1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18
19#include "base/bit_utils.h"
20#include "base/logging.h"
21#include "dex/compiler_ir.h"
22#include "dex/quick/mir_to_lir.h"
23#include "oat.h"
24#include "utils.h"
25#include "x86_lir.h"
26
27namespace art {
28
29#define MAX_ASSEMBLER_RETRIES 50
30
31const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
32  { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4, false }, "data",  "0x!0d" },
33  { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0, false }, "int 3", "" },
34  { kX86Nop,       kNop,     NO_OPERAND,             { 0, 0, 0x90, 0, 0, 0, 0, 0, false }, "nop",   "" },
35
36#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
37                     rm8_r8, rm32_r32, \
38                     r8_rm8, r32_rm32, \
39                     ax8_i8, ax32_i32, \
40                     rm8_i8, rm8_i8_modrm, \
41                     rm32_i32, rm32_i32_modrm, \
42                     rm32_i8, rm32_i8_modrm) \
43{ kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8MR", "[!0r+!1d],!2r" }, \
44{ kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
45{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8TR", "fs:[!0d],!1r" }, \
46{ kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RR", "!0r,!1r" }, \
47{ kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RM", "!0r,[!1r+!2d]" }, \
48{ kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
49{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RT", "!0r,fs:[!1d]" }, \
50{ kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1, true }, #opname "8RI", "!0r,!1d" }, \
51{ kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, false}, #opname "8MI", "[!0r+!1d],!2d" }, \
52{ kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, false}, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
53{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, false}, #opname "8TI", "fs:[!0d],!1d" }, \
54  \
55{ kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16MR", "[!0r+!1d],!2r" }, \
56{ kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
57{ kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16TR", "fs:[!0d],!1r" }, \
58{ kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RR", "!0r,!1r" }, \
59{ kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RM", "!0r,[!1r+!2d]" }, \
60{ kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
61{ kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RT", "!0r,fs:[!1d]" }, \
62{ kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2, false }, #opname "16RI", "!0r,!1d" }, \
63{ kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
64{ kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
65{ kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16TI", "fs:[!0d],!1d" }, \
66{ kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16RI8", "!0r,!1d" }, \
67{ kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16MI8", "[!0r+!1d],!2d" }, \
68{ kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
69{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16TI8", "fs:[!0d],!1d" }, \
70  \
71{ kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32MR", "[!0r+!1d],!2r" }, \
72{ kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
73{ kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32TR", "fs:[!0d],!1r" }, \
74{ kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RR", "!0r,!1r" }, \
75{ kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RM", "!0r,[!1r+!2d]" }, \
76{ kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
77{ kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RT", "!0r,fs:[!1d]" }, \
78{ kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "32RI", "!0r,!1d" }, \
79{ kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
80{ kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
81{ kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32TI", "fs:[!0d],!1d" }, \
82{ kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32RI8", "!0r,!1d" }, \
83{ kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32MI8", "[!0r+!1d],!2d" }, \
84{ kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
85{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32TI8", "fs:[!0d],!1d" }, \
86  \
87{ kX86 ## opname ## 64MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64MR", "[!0r+!1d],!2r" }, \
88{ kX86 ## opname ## 64AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
89{ kX86 ## opname ## 64TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64TR", "fs:[!0d],!1r" }, \
90{ kX86 ## opname ## 64RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RR", "!0r,!1r" }, \
91{ kX86 ## opname ## 64RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RM", "!0r,[!1r+!2d]" }, \
92{ kX86 ## opname ## 64RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
93{ kX86 ## opname ## 64RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RT", "!0r,fs:[!1d]" }, \
94{ kX86 ## opname ## 64RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "64RI", "!0r,!1d" }, \
95{ kX86 ## opname ## 64MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
96{ kX86 ## opname ## 64AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
97{ kX86 ## opname ## 64TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64TI", "fs:[!0d],!1d" }, \
98{ kX86 ## opname ## 64RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64RI8", "!0r,!1d" }, \
99{ kX86 ## opname ## 64MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64MI8", "[!0r+!1d],!2d" }, \
100{ kX86 ## opname ## 64AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
101{ kX86 ## opname ## 64TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64TI8", "fs:[!0d],!1d" }
102
103ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
104  0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
105  0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
106  0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
107  0x80, 0x0 /* RegMem8/imm8 */,
108  0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
109ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
110  0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
111  0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
112  0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
113  0x80, 0x1 /* RegMem8/imm8 */,
114  0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
115ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
116  0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
117  0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
118  0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
119  0x80, 0x2 /* RegMem8/imm8 */,
120  0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
121ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
122  0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
123  0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
124  0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
125  0x80, 0x3 /* RegMem8/imm8 */,
126  0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
127ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
128  0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
129  0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
130  0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
131  0x80, 0x4 /* RegMem8/imm8 */,
132  0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
133ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
134  0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
135  0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
136  0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
137  0x80, 0x5 /* RegMem8/imm8 */,
138  0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
139ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
140  0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
141  0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
142  0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
143  0x80, 0x6 /* RegMem8/imm8 */,
144  0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
145ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
146  0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
147  0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
148  0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
149  0x80, 0x7 /* RegMem8/imm8 */,
150  0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
151#undef ENCODING_MAP
152
153  { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RRI", "!0r,!1r,!2d" },
154  { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
155  { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
156
157  { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RRI", "!0r,!1r,!2d" },
158  { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
159  { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
160  { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RRI8", "!0r,!1r,!2d" },
161  { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
162  { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
163
164  { kX86Imul64RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RRI", "!0r,!1r,!2d" },
165  { kX86Imul64RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RMI", "!0r,[!1r+!2d],!3d" },
166  { kX86Imul64RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
167  { kX86Imul64RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RRI8", "!0r,!1r,!2d" },
168  { kX86Imul64RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RMI8", "!0r,[!1r+!2d],!3d" },
169  { kX86Imul64RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
170
171  { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8MR", "[!0r+!1d],!2r" },
172  { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
173  { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8TR", "fs:[!0d],!1r" },
174  { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RR", "!0r,!1r" },
175  { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RM", "!0r,[!1r+!2d]" },
176  { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
177  { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RT", "!0r,fs:[!1d]" },
178  { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1, true }, "Mov8RI", "!0r,!1d" },
179  { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8MI", "[!0r+!1d],!2d" },
180  { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
181  { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8TI", "fs:[!0d],!1d" },
182
183  { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0, false }, "Mov16MR", "[!0r+!1d],!2r" },
184  { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0, false }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
185  { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0, false }, "Mov16TR", "fs:[!0d],!1r" },
186  { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RR", "!0r,!1r" },
187  { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RM", "!0r,[!1r+!2d]" },
188  { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
189  { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RT", "!0r,fs:[!1d]" },
190  { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2, false }, "Mov16RI", "!0r,!1d" },
191  { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2, false }, "Mov16MI", "[!0r+!1d],!2d" },
192  { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2, false }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
193  { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16TI", "fs:[!0d],!1d" },
194
195  { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32MR", "[!0r+!1d],!2r" },
196  { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
197  { kX86Movnti32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,   { 0,             0, 0x0F, 0xC3, 0, 0, 0, 0, false }, "Movnti32MR", "[!0r+!1d],!2r" },
198  { kX86Movnti32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,  { 0,             0, 0x0F, 0xC3, 0, 0, 0, 0, false }, "Movnti32AR", "[!0r+!1r<<!2d+!3d],!4r" },
199  { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32TR", "fs:[!0d],!1r" },
200  { kX86Mov32RR, kRegReg,    IS_MOVE  | IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RR", "!0r,!1r" },
201  { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RM", "!0r,[!1r+!2d]" },
202  { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
203  { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RT", "!0r,fs:[!1d]" },
204  { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4, false }, "Mov32RI", "!0r,!1d" },
205  { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32MI", "[!0r+!1d],!2d" },
206  { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
207  { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32TI", "fs:[!0d],!1d" },
208
209  { kX86Lea32RM, kRegMem,               IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RM", "!0r,[!1r+!2d]" },
210  { kX86Lea32RA, kRegArray,             IS_QUIN_OP | REG_DEF0_USE12,     { 0,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
211
212  { kX86Mov64MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { REX_W,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64MR", "[!0r+!1d],!2r" },
213  { kX86Mov64AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { REX_W,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64AR", "[!0r+!1r<<!2d+!3d],!4r" },
214  { kX86Movnti64MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,   { REX_W,             0, 0x0F, 0xC3, 0, 0, 0, 0, false }, "Movnti64MR", "[!0r+!1d],!2r" },
215  { kX86Movnti64AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,  { REX_W,             0, 0x0F, 0xC3, 0, 0, 0, 0, false }, "Movnti64AR", "[!0r+!1r<<!2d+!3d],!4r" },
216  { kX86Mov64TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, REX_W, 0x89, 0, 0, 0, 0, 0, false }, "Mov64TR", "fs:[!0d],!1r" },
217  { kX86Mov64RR, kRegReg,    IS_MOVE  | IS_BINARY_OP   | REG_DEF0_USE1,  { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RR", "!0r,!1r" },
