1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <unwind.h>  // For GC verification.
25#include <vector>
26
27#include "art_field-inl.h"
28#include "base/allocator.h"
29#include "base/dumpable.h"
30#include "base/histogram-inl.h"
31#include "base/stl_util.h"
32#include "base/time_utils.h"
33#include "common_throws.h"
34#include "cutils/sched_policy.h"
35#include "debugger.h"
36#include "dex_file-inl.h"
37#include "gc/accounting/atomic_stack.h"
38#include "gc/accounting/card_table-inl.h"
39#include "gc/accounting/heap_bitmap-inl.h"
40#include "gc/accounting/mod_union_table.h"
41#include "gc/accounting/mod_union_table-inl.h"
42#include "gc/accounting/remembered_set.h"
43#include "gc/accounting/space_bitmap-inl.h"
44#include "gc/collector/concurrent_copying.h"
45#include "gc/collector/mark_compact.h"
46#include "gc/collector/mark_sweep-inl.h"
47#include "gc/collector/partial_mark_sweep.h"
48#include "gc/collector/semi_space.h"
49#include "gc/collector/sticky_mark_sweep.h"
50#include "gc/reference_processor.h"
51#include "gc/space/bump_pointer_space.h"
52#include "gc/space/dlmalloc_space-inl.h"
53#include "gc/space/image_space.h"
54#include "gc/space/large_object_space.h"
55#include "gc/space/region_space.h"
56#include "gc/space/rosalloc_space-inl.h"
57#include "gc/space/space-inl.h"
58#include "gc/space/zygote_space.h"
59#include "gc/task_processor.h"
60#include "entrypoints/quick/quick_alloc_entrypoints.h"
61#include "heap-inl.h"
62#include "image.h"
63#include "intern_table.h"
64#include "mirror/class-inl.h"
65#include "mirror/object.h"
66#include "mirror/object-inl.h"
67#include "mirror/object_array-inl.h"
68#include "mirror/reference-inl.h"
69#include "os.h"
70#include "reflection.h"
71#include "runtime.h"
72#include "ScopedLocalRef.h"
73#include "scoped_thread_state_change.h"
74#include "handle_scope-inl.h"
75#include "thread_list.h"
76#include "well_known_classes.h"
77
78namespace art {
79
80namespace gc {
81
82static constexpr size_t kCollectorTransitionStressIterations = 0;
83static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
84// Minimum amount of remaining bytes before a concurrent GC is triggered.
85static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
86static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
87// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
88// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
89// threads (lower pauses, use less memory bandwidth).
90static constexpr double kStickyGcThroughputAdjustment = 1.0;
91// Whether or not we compact the zygote in PreZygoteFork.
92static constexpr bool kCompactZygote = kMovingCollector;
93// How many reserve entries are at the end of the allocation stack, these are only needed if the
94// allocation stack overflows.
95static constexpr size_t kAllocationStackReserveSize = 1024;
96// Default mark stack size in bytes.
97static const size_t kDefaultMarkStackSize = 64 * KB;
98// Define space name.
99static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
100static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
101static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
102static const char* kNonMovingSpaceName = "non moving space";
103static const char* kZygoteSpaceName = "zygote space";
104static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
105static constexpr bool kGCALotMode = false;
106// GC alot mode uses a small allocation stack to stress test a lot of GC.
107static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
108    sizeof(mirror::HeapReference<mirror::Object>);
109// Verify objet has a small allocation stack size since searching the allocation stack is slow.
110static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
111    sizeof(mirror::HeapReference<mirror::Object>);
112static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
113    sizeof(mirror::HeapReference<mirror::Object>);
114// System.runFinalization can deadlock with native allocations, to deal with this, we have a
115// timeout on how long we wait for finalizers to run. b/21544853
116static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u);
117
118Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
119           double target_utilization, double foreground_heap_growth_multiplier,
120           size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
121           const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
122           CollectorType background_collector_type,
123           space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
124           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
125           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
126           bool ignore_max_footprint, bool use_tlab,
127           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
128           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
129           bool verify_post_gc_rosalloc, bool gc_stress_mode,
130           bool use_homogeneous_space_compaction_for_oom,
131           uint64_t min_interval_homogeneous_space_compaction_by_oom)
132    : non_moving_space_(nullptr),
133      rosalloc_space_(nullptr),
134      dlmalloc_space_(nullptr),
135      main_space_(nullptr),
136      collector_type_(kCollectorTypeNone),
137      foreground_collector_type_(foreground_collector_type),
138      background_collector_type_(background_collector_type),
139      desired_collector_type_(foreground_collector_type_),
140      pending_task_lock_(nullptr),
141      parallel_gc_threads_(parallel_gc_threads),
142      conc_gc_threads_(conc_gc_threads),
143      low_memory_mode_(low_memory_mode),
144      long_pause_log_threshold_(long_pause_log_threshold),
145      long_gc_log_threshold_(long_gc_log_threshold),
146      ignore_max_footprint_(ignore_max_footprint),
147      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
148      zygote_space_(nullptr),
149      large_object_threshold_(large_object_threshold),
150      collector_type_running_(kCollectorTypeNone),
151      last_gc_type_(collector::kGcTypeNone),
152      next_gc_type_(collector::kGcTypePartial),
153      capacity_(capacity),
154      growth_limit_(growth_limit),
155      max_allowed_footprint_(initial_size),
156      native_footprint_gc_watermark_(initial_size),
157      native_need_to_run_finalization_(false),
158      // Initially assume we perceive jank in case the process state is never updated.
159      process_state_(kProcessStateJankPerceptible),
160      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
161      total_bytes_freed_ever_(0),
162      total_objects_freed_ever_(0),
163      num_bytes_allocated_(0),
164      native_bytes_allocated_(0),
165      num_bytes_freed_revoke_(0),
166      verify_missing_card_marks_(false),
167      verify_system_weaks_(false),
168      verify_pre_gc_heap_(verify_pre_gc_heap),
169      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
170      verify_post_gc_heap_(verify_post_gc_heap),
171      verify_mod_union_table_(false),
172      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
173      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
174      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
175      gc_stress_mode_(gc_stress_mode),
176      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
177       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
178       * verification is enabled, we limit the size of allocation stacks to speed up their
179       * searching.
180       */
181      max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
182          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
183          kDefaultAllocationStackSize),
184      current_allocator_(kAllocatorTypeDlMalloc),
185      current_non_moving_allocator_(kAllocatorTypeNonMoving),
186      bump_pointer_space_(nullptr),
187      temp_space_(nullptr),
188      region_space_(nullptr),
189      min_free_(min_free),
190      max_free_(max_free),
191      target_utilization_(target_utilization),
192      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
193      total_wait_time_(0),
194      total_allocation_time_(0),
195      verify_object_mode_(kVerifyObjectModeDisabled),
196      disable_moving_gc_count_(0),
197      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
198      use_tlab_(use_tlab),
199      main_space_backup_(nullptr),
200      min_interval_homogeneous_space_compaction_by_oom_(
201          min_interval_homogeneous_space_compaction_by_oom),
202      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
203      pending_collector_transition_(nullptr),
204      pending_heap_trim_(nullptr),
205      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
206      running_collection_is_blocking_(false),
207      blocking_gc_count_(0U),
208      blocking_gc_time_(0U),
209      last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
210          (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
211      gc_count_last_window_(0U),
212      blocking_gc_count_last_window_(0U),
213      gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
214      blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
215                                        kGcCountRateMaxBucketCount),
216      backtrace_lock_(nullptr),
217      seen_backtrace_count_(0u),
218      unique_backtrace_count_(0u) {
219  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
220    LOG(INFO) << "Heap() entering";
221  }
222  Runtime* const runtime = Runtime::Current();
223  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
224  // entrypoints.
225  const bool is_zygote = runtime->IsZygote();
226  if (!is_zygote) {
227    // Background compaction is currently not supported for command line runs.
228    if (background_collector_type_ != foreground_collector_type_) {
229      VLOG(heap) << "Disabling background compaction for non zygote";
230      background_collector_type_ = foreground_collector_type_;
231    }
232  }
233  ChangeCollector(desired_collector_type_);
234  live_bitmap_.reset(new accounting::HeapBitmap(this));
235  mark_bitmap_.reset(new accounting::HeapBitmap(this));
236  // Requested begin for the alloc space, to follow the mapped image and oat files
237  uint8_t* requested_alloc_space_begin = nullptr;
238  if (foreground_collector_type_ == kCollectorTypeCC) {
239    // Need to use a low address so that we can allocate a contiguous
240    // 2 * Xmx space when there's no image (dex2oat for target).
241    CHECK_GE(300 * MB, non_moving_space_capacity);
242    requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity;
243  }
244  if (!image_file_name.empty()) {
245    ATRACE_BEGIN("ImageSpace::Create");
246    std::string error_msg;
247    auto* image_space = space::ImageSpace::Create(image_file_name.c_str(), image_instruction_set,
248                                                  &error_msg);
249    ATRACE_END();
250    if (image_space != nullptr) {
251      AddSpace(image_space);
252      // Oat files referenced by image files immediately follow them in memory, ensure alloc space
253      // isn't going to get in the middle
254      uint8_t* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
255      CHECK_GT(oat_file_end_addr, image_space->End());
256      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
257    } else {
258      LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
259                   << "Attempting to fall back to imageless running. Error was: " << error_msg;
260    }
261  }
262  /*
263  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
264                                     +-  nonmoving space (non_moving_space_capacity)+-
265                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
266                                     +-????????????????????????????????????????????+-
267                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
268                                     +-main alloc space / bump space 1 (capacity_) +-
269                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
270                                     +-????????????????????????????????????????????+-
271                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
272                                     +-main alloc space2 / bump space 2 (capacity_)+-
273                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
274  */
275  // We don't have hspace compaction enabled with GSS or CC.
