ssa_liveness_analysis.cc revision e77493c7217efdd1a0ecef521a6845a13da0305b
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoopExit(HLoopInformation* current, HLoopInformation* to) {
32  // `to` is either not part of a loop, or `current` is an inner loop of `to`.
33  return to == nullptr || (current != to && current->IsIn(*to));
34}
35
36static bool IsLoop(HLoopInformation* info) {
37  return info != nullptr;
38}
39
40static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
41  return first_loop == second_loop;
42}
43
44static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
45  return (inner != outer)
46      && (inner != nullptr)
47      && (outer != nullptr)
48      && inner->IsIn(*outer);
49}
50
51static void VisitBlockForLinearization(HBasicBlock* block,
52                                       GrowableArray<HBasicBlock*>* order,
53                                       ArenaBitVector* visited) {
54  if (visited->IsBitSet(block->GetBlockId())) {
55    return;
56  }
57  visited->SetBit(block->GetBlockId());
58  size_t number_of_successors = block->GetSuccessors().Size();
59  if (number_of_successors == 0) {
60    // Nothing to do.
61  } else if (number_of_successors == 1) {
62    VisitBlockForLinearization(block->GetSuccessors().Get(0), order, visited);
63  } else {
64    DCHECK_EQ(number_of_successors, 2u);
65    HBasicBlock* first_successor = block->GetSuccessors().Get(0);
66    HBasicBlock* second_successor = block->GetSuccessors().Get(1);
67    HLoopInformation* my_loop = block->GetLoopInformation();
68    HLoopInformation* first_loop = first_successor->GetLoopInformation();
69    HLoopInformation* second_loop = second_successor->GetLoopInformation();
70
71    if (!IsLoop(my_loop)) {
72      // Nothing to do. Current order is fine.
73    } else if (IsLoopExit(my_loop, second_loop) && InSameLoop(my_loop, first_loop)) {
74      // Visit the loop exit first in post order.
75      std::swap(first_successor, second_successor);
76    } else if (IsInnerLoop(my_loop, first_loop) && !IsInnerLoop(my_loop, second_loop)) {
77      // Visit the inner loop last in post order.
78      std::swap(first_successor, second_successor);
79    }
80    VisitBlockForLinearization(first_successor, order, visited);
81    VisitBlockForLinearization(second_successor, order, visited);
82  }
83  order->Add(block);
84}
85
86void SsaLivenessAnalysis::LinearizeGraph() {
87  // For simplicity of the implementation, we create post linear order. The order for
88  // computing live ranges is the reverse of that order.
89  ArenaBitVector visited(graph_.GetArena(), graph_.GetBlocks().Size(), false);
90  VisitBlockForLinearization(graph_.GetEntryBlock(), &linear_post_order_, &visited);
91}
92
93void SsaLivenessAnalysis::NumberInstructions() {
94  int ssa_index = 0;
95  size_t lifetime_position = 0;
96  // Each instruction gets a lifetime position, and a block gets a lifetime
97  // start and end position. Non-phi instructions have a distinct lifetime position than
98  // the block they are in. Phi instructions have the lifetime start of their block as
99  // lifetime position.
100  //
101  // Because the register allocator will insert moves in the graph, we need
102  // to differentiate between the start and end of an instruction. Adding 2 to
103  // the lifetime position for each instruction ensures the start of an
104  // instruction is different than the end of the previous instruction.
105  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
106    HBasicBlock* block = it.Current();
107    block->SetLifetimeStart(lifetime_position);
108
109    for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
110      HInstruction* current = it.Current();
111      current->Accept(codegen_->GetLocationBuilder());
112      LocationSummary* locations = current->GetLocations();
113      if (locations != nullptr && locations->Out().IsValid()) {
114        instructions_from_ssa_index_.Add(current);
115        current->SetSsaIndex(ssa_index++);
116        current->SetLiveInterval(
117            new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current));
118      }
119      current->SetLifetimePosition(lifetime_position);
120    }
121    lifetime_position += 2;
122
123    // Add a null marker to notify we are starting a block.
124    instructions_from_lifetime_position_.Add(nullptr);
125
126    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
127      HInstruction* current = it.Current();
128      current->Accept(codegen_->GetLocationBuilder());
129      LocationSummary* locations = current->GetLocations();
130      if (locations != nullptr && locations->Out().IsValid()) {
131        instructions_from_ssa_index_.Add(current);
132        current->SetSsaIndex(ssa_index++);
133        current->SetLiveInterval(
134            new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current));
135      }
136      instructions_from_lifetime_position_.Add(current);
137      current->SetLifetimePosition(lifetime_position);
138      lifetime_position += 2;
139    }
140
141    block->SetLifetimeEnd(lifetime_position);
142  }
143  number_of_ssa_values_ = ssa_index;
144}
145
146void SsaLivenessAnalysis::ComputeLiveness() {
147  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
148    HBasicBlock* block = it.Current();
149    block_infos_.Put(
150        block->GetBlockId(),
151        new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
152  }
153
154  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
155  // This method does not handle backward branches for the sets, therefore live_in
156  // and live_out sets are not yet correct.