218  { kX86Mov64RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RM", "!0r,[!1r+!2d]" },
219  { kX86Mov64RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
220  { kX86Mov64RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, REX_W, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RT", "!0r,fs:[!1d]" },
221  { kX86Mov64RI32, kRegImm,             IS_BINARY_OP   | REG_DEF0,       { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64RI32", "!0r,!1d" },
222  { kX86Mov64RI64, kMovRegQuadImm,      IS_TERTIARY_OP | REG_DEF0,       { REX_W,             0, 0xB8, 0, 0, 0, 0, 8, false }, "Mov64RI64", "!0r,!1q" },
223  { kX86Mov64MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64MI", "[!0r+!1d],!2d" },
224  { kX86Mov64AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64AI", "[!0r+!1r<<!2d+!3d],!4d" },
225  { kX86Mov64TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, REX_W, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64TI", "fs:[!0d],!1d" },
226
227  { kX86Lea64RM, kRegMem,               IS_TERTIARY_OP | REG_DEF0_USE1,  { REX_W,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RM", "!0r,[!1r+!2d]" },
228  { kX86Lea64RA, kRegArray,             IS_QUIN_OP | REG_DEF0_USE12,     { REX_W,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
229
230  { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { 0,     0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RR", "!2c !0r,!1r" },
231  { kX86Cmov64RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RR", "!2c !0r,!1r" },
232
233  { kX86Cmov32RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { 0,     0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RM", "!3c !0r,[!1r+!2d]" },
234  { kX86Cmov64RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RM", "!3c !0r,[!1r+!2d]" },
235
236#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
237{ kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8RI", "!0r,!1d" }, \
238{ kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
239{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
240{ kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8RC", "!0r,cl" }, \
241{ kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8MC", "[!0r+!1d],cl" }, \
242{ kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
243  \
244{ kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16RI", "!0r,!1d" }, \
245{ kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
246{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
247{ kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16RC", "!0r,cl" }, \
248{ kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16MC", "[!0r+!1d],cl" }, \
249{ kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
250  \
251{ kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32RI", "!0r,!1d" }, \
252{ kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
253{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
254{ kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32RC", "!0r,cl" }, \
255{ kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32MC", "[!0r+!1d],cl" }, \
256{ kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }, \
257  \
258{ kX86 ## opname ## 64RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64RI", "!0r,!1d" }, \
259{ kX86 ## opname ## 64MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
260{ kX86 ## opname ## 64AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
261{ kX86 ## opname ## 64RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64RC", "!0r,cl" }, \
262{ kX86 ## opname ## 64MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64MC", "[!0r+!1d],cl" }, \
263{ kX86 ## opname ## 64AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64AC", "[!0r+!1r<<!2d+!3d],cl" }
264
265  SHIFT_ENCODING_MAP(Rol, 0x0),
266  SHIFT_ENCODING_MAP(Ror, 0x1),
267  SHIFT_ENCODING_MAP(Rcl, 0x2),
268  SHIFT_ENCODING_MAP(Rcr, 0x3),
269  SHIFT_ENCODING_MAP(Sal, 0x4),
270  SHIFT_ENCODING_MAP(Shr, 0x5),
271  SHIFT_ENCODING_MAP(Sar, 0x7),
272#undef SHIFT_ENCODING_MAP
273
274  { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0, false }, "Cmc", "" },
275  { kX86Shld32RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32RRI", "!0r,!1r,!2d" },
276  { kX86Shld32RRC,  kShiftRegRegCl,  IS_TERTIARY_OP | REG_DEF0_USE01  | REG_USEC | SETS_CCODES, { 0,    0, 0x0F, 0xA5, 0, 0, 0, 0, false }, "Shld32RRC", "!0r,!1r,cl" },
277  { kX86Shld32MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32MRI", "[!0r+!1d],!2r,!3d" },
278  { kX86Shrd32RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32RRI", "!0r,!1r,!2d" },
279  { kX86Shrd32RRC,  kShiftRegRegCl,  IS_TERTIARY_OP | REG_DEF0_USE01  | REG_USEC | SETS_CCODES, { 0,    0, 0x0F, 0xAD, 0, 0, 0, 0, false }, "Shrd32RRC", "!0r,!1r,cl" },
280  { kX86Shrd32MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32MRI", "[!0r+!1d],!2r,!3d" },
281  { kX86Shld64RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { REX_W,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64RRI", "!0r,!1r,!2d" },
282  { kX86Shld64MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64MRI", "[!0r+!1d],!2r,!3d" },
283  { kX86Shrd64RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { REX_W,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64RRI", "!0r,!1r,!2d" },
284  { kX86Shrd64MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64MRI", "[!0r+!1d],!2r,!3d" },
285
286  { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8RI", "!0r,!1d" },
287  { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8MI", "[!0r+!1d],!2d" },
288  { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
289  { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16RI", "!0r,!1d" },
290  { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16MI", "[!0r+!1d],!2d" },
291  { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
292  { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32RI", "!0r,!1d" },
293  { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32MI", "[!0r+!1d],!2d" },
294  { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
295  { kX86Test64RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64RI", "!0r,!1d" },
296  { kX86Test64MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64MI", "[!0r+!1d],!2d" },
297  { kX86Test64AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64AI", "[!0r+!1r<<!2d+!3d],!4d" },
298
299  { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,     0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RR", "!0r,!1r" },
300  { kX86Test64RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { REX_W, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test64RR", "!0r,!1r" },
301  { kX86Test32RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | REG_USE01 | SETS_CCODES, { 0,     0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RM", "!0r,[!1r+!2d]" },
302
303#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
304                           reg, reg_kind, reg_flags, \
305                           mem, mem_kind, mem_flags, \
306                           arr, arr_kind, arr_flags, imm, \
307                           b_flags, hw_flags, w_flags, \
308                           b_format, hw_format, w_format) \
309{ kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #reg, b_format "!0r" }, \
310{ kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #mem, b_format "[!0r+!1d]" }, \
311{ kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #arr, b_format "[!0r+!1r<<!2d+!3d]" }, \
312{ kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #reg, hw_format "!0r" }, \
313{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #mem, hw_format "[!0r+!1d]" }, \
314{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #arr, hw_format "[!0r+!1r<<!2d+!3d]" }, \
315{ kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #reg, w_format "!0r" }, \
316{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #mem, w_format "[!0r+!1d]" }, \
317{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #arr, w_format "[!0r+!1r<<!2d+!3d]" }, \
318{ kX86 ## opname ## 64 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #reg, w_format "!0r" }, \
319{ kX86 ## opname ## 64 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #mem, w_format "[!0r+!1d]" }, \
320{ kX86 ## opname ## 64 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #arr, w_format "[!0r+!1r<<!2d+!3d]" }
321
322  UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
323  UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
324
325  UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
326  UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
327  UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
328  UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
329#undef UNARY_ENCODING_MAP
330
331  { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { 0,     0, 0x99, 0,    0, 0, 0, 0, false }, "Cdq", "" },
332  { kx86Cqo64Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { REX_W, 0, 0x99, 0,    0, 0, 0, 0, false }, "Cqo", "" },
333  { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { 0,     0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap32R", "!0r" },
334  { kX86Bswap64R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { REX_W, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap64R", "!0r" },
335  { kX86Push32R,  kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0,     0, 0x50, 0,    0, 0, 0, 0, false }, "Push32R",  "!0r" },
336  { kX86Pop32R,   kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD,  { 0,     0, 0x58, 0,    0, 0, 0, 0, false }, "Pop32R",   "!0r" },
337
338#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
339{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
340{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
341{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
342
343// This is a special encoding with r8_form on the second register only
344// for Movzx8 and Movsx8.
345#define EXT_0F_R8_FORM_ENCODING_MAP(opname, prefix, opcode, reg_def) \
346{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, true }, #opname "RR", "!0r,!1r" }, \
347{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
348{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
349
350#define EXT_0F_REX_W_ENCODING_MAP(opname, prefix, opcode, reg_def) \
351{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
352{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
353{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
354
355#define EXT_0F_ENCODING2_MAP(opname, prefix, opcode, opcode2, reg_def) \
356{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
357{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
358{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
359
360  EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
361  { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdMR", "[!0r+!1d],!2r" },
362  { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
363
364  EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
365  { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssMR", "[!0r+!1d],!2r" },
366  { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
367
368  EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
369  EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
370  EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2sd,  0xF2, 0x2A, REG_DEF0),
371  EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2ss,  0xF3, 0x2A, REG_DEF0),
372  EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
373  EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
374  EXT_0F_REX_W_ENCODING_MAP(Cvttsd2sqi, 0xF2, 0x2C, REG_DEF0),
375  EXT_0F_REX_W_ENCODING_MAP(Cvttss2sqi, 0xF3, 0x2C, REG_DEF0),
376  EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
377  EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
378  EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES|REG_USE0),
379  EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES|REG_USE0),
380  EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES|REG_USE0),
381  EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES|REG_USE0),
382  EXT_0F_ENCODING_MAP(Orpd,      0x66, 0x56, REG_DEF0_USE0),
383  EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0_USE0),
384  EXT_0F_ENCODING_MAP(Andpd,     0x66, 0x54, REG_DEF0_USE0),
385  EXT_0F_ENCODING_MAP(Andps,     0x00, 0x54, REG_DEF0_USE0),
386  EXT_0F_ENCODING_MAP(Xorpd,     0x66, 0x57, REG_DEF0_USE0),
387  EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0_USE0),
388  EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0_USE0),
389  EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0_USE0),
390  EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0_USE0),
391  EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0_USE0),
392  EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
393  EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
394  EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0_USE0),
395  EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0_USE0),
396  EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0_USE0),
397  EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0_USE0),
398  EXT_0F_ENCODING_MAP(Punpcklbw, 0x66, 0x60, REG_DEF0_USE0),
399  EXT_0F_ENCODING_MAP(Punpcklwd, 0x66, 0x61, REG_DEF0_USE0),
400  EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0_USE0),
401  EXT_0F_ENCODING_MAP(Punpcklqdq, 0x66, 0x6C, REG_DEF0_USE0),
402  EXT_0F_ENCODING_MAP(Sqrtsd,    0xF2, 0x51, REG_DEF0_USE0),
403  EXT_0F_ENCODING2_MAP(Pmulld,   0x66, 0x38, 0x40, REG_DEF0_USE0),
404  EXT_0F_ENCODING_MAP(Pmullw,    0x66, 0xD5, REG_DEF0_USE0),
405  EXT_0F_ENCODING_MAP(Pmuludq,   0x66, 0xF4, REG_DEF0_USE0),
406  EXT_0F_ENCODING_MAP(Mulps,     0x00, 0x59, REG_DEF0_USE0),
407  EXT_0F_ENCODING_MAP(Mulpd,     0x66, 0x59, REG_DEF0_USE0),
408  EXT_0F_ENCODING_MAP(Paddb,     0x66, 0xFC, REG_DEF0_USE0),
409  EXT_0F_ENCODING_MAP(Paddw,     0x66, 0xFD, REG_DEF0_USE0),