276  if (foreground_collector_type_ == kCollectorTypeGSS ||
277      foreground_collector_type_ == kCollectorTypeCC) {
278    use_homogeneous_space_compaction_for_oom_ = false;
279  }
280  bool support_homogeneous_space_compaction =
281      background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
282      use_homogeneous_space_compaction_for_oom_;
283  // We may use the same space the main space for the non moving space if we don't need to compact
284  // from the main space.
285  // This is not the case if we support homogeneous compaction or have a moving background
286  // collector type.
287  bool separate_non_moving_space = is_zygote ||
288      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
289      IsMovingGc(background_collector_type_);
290  if (foreground_collector_type == kCollectorTypeGSS) {
291    separate_non_moving_space = false;
292  }
293  std::unique_ptr<MemMap> main_mem_map_1;
294  std::unique_ptr<MemMap> main_mem_map_2;
295  uint8_t* request_begin = requested_alloc_space_begin;
296  if (request_begin != nullptr && separate_non_moving_space) {
297    request_begin += non_moving_space_capacity;
298  }
299  std::string error_str;
300  std::unique_ptr<MemMap> non_moving_space_mem_map;
301  ATRACE_BEGIN("Create heap maps");
302  if (separate_non_moving_space) {
303    // If we are the zygote, the non moving space becomes the zygote space when we run
304    // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
305    // rename the mem map later.
306    const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
307    // Reserve the non moving mem map before the other two since it needs to be at a specific
308    // address.
309    non_moving_space_mem_map.reset(
310        MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
311                             non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
312                             &error_str));
313    CHECK(non_moving_space_mem_map != nullptr) << error_str;
314    // Try to reserve virtual memory at a lower address if we have a separate non moving space.
315    request_begin = reinterpret_cast<uint8_t*>(300 * MB);
316  }
317  // Attempt to create 2 mem maps at or after the requested begin.
318  if (foreground_collector_type_ != kCollectorTypeCC) {
319    if (separate_non_moving_space) {
320      main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin,
321                                                        capacity_, &error_str));
322    } else {
323      // If no separate non-moving space, the main space must come
324      // right after the image space to avoid a gap.
325      main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
326                                                PROT_READ | PROT_WRITE, true, false,
327                                                &error_str));
328    }
329    CHECK(main_mem_map_1.get() != nullptr) << error_str;
330  }
331  if (support_homogeneous_space_compaction ||
332      background_collector_type_ == kCollectorTypeSS ||
333      foreground_collector_type_ == kCollectorTypeSS) {
334    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
335                                                      capacity_, &error_str));
336    CHECK(main_mem_map_2.get() != nullptr) << error_str;
337  }
338  ATRACE_END();
339  ATRACE_BEGIN("Create spaces");
340  // Create the non moving space first so that bitmaps don't take up the address range.
341  if (separate_non_moving_space) {
342    // Non moving space is always dlmalloc since we currently don't have support for multiple
343    // active rosalloc spaces.
344    const size_t size = non_moving_space_mem_map->Size();
345    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
346        non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
347        initial_size, size, size, false);
348    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
349    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
350        << requested_alloc_space_begin;
351    AddSpace(non_moving_space_);
352  }
353  // Create other spaces based on whether or not we have a moving GC.
354  if (foreground_collector_type_ == kCollectorTypeCC) {
355    region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin);
356    AddSpace(region_space_);
357  } else if (IsMovingGc(foreground_collector_type_) &&
358      foreground_collector_type_ != kCollectorTypeGSS) {
359    // Create bump pointer spaces.
360    // We only to create the bump pointer if the foreground collector is a compacting GC.
361    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
362    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
363                                                                    main_mem_map_1.release());
364    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
365    AddSpace(bump_pointer_space_);
366    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
367                                                            main_mem_map_2.release());
368    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
369    AddSpace(temp_space_);
370    CHECK(separate_non_moving_space);
371  } else {
372    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
373    CHECK(main_space_ != nullptr);
374    AddSpace(main_space_);
375    if (!separate_non_moving_space) {
376      non_moving_space_ = main_space_;
377      CHECK(!non_moving_space_->CanMoveObjects());
378    }
379    if (foreground_collector_type_ == kCollectorTypeGSS) {
380      CHECK_EQ(foreground_collector_type_, background_collector_type_);
381      // Create bump pointer spaces instead of a backup space.
382      main_mem_map_2.release();
383      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
384                                                            kGSSBumpPointerSpaceCapacity, nullptr);
385      CHECK(bump_pointer_space_ != nullptr);
386      AddSpace(bump_pointer_space_);
387      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
388                                                    kGSSBumpPointerSpaceCapacity, nullptr);
389      CHECK(temp_space_ != nullptr);
390      AddSpace(temp_space_);
391    } else if (main_mem_map_2.get() != nullptr) {
392      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
393      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
394                                                           growth_limit_, capacity_, name, true));
395      CHECK(main_space_backup_.get() != nullptr);
396      // Add the space so its accounted for in the heap_begin and heap_end.
397      AddSpace(main_space_backup_.get());
398    }
399  }
400  CHECK(non_moving_space_ != nullptr);
401  CHECK(!non_moving_space_->CanMoveObjects());
402  // Allocate the large object space.
403  if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
404    large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
405                                                       capacity_);
406    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
407  } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
408    large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
409    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
410  } else {
411    // Disable the large object space by making the cutoff excessively large.
412    large_object_threshold_ = std::numeric_limits<size_t>::max();
413    large_object_space_ = nullptr;
414  }
415  if (large_object_space_ != nullptr) {
416    AddSpace(large_object_space_);
417  }
418  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
419  CHECK(!continuous_spaces_.empty());
420  // Relies on the spaces being sorted.
421  uint8_t* heap_begin = continuous_spaces_.front()->Begin();
422  uint8_t* heap_end = continuous_spaces_.back()->Limit();
423  size_t heap_capacity = heap_end - heap_begin;
424  // Remove the main backup space since it slows down the GC to have unused extra spaces.
425  // TODO: Avoid needing to do this.
426  if (main_space_backup_.get() != nullptr) {
427    RemoveSpace(main_space_backup_.get());
428  }
429  ATRACE_END();
430  // Allocate the card table.
431  ATRACE_BEGIN("Create card table");
432  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
433  CHECK(card_table_.get() != nullptr) << "Failed to create card table";
434  ATRACE_END();
435  if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
436    rb_table_.reset(new accounting::ReadBarrierTable());
437    DCHECK(rb_table_->IsAllCleared());
438  }
439  if (GetImageSpace() != nullptr) {
440    // Don't add the image mod union table if we are running without an image, this can crash if
441    // we use the CardCache implementation.
442    accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
443        "Image mod-union table", this, GetImageSpace());
444    CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
445    AddModUnionTable(mod_union_table);
446  }
447  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
448    accounting::RememberedSet* non_moving_space_rem_set =
449        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
450    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
451    AddRememberedSet(non_moving_space_rem_set);
452  }
453  // TODO: Count objects in the image space here?
454  num_bytes_allocated_.StoreRelaxed(0);
455  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
456                                                    kDefaultMarkStackSize));
457  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
458  allocation_stack_.reset(accounting::ObjectStack::Create(
459      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
460  live_stack_.reset(accounting::ObjectStack::Create(
461      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
462  // It's still too early to take a lock because there are no threads yet, but we can create locks
463  // now. We don't create it earlier to make it clear that you can't use locks during heap
464  // initialization.
465  gc_complete_lock_ = new Mutex("GC complete lock");
466  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
467                                                *gc_complete_lock_));
468  task_processor_.reset(new TaskProcessor());
469  pending_task_lock_ = new Mutex("Pending task lock");
470  if (ignore_max_footprint_) {
471    SetIdealFootprint(std::numeric_limits<size_t>::max());
472    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
473  }
474  CHECK_NE(max_allowed_footprint_, 0U);
475  // Create our garbage collectors.
476  for (size_t i = 0; i < 2; ++i) {
477    const bool concurrent = i != 0;
478    if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
479        (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
480      garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
481      garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
482      garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
483    }
484  }
485  if (kMovingCollector) {
486    if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
487        MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
488        use_homogeneous_space_compaction_for_oom_) {
489      // TODO: Clean this up.
490      const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
491      semi_space_collector_ = new collector::SemiSpace(this, generational,
492                                                       generational ? "generational" : "");
493      garbage_collectors_.push_back(semi_space_collector_);
494    }
495    if (MayUseCollector(kCollectorTypeCC)) {
496      concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
497      garbage_collectors_.push_back(concurrent_copying_collector_);
498    }
499    if (MayUseCollector(kCollectorTypeMC)) {
500      mark_compact_collector_ = new collector::MarkCompact(this);
501      garbage_collectors_.push_back(mark_compact_collector_);
502    }
503  }
504  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
505      (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
506    // Check that there's no gap between the image space and the non moving space so that the
507    // immune region won't break (eg. due to a large object allocated in the gap). This is only
508    // required when we're the zygote or using GSS.
