ssa_liveness_analysis.cc revision e50fa5887b1342b845826197d81950e26753fc9c
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoopExit(HLoopInformation* current, HLoopInformation* to) {
32  // `to` is either not part of a loop, or `current` is an inner loop of `to`.
33  return to == nullptr || (current != to && current->IsIn(*to));
34}
35
36static bool IsLoop(HLoopInformation* info) {
37  return info != nullptr;
38}
39
40static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
41  return first_loop == second_loop;
42}
43
44static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
45  return (inner != outer)
46      && (inner != nullptr)
47      && (outer != nullptr)
48      && inner->IsIn(*outer);
49}
50
51static void VisitBlockForLinearization(HBasicBlock* block,
52                                       GrowableArray<HBasicBlock*>* order,
53                                       ArenaBitVector* visited) {
54  if (visited->IsBitSet(block->GetBlockId())) {
55    return;
56  }
57  visited->SetBit(block->GetBlockId());
58  size_t number_of_successors = block->GetSuccessors().Size();
59  if (number_of_successors == 0) {
60    // Nothing to do.
61  } else if (number_of_successors == 1) {
62    VisitBlockForLinearization(block->GetSuccessors().Get(0), order, visited);
63  } else {
64    DCHECK_EQ(number_of_successors, 2u);
65    HBasicBlock* first_successor = block->GetSuccessors().Get(0);
66    HBasicBlock* second_successor = block->GetSuccessors().Get(1);
67    HLoopInformation* my_loop = block->GetLoopInformation();
68    HLoopInformation* first_loop = first_successor->GetLoopInformation();
69    HLoopInformation* second_loop = second_successor->GetLoopInformation();
70
71    if (!IsLoop(my_loop)) {
72      // Nothing to do. Current order is fine.
73    } else if (IsLoopExit(my_loop, second_loop) && InSameLoop(my_loop, first_loop)) {
74      // Visit the loop exit first in post order.
75      std::swap(first_successor, second_successor);
76    } else if (IsInnerLoop(my_loop, first_loop) && !IsInnerLoop(my_loop, second_loop)) {
77      // Visit the inner loop last in post order.
78      std::swap(first_successor, second_successor);
79    }
80    VisitBlockForLinearization(first_successor, order, visited);
81    VisitBlockForLinearization(second_successor, order, visited);
82  }
83  order->Add(block);
84}
85
86void SsaLivenessAnalysis::LinearizeGraph() {
87  // For simplicity of the implementation, we create post linear order. The order for
88  // computing live ranges is the reverse of that order.
89  ArenaBitVector visited(graph_.GetArena(), graph_.GetBlocks().Size(), false);
90  VisitBlockForLinearization(graph_.GetEntryBlock(), &linear_post_order_, &visited);
91}
92
93void SsaLivenessAnalysis::NumberInstructions() {
94  int ssa_index = 0;
95  size_t lifetime_position = 0;
96  // Each instruction gets a lifetime position, and a block gets a lifetime
97  // start and end position. Non-phi instructions have a distinct lifetime position than
98  // the block they are in. Phi instructions have the lifetime start of their block as
99  // lifetime position.
100  //
101  // Because the register allocator will insert moves in the graph, we need
102  // to differentiate between the start and end of an instruction. Adding 2 to
103  // the lifetime position for each instruction ensures the start of an
104  // instruction is different than the end of the previous instruction.
105  HGraphVisitor* location_builder = codegen_->GetLocationBuilder();
106  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
107    HBasicBlock* block = it.Current();
108    block->SetLifetimeStart(lifetime_position);
109
110    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
111      HInstruction* current = inst_it.Current();
112      current->Accept(location_builder);
113      LocationSummary* locations = current->GetLocations();
114      if (locations != nullptr && locations->Out().IsValid()) {
115        instructions_from_ssa_index_.Add(current);
116        current->SetSsaIndex(ssa_index++);
117        current->SetLiveInterval(
118            LiveInterval::MakeInterval(graph_.GetArena(), current->GetType(), current));
119      }
120      current->SetLifetimePosition(lifetime_position);
121    }
122    lifetime_position += 2;
123
124    // Add a null marker to notify we are starting a block.
125    instructions_from_lifetime_position_.Add(nullptr);
126
127    for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
128         inst_it.Advance()) {
129      HInstruction* current = inst_it.Current();
130      current->Accept(codegen_->GetLocationBuilder());
131      LocationSummary* locations = current->GetLocations();
132      if (locations != nullptr && locations->Out().IsValid()) {
133        instructions_from_ssa_index_.Add(current);
134        current->SetSsaIndex(ssa_index++);
135        current->SetLiveInterval(
136            LiveInterval::MakeInterval(graph_.GetArena(), current->GetType(), current));
137      }
138      instructions_from_lifetime_position_.Add(current);
139      current->SetLifetimePosition(lifetime_position);
140      lifetime_position += 2;
141    }
142
143    block->SetLifetimeEnd(lifetime_position);
144  }
145  number_of_ssa_values_ = ssa_index;
146}
147
148void SsaLivenessAnalysis::ComputeLiveness() {
149  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
150    HBasicBlock* block = it.Current();
151    block_infos_.Put(
152        block->GetBlockId(),
153        new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
154  }
155
156  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
157  // This method does not handle backward branches for the sets, therefore live_in
158  // and live_out sets are not yet correct.