410  EXT_0F_ENCODING_MAP(Paddd,     0x66, 0xFE, REG_DEF0_USE0),
411  EXT_0F_ENCODING_MAP(Paddq,     0x66, 0xD4, REG_DEF0_USE0),
412  EXT_0F_ENCODING_MAP(Psadbw,    0x66, 0xF6, REG_DEF0_USE0),
413  EXT_0F_ENCODING_MAP(Addps,     0x00, 0x58, REG_DEF0_USE0),
414  EXT_0F_ENCODING_MAP(Addpd,     0x66, 0x58, REG_DEF0_USE0),
415  EXT_0F_ENCODING_MAP(Psubb,     0x66, 0xF8, REG_DEF0_USE0),
416  EXT_0F_ENCODING_MAP(Psubw,     0x66, 0xF9, REG_DEF0_USE0),
417  EXT_0F_ENCODING_MAP(Psubd,     0x66, 0xFA, REG_DEF0_USE0),
418  EXT_0F_ENCODING_MAP(Psubq,     0x66, 0xFB, REG_DEF0_USE0),
419  EXT_0F_ENCODING_MAP(Subps,     0x00, 0x5C, REG_DEF0_USE0),
420  EXT_0F_ENCODING_MAP(Subpd,     0x66, 0x5C, REG_DEF0_USE0),
421  EXT_0F_ENCODING_MAP(Pand,      0x66, 0xDB, REG_DEF0_USE0),
422  EXT_0F_ENCODING_MAP(Por,       0x66, 0xEB, REG_DEF0_USE0),
423  EXT_0F_ENCODING_MAP(Pxor,      0x66, 0xEF, REG_DEF0_USE0),
424  EXT_0F_ENCODING2_MAP(Phaddw,   0x66, 0x38, 0x01, REG_DEF0_USE0),
425  EXT_0F_ENCODING2_MAP(Phaddd,   0x66, 0x38, 0x02, REG_DEF0_USE0),
426  EXT_0F_ENCODING_MAP(Haddpd,    0x66, 0x7C, REG_DEF0_USE0),
427  EXT_0F_ENCODING_MAP(Haddps,    0xF2, 0x7C, REG_DEF0_USE0),
428
429  { kX86PextrbRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x14, 0, 0, 1, false }, "PextbRRI", "!0r,!1r,!2d" },
430  { kX86PextrwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0xC5, 0x00, 0, 0, 1, false }, "PextwRRI", "!0r,!1r,!2d" },
431  { kX86PextrdRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextdRRI", "!0r,!1r,!2d" },
432  { kX86PextrbMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextrbMRI", "[!0r+!1d],!2r,!3d" },
433  { kX86PextrwMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x15, 0, 0, 1, false }, "PextrwMRI", "[!0r+!1d],!2r,!3d" },
434  { kX86PextrdMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextrdMRI", "[!0r+!1d],!2r,!3d" },
435
436  { kX86PshuflwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0xF2, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuflwRRI", "!0r,!1r,!2d" },
437  { kX86PshufdRRI,  kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuffRRI", "!0r,!1r,!2d" },
438
439  { kX86ShufpsRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE0 | REG_USE1, { 0x00, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "ShufpsRRI", "!0r,!1r,!2d" },
440  { kX86ShufpdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE0 | REG_USE1, { 0x66, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "ShufpdRRI", "!0r,!1r,!2d" },
441
442  { kX86PsrawRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 4, 0, 1, false }, "PsrawRI", "!0r,!1d" },
443  { kX86PsradRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 4, 0, 1, false }, "PsradRI", "!0r,!1d" },
444  { kX86PsrlwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 2, 0, 1, false }, "PsrlwRI", "!0r,!1d" },
445  { kX86PsrldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 2, 0, 1, false }, "PsrldRI", "!0r,!1d" },
446  { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1, false }, "PsrlqRI", "!0r,!1d" },
447  { kX86PsrldqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 3, 0, 1, false }, "PsrldqRI", "!0r,!1d" },
448  { kX86PsllwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 6, 0, 1, false }, "PsllwRI", "!0r,!1d" },
449  { kX86PslldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 6, 0, 1, false }, "PslldRI", "!0r,!1d" },
450  { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1, false }, "PsllqRI", "!0r,!1d" },
451
452  { kX86Fild32M,  kMem,     IS_LOAD    | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDB, 0x00, 0, 0, 0, 0, false }, "Fild32M",  "[!0r,!1d]" },
453  { kX86Fild64M,  kMem,     IS_LOAD    | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDF, 0x00, 0, 5, 0, 0, false }, "Fild64M",  "[!0r,!1d]" },
454  { kX86Fld32M,   kMem,     IS_LOAD    | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 0, 0, 0, false }, "Fld32M",   "[!0r,!1d]" },
455  { kX86Fld64M,   kMem,     IS_LOAD    | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 0, 0, 0, false }, "Fld64M",   "[!0r,!1d]" },
456  { kX86Fstp32M,  kMem,     IS_STORE   | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 3, 0, 0, false }, "Fstps32M", "[!0r,!1d]" },
457  { kX86Fstp64M,  kMem,     IS_STORE   | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 3, 0, 0, false }, "Fstpd64M", "[!0r,!1d]" },
458  { kX86Fst32M,   kMem,     IS_STORE   | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 2, 0, 0, false }, "Fsts32M",  "[!0r,!1d]" },
459  { kX86Fst64M,   kMem,     IS_STORE   | IS_BINARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 2, 0, 0, false }, "Fstd64M",  "[!0r,!1d]" },
460  { kX86Fprem,    kNullary, NO_OPERAND | USE_FP_STACK,                          { 0xD9, 0,    0xF8, 0,    0, 0, 0, 0, false }, "Fprem64",  "" },
461  { kX86Fucompp,  kNullary, NO_OPERAND | USE_FP_STACK,                          { 0xDA, 0,    0xE9, 0,    0, 0, 0, 0, false }, "Fucompp",  "" },
462  { kX86Fstsw16R, kNullary, NO_OPERAND | REG_DEFA | USE_FP_STACK,               { 0x9B, 0xDF, 0xE0, 0,    0, 0, 0, 0, false }, "Fstsw16R", "ax" },
463
464  EXT_0F_ENCODING_MAP(Movdqa,    0x66, 0x6F, REG_DEF0),
465  { kX86MovdqaMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "MovdqaMR", "[!0r+!1d],!2r" },
466  { kX86MovdqaAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "MovdqaAR", "[!0r+!1r<<!2d+!3d],!4r" },
467
468
469  EXT_0F_ENCODING_MAP(Movups,    0x0, 0x10, REG_DEF0),
470  { kX86MovupsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsMR", "[!0r+!1d],!2r" },
471  { kX86MovupsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
472
473  EXT_0F_ENCODING_MAP(Movaps,    0x0, 0x28, REG_DEF0),
474  { kX86MovapsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsMR", "[!0r+!1d],!2r" },
475  { kX86MovapsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
476
477  { kX86MovlpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRM", "!0r,[!1r+!2d]" },
478  { kX86MovlpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
479  { kX86MovlpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,            { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsMR", "[!0r+!1d],!2r" },
480  { kX86MovlpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014,           { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
481
482  { kX86MovhpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRM", "!0r,[!1r+!2d]" },
483  { kX86MovhpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
484  { kX86MovhpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,            { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsMR", "[!0r+!1d],!2r" },
485  { kX86MovhpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014,           { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
486
487  EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
488  EXT_0F_REX_W_ENCODING_MAP(Movqxr, 0x66, 0x6E, REG_DEF0),
489  { kX86MovqrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE1,   { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxRR", "!0r,!1r" },
490  { kX86MovqrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxMR", "[!0r+!1d],!2r" },
491  { kX86MovqrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
492
493  { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE1,   { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxRR", "!0r,!1r" },
494  { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxMR", "[!0r+!1d],!2r" },
495  { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
496
497  { kX86MovsxdRR, kRegReg,      IS_BINARY_OP | REG_DEF0 | REG_USE1,              { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRR", "!0r,!1r" },
498  { kX86MovsxdRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE1,  { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRM", "!0r,[!1r+!2d]" },
499  { kX86MovsxdRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE12, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRA", "!0r,[!1r+!2r<<!3d+!4d]" },
500
501  { kX86Set8R, kRegCond,   IS_BINARY_OP | REG_DEF0   | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, true  }, "Set8R", "!1c !0r" },
502  { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8M", "!2c [!0r+!1d]" },
503  { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
504
505  // TODO: load/store?
506  // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
507  { kX86Lfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 5, 0, 0, false }, "Lfence", "" },
508  { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0, false }, "Mfence", "" },
509  { kX86Sfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 7, 0, 0, false }, "Sfence", "" },
510
511  EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
512  EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
513  EXT_0F_ENCODING_MAP(Imul64,  REX_W, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
514
515  { kX86CmpxchgRR, kRegRegStore,  IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES,   { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "!0r,!1r" },
516  { kX86CmpxchgMR, kMemReg,       IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1d],!2r" },
517  { kX86CmpxchgAR, kArrayReg,     IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
518  { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
519  { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
520  { kX86LockCmpxchg64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0xF0, REX_W, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
521  { kX86LockCmpxchg64M, kMem,     IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1d]" },
522  { kX86LockCmpxchg64A, kArray,   IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES,  { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
523  { kX86XchgMR, kMemReg,          IS_STORE | IS_LOAD | IS_TERTIARY_OP | REG_DEF2 | REG_USE02,          { 0, 0, 0x87, 0, 0, 0, 0, 0, false }, "Xchg", "[!0r+!1d],!2r" },
524
525  EXT_0F_R8_FORM_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
526  EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
527  EXT_0F_R8_FORM_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
528  EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
529  EXT_0F_ENCODING_MAP(Movzx8q,  REX_W, 0xB6, REG_DEF0),
530  EXT_0F_ENCODING_MAP(Movzx16q, REX_W, 0xB7, REG_DEF0),
531  EXT_0F_ENCODING_MAP(Movsx8q,  REX, 0xBE, REG_DEF0),
532  EXT_0F_ENCODING_MAP(Movsx16q, REX_W, 0xBF, REG_DEF0),
533#undef EXT_0F_ENCODING_MAP
534
535  { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0, false }, "Jcc8",  "!1c !0t" },
536  { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0, false }, "Jcc32", "!1c !0t" },
537  { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0, false }, "Jmp8",  "!0t" },
538  { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0, false }, "Jmp32", "!0t" },
539  { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0, false }, "JmpR",  "!0r" },
540  { kX86Jecxz8, kJmp, NO_OPERAND   | IS_BRANCH | NEEDS_FIXUP | REG_USEC,    { 0,             0, 0xE3, 0,    0, 0, 0, 0, false }, "Jecxz", "!0t" },
541  { kX86JmpT,  kJmp,  IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 4, 0, 0, false }, "JmpT",  "fs:[!0d]" },
542  { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0, false }, "CallR", "!0r" },
543  { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0, false }, "CallM", "[!0r+!1d]" },
544  { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0, false }, "CallA", "[!0r+!1r<<!2d+!3d]" },
545  { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0, false }, "CallT", "fs:[!0d]" },
546  { kX86CallI, kCall, IS_UNARY_OP  | IS_BRANCH,                             { 0,             0, 0xE8, 0,    0, 0, 0, 4, false }, "CallI", "!0d" },
547  { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0, false }, "Ret", "" },
548
549  { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
550  { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "PcRelAdr",      "!0r,!1p" },
551  { kX86RepneScasw,    kNullary, NO_OPERAND | REG_USEA | REG_USEC | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0, false }, "RepNE ScasW", "" },
552};
553
554std::ostream& operator<<(std::ostream& os, const X86OpCode& rhs) {
555  os << X86Mir2Lir::EncodingMap[rhs].name;
556  return os;
557}
558
559static bool NeedsRex(int32_t raw_reg) {
560  return raw_reg != kRIPReg && RegStorage::RegNum(raw_reg) > 7;
561}
562
563static uint8_t LowRegisterBits(int32_t raw_reg) {
564  uint8_t low_reg = RegStorage::RegNum(raw_reg) & kRegNumMask32;  // 3 bits
565  DCHECK_LT(low_reg, 8);
566  return low_reg;
567}
568
569static bool HasModrm(const X86EncodingMap* entry) {
570  switch (entry->kind) {
571    case kNullary: return false;
572    case kRegOpcode: return false;
573    default: return true;
574  }
575}
576
577static bool HasSib(const X86EncodingMap* entry) {
578  switch (entry->kind) {
579    case kArray: return true;
580    case kArrayReg: return true;
581    case kRegArray: return true;
582    case kArrayImm: return true;
583    case kRegArrayImm: return true;
584    case kShiftArrayImm: return true;
585    case kShiftArrayCl: return true;
586    case kArrayCond: return true;
587    case kCall:
588      switch (entry->opcode) {
589        case kX86CallA: return true;
590        default: return false;
591      }
592    case kPcRel:
593       switch (entry->opcode) {
594         case kX86PcRelLoadRA: return true;
595         default: return false;
596        }
597    default: return false;
598  }
599}
600
601static bool ModrmIsRegReg(const X86EncodingMap* entry) {
602  switch (entry->kind) {
603    // There is no modrm for this kind of instruction, therefore the reg doesn't form part of the
604    // modrm:
605    case kNullary: return true;
606    case kRegOpcode: return true;
607    case kMovRegImm: return true;
608    // Regular modrm value of 3 cases, when there is one register the other register holds an
609    // opcode so the base register is special.