509    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
510                                      non_moving_space_->GetMemMap());
511    if (!no_gap) {
512      PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
513      MemMap::DumpMaps(LOG(ERROR), true);
514      LOG(FATAL) << "There's a gap between the image space and the non-moving space";
515    }
516  }
517  instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
518  if (gc_stress_mode_) {
519    backtrace_lock_ = new Mutex("GC complete lock");
520  }
521  if (running_on_valgrind_ || gc_stress_mode_) {
522    instrumentation->InstrumentQuickAllocEntryPoints();
523  }
524  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
525    LOG(INFO) << "Heap() exiting";
526  }
527}
528
529MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
530                                           size_t capacity, std::string* out_error_str) {
531  while (true) {
532    MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
533                                       PROT_READ | PROT_WRITE, true, false, out_error_str);
534    if (map != nullptr || request_begin == nullptr) {
535      return map;
536    }
537    // Retry a  second time with no specified request begin.
538    request_begin = nullptr;
539  }
540}
541
542bool Heap::MayUseCollector(CollectorType type) const {
543  return foreground_collector_type_ == type || background_collector_type_ == type;
544}
545
546space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
547                                                      size_t growth_limit, size_t capacity,
548                                                      const char* name, bool can_move_objects) {
549  space::MallocSpace* malloc_space = nullptr;
550  if (kUseRosAlloc) {
551    // Create rosalloc space.
552    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
553                                                          initial_size, growth_limit, capacity,
554                                                          low_memory_mode_, can_move_objects);
555  } else {
556    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
557                                                          initial_size, growth_limit, capacity,
558                                                          can_move_objects);
559  }
560  if (collector::SemiSpace::kUseRememberedSet) {
561    accounting::RememberedSet* rem_set  =
562        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
563    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
564    AddRememberedSet(rem_set);
565  }
566  CHECK(malloc_space != nullptr) << "Failed to create " << name;
567  malloc_space->SetFootprintLimit(malloc_space->Capacity());
568  return malloc_space;
569}
570
571void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
572                                 size_t capacity) {
573  // Is background compaction is enabled?
574  bool can_move_objects = IsMovingGc(background_collector_type_) !=
575      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
576  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
577  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
578  // from the main space to the zygote space. If background compaction is enabled, always pass in
579  // that we can move objets.
580  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
581    // After the zygote we want this to be false if we don't have background compaction enabled so
582    // that getting primitive array elements is faster.
583    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
584    can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
585  }
586  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
587    RemoveRememberedSet(main_space_);
588  }
589  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
590  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
591                                            can_move_objects);
592  SetSpaceAsDefault(main_space_);
593  VLOG(heap) << "Created main space " << main_space_;
594}
595
596void Heap::ChangeAllocator(AllocatorType allocator) {
597  if (current_allocator_ != allocator) {
598    // These two allocators are only used internally and don't have any entrypoints.
599    CHECK_NE(allocator, kAllocatorTypeLOS);
600    CHECK_NE(allocator, kAllocatorTypeNonMoving);
601    current_allocator_ = allocator;
602    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
603    SetQuickAllocEntryPointsAllocator(current_allocator_);
604    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
605  }
606}
607
608void Heap::DisableMovingGc() {
609  if (IsMovingGc(foreground_collector_type_)) {
610    foreground_collector_type_ = kCollectorTypeCMS;
611  }
612  if (IsMovingGc(background_collector_type_)) {
613    background_collector_type_ = foreground_collector_type_;
614  }
615  TransitionCollector(foreground_collector_type_);
616  ThreadList* tl = Runtime::Current()->GetThreadList();
617  Thread* self = Thread::Current();
618  ScopedThreadStateChange tsc(self, kSuspended);
619  tl->SuspendAll(__FUNCTION__);
620  // Something may have caused the transition to fail.
621  if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
622    CHECK(main_space_ != nullptr);
623    // The allocation stack may have non movable objects in it. We need to flush it since the GC
624    // can't only handle marking allocation stack objects of one non moving space and one main
625    // space.
626    {
627      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
628      FlushAllocStack();
629    }
630    main_space_->DisableMovingObjects();
631    non_moving_space_ = main_space_;
632    CHECK(!non_moving_space_->CanMoveObjects());
633  }
634  tl->ResumeAll();
635}
636
637std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
638  if (!IsValidContinuousSpaceObjectAddress(klass)) {
639    return StringPrintf("<non heap address klass %p>", klass);
640  }
641  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
642  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
643    std::string result("[");
644    result += SafeGetClassDescriptor(component_type);
645    return result;
646  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
647    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
648  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
649    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
650  } else {
651    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
652    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
653      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
654    }
655    const DexFile* dex_file = dex_cache->GetDexFile();
656    uint16_t class_def_idx = klass->GetDexClassDefIndex();
657    if (class_def_idx == DexFile::kDexNoIndex16) {
658      return "<class def not found>";
659    }
660    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
661    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
662    return dex_file->GetTypeDescriptor(type_id);
663  }
664}
665
666std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
667  if (obj == nullptr) {
668    return "null";
669  }
670  mirror::Class* klass = obj->GetClass<kVerifyNone>();
671  if (klass == nullptr) {
672    return "(class=null)";
673  }
674  std::string result(SafeGetClassDescriptor(klass));
675  if (obj->IsClass()) {
676    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
677  }
678  return result;
679}
680
681void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
682  if (obj == nullptr) {
683    stream << "(obj=null)";
684    return;
685  }
686  if (IsAligned<kObjectAlignment>(obj)) {
687    space::Space* space = nullptr;
688    // Don't use find space since it only finds spaces which actually contain objects instead of
689    // spaces which may contain objects (e.g. cleared bump pointer spaces).
690    for (const auto& cur_space : continuous_spaces_) {
691      if (cur_space->HasAddress(obj)) {
692        space = cur_space;
693        break;
694      }
695    }
696    // Unprotect all the spaces.
697    for (const auto& con_space : continuous_spaces_) {
698      mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
699    }
700    stream << "Object " << obj;
701    if (space != nullptr) {
702      stream << " in space " << *space;
703    }
704    mirror::Class* klass = obj->GetClass<kVerifyNone>();
705    stream << "\nclass=" << klass;
706    if (klass != nullptr) {
707      stream << " type= " << SafePrettyTypeOf(obj);
708    }
709    // Re-protect the address we faulted on.
710    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
711  }
712}
713
714bool Heap::IsCompilingBoot() const {
715  if (!Runtime::Current()->IsAotCompiler()) {
716    return false;
717  }
718  for (const auto& space : continuous_spaces_) {
719    if (space->IsImageSpace() || space->IsZygoteSpace()) {
720      return false;
721    }
722  }
723  return true;
724}
725
726bool Heap::HasImageSpace() const {
727  for (const auto& space : continuous_spaces_) {
728    if (space->IsImageSpace()) {
729      return true;
730    }
731  }
732  return false;
733}
734
735void Heap::IncrementDisableMovingGC(Thread* self) {
736  // Need to do this holding the lock to prevent races where the GC is about to run / running when
737  // we attempt to disable it.
738  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
739  MutexLock mu(self, *gc_complete_lock_);
740  ++disable_moving_gc_count_;
741  if (IsMovingGc(collector_type_running_)) {
742    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
743  }
744}
745
746void Heap::DecrementDisableMovingGC(Thread* self) {
747  MutexLock mu(self, *gc_complete_lock_);
748  CHECK_GT(disable_moving_gc_count_, 0U);
749  --disable_moving_gc_count_;
750}
751
752void Heap::UpdateProcessState(ProcessState process_state) {
753  if (process_state_ != process_state) {
754    process_state_ = process_state;
755    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
756      // Start at index 1 to avoid "is always false" warning.
757      // Have iteration 1 always transition the collector.
758      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
759                          ? foreground_collector_type_ : background_collector_type_);
760      usleep(kCollectorTransitionStressWait);
761    }
762    if (process_state_ == kProcessStateJankPerceptible) {
763      // Transition back to foreground right away to prevent jank.
764      RequestCollectorTransition(foreground_collector_type_, 0);
765    } else {
766      // Don't delay for debug builds since we may want to stress test the GC.
767      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
768      // special handling which does a homogenous space compaction once but then doesn't transition
769      // the collector.
770      RequestCollectorTransition(background_collector_type_,
771                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
772    }
773  }
774}
775
776void Heap::CreateThreadPool() {
777  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
778  if (num_threads != 0) {
779    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
780  }
781}
782
783// Visit objects when threads aren't suspended. If concurrent moving
784// GC, disable moving GC and suspend threads and then visit objects.
785void Heap::VisitObjects(ObjectCallback callback, void* arg) {
786  Thread* self = Thread::Current();
787  Locks::mutator_lock_->AssertSharedHeld(self);
788  DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
789  if (IsGcConcurrentAndMoving()) {
790    // Concurrent moving GC. Just suspending threads isn't sufficient
791    // because a collection isn't one big pause and we could suspend
792    // threads in the middle (between phases) of a concurrent moving
793    // collection where it's not easily known which objects are alive
794    // (both the region space and the non-moving space) or which
795    // copies of objects to visit, and the to-space invariant could be
796    // easily broken. Visit objects while GC isn't running by using
797    // IncrementDisableMovingGC() and threads are suspended.
