkt)
2083			__new_buckets[__next_bkt] = __prev_p;
2084		    }
2085		  __check_bucket = false;
2086		}
2087
2088	      if (!__new_buckets[__bkt])
2089		{
2090		  __p->_M_nxt = _M_before_begin._M_nxt;
2091		  _M_before_begin._M_nxt = __p;
2092		  __new_buckets[__bkt] = &_M_before_begin;
2093		  if (__p->_M_nxt)
2094		    __new_buckets[__bbegin_bkt] = __p;
2095		  __bbegin_bkt = __bkt;
2096		}
2097	      else
2098		{
2099		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2100		  __new_buckets[__bkt]->_M_nxt = __p;
2101		}
2102	    }
2103	  __prev_p = __p;
2104	  __prev_bkt = __bkt;
2105	  __p = __next;
2106	}
2107
2108      if (__check_bucket && __prev_p->_M_nxt)
2109	{
2110	  std::size_t __next_bkt
2111	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2112	  if (__next_bkt != __prev_bkt)
2113	    __new_buckets[__next_bkt] = __prev_p;
2114	}
2115
2116      _M_deallocate_buckets();
2117      _M_bucket_count = __n;
2118      _M_buckets = __new_buckets;
2119    }
2120
2121_GLIBCXX_END_NAMESPACE_VERSION
2122} // namespace std
2123
2124#endif // _HASHTABLE_H
2125