610    case kReg: return true;
611    case kRegReg: return true;
612    case kRegRegStore: return true;
613    case kRegImm: return true;
614    case kRegRegImm: return true;
615    case kRegRegImmStore: return true;
616    case kShiftRegImm: return true;
617    case kShiftRegCl: return true;
618    case kRegCond: return true;
619    case kRegRegCond: return true;
620    case kShiftRegRegCl: return true;
621    case kJmp:
622      switch (entry->opcode) {
623        case kX86JmpR: return true;
624        default: return false;
625      }
626    case kCall:
627      switch (entry->opcode) {
628        case kX86CallR: return true;
629        default: return false;
630      }
631    default: return false;
632  }
633}
634
635static bool IsByteSecondOperand(const X86EncodingMap* entry) {
636  return StartsWith(entry->name, "Movzx8") || StartsWith(entry->name, "Movsx8");
637}
638
639size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
640                               int32_t raw_base, int32_t displacement) {
641  bool has_modrm = HasModrm(entry);
642  bool has_sib = HasSib(entry);
643  bool r8_form = entry->skeleton.r8_form;
644  bool modrm_is_reg_reg = ModrmIsRegReg(entry);
645  if (has_sib) {
646    DCHECK(!modrm_is_reg_reg);
647  }
648  size_t size = 0;
649  if (entry->skeleton.prefix1 > 0) {
650    ++size;
651    if (entry->skeleton.prefix2 > 0) {
652      ++size;
653    }
654  }
655  if (cu_->target64 || kIsDebugBuild) {
656    bool registers_need_rex_prefix = NeedsRex(raw_reg) || NeedsRex(raw_index) || NeedsRex(raw_base);
657    if (r8_form) {
658      // Do we need an empty REX prefix to normalize byte registers?
659      registers_need_rex_prefix = registers_need_rex_prefix ||
660          (RegStorage::RegNum(raw_reg) >= 4 && !IsByteSecondOperand(entry));
661      registers_need_rex_prefix = registers_need_rex_prefix ||
662          (modrm_is_reg_reg && (RegStorage::RegNum(raw_base) >= 4));
663    }
664    if (registers_need_rex_prefix) {
665      DCHECK(cu_->target64) << "Attempt to use a 64-bit only addressable register "
666          << RegStorage::RegNum(raw_reg) << " with instruction " << entry->name;
667      if (entry->skeleton.prefix1 != REX_W && entry->skeleton.prefix2 != REX_W
668         && entry->skeleton.prefix1 != REX && entry->skeleton.prefix2 != REX) {
669        ++size;  // rex
670      }
671    }
672  }
673  ++size;  // opcode
674  if (entry->skeleton.opcode == 0x0F) {
675    ++size;
676    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
677      ++size;
678    }
679  }
680  if (has_modrm) {
681    ++size;  // modrm
682  }
683  if (!modrm_is_reg_reg) {
684    if (has_sib || (LowRegisterBits(raw_base) == rs_rX86_SP_32.GetRegNum())
685        || (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX)) {
686      // SP requires a SIB byte.
687      // GS access also needs a SIB byte for absolute adressing in 64-bit mode.
688      ++size;
689    }
690    if (displacement != 0 || LowRegisterBits(raw_base) == rs_rBP.GetRegNum()) {
691      // BP requires an explicit displacement, even when it's 0.
692      if (entry->opcode != kX86Lea32RA && entry->opcode != kX86Lea64RA &&
693          entry->opcode != kX86Lea32RM && entry->opcode != kX86Lea64RM) {
694        DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), UINT64_C(0)) << entry->name;
695      }
696      if (raw_base == kRIPReg) {
697        DCHECK(cu_->target64) <<
698          "Attempt to use a 64-bit RIP adressing with instruction " << entry->name;
699        size += 4;
700      } else {
701        size += IS_SIMM8(displacement) ? 1 : 4;
702      }
703    }
704  }
705  size += entry->skeleton.immediate_bytes;
706  return size;
707}
708
709size_t X86Mir2Lir::GetInsnSize(LIR* lir) {
710  DCHECK(!IsPseudoLirOp(lir->opcode));
711  const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
712  DCHECK_EQ(entry->opcode, lir->opcode) << entry->name;
713
714  switch (entry->kind) {
715    case kData:
716      return 4;  // 4 bytes of data.
717    case kNop:
718      return lir->operands[0];  // Length of nop is sole operand.
719    case kNullary:
720      return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0);
721    case kRegOpcode:  // lir operands - 0: reg
722      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
723    case kReg:  // lir operands - 0: reg
724      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
725    case kMem:  // lir operands - 0: base, 1: disp
726      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
727    case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
728      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
729    case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
730      return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
731    case kMemRegImm:  // lir operands - 0: base, 1: disp, 2: reg 3: immediate
732      return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
733    case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
734      return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
735                         lir->operands[3]);
736    case kThreadReg:  // lir operands - 0: disp, 1: reg
737      // Thread displacement size is always 32bit.
738      return ComputeSize(entry, lir->operands[1], NO_REG, NO_REG, 0x12345678);
739    case kRegReg:  // lir operands - 0: reg1, 1: reg2
740      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
741    case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
742      return ComputeSize(entry, lir->operands[1], NO_REG, lir->operands[0], 0);
743    case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
744      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
745    case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
746      return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
747                         lir->operands[4]);
748    case kRegThread:  // lir operands - 0: reg, 1: disp
749      // Thread displacement size is always 32bit.
750      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0x12345678);
751    case kRegImm: {  // lir operands - 0: reg, 1: immediate
752      size_t size = ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
753      // AX opcodes don't require the modrm byte.
754      if (entry->skeleton.ax_opcode == 0) {
755        return size;
756      } else {
757        return size - (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0);
758      }
759    }
760    case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
761      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
762    case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
763      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
764    case kThreadImm:  // lir operands - 0: disp, 1: imm
765      // Thread displacement size is always 32bit.
766      return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
767    case kRegRegImm:  // lir operands - 0: reg1, 1: reg2, 2: imm
768      // Note: RegRegImm form passes reg2 as index but encodes it using base.
769      return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, 0);
770    case kRegRegImmStore:  // lir operands - 0: reg2, 1: reg1, 2: imm
771      // Note: RegRegImmStore form passes reg1 as index but encodes it using base.
772      return ComputeSize(entry, lir->operands[1], lir->operands[0], NO_REG, 0);
773    case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
774      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
775    case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
776      return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
777                         lir->operands[4]);
778    case kMovRegImm:  // lir operands - 0: reg, 1: immediate
779    case kMovRegQuadImm:
780      return ((entry->skeleton.prefix1 != 0 || NeedsRex(lir->operands[0])) ? 1 : 0) + 1 +
781          entry->skeleton.immediate_bytes;
782    case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
783      // Shift by immediate one has a shorter opcode.
784      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0) -
785          (lir->operands[1] == 1 ? 1 : 0);
786    case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
787      // Shift by immediate one has a shorter opcode.
788      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]) -
789          (lir->operands[2] == 1 ? 1 : 0);
790    case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
791      // Shift by immediate one has a shorter opcode.
792      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]) -
793          (lir->operands[4] == 1 ? 1 : 0);
794    case kShiftRegCl:  // lir operands - 0: reg, 1: cl
795      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[1]));
796      // Note: ShiftRegCl form passes reg as reg but encodes it using base.
797      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
798    case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
799      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2]));
800      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
801    case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cl
802      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[4]));
803      return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
804                         lir->operands[3]);
805    case kShiftRegRegCl:  // lir operands - 0: reg1, 1: reg2, 2: cl
806      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2]));
807      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
808    case kRegCond:  // lir operands - 0: reg, 1: cond
809      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
810    case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
811      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
812    case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
813      DCHECK_EQ(false, entry->skeleton.r8_form);
814      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
815    case kRegRegCond:  // lir operands - 0: reg1, 1: reg2, 2: cond
816      DCHECK_EQ(false, entry->skeleton.r8_form);
817      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
818    case kRegMemCond:  // lir operands - 0: reg, 1: base, 2: disp, 3:cond
819      DCHECK_EQ(false, entry->skeleton.r8_form);
820      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
821    case kJcc:
822      if (lir->opcode == kX86Jcc8) {
823        return 2;  // opcode + rel8
824      } else {
825        DCHECK(lir->opcode == kX86Jcc32);
826        return 6;  // 2 byte opcode + rel32
827      }
828    case kJmp:
829      if (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jecxz8) {
830        return 2;  // opcode + rel8
831      } else if (lir->opcode == kX86Jmp32) {
832        return 5;  // opcode + rel32
833      } else if (lir->opcode == kX86JmpT) {
834        // Thread displacement size is always 32bit.
835        return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
836      } else {
837        DCHECK(lir->opcode == kX86JmpR);
838        if (NeedsRex(lir->operands[0])) {
839          return 3;  // REX.B + opcode + modrm
840        } else {
841          return 2;  // opcode + modrm
842        }
843      }
844    case kCall:
845      switch (lir->opcode) {
846        case kX86CallI: return 5;  // opcode 0:disp
847        case kX86CallR: return 2;  // opcode modrm
848        case kX86CallM:  // lir operands - 0: base, 1: disp
849          return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
850        case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
851          return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
852        case kX86CallT:  // lir operands - 0: disp
853          // Thread displacement size is always 32bit.
854          return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
855        default:
856          break;
857      }
858      break;
859    case kPcRel:
860      if (entry->opcode == kX86PcRelLoadRA) {
861        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
862        // Force the displacement size to 32bit, it will hold a computed offset later.
863        return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
864                           0x12345678);
865      } else {
866        DCHECK_EQ(entry->opcode, kX86PcRelAdr);
867        return 5;  // opcode with reg + 4 byte immediate
868      }
869    case kUnimplemented:
870      break;
871  }
872  UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
873  return 0;
874}
875
876static uint8_t ModrmForDisp(int base, int disp) {
877  // BP requires an explicit disp, so do not omit it in the 0 case
878  if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
879    return 0;
880  } else if (IS_SIMM8(disp)) {
881    return 1;
882  } else {
883    return 2;
884  }
885}
886
887void X86Mir2Lir::CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg) {
888  if (kIsDebugBuild) {
889    // Sanity check r8_form is correctly specified.
890    if (entry->skeleton.r8_form) {
891      CHECK(strchr(entry->name, '8') != nullptr) << entry->name;
892    } else {
893      if (entry->skeleton.immediate_bytes != 1) {  // Ignore ...I8 instructions.