798    IncrementDisableMovingGC(self);
799    self->TransitionFromRunnableToSuspended(kWaitingForVisitObjects);
800    ThreadList* tl = Runtime::Current()->GetThreadList();
801    tl->SuspendAll(__FUNCTION__);
802    VisitObjectsInternalRegionSpace(callback, arg);
803    VisitObjectsInternal(callback, arg);
804    tl->ResumeAll();
805    self->TransitionFromSuspendedToRunnable();
806    DecrementDisableMovingGC(self);
807  } else {
808    // GCs can move objects, so don't allow this.
809    ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
810    DCHECK(region_space_ == nullptr);
811    VisitObjectsInternal(callback, arg);
812  }
813}
814
815// Visit objects when threads are already suspended.
816void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
817  Thread* self = Thread::Current();
818  Locks::mutator_lock_->AssertExclusiveHeld(self);
819  VisitObjectsInternalRegionSpace(callback, arg);
820  VisitObjectsInternal(callback, arg);
821}
822
823// Visit objects in the region spaces.
824void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
825  Thread* self = Thread::Current();
826  Locks::mutator_lock_->AssertExclusiveHeld(self);
827  if (region_space_ != nullptr) {
828    DCHECK(IsGcConcurrentAndMoving());
829    if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
830      // Exclude the pre-zygote fork time where the semi-space collector
831      // calls VerifyHeapReferences() as part of the zygote compaction
832      // which then would call here without the moving GC disabled,
833      // which is fine.
834      DCHECK(IsMovingGCDisabled(self));
835    }
836    region_space_->Walk(callback, arg);
837  }
838}
839
840// Visit objects in the other spaces.
841void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
842  if (bump_pointer_space_ != nullptr) {
843    // Visit objects in bump pointer space.
844    bump_pointer_space_->Walk(callback, arg);
845  }
846  // TODO: Switch to standard begin and end to use ranged a based loop.
847  for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) {
848    mirror::Object* const obj = it->AsMirrorPtr();
849    if (obj != nullptr && obj->GetClass() != nullptr) {
850      // Avoid the race condition caused by the object not yet being written into the allocation
851      // stack or the class not yet being written in the object. Or, if
852      // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
853      callback(obj, arg);
854    }
855  }
856  {
857    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
858    GetLiveBitmap()->Walk(callback, arg);
859  }
860}
861
862void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
863  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
864  space::ContinuousSpace* space2 = non_moving_space_;
865  // TODO: Generalize this to n bitmaps?
866  CHECK(space1 != nullptr);
867  CHECK(space2 != nullptr);
868  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
869                 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
870                 stack);
871}
872
873void Heap::DeleteThreadPool() {
874  thread_pool_.reset(nullptr);
875}
876
877void Heap::AddSpace(space::Space* space) {
878  CHECK(space != nullptr);
879  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
880  if (space->IsContinuousSpace()) {
881    DCHECK(!space->IsDiscontinuousSpace());
882    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
883    // Continuous spaces don't necessarily have bitmaps.
884    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
885    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
886    if (live_bitmap != nullptr) {
887      CHECK(mark_bitmap != nullptr);
888      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
889      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
890    }
891    continuous_spaces_.push_back(continuous_space);
892    // Ensure that spaces remain sorted in increasing order of start address.
893    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
894              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
895      return a->Begin() < b->Begin();
896    });
897  } else {
898    CHECK(space->IsDiscontinuousSpace());
899    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
900    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
901    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
902    discontinuous_spaces_.push_back(discontinuous_space);
903  }
904  if (space->IsAllocSpace()) {
905    alloc_spaces_.push_back(space->AsAllocSpace());
906  }
907}
908
909void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
910  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
911  if (continuous_space->IsDlMallocSpace()) {
912    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
913  } else if (continuous_space->IsRosAllocSpace()) {
914    rosalloc_space_ = continuous_space->AsRosAllocSpace();
915  }
916}
917
918void Heap::RemoveSpace(space::Space* space) {
919  DCHECK(space != nullptr);
920  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
921  if (space->IsContinuousSpace()) {
922    DCHECK(!space->IsDiscontinuousSpace());
923    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
924    // Continuous spaces don't necessarily have bitmaps.
925    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
926    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
927    if (live_bitmap != nullptr) {
928      DCHECK(mark_bitmap != nullptr);
929      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
930      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
931    }
932    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
933    DCHECK(it != continuous_spaces_.end());
934    continuous_spaces_.erase(it);
935  } else {
936    DCHECK(space->IsDiscontinuousSpace());
937    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
938    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
939    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
940    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
941                        discontinuous_space);
942    DCHECK(it != discontinuous_spaces_.end());
943    discontinuous_spaces_.erase(it);
944  }
945  if (space->IsAllocSpace()) {
946    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
947    DCHECK(it != alloc_spaces_.end());
948    alloc_spaces_.erase(it);
949  }
950}
951
952void Heap::DumpGcPerformanceInfo(std::ostream& os) {
953  // Dump cumulative timings.
954  os << "Dumping cumulative Gc timings\n";
955  uint64_t total_duration = 0;
956  // Dump cumulative loggers for each GC type.
957  uint64_t total_paused_time = 0;
958  for (auto& collector : garbage_collectors_) {
959    total_duration += collector->GetCumulativeTimings().GetTotalNs();
960    total_paused_time += collector->GetTotalPausedTimeNs();
961    collector->DumpPerformanceInfo(os);
962  }
963  uint64_t allocation_time =
964      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
965  if (total_duration != 0) {
966    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
967    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
968    os << "Mean GC size throughput: "
969       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
970    os << "Mean GC object throughput: "
971       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
972  }
973  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
974  os << "Total number of allocations " << total_objects_allocated << "\n";
975  os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
976  os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
977  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
978  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
979  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
980  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
981  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
982  if (kMeasureAllocationTime) {
983    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
984    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
985       << "\n";
986  }
987  if (HasZygoteSpace()) {
988    os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
989  }
990  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
991  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
992  os << "Total GC count: " << GetGcCount() << "\n";
993  os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
994  os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
995  os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
996
997  {
998    MutexLock mu(Thread::Current(), *gc_complete_lock_);
999    if (gc_count_rate_histogram_.SampleSize() > 0U) {
1000      os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1001      gc_count_rate_histogram_.DumpBins(os);
1002      os << "\n";
1003    }
1004    if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1005      os << "Histogram of blocking GC count per "
1006         << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1007      blocking_gc_count_rate_histogram_.DumpBins(os);
1008      os << "\n";
1009    }
1010  }
1011
1012  BaseMutex::DumpAll(os);
1013}
1014
1015void Heap::ResetGcPerformanceInfo() {
1016  for (auto& collector : garbage_collectors_) {
1017    collector->ResetMeasurements();
1018  }
1019  total_allocation_time_.StoreRelaxed(0);
1020  total_bytes_freed_ever_ = 0;
1021  total_objects_freed_ever_ = 0;
1022  total_wait_time_ = 0;
1023  blocking_gc_count_ = 0;
1024  blocking_gc_time_ = 0;
1025  gc_count_last_window_ = 0;
1026  blocking_gc_count_last_window_ = 0;
1027  last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
1028      (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1029  {
1030    MutexLock mu(Thread::Current(), *gc_complete_lock_);
1031    gc_count_rate_histogram_.Reset();
1032    blocking_gc_count_rate_histogram_.Reset();
1033  }
1034}
1035
1036uint64_t Heap::GetGcCount() const {
1037  uint64_t gc_count = 0U;
1038  for (auto& collector : garbage_collectors_) {
1039    gc_count += collector->GetCumulativeTimings().GetIterations();
1040  }
1041  return gc_count;
1042}
1043
1044uint64_t Heap::GetGcTime() const {
1045  uint64_t gc_time = 0U;
1046  for (auto& collector : garbage_collectors_) {
1047    gc_time += collector->GetCumulativeTimings().GetTotalNs();
1048  }
1049  return gc_time;
1050}
1051
1052uint64_t Heap::GetBlockingGcCount() const {
1053  return blocking_gc_count_;
1054}
1055
1056uint64_t Heap::GetBlockingGcTime() const {
1057  return blocking_gc_time_;
1058}
1059
1060void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1061  MutexLock mu(Thread::Current(), *gc_complete_lock_);
1062  if (gc_count_rate_histogram_.SampleSize() > 0U) {
1063    gc_count_rate_histogram_.DumpBins(os);
1064  }
1065}
1066
1067void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1068  MutexLock mu(Thread::Current(), *gc_complete_lock_);
1069  if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1070    blocking_gc_count_rate_histogram_.DumpBins(os);
1071  }
1072}
1073
1074Heap::~Heap() {
1075  VLOG(heap) << "Starting ~Heap()";
1076  STLDeleteElements(&garbage_collectors_);
1077  // If we don't reset then the mark stack complains in its destructor.
