1/* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "fault_handler.h" 18 19#include <setjmp.h> 20#include <sys/mman.h> 21#include <sys/ucontext.h> 22 23#include "art_method-inl.h" 24#include "base/stl_util.h" 25#include "mirror/class.h" 26#include "sigchain.h" 27#include "thread-inl.h" 28#include "verify_object-inl.h" 29 30// Note on nested signal support 31// ----------------------------- 32// 33// Typically a signal handler should not need to deal with signals that occur within it. 34// However, when a SIGSEGV occurs that is in generated code and is not one of the 35// handled signals (implicit checks), we call a function to try to dump the stack 36// to the log. This enhances the debugging experience but may have the side effect 37// that it may not work. If the cause of the original SIGSEGV is a corrupted stack or other 38// memory region, the stack backtrace code may run into trouble and may either crash 39// or fail with an abort (SIGABRT). In either case we don't want that (new) signal to 40// mask the original signal and thus prevent useful debug output from being presented. 41// 42// In order to handle this situation, before we call the stack tracer we do the following: 43// 44// 1. shutdown the fault manager so that we are talking to the real signal management 45// functions rather than those in sigchain. 46// 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the 47// thread running the signal handler. 48// 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler. 49// 4. save the thread's state to the TLS of the current thread using 'setjmp' 50// 51// We then call the stack tracer and one of two things may happen: 52// a. it completes successfully 53// b. it crashes and a signal is raised. 54// 55// In the former case, we fall through and everything is fine. In the latter case 56// our secondary signal handler gets called in a signal context. This results in 57// a call to FaultManager::HandledNestedSignal(), an archirecture specific function 58// whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current 59// thread. This results in a return with a non-zero value from 'setjmp'. We detect this 60// and write something to the log to tell the user that it happened. 61// 62// Regardless of how we got there, we reach the code after the stack tracer and we 63// restore the signal states to their original values, reinstate the fault manager (thus 64// reestablishing the signal chain) and continue. 65 66// This is difficult to test with a runtime test. To invoke the nested signal code 67// on any signal, uncomment the following line and run something that throws a 68// NullPointerException. 69// #define TEST_NESTED_SIGNAL 70 71namespace art { 72// Static fault manger object accessed by signal handler. 73FaultManager fault_manager; 74 75extern "C" __attribute__((visibility("default"))) void art_sigsegv_fault() { 76 // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART. 77 VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler."; 78} 79 80// Signal handler called on SIGSEGV. 81static void art_fault_handler(int sig, siginfo_t* info, void* context) { 82 fault_manager.HandleFault(sig, info, context); 83} 84 85// Signal handler for dealing with a nested signal. 86static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) { 87 fault_manager.HandleNestedSignal(sig, info, context); 88} 89 90FaultManager::FaultManager() : initialized_(false) { 91 sigaction(SIGSEGV, nullptr, &oldaction_); 92} 93 94FaultManager::~FaultManager() { 95} 96 97static void SetUpArtAction(struct sigaction* action) { 98 action->sa_sigaction = art_fault_handler; 99 sigemptyset(&action->sa_mask); 100 action->sa_flags = SA_SIGINFO | SA_ONSTACK; 101#if !defined(__APPLE__) && !defined(__mips__) 102 action->sa_restorer = nullptr; 103#endif 104} 105 106void FaultManager::EnsureArtActionInFrontOfSignalChain() { 107 if (initialized_) { 108 struct sigaction action; 109 SetUpArtAction(&action); 110 EnsureFrontOfChain(SIGSEGV, &action); 111 } else { 112 LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager"; 113 } 114} 115 116void FaultManager::Init() { 117 CHECK(!initialized_); 118 struct sigaction action; 119 SetUpArtAction(&action); 120 121 // Set our signal handler now. 122 int e = sigaction(SIGSEGV, &action, &oldaction_); 123 if (e != 0) { 124 VLOG(signals) << "Failed to claim SEGV: " << strerror(errno); 125 } 126 // Make sure our signal handler is called before any user handlers. 127 ClaimSignalChain(SIGSEGV, &oldaction_); 128 initialized_ = true; 129} 130 131void FaultManager::Release() { 132 if (initialized_) { 133 UnclaimSignalChain(SIGSEGV); 134 initialized_ = false; 135 } 136} 137 138void FaultManager::Shutdown() { 139 if (initialized_) { 140 Release(); 141 142 // Free all handlers. 143 STLDeleteElements(&generated_code_handlers_); 144 STLDeleteElements(&other_handlers_); 145 } 146} 147 148void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) { 149 // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...) 