894        if (!StartsWith(entry->name, "Movzx8") && !StartsWith(entry->name, "Movsx8")
895           && !StartsWith(entry->name, "Movzx8q") && !StartsWith(entry->name, "Movsx8q")) {
896          CHECK(strchr(entry->name, '8') == nullptr) << entry->name;
897        }
898      }
899    }
900    if (RegStorage::RegNum(raw_reg) >= 4) {
901      // ah, bh, ch and dh are not valid registers in 32-bit.
902      CHECK(cu_->target64 || !entry->skeleton.r8_form)
903               << "Invalid register " << static_cast<int>(RegStorage::RegNum(raw_reg))
904               << " for instruction " << entry->name << " in "
905               << PrettyMethod(cu_->method_idx, *cu_->dex_file);
906    }
907  }
908}
909
910void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry,
911                            int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
912  // REX.WRXB
913  // W - 64-bit operand
914  // R - MODRM.reg
915  // X - SIB.index
916  // B - MODRM.rm/SIB.base
917  bool w = (entry->skeleton.prefix1 == REX_W) || (entry->skeleton.prefix2 == REX_W);
918  bool r = NeedsRex(raw_reg_r);
919  bool x = NeedsRex(raw_reg_x);
920  bool b = NeedsRex(raw_reg_b);
921  bool r8_form = entry->skeleton.r8_form;
922  bool modrm_is_reg_reg = ModrmIsRegReg(entry);
923
924  uint8_t rex = 0;
925  if (r8_form) {
926    // Do we need an empty REX prefix to normalize byte register addressing?
927    if (RegStorage::RegNum(raw_reg_r) >= 4 && !IsByteSecondOperand(entry)) {
928      rex |= REX;  // REX.0000
929    } else if (modrm_is_reg_reg && RegStorage::RegNum(raw_reg_b) >= 4) {
930      rex |= REX;  // REX.0000
931    }
932  }
933  if (w) {
934    rex |= REX_W;  // REX.W000
935  }
936  if (r) {
937    rex |= REX_R;  // REX.0R00
938  }
939  if (x) {
940    rex |= REX_X;  // REX.00X0
941  }
942  if (b) {
943    rex |= REX_B;  // REX.000B
944  }
945  if (entry->skeleton.prefix1 != 0) {
946    if (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX) {
947      // 64 bit addresses by GS, not FS.
948      code_buffer_.push_back(THREAD_PREFIX_GS);
949    } else {
950      if (entry->skeleton.prefix1 == REX_W || entry->skeleton.prefix1 == REX) {
951        DCHECK(cu_->target64);
952        rex |= entry->skeleton.prefix1;
953        code_buffer_.push_back(rex);
954        rex = 0;
955      } else {
956        code_buffer_.push_back(entry->skeleton.prefix1);
957      }
958    }
959    if (entry->skeleton.prefix2 != 0) {
960      if (entry->skeleton.prefix2 == REX_W || entry->skeleton.prefix1 == REX) {
961        DCHECK(cu_->target64);
962        rex |= entry->skeleton.prefix2;
963        code_buffer_.push_back(rex);
964        rex = 0;
965      } else {
966        code_buffer_.push_back(entry->skeleton.prefix2);
967      }
968    }
969  } else {
970    DCHECK_EQ(0, entry->skeleton.prefix2);
971  }
972  if (rex != 0) {
973    DCHECK(cu_->target64);
974    code_buffer_.push_back(rex);
975  }
976}
977
978void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
979  code_buffer_.push_back(entry->skeleton.opcode);
980  if (entry->skeleton.opcode == 0x0F) {
981    code_buffer_.push_back(entry->skeleton.extra_opcode1);
982    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
983      code_buffer_.push_back(entry->skeleton.extra_opcode2);
984    } else {
985      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
986    }
987  } else {
988    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
989    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
990  }
991}
992
993void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry,
994                                     int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
995  EmitPrefix(entry, raw_reg_r, raw_reg_x, raw_reg_b);
996  EmitOpcode(entry);
997}
998
999void X86Mir2Lir::EmitDisp(uint8_t base, int32_t disp) {
1000  // BP requires an explicit disp, so do not omit it in the 0 case
1001  if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
1002    return;
1003  } else if (IS_SIMM8(disp)) {
1004    code_buffer_.push_back(disp & 0xFF);
1005  } else {
1006    code_buffer_.push_back(disp & 0xFF);
1007    code_buffer_.push_back((disp >> 8) & 0xFF);
1008    code_buffer_.push_back((disp >> 16) & 0xFF);
1009    code_buffer_.push_back((disp >> 24) & 0xFF);
1010  }
1011}
1012
1013void X86Mir2Lir::EmitModrmThread(uint8_t reg_or_opcode) {
1014  if (cu_->target64) {
1015    // Absolute adressing for GS access.
1016    uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rX86_SP_32.GetRegNum();
1017    code_buffer_.push_back(modrm);
1018    uint8_t sib = (0/*TIMES_1*/ << 6) | (rs_rX86_SP_32.GetRegNum() << 3) | rs_rBP.GetRegNum();
1019    code_buffer_.push_back(sib);
1020  } else {
1021    uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rBP.GetRegNum();
1022    code_buffer_.push_back(modrm);
1023  }
1024}
1025
1026void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp) {
1027  DCHECK_LT(reg_or_opcode, 8);
1028  if (base == kRIPReg) {
1029    // x86_64 RIP handling: always 32 bit displacement.
1030    uint8_t modrm = (0x0 << 6) | (reg_or_opcode << 3) | 0x5;
1031    code_buffer_.push_back(modrm);
1032    code_buffer_.push_back(disp & 0xFF);
1033    code_buffer_.push_back((disp >> 8) & 0xFF);
1034    code_buffer_.push_back((disp >> 16) & 0xFF);
1035    code_buffer_.push_back((disp >> 24) & 0xFF);
1036  } else {
1037    DCHECK_LT(base, 8);
1038    uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
1039    code_buffer_.push_back(modrm);
1040    if (base == rs_rX86_SP_32.GetRegNum()) {
1041      // Special SIB for SP base
1042      code_buffer_.push_back(0 << 6 | rs_rX86_SP_32.GetRegNum() << 3 | rs_rX86_SP_32.GetRegNum());
1043    }
1044    EmitDisp(base, disp);
1045  }
1046}
1047
1048void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
1049                                  int scale, int32_t disp) {
1050  DCHECK_LT(RegStorage::RegNum(reg_or_opcode), 8);
1051  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | RegStorage::RegNum(reg_or_opcode) << 3 |
1052      rs_rX86_SP_32.GetRegNum();
1053  code_buffer_.push_back(modrm);
1054  DCHECK_LT(scale, 4);
1055  DCHECK_LT(RegStorage::RegNum(index), 8);
1056  DCHECK_LT(RegStorage::RegNum(base), 8);
1057  uint8_t sib = (scale << 6) | (RegStorage::RegNum(index) << 3) | RegStorage::RegNum(base);
1058  code_buffer_.push_back(sib);
1059  EmitDisp(base, disp);
1060}
1061
1062void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int64_t imm) {
1063  switch (entry->skeleton.immediate_bytes) {
1064    case 1:
1065      DCHECK(IS_SIMM8(imm));
1066      code_buffer_.push_back(imm & 0xFF);
1067      break;
1068    case 2:
1069      DCHECK(IS_SIMM16(imm));
1070      code_buffer_.push_back(imm & 0xFF);
1071      code_buffer_.push_back((imm >> 8) & 0xFF);
1072      break;
1073    case 4:
1074      DCHECK(IS_SIMM32(imm));
1075      code_buffer_.push_back(imm & 0xFF);
1076      code_buffer_.push_back((imm >> 8) & 0xFF);
1077      code_buffer_.push_back((imm >> 16) & 0xFF);
1078      code_buffer_.push_back((imm >> 24) & 0xFF);
1079      break;
1080    case 8:
1081      code_buffer_.push_back(imm & 0xFF);
1082      code_buffer_.push_back((imm >> 8) & 0xFF);
1083      code_buffer_.push_back((imm >> 16) & 0xFF);
1084      code_buffer_.push_back((imm >> 24) & 0xFF);
1085      code_buffer_.push_back((imm >> 32) & 0xFF);
1086      code_buffer_.push_back((imm >> 40) & 0xFF);
1087      code_buffer_.push_back((imm >> 48) & 0xFF);
1088      code_buffer_.push_back((imm >> 56) & 0xFF);
1089      break;
1090    default:
1091      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
1092                 << ") for instruction: " << entry->name;
1093      break;
1094  }
1095}
1096
1097void X86Mir2Lir::EmitNullary(const X86EncodingMap* entry) {
1098  DCHECK_EQ(false, entry->skeleton.r8_form);
1099  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1100  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1101  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1102  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1103}
1104
1105void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg) {
1106  DCHECK_EQ(false, entry->skeleton.r8_form);
1107  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
1108  // There's no 3-byte instruction with +rd
1109  DCHECK(entry->skeleton.opcode != 0x0F ||
1110         (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
1111  DCHECK(!RegStorage::IsFloat(raw_reg));
1112  uint8_t low_reg = LowRegisterBits(raw_reg);
1113  code_buffer_.back() += low_reg;
1114  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1115  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1116}
1117
1118void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg) {
1119  CheckValidByteRegister(entry, raw_reg);
1120  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
1121  uint8_t low_reg = LowRegisterBits(raw_reg);
1122  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1123  code_buffer_.push_back(modrm);
1124  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1125  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1126}
1127
1128void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
1129  DCHECK_EQ(false, entry->skeleton.r8_form);
1130  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1131  code_buffer_.push_back(entry->skeleton.opcode);
1132  DCHECK_NE(0x0F, entry->skeleton.opcode);
1133  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1134  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1135  uint8_t low_base = LowRegisterBits(raw_base);
1136  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1137  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1138  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1139}
1140
1141void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
1142                             int scale, int32_t disp) {
1143  DCHECK_EQ(false, entry->skeleton.r8_form);
1144  EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
1145  uint8_t low_index = LowRegisterBits(raw_index);
1146  uint8_t low_base = LowRegisterBits(raw_base);
1147  EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
1148  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1149  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1150}
1151
1152void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1153                            int32_t raw_reg) {
1154  CheckValidByteRegister(entry, raw_reg);
1155  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
1156  uint8_t low_reg = LowRegisterBits(raw_reg);
1157  uint8_t low_base = (raw_base == kRIPReg) ? raw_base : LowRegisterBits(raw_base);
1158  EmitModrmDisp(low_reg, low_base, disp);
1159  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1160  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1161  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1162}
1163
1164void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
1165                            int32_t disp) {
1166  // Opcode will flip operands.
1167  EmitMemReg(entry, raw_base, disp, raw_reg);
1168}
1169
1170void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
1171                              int32_t raw_index, int scale, int32_t disp) {
1172  CheckValidByteRegister(entry, raw_reg);
1173  EmitPrefixAndOpcode(entry, raw_reg, raw_index, raw_base);
1174  uint8_t low_reg = LowRegisterBits(raw_reg);
1175  uint8_t low_index = LowRegisterBits(raw_index);
1176  uint8_t low_base = LowRegisterBits(raw_base);
1177  EmitModrmSibDisp(low_reg, low_base, low_index, scale, disp);
1178  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1179  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1180  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1181}
1182
1183void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
1184                              int scale, int32_t disp, int32_t raw_reg) {
1185  // Opcode will flip operands.