1078  allocation_stack_->Reset();
1079  live_stack_->Reset();
1080  STLDeleteValues(&mod_union_tables_);
1081  STLDeleteValues(&remembered_sets_);
1082  STLDeleteElements(&continuous_spaces_);
1083  STLDeleteElements(&discontinuous_spaces_);
1084  delete gc_complete_lock_;
1085  delete pending_task_lock_;
1086  delete backtrace_lock_;
1087  if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
1088    LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
1089        << " total=" << seen_backtrace_count_.LoadRelaxed() +
1090            unique_backtrace_count_.LoadRelaxed();
1091  }
1092  VLOG(heap) << "Finished ~Heap()";
1093}
1094
1095space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
1096                                                            bool fail_ok) const {
1097  for (const auto& space : continuous_spaces_) {
1098    if (space->Contains(obj)) {
1099      return space;
1100    }
1101  }
1102  if (!fail_ok) {
1103    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
1104  }
1105  return nullptr;
1106}
1107
1108space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
1109                                                                  bool fail_ok) const {
1110  for (const auto& space : discontinuous_spaces_) {
1111    if (space->Contains(obj)) {
1112      return space;
1113    }
1114  }
1115  if (!fail_ok) {
1116    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
1117  }
1118  return nullptr;
1119}
1120
1121space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
1122  space::Space* result = FindContinuousSpaceFromObject(obj, true);
1123  if (result != nullptr) {
1124    return result;
1125  }
1126  return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1127}
1128
1129space::ImageSpace* Heap::GetImageSpace() const {
1130  for (const auto& space : continuous_spaces_) {
1131    if (space->IsImageSpace()) {
1132      return space->AsImageSpace();
1133    }
1134  }
1135  return nullptr;
1136}
1137
1138void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1139  std::ostringstream oss;
1140  size_t total_bytes_free = GetFreeMemory();
1141  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1142      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
1143  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1144  if (total_bytes_free >= byte_count) {
1145    space::AllocSpace* space = nullptr;
1146    if (allocator_type == kAllocatorTypeNonMoving) {
1147      space = non_moving_space_;
1148    } else if (allocator_type == kAllocatorTypeRosAlloc ||
1149               allocator_type == kAllocatorTypeDlMalloc) {
1150      space = main_space_;
1151    } else if (allocator_type == kAllocatorTypeBumpPointer ||
1152               allocator_type == kAllocatorTypeTLAB) {
1153      space = bump_pointer_space_;
1154    } else if (allocator_type == kAllocatorTypeRegion ||
1155               allocator_type == kAllocatorTypeRegionTLAB) {
1156      space = region_space_;
1157    }
1158    if (space != nullptr) {
1159      space->LogFragmentationAllocFailure(oss, byte_count);
1160    }
1161  }
1162  self->ThrowOutOfMemoryError(oss.str().c_str());
1163}
1164
1165void Heap::DoPendingCollectorTransition() {
1166  CollectorType desired_collector_type = desired_collector_type_;
1167  // Launch homogeneous space compaction if it is desired.
1168  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1169    if (!CareAboutPauseTimes()) {
1170      PerformHomogeneousSpaceCompact();
1171    } else {
1172      VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1173    }
1174  } else {
1175    TransitionCollector(desired_collector_type);
1176  }
1177}
1178
1179void Heap::Trim(Thread* self) {
1180  if (!CareAboutPauseTimes()) {
1181    ATRACE_BEGIN("Deflating monitors");
1182    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1183    // about pauses.
1184    Runtime* runtime = Runtime::Current();
1185    runtime->GetThreadList()->SuspendAll(__FUNCTION__);
1186    uint64_t start_time = NanoTime();
1187    size_t count = runtime->GetMonitorList()->DeflateMonitors();
1188    VLOG(heap) << "Deflating " << count << " monitors took "
1189        << PrettyDuration(NanoTime() - start_time);
1190    runtime->GetThreadList()->ResumeAll();
1191    ATRACE_END();
1192  }
1193  TrimIndirectReferenceTables(self);
1194  TrimSpaces(self);
1195}
1196
1197class TrimIndirectReferenceTableClosure : public Closure {
1198 public:
1199  explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1200  }
1201  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1202    ATRACE_BEGIN("Trimming reference table");
1203    thread->GetJniEnv()->locals.Trim();
1204    ATRACE_END();
1205    // If thread is a running mutator, then act on behalf of the trim thread.
1206    // See the code in ThreadList::RunCheckpoint.
1207    if (thread->GetState() == kRunnable) {
1208      barrier_->Pass(Thread::Current());
1209    }
1210  }
1211
1212 private:
1213  Barrier* const barrier_;
1214};
1215
1216void Heap::TrimIndirectReferenceTables(Thread* self) {
1217  ScopedObjectAccess soa(self);
1218  ATRACE_BEGIN(__FUNCTION__);
1219  JavaVMExt* vm = soa.Vm();
1220  // Trim globals indirect reference table.
1221  vm->TrimGlobals();
1222  // Trim locals indirect reference tables.
1223  Barrier barrier(0);
1224  TrimIndirectReferenceTableClosure closure(&barrier);
1225  ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1226  size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1227  if (barrier_count != 0) {
1228    barrier.Increment(self, barrier_count);
1229  }
1230  ATRACE_END();
1231}
1232
1233void Heap::TrimSpaces(Thread* self) {
1234  {
1235    // Need to do this before acquiring the locks since we don't want to get suspended while
1236    // holding any locks.
1237    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1238    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1239    // trimming.
1240    MutexLock mu(self, *gc_complete_lock_);
1241    // Ensure there is only one GC at a time.
1242    WaitForGcToCompleteLocked(kGcCauseTrim, self);
1243    collector_type_running_ = kCollectorTypeHeapTrim;
1244  }
1245  ATRACE_BEGIN(__FUNCTION__);
1246  const uint64_t start_ns = NanoTime();
1247  // Trim the managed spaces.
1248  uint64_t total_alloc_space_allocated = 0;
1249  uint64_t total_alloc_space_size = 0;
1250  uint64_t managed_reclaimed = 0;
1251  for (const auto& space : continuous_spaces_) {
1252    if (space->IsMallocSpace()) {
1253      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1254      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1255        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1256        // for a long period of time.
1257        managed_reclaimed += malloc_space->Trim();
1258      }
1259      total_alloc_space_size += malloc_space->Size();
1260    }
1261  }
1262  total_alloc_space_allocated = GetBytesAllocated();
1263  if (large_object_space_ != nullptr) {
1264    total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1265  }
1266  if (bump_pointer_space_ != nullptr) {
1267    total_alloc_space_allocated -= bump_pointer_space_->Size();
1268  }
1269  if (region_space_ != nullptr) {
1270    total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1271  }
1272  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1273      static_cast<float>(total_alloc_space_size);
1274  uint64_t gc_heap_end_ns = NanoTime();
1275  // We never move things in the native heap, so we can finish the GC at this point.
1276  FinishGC(self, collector::kGcTypeNone);
1277  size_t native_reclaimed = 0;
1278
1279#ifdef HAVE_ANDROID_OS
1280  // Only trim the native heap if we don't care about pauses.
1281  if (!CareAboutPauseTimes()) {
1282#if defined(USE_DLMALLOC)
1283    // Trim the native heap.
1284    dlmalloc_trim(0);
1285    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1286#elif defined(USE_JEMALLOC)
1287    // Jemalloc does it's own internal trimming.
1288#else
1289    UNIMPLEMENTED(WARNING) << "Add trimming support";
1290#endif
1291  }
1292#endif  // HAVE_ANDROID_OS
1293  uint64_t end_ns = NanoTime();
1294  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1295      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1296      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1297      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1298      << "%.";
1299  ATRACE_END();
1300}
1301
1302bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1303  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1304  // taking the lock.
1305  if (obj == nullptr) {
1306    return true;
1307  }
1308  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1309}
1310
1311bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1312  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1313}
1314
1315bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1316  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1317    return false;
1318  }
1319  for (const auto& space : continuous_spaces_) {
1320    if (space->HasAddress(obj)) {
1321      return true;
1322    }
1323  }
1324  return false;
1325}
1326
1327bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1328                              bool search_live_stack, bool sorted) {
1329  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1330    return false;
1331  }
1332  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1333    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1334    if (obj == klass) {
1335      // This case happens for java.lang.Class.
1336      return true;
1337    }
1338    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1339  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1340    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1341    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1342    return temp_space_->Contains(obj);
1343  }
1344  if (region_space_ != nullptr && region_space_->HasAddress(obj)) {
1345    return true;
1346  }
1347  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1348  space::DiscontinuousSpace* d_space = nullptr;
1349  if (c_space != nullptr) {
1350    if (c_space->GetLiveBitmap()->Test(obj)) {
1351      return true;
1352    }
1353  } else {
1354    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1355    if (d_space != nullptr) {
1356      if (d_space->GetLiveBitmap()->Test(obj)) {
1357        return true;
1358      }
1359    }
1360  }
1361  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1362  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1363    if (i > 0) {
1364      NanoSleep(MsToNs(10));
1365    }
1366    if (search_allocation_stack) {
1367      if (sorted) {
1368        if (allocation_stack_->ContainsSorted(obj)) {
1369          return true;
1370        }
1371      } else if (allocation_stack_->Contains(obj)) {
1372        return true;
1373      }
1374    }
1375
1376    if (search_live_stack) {
1377      if (sorted) {
1378        if (live_stack_->ContainsSorted(obj)) {
1379          return true;
1380        }
1381      } else if (live_stack_->Contains(obj)) {
1382        return true;
1383      }
1384    }
1385  }
1386  // We need to check the bitmaps again since there is a race where we mark something as live and
1387  // then clear the stack containing it.