157  ComputeLiveRanges();
158
159  // Do a fixed point calculation to take into account backward branches,
160  // that will update live_in of loop headers, and therefore live_out and live_in
161  // of blocks in the loop.
162  ComputeLiveInAndLiveOutSets();
163}
164
165void SsaLivenessAnalysis::ComputeLiveRanges() {
166  // Do a post order visit, adding inputs of instructions live in the block where
167  // that instruction is defined, and killing instructions that are being visited.
168  for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) {
169    HBasicBlock* block = it.Current();
170
171    BitVector* kill = GetKillSet(*block);
172    BitVector* live_in = GetLiveInSet(*block);
173
174    // Set phi inputs of successors of this block corresponding to this block
175    // as live_in.
176    for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
177      HBasicBlock* successor = block->GetSuccessors().Get(i);
178      live_in->Union(GetLiveInSet(*successor));
179      size_t phi_input_index = successor->GetPredecessorIndexOf(block);
180      for (HInstructionIterator it(successor->GetPhis()); !it.Done(); it.Advance()) {
181        HInstruction* phi = it.Current();
182        HInstruction* input = phi->InputAt(phi_input_index);
183        input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
184        // A phi input whose last user is the phi dies at the end of the predecessor block,
185        // and not at the phi's lifetime position.
186        live_in->SetBit(input->GetSsaIndex());
187      }
188    }
189
190    // Add a range that covers this block to all instructions live_in because of successors.
191    for (uint32_t idx : live_in->Indexes()) {
192      HInstruction* current = instructions_from_ssa_index_.Get(idx);
193      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
194    }
195
196    for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
197      HInstruction* current = it.Current();
198      if (current->HasSsaIndex()) {
199        // Kill the instruction and shorten its interval.
200        kill->SetBit(current->GetSsaIndex());
201        live_in->ClearBit(current->GetSsaIndex());
202        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
203      }
204
205      // All inputs of an instruction must be live.
206      for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
207        HInstruction* input = current->InputAt(i);
208        // Some instructions 'inline' their inputs, that is they do not need
209        // to be materialized.
210        if (input->HasSsaIndex()) {
211          live_in->SetBit(input->GetSsaIndex());
212          input->GetLiveInterval()->AddUse(current, i, false);
213        }
214      }
215
216      if (current->HasEnvironment()) {
217        // All instructions in the environment must be live.
218        GrowableArray<HInstruction*>* environment = current->GetEnvironment()->GetVRegs();
219        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
220          HInstruction* instruction = environment->Get(i);
221          if (instruction != nullptr) {
222            DCHECK(instruction->HasSsaIndex());
223            live_in->SetBit(instruction->GetSsaIndex());
224            instruction->GetLiveInterval()->AddUse(current, i, true);
225          }
226        }
227      }
228    }
229
230    // Kill phis defined in this block.
231    for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
232      HInstruction* current = it.Current();
233      if (current->HasSsaIndex()) {
234        kill->SetBit(current->GetSsaIndex());
235        live_in->ClearBit(current->GetSsaIndex());
236        LiveInterval* interval = current->GetLiveInterval();
237        DCHECK((interval->GetFirstRange() == nullptr)
238               || (interval->GetStart() == current->GetLifetimePosition()));
239        interval->SetFrom(current->GetLifetimePosition());
240      }
241    }
242
243    if (block->IsLoopHeader()) {
244      HBasicBlock* back_edge = block->GetLoopInformation()->GetBackEdges().Get(0);
245      // For all live_in instructions at the loop header, we need to create a range
246      // that covers the full loop.
247      for (uint32_t idx : live_in->Indexes()) {
248        HInstruction* current = instructions_from_ssa_index_.Get(idx);
249        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(),
250                                                 back_edge->GetLifetimeEnd());
251      }
252    }
253  }
254}
255
256void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
257  bool changed;
258  do {
259    changed = false;
260
261    for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
262      const HBasicBlock& block = *it.Current();
263
264      // The live_in set depends on the kill set (which does not
265      // change in this loop), and the live_out set.  If the live_out
266      // set does not change, there is no need to update the live_in set.
267      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
268        changed = true;
269      }
270    }
271  } while (changed);
272}
273
274bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
275  BitVector* live_out = GetLiveOutSet(block);
276  bool changed = false;
277  // The live_out set of a block is the union of live_in sets of its successors.
278  for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
279    HBasicBlock* successor = block.GetSuccessors().Get(i);
280    if (live_out->Union(GetLiveInSet(*successor))) {
281      changed = true;
282    }
283  }
284  return changed;
285}
286
287
288bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
289  BitVector* live_out = GetLiveOutSet(block);
290  BitVector* kill = GetKillSet(block);
291  BitVector* live_in = GetLiveInSet(block);
292  // If live_out is updated (because of backward branches), we need to make
293  // sure instructions in live_out are also in live_in, unless they are killed
294  // by this block.
295  return live_in->UnionIfNotIn(live_out, kill);
296}
297
298}  // namespace art
299