159  ComputeLiveRanges();
160
161  // Do a fixed point calculation to take into account backward branches,
162  // that will update live_in of loop headers, and therefore live_out and live_in
163  // of blocks in the loop.
164  ComputeLiveInAndLiveOutSets();
165}
166
167void SsaLivenessAnalysis::ComputeLiveRanges() {
168  // Do a post order visit, adding inputs of instructions live in the block where
169  // that instruction is defined, and killing instructions that are being visited.
170  for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) {
171    HBasicBlock* block = it.Current();
172
173    BitVector* kill = GetKillSet(*block);
174    BitVector* live_in = GetLiveInSet(*block);
175
176    // Set phi inputs of successors of this block corresponding to this block
177    // as live_in.
178    for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
179      HBasicBlock* successor = block->GetSuccessors().Get(i);
180      live_in->Union(GetLiveInSet(*successor));
181      size_t phi_input_index = successor->GetPredecessorIndexOf(block);
182      for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
183        HInstruction* phi = inst_it.Current();
184        HInstruction* input = phi->InputAt(phi_input_index);
185        input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
186        // A phi input whose last user is the phi dies at the end of the predecessor block,
187        // and not at the phi's lifetime position.
188        live_in->SetBit(input->GetSsaIndex());
189      }
190    }
191
192    // Add a range that covers this block to all instructions live_in because of successors.
193    // Instructions defined in this block will have their start of the range adjusted.
194    for (uint32_t idx : live_in->Indexes()) {
195      HInstruction* current = instructions_from_ssa_index_.Get(idx);
196      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
197    }
198
199    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
200         back_it.Advance()) {
201      HInstruction* current = back_it.Current();
202      if (current->HasSsaIndex()) {
203        // Kill the instruction and shorten its interval.
204        kill->SetBit(current->GetSsaIndex());
205        live_in->ClearBit(current->GetSsaIndex());
206        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
207      }
208
209      // All inputs of an instruction must be live.
210      for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
211        HInstruction* input = current->InputAt(i);
212        // Some instructions 'inline' their inputs, that is they do not need
213        // to be materialized.
214        if (input->HasSsaIndex()) {
215          live_in->SetBit(input->GetSsaIndex());
216          input->GetLiveInterval()->AddUse(current, i, false);
217        }
218      }
219
220      if (current->HasEnvironment()) {
221        // All instructions in the environment must be live.
222        GrowableArray<HInstruction*>* environment = current->GetEnvironment()->GetVRegs();
223        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
224          HInstruction* instruction = environment->Get(i);
225          if (instruction != nullptr) {
226            DCHECK(instruction->HasSsaIndex());
227            live_in->SetBit(instruction->GetSsaIndex());
228            instruction->GetLiveInterval()->AddUse(current, i, true);
229          }
230        }
231      }
232    }
233
234    // Kill phis defined in this block.
235    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
236      HInstruction* current = inst_it.Current();
237      if (current->HasSsaIndex()) {
238        kill->SetBit(current->GetSsaIndex());
239        live_in->ClearBit(current->GetSsaIndex());
240        LiveInterval* interval = current->GetLiveInterval();
241        DCHECK((interval->GetFirstRange() == nullptr)
242               || (interval->GetStart() == current->GetLifetimePosition()));
243        interval->SetFrom(current->GetLifetimePosition());
244      }
245    }
246
247    if (block->IsLoopHeader()) {
248      HBasicBlock* back_edge = block->GetLoopInformation()->GetBackEdges().Get(0);
249      // For all live_in instructions at the loop header, we need to create a range
250      // that covers the full loop.
251      for (uint32_t idx : live_in->Indexes()) {
252        HInstruction* current = instructions_from_ssa_index_.Get(idx);
253        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(),
254                                                 back_edge->GetLifetimeEnd());
255      }
256    }
257  }
258}
259
260void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
261  bool changed;
262  do {
263    changed = false;
264
265    for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
266      const HBasicBlock& block = *it.Current();
267
268      // The live_in set depends on the kill set (which does not
269      // change in this loop), and the live_out set.  If the live_out
270      // set does not change, there is no need to update the live_in set.
271      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
272        changed = true;
273      }
274    }
275  } while (changed);
276}
277
278bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
279  BitVector* live_out = GetLiveOutSet(block);
280  bool changed = false;
281  // The live_out set of a block is the union of live_in sets of its successors.
282  for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
283    HBasicBlock* successor = block.GetSuccessors().Get(i);
284    if (live_out->Union(GetLiveInSet(*successor))) {
285      changed = true;
286    }
287  }
288  return changed;
289}
290
291
292bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
293  BitVector* live_out = GetLiveOutSet(block);
294  BitVector* kill = GetKillSet(block);
295  BitVector* live_in = GetLiveInSet(block);
296  // If live_out is updated (because of backward branches), we need to make
297  // sure instructions in live_out are also in live_in, unless they are killed
298  // by this block.