1388  if (c_space != nullptr) {
1389    if (c_space->GetLiveBitmap()->Test(obj)) {
1390      return true;
1391    }
1392  } else {
1393    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1394    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1395      return true;
1396    }
1397  }
1398  return false;
1399}
1400
1401std::string Heap::DumpSpaces() const {
1402  std::ostringstream oss;
1403  DumpSpaces(oss);
1404  return oss.str();
1405}
1406
1407void Heap::DumpSpaces(std::ostream& stream) const {
1408  for (const auto& space : continuous_spaces_) {
1409    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1410    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1411    stream << space << " " << *space << "\n";
1412    if (live_bitmap != nullptr) {
1413      stream << live_bitmap << " " << *live_bitmap << "\n";
1414    }
1415    if (mark_bitmap != nullptr) {
1416      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1417    }
1418  }
1419  for (const auto& space : discontinuous_spaces_) {
1420    stream << space << " " << *space << "\n";
1421  }
1422}
1423
1424void Heap::VerifyObjectBody(mirror::Object* obj) {
1425  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1426    return;
1427  }
1428
1429  // Ignore early dawn of the universe verifications.
1430  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1431    return;
1432  }
1433  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1434  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1435  CHECK(c != nullptr) << "Null class in object " << obj;
1436  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1437  CHECK(VerifyClassClass(c));
1438
1439  if (verify_object_mode_ > kVerifyObjectModeFast) {
1440    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1441    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1442  }
1443}
1444
1445void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1446  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1447}
1448
1449void Heap::VerifyHeap() {
1450  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1451  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1452}
1453
1454void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1455  // Use signed comparison since freed bytes can be negative when background compaction foreground
1456  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1457  // free list backed space typically increasing memory footprint due to padding and binning.
1458  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1459  // Note: This relies on 2s complement for handling negative freed_bytes.
1460  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1461  if (Runtime::Current()->HasStatsEnabled()) {
1462    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1463    thread_stats->freed_objects += freed_objects;
1464    thread_stats->freed_bytes += freed_bytes;
1465    // TODO: Do this concurrently.
1466    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1467    global_stats->freed_objects += freed_objects;
1468    global_stats->freed_bytes += freed_bytes;
1469  }
1470}
1471
1472void Heap::RecordFreeRevoke() {
1473  // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1474  // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1475  // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1476  // all the way to zero exactly as the remainder will be subtracted at the next GC.
1477  size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
1478  CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
1479           bytes_freed) << "num_bytes_freed_revoke_ underflow";
1480  CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
1481           bytes_freed) << "num_bytes_allocated_ underflow";
1482  GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1483}
1484
1485space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1486  for (const auto& space : continuous_spaces_) {
1487    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1488      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1489        return space->AsContinuousSpace()->AsRosAllocSpace();
1490      }
1491    }
1492  }
1493  return nullptr;
1494}
1495
1496mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1497                                             size_t alloc_size, size_t* bytes_allocated,
1498                                             size_t* usable_size,
1499                                             size_t* bytes_tl_bulk_allocated,
1500                                             mirror::Class** klass) {
1501  bool was_default_allocator = allocator == GetCurrentAllocator();
1502  // Make sure there is no pending exception since we may need to throw an OOME.
1503  self->AssertNoPendingException();
1504  DCHECK(klass != nullptr);
1505  StackHandleScope<1> hs(self);
1506  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1507  klass = nullptr;  // Invalidate for safety.
1508  // The allocation failed. If the GC is running, block until it completes, and then retry the
1509  // allocation.
1510  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1511  if (last_gc != collector::kGcTypeNone) {
1512    // If we were the default allocator but the allocator changed while we were suspended,
1513    // abort the allocation.
1514    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1515      return nullptr;
1516    }
1517    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1518    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1519                                                     usable_size, bytes_tl_bulk_allocated);
1520    if (ptr != nullptr) {
1521      return ptr;
1522    }
1523  }
1524
1525  collector::GcType tried_type = next_gc_type_;
1526  const bool gc_ran =
1527      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1528  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1529    return nullptr;
1530  }
1531  if (gc_ran) {
1532    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1533                                                     usable_size, bytes_tl_bulk_allocated);
1534    if (ptr != nullptr) {
1535      return ptr;
1536    }
1537  }
1538
1539  // Loop through our different Gc types and try to Gc until we get enough free memory.
1540  for (collector::GcType gc_type : gc_plan_) {
1541    if (gc_type == tried_type) {
1542      continue;
1543    }
1544    // Attempt to run the collector, if we succeed, re-try the allocation.
1545    const bool plan_gc_ran =
1546        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1547    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1548      return nullptr;
1549    }
1550    if (plan_gc_ran) {
1551      // Did we free sufficient memory for the allocation to succeed?
1552      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1553                                                       usable_size, bytes_tl_bulk_allocated);
1554      if (ptr != nullptr) {
1555        return ptr;
1556      }
1557    }
1558  }
1559  // Allocations have failed after GCs;  this is an exceptional state.
1560  // Try harder, growing the heap if necessary.
1561  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1562                                                  usable_size, bytes_tl_bulk_allocated);
1563  if (ptr != nullptr) {
1564    return ptr;
1565  }
1566  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1567  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1568  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1569  // OOME.
1570  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1571           << " allocation";
1572  // TODO: Run finalization, but this may cause more allocations to occur.
1573  // We don't need a WaitForGcToComplete here either.
1574  DCHECK(!gc_plan_.empty());
1575  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1576  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1577    return nullptr;
1578  }
1579  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
1580                                  bytes_tl_bulk_allocated);
1581  if (ptr == nullptr) {
1582    const uint64_t current_time = NanoTime();
1583    switch (allocator) {
1584      case kAllocatorTypeRosAlloc:
1585        // Fall-through.
1586      case kAllocatorTypeDlMalloc: {
1587        if (use_homogeneous_space_compaction_for_oom_ &&
1588            current_time - last_time_homogeneous_space_compaction_by_oom_ >
1589            min_interval_homogeneous_space_compaction_by_oom_) {
1590          last_time_homogeneous_space_compaction_by_oom_ = current_time;
1591          HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1592          switch (result) {
1593            case HomogeneousSpaceCompactResult::kSuccess:
1594              // If the allocation succeeded, we delayed an oom.
1595              ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1596                                              usable_size, bytes_tl_bulk_allocated);
1597              if (ptr != nullptr) {
1598                count_delayed_oom_++;
1599              }
1600              break;
1601            case HomogeneousSpaceCompactResult::kErrorReject:
1602              // Reject due to disabled moving GC.
1603              break;
1604            case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1605              // Throw OOM by default.
1606              break;
1607            default: {
1608              UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1609                  << static_cast<size_t>(result);
1610              UNREACHABLE();
1611            }
1612          }
1613          // Always print that we ran homogeneous space compation since this can cause jank.
1614          VLOG(heap) << "Ran heap homogeneous space compaction, "
1615                    << " requested defragmentation "
1616                    << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1617                    << " performed defragmentation "
1618                    << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1619                    << " ignored homogeneous space compaction "
1620                    << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1621                    << " delayed count = "
1622                    << count_delayed_oom_.LoadSequentiallyConsistent();
1623        }
1624        break;
1625      }
1626      case kAllocatorTypeNonMoving: {
1627        // Try to transition the heap if the allocation failure was due to the space being full.
1628        if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1629          // If we aren't out of memory then the OOM was probably from the non moving space being
1630          // full. Attempt to disable compaction and turn the main space into a non moving space.
1631          DisableMovingGc();
1632          // If we are still a moving GC then something must have caused the transition to fail.
1633          if (IsMovingGc(collector_type_)) {
1634            MutexLock mu(self, *gc_complete_lock_);
1635            // If we couldn't disable moving GC, just throw OOME and return null.
1636            LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1637                         << disable_moving_gc_count_;
1638          } else {
1639            LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1640            ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1641                                            usable_size, bytes_tl_bulk_allocated);
1642          }
1643        }
1644        break;
1645      }
1646      default: {
1647        // Do nothing for others allocators.
1648      }
1649    }
1650  }
1651  // If the allocation hasn't succeeded by this point, throw an OOM error.