150 // 151 // If malloc calls abort, it will be holding its lock. 152 // If the handler tries to call malloc, it will deadlock. 153 VLOG(signals) << "Handling fault"; 154 if (IsInGeneratedCode(info, context, true)) { 155 VLOG(signals) << "in generated code, looking for handler"; 156 for (const auto& handler : generated_code_handlers_) { 157 VLOG(signals) << "invoking Action on handler " << handler; 158 if (handler->Action(sig, info, context)) { 159#ifdef TEST_NESTED_SIGNAL 160 // In test mode we want to fall through to stack trace handler 161 // on every signal (in reality this will cause a crash on the first 162 // signal). 163 break; 164#else 165 // We have handled a signal so it's time to return from the 166 // signal handler to the appropriate place. 167 return; 168#endif 169 } 170 } 171 } 172 173 // We hit a signal we didn't handle. This might be something for which 174 // we can give more information about so call all registered handlers to see 175 // if it is. 176 177 Thread* self = Thread::Current(); 178 179 // If ART is not running, or the thread is not attached to ART pass the 180 // signal on to the next handler in the chain. 181 if (self == nullptr || Runtime::Current() == nullptr || !Runtime::Current()->IsStarted()) { 182 InvokeUserSignalHandler(sig, info, context); 183 return; 184 } 185 // Now set up the nested signal handler. 186 187 // TODO: add SIGSEGV back to the nested signals when we can handle running out stack gracefully. 188 static const int handled_nested_signals[] = {SIGABRT}; 189 constexpr size_t num_handled_nested_signals = arraysize(handled_nested_signals); 190 191 // Release the fault manager so that it will remove the signal chain for 192 // SIGSEGV and we call the real sigaction. 193 fault_manager.Release(); 194 195 // The action for SIGSEGV should be the default handler now. 196 197 // Unblock the signals we allow so that they can be delivered in the signal handler. 198 sigset_t sigset; 199 sigemptyset(&sigset); 200 for (int signal : handled_nested_signals) { 201 sigaddset(&sigset, signal); 202 } 203 pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr); 204 205 // If we get a signal in this code we want to invoke our nested signal 206 // handler. 207 struct sigaction action; 208 struct sigaction oldactions[num_handled_nested_signals]; 209 action.sa_sigaction = art_nested_signal_handler; 210 211 // Explicitly mask out SIGSEGV and SIGABRT from the nested signal handler. This 212 // should be the default but we definitely don't want these happening in our 213 // nested signal handler. 214 sigemptyset(&action.sa_mask); 215 for (int signal : handled_nested_signals) { 216 sigaddset(&action.sa_mask, signal); 217 } 218 219 action.sa_flags = SA_SIGINFO | SA_ONSTACK; 220#if !defined(__APPLE__) && !defined(__mips__) 221 action.sa_restorer = nullptr; 222#endif 223 224 // Catch handled signals to invoke our nested handler. 225 bool success = true; 226 for (size_t i = 0; i < num_handled_nested_signals; ++i) { 227 success = sigaction(handled_nested_signals[i], &action, &oldactions[i]) == 0; 228 if (!success) { 229 PLOG(ERROR) << "Unable to set up nested signal handler"; 230 break; 231 } 232 } 233 if (success) { 234 // Save the current state and call the handlers. If anything causes a signal 235 // our nested signal handler will be invoked and this will longjmp to the saved 236 // state. 237 if (setjmp(*self->GetNestedSignalState()) == 0) { 238 for (const auto& handler : other_handlers_) { 239 if (handler->Action(sig, info, context)) { 240 // Restore the signal handlers, reinit the fault manager and return. Signal was 241 // handled. 242 for (size_t i = 0; i < num_handled_nested_signals; ++i) { 243 success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0; 244 if (!success) { 245 PLOG(ERROR) << "Unable to restore signal handler"; 246 } 247 } 248 fault_manager.Init(); 249 return; 250 } 251 } 252 } else { 253 LOG(ERROR) << "Nested signal detected - original signal being reported"; 254 } 255 256 // Restore the signal handlers. 257 for (size_t i = 0; i < num_handled_nested_signals; ++i) { 258 success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0; 259 if (!success) { 260 PLOG(ERROR) << "Unable to restore signal handler"; 261 } 262 } 263 } 264 265 // Now put the fault manager back in place. 266 fault_manager.Init(); 267 268 // Set a breakpoint in this function to catch unhandled signals. 