1186  EmitRegArray(entry, raw_reg, raw_base, raw_index, scale, disp);
1187}
1188
1189void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1190                            int32_t imm) {
1191  DCHECK_EQ(false, entry->skeleton.r8_form);
1192  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
1193  uint8_t low_base = LowRegisterBits(raw_base);
1194  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1195  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1196  EmitImm(entry, imm);
1197}
1198
1199void X86Mir2Lir::EmitArrayImm(const X86EncodingMap* entry,
1200                              int32_t raw_base, int32_t raw_index, int scale, int32_t disp,
1201                              int32_t imm) {
1202  DCHECK_EQ(false, entry->skeleton.r8_form);
1203  EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
1204  uint8_t low_index = LowRegisterBits(raw_index);
1205  uint8_t low_base = LowRegisterBits(raw_base);
1206  EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
1207  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1208  EmitImm(entry, imm);
1209}
1210
1211void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp) {
1212  DCHECK_EQ(false, entry->skeleton.r8_form);
1213  DCHECK_NE(entry->skeleton.prefix1, 0);
1214  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, NO_REG);
1215  uint8_t low_reg = LowRegisterBits(raw_reg);
1216  EmitModrmThread(low_reg);
1217  code_buffer_.push_back(disp & 0xFF);
1218  code_buffer_.push_back((disp >> 8) & 0xFF);
1219  code_buffer_.push_back((disp >> 16) & 0xFF);
1220  code_buffer_.push_back((disp >> 24) & 0xFF);
1221  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1222  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1223  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1224}
1225
1226void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2) {
1227  if (!IsByteSecondOperand(entry)) {
1228    CheckValidByteRegister(entry, raw_reg1);
1229  }
1230  CheckValidByteRegister(entry, raw_reg2);
1231  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1232  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1233  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1234  uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1235  code_buffer_.push_back(modrm);
1236  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1237  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1238  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1239}
1240
1241void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
1242                               int32_t imm) {
1243  DCHECK_EQ(false, entry->skeleton.r8_form);
1244  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1245  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1246  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1247  uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1248  code_buffer_.push_back(modrm);
1249  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1250  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1251  EmitImm(entry, imm);
1252}
1253
1254void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
1255                               int32_t raw_reg, int32_t raw_base, int disp, int32_t imm) {
1256  DCHECK(!RegStorage::IsFloat(raw_reg));
1257  CheckValidByteRegister(entry, raw_reg);
1258  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
1259  uint8_t low_reg = LowRegisterBits(raw_reg);
1260  uint8_t low_base = LowRegisterBits(raw_base);
1261  EmitModrmDisp(low_reg, low_base, disp);
1262  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1263  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1264  EmitImm(entry, imm);
1265}
1266
1267void X86Mir2Lir::EmitMemRegImm(const X86EncodingMap* entry,
1268                               int32_t raw_base, int32_t disp, int32_t raw_reg, int32_t imm) {
1269  // Opcode will flip operands.
1270  EmitRegMemImm(entry, raw_reg, raw_base, disp, imm);
1271}
1272
1273void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
1274  CheckValidByteRegister(entry, raw_reg);
1275  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1276  if (RegStorage::RegNum(raw_reg) == rs_rAX.GetRegNum() && entry->skeleton.ax_opcode != 0) {
1277    code_buffer_.push_back(entry->skeleton.ax_opcode);
1278  } else {
1279    uint8_t low_reg = LowRegisterBits(raw_reg);
1280    EmitOpcode(entry);
1281    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1282    code_buffer_.push_back(modrm);
1283  }
1284  EmitImm(entry, imm);
1285}
1286
1287void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm) {
1288  DCHECK_EQ(false, entry->skeleton.r8_form);
1289  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1290  EmitModrmThread(entry->skeleton.modrm_opcode);
1291  code_buffer_.push_back(disp & 0xFF);
1292  code_buffer_.push_back((disp >> 8) & 0xFF);
1293  code_buffer_.push_back((disp >> 16) & 0xFF);
1294  code_buffer_.push_back((disp >> 24) & 0xFF);
1295  EmitImm(entry, imm);
1296  DCHECK_EQ(entry->skeleton.ax_opcode, 0);
1297}
1298
1299void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm) {
1300  DCHECK_EQ(false, entry->skeleton.r8_form);
1301  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1302  uint8_t low_reg = LowRegisterBits(raw_reg);
1303  code_buffer_.push_back(0xB8 + low_reg);
1304  switch (entry->skeleton.immediate_bytes) {
1305    case 4:
1306      code_buffer_.push_back(imm & 0xFF);
1307      code_buffer_.push_back((imm >> 8) & 0xFF);
1308      code_buffer_.push_back((imm >> 16) & 0xFF);
1309      code_buffer_.push_back((imm >> 24) & 0xFF);
1310      break;
1311    case 8:
1312      code_buffer_.push_back(imm & 0xFF);
1313      code_buffer_.push_back((imm >> 8) & 0xFF);
1314      code_buffer_.push_back((imm >> 16) & 0xFF);
1315      code_buffer_.push_back((imm >> 24) & 0xFF);
1316      code_buffer_.push_back((imm >> 32) & 0xFF);
1317      code_buffer_.push_back((imm >> 40) & 0xFF);
1318      code_buffer_.push_back((imm >> 48) & 0xFF);
1319      code_buffer_.push_back((imm >> 56) & 0xFF);
1320      break;
1321    default:
1322      LOG(FATAL) << "Unsupported immediate size for EmitMovRegImm: "
1323                 << static_cast<uint32_t>(entry->skeleton.immediate_bytes);
1324  }
1325}
1326
1327void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
1328  CheckValidByteRegister(entry, raw_reg);
1329  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1330  if (imm != 1) {
1331    code_buffer_.push_back(entry->skeleton.opcode);
1332  } else {
1333    // Shorter encoding for 1 bit shift
1334    code_buffer_.push_back(entry->skeleton.ax_opcode);
1335  }
1336  DCHECK_NE(0x0F, entry->skeleton.opcode);
1337  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1338  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1339  uint8_t low_reg = LowRegisterBits(raw_reg);
1340  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1341  code_buffer_.push_back(modrm);
1342  if (imm != 1) {
1343    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
1344    DCHECK(IS_SIMM8(imm));
1345    code_buffer_.push_back(imm & 0xFF);
1346  }
1347}
1348
1349void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl) {
1350  CheckValidByteRegister(entry, raw_reg);
1351  DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1352  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1353  code_buffer_.push_back(entry->skeleton.opcode);
1354  DCHECK_NE(0x0F, entry->skeleton.opcode);
1355  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1356  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1357  uint8_t low_reg = LowRegisterBits(raw_reg);
1358  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1359  code_buffer_.push_back(modrm);
1360  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1361  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1362}
1363
1364void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base,
1365                                int32_t displacement, int32_t raw_cl) {
1366  DCHECK_EQ(false, entry->skeleton.r8_form);
1367  DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1368  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1369  code_buffer_.push_back(entry->skeleton.opcode);
1370  DCHECK_NE(0x0F, entry->skeleton.opcode);
1371  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1372  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1373  uint8_t low_base = LowRegisterBits(raw_base);
1374  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, displacement);
1375  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1376  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1377}
1378
1379void X86Mir2Lir::EmitShiftRegRegCl(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t raw_cl) {
1380  DCHECK_EQ(false, entry->skeleton.r8_form);
1381  DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1382  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1383  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1384  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1385  uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1386  code_buffer_.push_back(modrm);
1387  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1388  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1389  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1390}
1391
1392void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1393                                 int32_t imm) {
1394  DCHECK_EQ(false, entry->skeleton.r8_form);
1395  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1396  if (imm != 1) {
1397    code_buffer_.push_back(entry->skeleton.opcode);
1398  } else {
1399    // Shorter encoding for 1 bit shift
1400    code_buffer_.push_back(entry->skeleton.ax_opcode);
1401  }
1402  DCHECK_NE(0x0F, entry->skeleton.opcode);
1403  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1404  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1405  uint8_t low_base = LowRegisterBits(raw_base);
1406  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1407  if (imm != 1) {
1408    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
1409    DCHECK(IS_SIMM8(imm));
1410    code_buffer_.push_back(imm & 0xFF);
1411  }
1412}
1413
1414void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc) {
1415  CheckValidByteRegister(entry, raw_reg);
1416  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1417  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1418  DCHECK_EQ(0x0F, entry->skeleton.opcode);
1419  code_buffer_.push_back(0x0F);
1420  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
1421  DCHECK_GE(cc, 0);
1422  DCHECK_LT(cc, 16);
1423  code_buffer_.push_back(0x90 | cc);
1424  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1425  uint8_t low_reg = LowRegisterBits(raw_reg);
1426  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1427  code_buffer_.push_back(modrm);
1428  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
1429}
1430
1431void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1432                             int32_t cc) {
1433  DCHECK_EQ(false, entry->skeleton.r8_form);
1434  if (entry->skeleton.prefix1 != 0) {
1435    code_buffer_.push_back(entry->skeleton.prefix1);
1436    if (entry->skeleton.prefix2 != 0) {
1437      code_buffer_.push_back(entry->skeleton.prefix2);
1438    }
1439  } else {
1440    DCHECK_EQ(0, entry->skeleton.prefix2);
1441  }
1442  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1443  DCHECK_EQ(0x0F, entry->skeleton.opcode);
1444  code_buffer_.push_back(0x0F);
1445  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
1446  DCHECK_GE(cc, 0);
1447  DCHECK_LT(cc, 16);
1448  code_buffer_.push_back(0x90 | cc);
1449  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1450  uint8_t low_base = LowRegisterBits(raw_base);
1451  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1452  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
1453}
1454
1455void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
1456                                int32_t cc) {
1457  // Generate prefix and opcode without the condition.
1458  DCHECK_EQ(false, entry->skeleton.r8_form);
1459  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1460
1461  // Now add the condition. The last byte of opcode is the one that receives it.
1462  DCHECK_GE(cc, 0);
1463  DCHECK_LT(cc, 16);
1464  code_buffer_.back() += cc;
1465
1466  // Not expecting to have to encode immediate or do anything special for ModR/M since there are
1467  // two registers.
1468  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1469  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1470
1471  // For register to register encoding, the mod is 3.
1472  const uint8_t mod = (3 << 6);
1473
1474  // Encode the ModR/M byte now.
1475  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1476  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1477  const uint8_t modrm = mod | (low_reg1 << 3) | low_reg2;
1478  code_buffer_.push_back(modrm);
1479}
1480
1481void X86Mir2Lir::EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base,
1482                                int32_t disp, int32_t cc) {
1483  // Generate prefix and opcode without the condition.
1484  DCHECK_EQ(false, entry->skeleton.r8_form);
1485  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_base);
1486
1487  // Now add the condition. The last byte of opcode is the one that receives it.
1488  DCHECK_GE(cc, 0);
1489  DCHECK_LT(cc, 16);
1490  code_buffer_.back() += cc;
1491
1492  // Not expecting to have to encode immediate or do anything special for ModR/M since there are
1493  // two registers.