1652  if (ptr == nullptr) {
1653    ThrowOutOfMemoryError(self, alloc_size, allocator);
1654  }
1655  return ptr;
1656}
1657
1658void Heap::SetTargetHeapUtilization(float target) {
1659  DCHECK_GT(target, 0.0f);  // asserted in Java code
1660  DCHECK_LT(target, 1.0f);
1661  target_utilization_ = target;
1662}
1663
1664size_t Heap::GetObjectsAllocated() const {
1665  Thread* self = Thread::Current();
1666  ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
1667  auto* tl = Runtime::Current()->GetThreadList();
1668  // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
1669  tl->SuspendAll(__FUNCTION__);
1670  size_t total = 0;
1671  {
1672    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1673    for (space::AllocSpace* space : alloc_spaces_) {
1674      total += space->GetObjectsAllocated();
1675    }
1676  }
1677  tl->ResumeAll();
1678  return total;
1679}
1680
1681uint64_t Heap::GetObjectsAllocatedEver() const {
1682  uint64_t total = GetObjectsFreedEver();
1683  // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
1684  if (Thread::Current() != nullptr) {
1685    total += GetObjectsAllocated();
1686  }
1687  return total;
1688}
1689
1690uint64_t Heap::GetBytesAllocatedEver() const {
1691  return GetBytesFreedEver() + GetBytesAllocated();
1692}
1693
1694class InstanceCounter {
1695 public:
1696  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1697      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1698      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1699  }
1700  static void Callback(mirror::Object* obj, void* arg)
1701      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1702    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1703    mirror::Class* instance_class = obj->GetClass();
1704    CHECK(instance_class != nullptr);
1705    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1706      if (instance_counter->use_is_assignable_from_) {
1707        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1708          ++instance_counter->counts_[i];
1709        }
1710      } else if (instance_class == instance_counter->classes_[i]) {
1711        ++instance_counter->counts_[i];
1712      }
1713    }
1714  }
1715
1716 private:
1717  const std::vector<mirror::Class*>& classes_;
1718  bool use_is_assignable_from_;
1719  uint64_t* const counts_;
1720  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1721};
1722
1723void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1724                          uint64_t* counts) {
1725  InstanceCounter counter(classes, use_is_assignable_from, counts);
1726  VisitObjects(InstanceCounter::Callback, &counter);
1727}
1728
1729class InstanceCollector {
1730 public:
1731  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1732      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1733      : class_(c), max_count_(max_count), instances_(instances) {
1734  }
1735  static void Callback(mirror::Object* obj, void* arg)
1736      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1737    DCHECK(arg != nullptr);
1738    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1739    if (obj->GetClass() == instance_collector->class_) {
1740      if (instance_collector->max_count_ == 0 ||
1741          instance_collector->instances_.size() < instance_collector->max_count_) {
1742        instance_collector->instances_.push_back(obj);
1743      }
1744    }
1745  }
1746
1747 private:
1748  const mirror::Class* const class_;
1749  const uint32_t max_count_;
1750  std::vector<mirror::Object*>& instances_;
1751  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1752};
1753
1754void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1755                        std::vector<mirror::Object*>& instances) {
1756  InstanceCollector collector(c, max_count, instances);
1757  VisitObjects(&InstanceCollector::Callback, &collector);
1758}
1759
1760class ReferringObjectsFinder {
1761 public:
1762  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1763                         std::vector<mirror::Object*>& referring_objects)
1764      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1765      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1766  }
1767
1768  static void Callback(mirror::Object* obj, void* arg)
1769      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1770    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1771  }
1772
1773  // For bitmap Visit.
1774  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1775  // annotalysis on visitors.
1776  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1777    o->VisitReferences<true>(*this, VoidFunctor());
1778  }
1779
1780  // For Object::VisitReferences.
1781  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1782      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1783    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1784    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1785      referring_objects_.push_back(obj);
1786    }
1787  }
1788
1789 private:
1790  const mirror::Object* const object_;
1791  const uint32_t max_count_;
1792  std::vector<mirror::Object*>& referring_objects_;
1793  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1794};
1795
1796void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1797                               std::vector<mirror::Object*>& referring_objects) {
1798  ReferringObjectsFinder finder(o, max_count, referring_objects);
1799  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1800}
1801
1802void Heap::CollectGarbage(bool clear_soft_references) {
1803  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1804  // last GC will not have necessarily been cleared.
1805  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1806}
1807
1808HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1809  Thread* self = Thread::Current();
1810  // Inc requested homogeneous space compaction.
1811  count_requested_homogeneous_space_compaction_++;
1812  // Store performed homogeneous space compaction at a new request arrival.
1813  ThreadList* tl = Runtime::Current()->GetThreadList();
1814  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1815  Locks::mutator_lock_->AssertNotHeld(self);
1816  {
1817    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1818    MutexLock mu(self, *gc_complete_lock_);
1819    // Ensure there is only one GC at a time.
1820    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1821    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1822    // is non zero.
1823    // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1824    // exit.
1825    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1826        !main_space_->CanMoveObjects()) {
1827      return HomogeneousSpaceCompactResult::kErrorReject;
1828    }
1829    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1830  }
1831  if (Runtime::Current()->IsShuttingDown(self)) {
1832    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1833    // cause objects to get finalized.
1834    FinishGC(self, collector::kGcTypeNone);
1835    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1836  }
1837  // Suspend all threads.
1838  tl->SuspendAll(__FUNCTION__);
1839  uint64_t start_time = NanoTime();
1840  // Launch compaction.
1841  space::MallocSpace* to_space = main_space_backup_.release();
1842  space::MallocSpace* from_space = main_space_;
1843  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1844  const uint64_t space_size_before_compaction = from_space->Size();
1845  AddSpace(to_space);
1846  // Make sure that we will have enough room to copy.
1847  CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
1848  collector::GarbageCollector* collector = Compact(to_space, from_space,
1849                                                   kGcCauseHomogeneousSpaceCompact);
1850  const uint64_t space_size_after_compaction = to_space->Size();
1851  main_space_ = to_space;
1852  main_space_backup_.reset(from_space);
1853  RemoveSpace(from_space);
1854  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1855  // Update performed homogeneous space compaction count.
1856  count_performed_homogeneous_space_compaction_++;
1857  // Print statics log and resume all threads.
1858  uint64_t duration = NanoTime() - start_time;
1859  VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1860             << PrettySize(space_size_before_compaction) << " -> "
1861             << PrettySize(space_size_after_compaction) << " compact-ratio: "
1862             << std::fixed << static_cast<double>(space_size_after_compaction) /
1863             static_cast<double>(space_size_before_compaction);
1864  tl->ResumeAll();
1865  // Finish GC.
1866  reference_processor_.EnqueueClearedReferences(self);
1867  GrowForUtilization(semi_space_collector_);
1868  LogGC(kGcCauseHomogeneousSpaceCompact, collector);
1869  FinishGC(self, collector::kGcTypeFull);
1870  return HomogeneousSpaceCompactResult::kSuccess;
1871}
1872
1873void Heap::TransitionCollector(CollectorType collector_type) {
1874  if (collector_type == collector_type_) {
1875    return;
1876  }
1877  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1878             << " -> " << static_cast<int>(collector_type);
1879  uint64_t start_time = NanoTime();
1880  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1881  Runtime* const runtime = Runtime::Current();
1882  ThreadList* const tl = runtime->GetThreadList();
1883  Thread* const self = Thread::Current();
1884  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1885  Locks::mutator_lock_->AssertNotHeld(self);
1886  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1887  // compacting_gc_disable_count_, this should rarely occurs).
1888  for (;;) {
1889    {
1890      ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1891      MutexLock mu(self, *gc_complete_lock_);
1892      // Ensure there is only one GC at a time.
1893      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1894      // Currently we only need a heap transition if we switch from a moving collector to a
1895      // non-moving one, or visa versa.
1896      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1897      // If someone else beat us to it and changed the collector before we could, exit.
1898      // This is safe to do before the suspend all since we set the collector_type_running_ before
1899      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1900      // then it would get blocked on WaitForGcToCompleteLocked.
1901      if (collector_type == collector_type_) {
1902        return;
1903      }
1904      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1905      if (!copying_transition || disable_moving_gc_count_ == 0) {
1906        // TODO: Not hard code in semi-space collector?
1907        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1908        break;
1909      }
1910    }
1911    usleep(1000);
1912  }
1913  if (runtime->IsShuttingDown(self)) {
1914    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1915    // cause objects to get finalized.
1916    FinishGC(self, collector::kGcTypeNone);
1917    return;
1918  }
1919  collector::GarbageCollector* collector = nullptr;
1920  tl->SuspendAll(__FUNCTION__);
1921  switch (collector_type) {
1922    case kCollectorTypeSS: {
1923      if (!IsMovingGc(collector_type_)) {
1924        // Create the bump pointer space from the backup space.
1925        CHECK(main_space_backup_ != nullptr);
1926        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1927        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1928        // pointer space last transition it will be protected.
1929        CHECK(mem_map != nullptr);
1930        mem_map->Protect(PROT_READ | PROT_WRITE);
1931        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1932                                                                        mem_map.release());
1933        AddSpace(bump_pointer_space_);
1934        collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1935        // Use the now empty main space mem map for the bump pointer temp space.
1936        mem_map.reset(main_space_->ReleaseMemMap());
1937        // Unset the pointers just in case.
1938        if (dlmalloc_space_ == main_space_) {
1939          dlmalloc_space_ = nullptr;
1940        } else if (rosalloc_space_ == main_space_) {
1941          rosalloc_space_ = nullptr;
1942        }
1943        // Remove the main space so that we don't try to trim it, this doens't work for debug
1944        // builds since RosAlloc attempts to read the magic number from a protected page.
1945        RemoveSpace(main_space_);
1946        RemoveRememberedSet(main_space_);
1947        delete main_space_;  // Delete the space since it has been removed.
1948        main_space_ = nullptr;
1949        RemoveRememberedSet(main_space_backup_.get());
1950        main_space_backup_.reset(nullptr);  // Deletes the space.
1951        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1952                                                                mem_map.release());
1953        AddSpace(temp_space_);
1954      }
1955      break;
1956    }
1957    case kCollectorTypeMS:
1958      // Fall through.