269 art_sigsegv_fault(); 270 271 // Pass this on to the next handler in the chain, or the default if none. 272 InvokeUserSignalHandler(sig, info, context); 273} 274 275void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) { 276 DCHECK(initialized_); 277 if (generated_code) { 278 generated_code_handlers_.push_back(handler); 279 } else { 280 other_handlers_.push_back(handler); 281 } 282} 283 284void FaultManager::RemoveHandler(FaultHandler* handler) { 285 auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler); 286 if (it != generated_code_handlers_.end()) { 287 generated_code_handlers_.erase(it); 288 return; 289 } 290 auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler); 291 if (it2 != other_handlers_.end()) { 292 other_handlers_.erase(it); 293 return; 294 } 295 LOG(FATAL) << "Attempted to remove non existent handler " << handler; 296} 297 298// This function is called within the signal handler. It checks that 299// the mutator_lock is held (shared). No annotalysis is done. 300bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) { 301 // We can only be running Java code in the current thread if it 302 // is in Runnable state. 303 VLOG(signals) << "Checking for generated code"; 304 Thread* thread = Thread::Current(); 305 if (thread == nullptr) { 306 VLOG(signals) << "no current thread"; 307 return false; 308 } 309 310 ThreadState state = thread->GetState(); 311 if (state != kRunnable) { 312 VLOG(signals) << "not runnable"; 313 return false; 314 } 315 316 // Current thread is runnable. 317 // Make sure it has the mutator lock. 318 if (!Locks::mutator_lock_->IsSharedHeld(thread)) { 319 VLOG(signals) << "no lock"; 320 return false; 321 } 322 323 ArtMethod* method_obj = 0; 324 uintptr_t return_pc = 0; 325 uintptr_t sp = 0; 326 327 // Get the architecture specific method address and return address. These 328 // are in architecture specific files in arch/<arch>/fault_handler_<arch>. 329 GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp); 330 331 // If we don't have a potential method, we're outta here. 332 VLOG(signals) << "potential method: " << method_obj; 333 // TODO: Check linear alloc and image. 334 if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) { 335 VLOG(signals) << "no method"; 336 return false; 337 } 338 339 // Verify that the potential method is indeed a method. 340 // TODO: check the GC maps to make sure it's an object. 341 // Check that the class pointer inside the object is not null and is aligned. 342 // TODO: Method might be not a heap address, and GetClass could fault. 343 // No read barrier because method_obj may not be a real object. 344 mirror::Class* cls = method_obj->GetDeclaringClassNoBarrier(); 345 if (cls == nullptr) { 346 VLOG(signals) << "not a class"; 347 return false; 348 } 349 if (!IsAligned<kObjectAlignment>(cls)) { 350 VLOG(signals) << "not aligned"; 351 return false; 352 } 353 354 355 if (!VerifyClassClass(cls)) { 356 VLOG(signals) << "not a class class"; 357 return false; 358 } 359 360 // We can be certain that this is a method now. Check if we have a GC map 361 // at the return PC address. 362 if (true || kIsDebugBuild) { 363 VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc; 364 const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj, 365 sizeof(void*)); 366 uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code); 367 VLOG(signals) << "pc offset: " << std::hex << sought_offset; 368 } 369 uint32_t dexpc = method_obj->ToDexPc(return_pc, false); 370 VLOG(signals) << "dexpc: " << dexpc; 371 return !check_dex_pc || dexpc != DexFile::kDexNoIndex; 372} 373 374FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) { 375} 376 377// 378// Null pointer fault handler 379// 380NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) { 381 manager_->AddHandler(this, true); 382} 383 384// 385// Suspension fault handler 386// 387SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) { 388 manager_->AddHandler(this, true); 389} 390 391// 392// Stack overflow fault handler 393// 394StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) { 395 manager_->AddHandler(this, true); 396} 397 398// 399// Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code. 400// 401JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) { 402 manager_->AddHandler(this, false); 403} 404 405bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) { 406 // Make sure that we are in the generated code, but we may not have a dex pc. 407 UNUSED(sig); 408#ifdef TEST_NESTED_SIGNAL 409 bool in_generated_code = true; 410#else 411 bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false); 412#endif 413 if (in_generated_code) { 414 LOG(ERROR) << "Dumping java stack trace for crash in generated code"; 415 ArtMethod* method = nullptr; 416 uintptr_t return_pc = 0; 417 uintptr_t sp = 0; 418 Thread* self = Thread::Current(); 419 420 manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp); 421 // Inside of generated code, sp[0] is the method, so sp is the frame. 422 self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp)); 423#ifdef TEST_NESTED_SIGNAL 424 // To test the nested signal handler we raise a signal here. This will cause the 425 // nested signal handler to be called and perform a longjmp back to the setjmp 426 // above. 427 abort(); 428#endif 429 self->DumpJavaStack(LOG(ERROR)); 430 } 431 432 return false; // Return false since we want to propagate the fault to the main signal handler. 433} 434 435} // namespace art 436