299  return live_in->UnionIfNotIn(live_out, kill);
300}
301
302int LiveInterval::FindFirstRegisterHint(size_t* free_until) const {
303  if (GetParent() == this && defined_by_ != nullptr) {
304    // This is the first interval for the instruction. Try to find
305    // a register based on its definition.
306    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
307    int hint = FindHintAtDefinition();
308    if (hint != kNoRegister && free_until[hint] > GetStart()) {
309      return hint;
310    }
311  }
312
313  UsePosition* use = first_use_;
314  size_t start = GetStart();
315  size_t end = GetEnd();
316  while (use != nullptr && use->GetPosition() <= end) {
317    size_t use_position = use->GetPosition();
318    if (use_position >= start && !use->GetIsEnvironment()) {
319      HInstruction* user = use->GetUser();
320      size_t input_index = use->GetInputIndex();
321      if (user->IsPhi()) {
322        // If the phi has a register, try to use the same.
323        Location phi_location = user->GetLiveInterval()->ToLocation();
324        if (SameRegisterKind(phi_location) && free_until[phi_location.reg()] >= use_position) {
325          return phi_location.reg();
326        }
327        const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
328        // If the instruction dies at the phi assignment, we can try having the
329        // same register.
330        if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
331          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
332            if (i == input_index) {
333              continue;
334            }
335            HInstruction* input = user->InputAt(i);
336            Location location = input->GetLiveInterval()->GetLocationAt(
337                predecessors.Get(i)->GetLifetimeEnd() - 1);
338            if (location.IsRegister() && free_until[location.reg()] >= use_position) {
339              return location.reg();
340            }
341          }
342        }
343      } else {
344        // If the instruction is expected in a register, try to use it.
345        LocationSummary* locations = user->GetLocations();
346        Location expected = locations->InAt(use->GetInputIndex());
347        // We use the user's lifetime position - 1 (and not `use_position`) because the
348        // register is blocked at the beginning of the user.
349        size_t position = user->GetLifetimePosition() - 1;
350        if (SameRegisterKind(expected) && free_until[expected.reg()] >= position) {
351          return expected.reg();
352        }
353      }
354    }
355    use = use->GetNext();
356  }
357
358  return kNoRegister;
359}
360
361int LiveInterval::FindHintAtDefinition() const {
362  if (defined_by_->IsPhi()) {
363    // Try to use the same register as one of the inputs.
364    const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
365    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
366      HInstruction* input = defined_by_->InputAt(i);
367      size_t end = predecessors.Get(i)->GetLifetimeEnd();
368      const LiveInterval& input_interval = input->GetLiveInterval()->GetIntervalAt(end - 1);
369      if (input_interval.GetEnd() == end) {
370        // If the input dies at the end of the predecessor, we know its register can
371        // be reused.
372        Location input_location = input_interval.ToLocation();
373        if (SameRegisterKind(input_location)) {
374          return input_location.reg();
375        }
376      }
377    }
378  } else {
379    LocationSummary* locations = GetDefinedBy()->GetLocations();
380    Location out = locations->Out();
381    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
382      // Try to use the same register as the first input.
383      const LiveInterval& input_interval =
384          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetIntervalAt(GetStart() - 1);
385      if (input_interval.GetEnd() == GetStart()) {
386        // If the input dies at the start of this instruction, we know its register can
387        // be reused.
388        Location location = input_interval.ToLocation();
389        if (SameRegisterKind(location)) {
390          return location.reg();
391        }
392      }
393    }
394  }
395  return kNoRegister;
396}
397
398bool LiveInterval::SameRegisterKind(Location other) const {
399  return IsFloatingPoint()
400      ? other.IsFpuRegister()
401      : other.IsRegister();
402}
403
404bool LiveInterval::NeedsTwoSpillSlots() const {
405  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
406}
407
408Location LiveInterval::ToLocation() const {
409  if (HasRegister()) {
410    return IsFloatingPoint()
411        ? Location::FpuRegisterLocation(GetRegister())
412        : Location::RegisterLocation(GetRegister());
413  } else {
414    HInstruction* defined_by = GetParent()->GetDefinedBy();
415    if (defined_by->IsConstant()) {
416      return defined_by->GetLocations()->Out();
417    } else if (GetParent()->HasSpillSlot()) {
418      if (NeedsTwoSpillSlots()) {
419        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
420      } else {
421        return Location::StackSlot(GetParent()->GetSpillSlot());
422      }
423    } else {
424      return Location();
425    }
426  }
427}
428
429Location LiveInterval::GetLocationAt(size_t position) const {
430  return GetIntervalAt(position).ToLocation();
431}
432
433const LiveInterval& LiveInterval::GetIntervalAt(size_t position) const {
434  const LiveInterval* current = this;
435  while (!current->Covers(position)) {
436    current = current->GetNextSibling();
437    DCHECK(current != nullptr);
438  }
439  return *current;
440}
441
442}  // namespace art
443