1494  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1495  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1496
1497  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1498  uint8_t low_base = LowRegisterBits(raw_base);
1499  EmitModrmDisp(low_reg1, low_base, disp);
1500}
1501
1502void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int32_t rel) {
1503  if (entry->opcode == kX86Jmp8) {
1504    DCHECK(IS_SIMM8(rel));
1505    code_buffer_.push_back(0xEB);
1506    code_buffer_.push_back(rel & 0xFF);
1507  } else if (entry->opcode == kX86Jmp32) {
1508    code_buffer_.push_back(0xE9);
1509    code_buffer_.push_back(rel & 0xFF);
1510    code_buffer_.push_back((rel >> 8) & 0xFF);
1511    code_buffer_.push_back((rel >> 16) & 0xFF);
1512    code_buffer_.push_back((rel >> 24) & 0xFF);
1513  } else if (entry->opcode == kX86Jecxz8) {
1514    DCHECK(IS_SIMM8(rel));
1515    code_buffer_.push_back(0xE3);
1516    code_buffer_.push_back(rel & 0xFF);
1517  } else {
1518    DCHECK(entry->opcode == kX86JmpR);
1519    DCHECK_EQ(false, entry->skeleton.r8_form);
1520    EmitPrefix(entry, NO_REG, NO_REG, rel);
1521    code_buffer_.push_back(entry->skeleton.opcode);
1522    uint8_t low_reg = LowRegisterBits(rel);
1523    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1524    code_buffer_.push_back(modrm);
1525  }
1526}
1527
1528void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc) {
1529  DCHECK_GE(cc, 0);
1530  DCHECK_LT(cc, 16);
1531  if (entry->opcode == kX86Jcc8) {
1532    DCHECK(IS_SIMM8(rel));
1533    code_buffer_.push_back(0x70 | cc);
1534    code_buffer_.push_back(rel & 0xFF);
1535  } else {
1536    DCHECK(entry->opcode == kX86Jcc32);
1537    code_buffer_.push_back(0x0F);
1538    code_buffer_.push_back(0x80 | cc);
1539    code_buffer_.push_back(rel & 0xFF);
1540    code_buffer_.push_back((rel >> 8) & 0xFF);
1541    code_buffer_.push_back((rel >> 16) & 0xFF);
1542    code_buffer_.push_back((rel >> 24) & 0xFF);
1543  }
1544}
1545
1546void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
1547  DCHECK_EQ(false, entry->skeleton.r8_form);
1548  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
1549  uint8_t low_base = LowRegisterBits(raw_base);
1550  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1551  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1552  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1553}
1554
1555void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int32_t disp) {
1556  DCHECK_EQ(false, entry->skeleton.r8_form);
1557  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1558  DCHECK_EQ(4, entry->skeleton.immediate_bytes);
1559  code_buffer_.push_back(disp & 0xFF);
1560  code_buffer_.push_back((disp >> 8) & 0xFF);
1561  code_buffer_.push_back((disp >> 16) & 0xFF);
1562  code_buffer_.push_back((disp >> 24) & 0xFF);
1563  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1564}
1565
1566void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int32_t disp) {
1567  DCHECK_EQ(false, entry->skeleton.r8_form);
1568  DCHECK_NE(entry->skeleton.prefix1, 0);
1569  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1570  EmitModrmThread(entry->skeleton.modrm_opcode);
1571  code_buffer_.push_back(disp & 0xFF);
1572  code_buffer_.push_back((disp >> 8) & 0xFF);
1573  code_buffer_.push_back((disp >> 16) & 0xFF);
1574  code_buffer_.push_back((disp >> 24) & 0xFF);
1575  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1576  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1577}
1578
1579void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
1580                           int32_t raw_index, int scale, int32_t table_or_disp) {
1581  int disp;
1582  if (entry->opcode == kX86PcRelLoadRA) {
1583    const SwitchTable* tab_rec = UnwrapPointer<SwitchTable>(table_or_disp);
1584    disp = tab_rec->offset - tab_rec->anchor->offset;
1585  } else {
1586    DCHECK(entry->opcode == kX86PcRelAdr);
1587    const EmbeddedData* tab_rec = UnwrapPointer<EmbeddedData>(raw_base_or_table);
1588    disp = tab_rec->offset;
1589  }
1590  if (entry->opcode == kX86PcRelLoadRA) {
1591    DCHECK_EQ(false, entry->skeleton.r8_form);
1592    EmitPrefix(entry, raw_reg, raw_index, raw_base_or_table);
1593    code_buffer_.push_back(entry->skeleton.opcode);
1594    DCHECK_NE(0x0F, entry->skeleton.opcode);
1595    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1596    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1597    uint8_t low_reg = LowRegisterBits(raw_reg);
1598    uint8_t modrm = (2 << 6) | (low_reg << 3) | rs_rX86_SP_32.GetRegNum();
1599    code_buffer_.push_back(modrm);
1600    DCHECK_LT(scale, 4);
1601    uint8_t low_base_or_table = LowRegisterBits(raw_base_or_table);
1602    uint8_t low_index = LowRegisterBits(raw_index);
1603    uint8_t sib = (scale << 6) | (low_index << 3) | low_base_or_table;
1604    code_buffer_.push_back(sib);
1605    DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1606  } else {
1607    uint8_t low_reg = LowRegisterBits(raw_reg);
1608    code_buffer_.push_back(entry->skeleton.opcode + low_reg);
1609  }
1610  code_buffer_.push_back(disp & 0xFF);
1611  code_buffer_.push_back((disp >> 8) & 0xFF);
1612  code_buffer_.push_back((disp >> 16) & 0xFF);
1613  code_buffer_.push_back((disp >> 24) & 0xFF);
1614  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1615  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1616}
1617
1618void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1619  UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1620                         << BuildInsnString(entry->fmt, lir, 0);
1621  for (size_t i = 0; i < GetInsnSize(lir); ++i) {
1622    code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
1623  }
1624}
1625
1626/*
1627 * Assemble the LIR into binary instruction format.  Note that we may
1628 * discover that pc-relative displacements may not fit the selected
1629 * instruction.  In those cases we will try to substitute a new code
1630 * sequence or request that the trace be shortened and retried.
1631 */
1632AssemblerStatus X86Mir2Lir::AssembleInstructions(LIR* first_lir_insn, CodeOffset start_addr) {
1633  UNUSED(start_addr);
1634  LIR *lir;
1635  AssemblerStatus res = kSuccess;  // Assume success
1636
1637  const bool kVerbosePcFixup = false;
1638  for (lir = first_lir_insn; lir != nullptr; lir = NEXT_LIR(lir)) {
1639    if (IsPseudoLirOp(lir->opcode)) {
1640      continue;
1641    }
1642
1643    if (lir->flags.is_nop) {
1644      continue;
1645    }
1646
1647    if (lir->flags.fixup != kFixupNone) {
1648      switch (lir->opcode) {
1649        case kX86Jcc8: {
1650          LIR *target_lir = lir->target;
1651          DCHECK(target_lir != nullptr);
1652          int delta = 0;
1653          CodeOffset pc;
1654          if (IS_SIMM8(lir->operands[0])) {
1655            pc = lir->offset + 2 /* opcode + rel8 */;
1656          } else {
1657            pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1658          }
1659          CodeOffset target = target_lir->offset;
1660          delta = target - pc;
1661          if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1662            if (kVerbosePcFixup) {
1663              LOG(INFO) << "Retry for JCC growth at " << lir->offset
1664                  << " delta: " << delta << " old delta: " << lir->operands[0];
1665            }
1666            lir->opcode = kX86Jcc32;
1667            lir->flags.size = GetInsnSize(lir);
1668            DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
1669            DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
1670            res = kRetryAll;
1671          }
1672          if (kVerbosePcFixup) {
1673            LOG(INFO) << "Source:";
1674            DumpLIRInsn(lir, 0);
1675            LOG(INFO) << "Target:";
1676            DumpLIRInsn(target_lir, 0);
1677            LOG(INFO) << "Delta " << delta;
1678          }
1679          lir->operands[0] = delta;
1680          break;
1681        }
1682        case kX86Jcc32: {
1683          LIR *target_lir = lir->target;
1684          DCHECK(target_lir != nullptr);
1685          CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1686          CodeOffset target = target_lir->offset;
1687          int delta = target - pc;
1688          if (kVerbosePcFixup) {
1689            LOG(INFO) << "Source:";
1690            DumpLIRInsn(lir, 0);
1691            LOG(INFO) << "Target:";
1692            DumpLIRInsn(target_lir, 0);
1693            LOG(INFO) << "Delta " << delta;
1694          }
1695          lir->operands[0] = delta;
1696          break;
1697        }
1698        case kX86Jecxz8: {
1699          LIR *target_lir = lir->target;
1700          DCHECK(target_lir != nullptr);
1701          CodeOffset pc;
1702          pc = lir->offset + 2;  // opcode + rel8
1703          CodeOffset target = target_lir->offset;
1704          int delta = target - pc;
1705          lir->operands[0] = delta;
1706          DCHECK(IS_SIMM8(delta));
1707          break;
1708        }
1709        case kX86Jmp8: {
1710          LIR *target_lir = lir->target;
1711          DCHECK(target_lir != nullptr);
1712          int delta = 0;
1713          CodeOffset pc;
1714          if (IS_SIMM8(lir->operands[0])) {
1715            pc = lir->offset + 2 /* opcode + rel8 */;
1716          } else {
1717            pc = lir->offset + 5 /* opcode + rel32 */;
1718          }
1719          CodeOffset target = target_lir->offset;
1720          delta = target - pc;
1721          if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1722            // Useless branch
1723            NopLIR(lir);
1724            if (kVerbosePcFixup) {
1725              LOG(INFO) << "Retry for useless branch at " << lir->offset;
1726            }
1727            res = kRetryAll;
1728          } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1729            if (kVerbosePcFixup) {
1730              LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1731            }
1732            lir->opcode = kX86Jmp32;
1733            lir->flags.size = GetInsnSize(lir);
1734            DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
1735            DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
1736            res = kRetryAll;
1737          }
1738          lir->operands[0] = delta;
1739          break;
1740        }
1741        case kX86Jmp32: {
1742          LIR *target_lir = lir->target;
1743          DCHECK(target_lir != nullptr);
1744          CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1745          CodeOffset target = target_lir->offset;
1746          int delta = target - pc;
1747          lir->operands[0] = delta;
1748          break;
1749        }
1750        default:
1751          if (lir->flags.fixup == kFixupLoad) {
1752            LIR *target_lir = lir->target;
1753            DCHECK(target_lir != nullptr);
1754            CodeOffset target = target_lir->offset;
1755            // Handle 64 bit RIP addressing.
1756            if (lir->operands[1] == kRIPReg) {
1757              // Offset is relative to next instruction.
1758              lir->operands[2] = target - (lir->offset + lir->flags.size);
1759            } else {
1760              const LIR* anchor = UnwrapPointer<LIR>(lir->operands[4]);
1761              lir->operands[2] = target - anchor->offset;
1762              int newSize = GetInsnSize(lir);
1763              if (newSize != lir->flags.size) {
1764                lir->flags.size = newSize;
1765                res = kRetryAll;
1766              }
1767            }
1768          } else if (lir->flags.fixup == kFixupSwitchTable) {
1769            DCHECK(cu_->target64);
1770            DCHECK_EQ(lir->opcode, kX86Lea64RM) << "Unknown instruction: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1771            DCHECK_EQ(lir->operands[1], static_cast<int>(kRIPReg));
1772            // Grab the target offset from the saved data.
1773            const EmbeddedData* tab_rec = UnwrapPointer<Mir2Lir::EmbeddedData>(lir->operands[4]);
1774            CodeOffset target = tab_rec->offset;
1775            // Handle 64 bit RIP addressing.
1776            // Offset is relative to next instruction.
1777            lir->operands[2] = target - (lir->offset + lir->flags.size);
1778          }
1779          break;
1780      }
1781    }
1782
1783    /*
1784     * If one of the pc-relative instructions expanded we'll have
1785     * to make another pass.  Don't bother to fully assemble the
1786     * instruction.
1787     */
1788    if (res != kSuccess) {
1789      continue;
1790    }
1791    CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1792    const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1793    size_t starting_cbuf_size = code_buffer_.size();
1794    switch (entry->kind) {
1795      case kData:  // 4 bytes of data
1796        code_buffer_.push_back(lir->operands[0]);
1797        break;
1798      case kNullary:  // 1 byte of opcode and possible prefixes.
1799        EmitNullary(entry);
1800        break;
1801      case kRegOpcode:  // lir operands - 0: reg
1802        EmitOpRegOpcode(entry, lir->operands[0]);
1803        break;
1804      case kReg:  // lir operands - 0: reg
1805        EmitOpReg(entry, lir->operands[0]);
1806        break;
1807      case kMem:  // lir operands - 0: base, 1: disp
1808        EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1809        break;
1810      case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
1811        EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1812        break;
1813      case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
1814        EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1815        break;
1816      case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
1817        EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1818        break;
1819      case kArrayImm:  // lir operands - 0: base, 1: index, 2: disp, 3:scale, 4:immediate
1820        EmitArrayImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1821                     lir->operands[3], lir->operands[4]);
1822        break;
1823      case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1824        EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1825                     lir->operands[3], lir->operands[4]);
1826        break;
1827      case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
1828        EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1829        break;
1830      case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1831        EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1832                     lir->operands[3], lir->operands[4]);
1833        break;
1834      case kRegThread:  // lir operands - 0: reg, 1: disp
1835        EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1836        break;
1837      case kRegReg:  // lir operands - 0: reg1, 1: reg2
1838        EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1839        break;
1840      case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
1841        EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1842        break;
1843      case kMemRegImm:  // lir operands - 0: base, 1: disp, 2: reg 3: immediate
1844        EmitMemRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1845                      lir->operands[3]);
1846        break;
1847      case kRegRegImm:  // lir operands - 0: reg1, 1: reg2, 2: imm
1848        EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1849        break;
1850      case kRegRegImmStore:   // lir operands - 0: reg2, 1: reg1, 2: imm
1851        EmitRegRegImm(entry, lir->operands[1], lir->operands[0], lir->operands[2]);
1852        break;
1853      case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
1854        EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1855                      lir->operands[3]);
1856        break;
1857      case kRegImm:  // lir operands - 0: reg, 1: immediate
1858        EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1859        break;
1860      case kThreadImm:  // lir operands - 0: disp, 1: immediate
1861        EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1862        break;
1863      case kMovRegImm:  // lir operands - 0: reg, 1: immediate
1864        EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1865        break;
1866      case kMovRegQuadImm: {
1867          int64_t value = static_cast<int64_t>(static_cast<int64_t>(lir->operands[1]) << 32 |
1868                          static_cast<uint32_t>(lir->operands[2]));
1869          EmitMovRegImm(entry, lir->operands[0], value);
1870        }
1871        break;
1872      case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
1873        EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1874        break;
1875      case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2:immediate
1876        EmitShiftMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1877        break;
1878      case kShiftRegCl:  // lir operands - 0: reg, 1: cl
1879        EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1880        break;
1881      case kShiftMemCl:  // lir operands - 0: base, 1:displacement, 2: cl
1882        EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1883        break;
1884      case kShiftRegRegCl:  // lir operands - 0: reg1, 1: reg2, 2: cl
1885        EmitShiftRegRegCl(entry, lir->operands[1], lir->operands[0], lir->operands[2]);
1886        break;
1887      case kRegCond:  // lir operands - 0: reg, 1: condition
1888        EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1889        break;
1890      case kMemCond:  // lir operands - 0: base, 1: displacement, 2: condition
1891        EmitMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1892        break;
1893      case kRegRegCond:  // lir operands - 0: reg, 1: reg, 2: condition
1894        EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1895        break;
1896      case kRegMemCond:  // lir operands - 0: reg, 1: reg, displacement, 3: condition
1897        EmitRegMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1898                       lir->operands[3]);
1899        break;
1900      case kJmp:  // lir operands - 0: rel
1901        if (entry->opcode == kX86JmpT) {
1902          // This works since the instruction format for jmp and call is basically the same and
1903          // EmitCallThread loads opcode info.
1904          EmitCallThread(entry, lir->operands[0]);
1905        } else {
1906          EmitJmp(entry, lir->operands[0]);
1907        }
1908        break;
1909      case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
1910        EmitJcc(entry, lir->operands[0], lir->operands[1]);
1911        break;
1912      case kCall:
1913        switch (entry->opcode) {
1914          case kX86CallI:  // lir operands - 0: disp
1915            EmitCallImmediate(entry, lir->operands[0]);
1916            break;
1917          case kX86CallM:  // lir operands - 0: base, 1: disp
1918            EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1919            break;
1920          case kX86CallT:  // lir operands - 0: disp
1921            EmitCallThread(entry, lir->operands[0]);
1922            break;
1923          default:
1924            EmitUnimplemented(entry, lir);
1925            break;
1926        }
1927        break;
1928      case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1929        EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1930                  lir->operands[3], lir->operands[4]);
1931        break;
1932      case kNop:  // TODO: these instruction kinds are missing implementations.
1933      case kThreadReg:
1934      case kRegArrayImm:
1935      case kShiftArrayImm:
1936      case kShiftArrayCl:
1937      case kArrayCond:
1938      case kUnimplemented:
1939        EmitUnimplemented(entry, lir);
1940        break;
1941    }
1942    DCHECK_EQ(lir->flags.size, GetInsnSize(lir));
1943    CHECK_EQ(lir->flags.size, code_buffer_.size() - starting_cbuf_size)
1944        << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1945  }
1946  return res;
1947}
1948
1949// LIR offset assignment.
1950// TODO: consolidate w/ Arm assembly mechanism.
1951int X86Mir2Lir::AssignInsnOffsets() {
1952  LIR* lir;
1953  int offset = 0;
1954
1955  for (lir = first_lir_insn_; lir != nullptr; lir = NEXT_LIR(lir)) {
1956    lir->offset = offset;
1957    if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
1958      if (!lir->flags.is_nop) {
1959        offset += lir->flags.size;
1960      }
1961    } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1962      if (offset & 0x2) {
1963        offset += 2;
1964        lir->operands[0] = 1;
1965      } else {
1966        lir->operands[0] = 0;
1967      }
1968    }
1969    /* Pseudo opcodes don't consume space */
1970  }
1971  return offset;
1972}
1973
1974/*
1975 * Walk the compilation unit and assign offsets to instructions
1976 * and literals and compute the total size of the compiled unit.
1977 * TODO: consolidate w/ Arm assembly mechanism.
1978 */
1979void X86Mir2Lir::AssignOffsets() {
1980  int offset = AssignInsnOffsets();
1981
1982  if (const_vectors_ != nullptr) {
1983    // Vector literals must be 16-byte aligned. The header that is placed
1984    // in the code section causes misalignment so we take it into account.
1985    // Otherwise, we are sure that for x86 method is aligned to 16.
1986    DCHECK_EQ(GetInstructionSetAlignment(cu_->instruction_set), 16u);
1987    uint32_t bytes_to_fill = (0x10 - ((offset + sizeof(OatQuickMethodHeader)) & 0xF)) & 0xF;
1988    offset += bytes_to_fill;
1989
1990    // Now assign each literal the right offset.
1991    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1992      p->offset = offset;
1993      offset += 16;
1994    }
1995  }
1996
1997  /* Const values have to be word aligned */
1998  offset = RoundUp(offset, 4);
1999
2000  /* Set up offsets for literals */
2001  data_offset_ = offset;
2002
2003  offset = AssignLiteralOffset(offset);
2004
2005  offset = AssignSwitchTablesOffset(offset);
2006
2007  offset = AssignFillArrayDataOffset(offset);
2008
2009  total_size_ = offset;
2010}
2011
2012/*
2013 * Go over each instruction in the list and calculate the offset from the top
2014 * before sending them off to the assembler. If out-of-range branch distance is
2015 * seen rearrange the instructions a bit to correct it.
2016 * TODO: consolidate w/ Arm assembly mechanism.
2017 */
2018void X86Mir2Lir::AssembleLIR() {
2019  cu_->NewTimingSplit("Assemble");
2020
2021  // We will remove the method address if we never ended up using it
2022  if (pc_rel_base_reg_.Valid() && !pc_rel_base_reg_used_) {
2023    if (kIsDebugBuild) {
2024      LOG(WARNING) << "PC-relative addressing base promoted but unused in "
2025          << PrettyMethod(cu_->method_idx, *cu_->dex_file);
2026    }
2027    setup_pc_rel_base_reg_->flags.is_nop = true;
2028    NEXT_LIR(setup_pc_rel_base_reg_)->flags.is_nop = true;
2029  }
2030
2031  AssignOffsets();
2032  int assembler_retries = 0;
2033  /*
2034   * Assemble here.  Note that we generate code with optimistic assumptions
2035   * and if found now to work, we'll have to redo the sequence and retry.
2036   */
2037
2038  while (true) {
2039    AssemblerStatus res = AssembleInstructions(first_lir_insn_, 0);
2040    if (res == kSuccess) {
2041      break;
2042    } else {
2043      assembler_retries++;
2044      if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
2045        CodegenDump();
2046        LOG(FATAL) << "Assembler error - too many retries";
2047      }
2048      // Redo offsets and try again
2049      AssignOffsets();
2050      code_buffer_.clear();
2051    }
2052  }
2053
2054  // Install literals
2055  InstallLiteralPools();
2056
2057  // Install switch tables
2058  InstallSwitchTables();
2059
2060  // Install fill array data
2061  InstallFillArrayData();
2062
2063  // Create the mapping table and native offset to reference map.
2064  cu_->NewTimingSplit("PcMappingTable");
2065  CreateMappingTables();
2066
2067  cu_->NewTimingSplit("GcMap");
2068  CreateNativeGcMap();
2069}
2070
2071}  // namespace art
2072