1959    case kCollectorTypeCMS: {
1960      if (IsMovingGc(collector_type_)) {
1961        CHECK(temp_space_ != nullptr);
1962        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1963        RemoveSpace(temp_space_);
1964        temp_space_ = nullptr;
1965        mem_map->Protect(PROT_READ | PROT_WRITE);
1966        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize,
1967                              std::min(mem_map->Size(), growth_limit_), mem_map->Size());
1968        mem_map.release();
1969        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1970        AddSpace(main_space_);
1971        collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1972        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1973        RemoveSpace(bump_pointer_space_);
1974        bump_pointer_space_ = nullptr;
1975        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1976        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1977        if (kIsDebugBuild && kUseRosAlloc) {
1978          mem_map->Protect(PROT_READ | PROT_WRITE);
1979        }
1980        main_space_backup_.reset(CreateMallocSpaceFromMemMap(
1981            mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
1982            mem_map->Size(), name, true));
1983        if (kIsDebugBuild && kUseRosAlloc) {
1984          mem_map->Protect(PROT_NONE);
1985        }
1986        mem_map.release();
1987      }
1988      break;
1989    }
1990    default: {
1991      LOG(FATAL) << "Attempted to transition to invalid collector type "
1992                 << static_cast<size_t>(collector_type);
1993      break;
1994    }
1995  }
1996  ChangeCollector(collector_type);
1997  tl->ResumeAll();
1998  // Can't call into java code with all threads suspended.
1999  reference_processor_.EnqueueClearedReferences(self);
2000  uint64_t duration = NanoTime() - start_time;
2001  GrowForUtilization(semi_space_collector_);
2002  DCHECK(collector != nullptr);
2003  LogGC(kGcCauseCollectorTransition, collector);
2004  FinishGC(self, collector::kGcTypeFull);
2005  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
2006  int32_t delta_allocated = before_allocated - after_allocated;
2007  std::string saved_str;
2008  if (delta_allocated >= 0) {
2009    saved_str = " saved at least " + PrettySize(delta_allocated);
2010  } else {
2011    saved_str = " expanded " + PrettySize(-delta_allocated);
2012  }
2013  VLOG(heap) << "Heap transition to " << process_state_ << " took "
2014      << PrettyDuration(duration) << saved_str;
2015}
2016
2017void Heap::ChangeCollector(CollectorType collector_type) {
2018  // TODO: Only do this with all mutators suspended to avoid races.
2019  if (collector_type != collector_type_) {
2020    if (collector_type == kCollectorTypeMC) {
2021      // Don't allow mark compact unless support is compiled in.
2022      CHECK(kMarkCompactSupport);
2023    }
2024    collector_type_ = collector_type;
2025    gc_plan_.clear();
2026    switch (collector_type_) {
2027      case kCollectorTypeCC: {
2028        gc_plan_.push_back(collector::kGcTypeFull);
2029        if (use_tlab_) {
2030          ChangeAllocator(kAllocatorTypeRegionTLAB);
2031        } else {
2032          ChangeAllocator(kAllocatorTypeRegion);
2033        }
2034        break;
2035      }
2036      case kCollectorTypeMC:  // Fall-through.
2037      case kCollectorTypeSS:  // Fall-through.
2038      case kCollectorTypeGSS: {
2039        gc_plan_.push_back(collector::kGcTypeFull);
2040        if (use_tlab_) {
2041          ChangeAllocator(kAllocatorTypeTLAB);
2042        } else {
2043          ChangeAllocator(kAllocatorTypeBumpPointer);
2044        }
2045        break;
2046      }
2047      case kCollectorTypeMS: {
2048        gc_plan_.push_back(collector::kGcTypeSticky);
2049        gc_plan_.push_back(collector::kGcTypePartial);
2050        gc_plan_.push_back(collector::kGcTypeFull);
2051        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2052        break;
2053      }
2054      case kCollectorTypeCMS: {
2055        gc_plan_.push_back(collector::kGcTypeSticky);
2056        gc_plan_.push_back(collector::kGcTypePartial);
2057        gc_plan_.push_back(collector::kGcTypeFull);
2058        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2059        break;
2060      }
2061      default: {
2062        UNIMPLEMENTED(FATAL);
2063        UNREACHABLE();
2064      }
2065    }
2066    if (IsGcConcurrent()) {
2067      concurrent_start_bytes_ =
2068          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
2069    } else {
2070      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2071    }
2072  }
2073}
2074
2075// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2076class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
2077 public:
2078  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
2079      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
2080  }
2081
2082  void BuildBins(space::ContinuousSpace* space) {
2083    bin_live_bitmap_ = space->GetLiveBitmap();
2084    bin_mark_bitmap_ = space->GetMarkBitmap();
2085    BinContext context;
2086    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
2087    context.collector_ = this;
2088    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2089    // Note: This requires traversing the space in increasing order of object addresses.
2090    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
2091    // Add the last bin which spans after the last object to the end of the space.
2092    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
2093  }
2094
2095 private:
2096  struct BinContext {
2097    uintptr_t prev_;  // The end of the previous object.
2098    ZygoteCompactingCollector* collector_;
2099  };
2100  // Maps from bin sizes to locations.
2101  std::multimap<size_t, uintptr_t> bins_;
2102  // Live bitmap of the space which contains the bins.
2103  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2104  // Mark bitmap of the space which contains the bins.
2105  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2106
2107  static void Callback(mirror::Object* obj, void* arg)
2108      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2109    DCHECK(arg != nullptr);
2110    BinContext* context = reinterpret_cast<BinContext*>(arg);
2111    ZygoteCompactingCollector* collector = context->collector_;
2112    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2113    size_t bin_size = object_addr - context->prev_;
2114    // Add the bin consisting of the end of the previous object to the start of the current object.
2115    collector->AddBin(bin_size, context->prev_);
2116    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
2117  }
2118
2119  void AddBin(size_t size, uintptr_t position) {
2120    if (size != 0) {
2121      bins_.insert(std::make_pair(size, position));
2122    }
2123  }
2124
2125  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
2126    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2127    // allocator.
2128    UNUSED(space);
2129    return false;
2130  }
2131
2132  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
2133      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2134    size_t obj_size = obj->SizeOf();
2135    size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2136    mirror::Object* forward_address;
2137    // Find the smallest bin which we can move obj in.
2138    auto it = bins_.lower_bound(alloc_size);
2139    if (it == bins_.end()) {
2140      // No available space in the bins, place it in the target space instead (grows the zygote
2141      // space).
2142      size_t bytes_allocated, dummy;
2143      forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
2144      if (to_space_live_bitmap_ != nullptr) {
2145        to_space_live_bitmap_->Set(forward_address);
2146      } else {
2147        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2148        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2149      }
2150    } else {
2151      size_t size = it->first;
2152      uintptr_t pos = it->second;
2153      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
2154      forward_address = reinterpret_cast<mirror::Object*>(pos);
2155      // Set the live and mark bits so that sweeping system weaks works properly.
2156      bin_live_bitmap_->Set(forward_address);
2157      bin_mark_bitmap_->Set(forward_address);
2158      DCHECK_GE(size, alloc_size);
2159      // Add a new bin with the remaining space.
2160      AddBin(size - alloc_size, pos + alloc_size);
2161    }
2162    // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
2163    memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2164    if (kUseBakerOrBrooksReadBarrier) {
2165      obj->AssertReadBarrierPointer();
2166      if (kUseBrooksReadBarrier) {
2167        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
2168        forward_address->SetReadBarrierPointer(forward_address);
2169      }
2170      forward_address->AssertReadBarrierPointer();
2171    }
2172    return forward_address;
2173  }
2174};
2175
2176void Heap::UnBindBitmaps() {
2177  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2178  for (const auto& space : GetContinuousSpaces()) {
2179    if (space->IsContinuousMemMapAllocSpace()) {
2180      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2181      if (alloc_space->HasBoundBitmaps()) {
2182        alloc_space->UnBindBitmaps();
2183      }
2184    }
2185  }
2186}
2187
2188void Heap::PreZygoteFork() {
2189  if (!HasZygoteSpace()) {
2190    // We still want to GC in case there is some unreachable non moving objects that could cause a
2191    // suboptimal bin packing when we compact the zygote space.
2192    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2193  }
2194  Thread* self = Thread::Current();
2195  MutexLock mu(self, zygote_creation_lock_);
2196  // Try to see if we have any Zygote spaces.
2197  if (HasZygoteSpace()) {
2198    return;
2199  }
2200  Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
2201  Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2202  VLOG(heap) << "Starting PreZygoteFork";
2203  // Trim the pages at the end of the non moving space.
2204  non_moving_space_->Trim();
2205  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2206  // there.
2207  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2208  const bool same_space = non_moving_space_ == main_space_;
2209  if (kCompactZygote) {
2210    // Temporarily disable rosalloc verification because the zygote
2211    // compaction will mess up the rosalloc internal metadata.
2212    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2213    ZygoteCompactingCollector zygote_collector(this);
2214    zygote_collector.BuildBins(non_moving_space_);
2215    // Create a new bump pointer space which we will compact into.
2216    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2217                                         non_moving_space_->Limit());
2218    // Compact the bump pointer space to a new zygote bump pointer space.
2219    bool reset_main_space = false;
2220    if (IsMovingGc(collector_type_)) {
2221      if (collector_type_ == kCollectorTypeCC) {
2222        zygote_collector.SetFromSpace(region_space_);
2223      } else {
2224        zygote_collector.SetFromSpace(bump_pointer_space_);
2225      }
2226    } else {
2227      CHECK(main_space_ != nullptr);
2228      CHECK_NE(main_space_, non_moving_space_)
2229          << "Does not make sense to compact within the same space";
2230      // Copy from the main space.
2231      zygote_collector.SetFromSpace(main_space_);
2232      reset_main_space = true;
2233    }
2234    zygote_collector.SetToSpace(&target_space);
2235    zygote_collector.SetSwapSemiSpaces(false);
2236    zygote_collector.Run(kGcCauseCollectorTransition, false);
2237    if (reset_main_space) {
2238      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2239      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2240      MemMap* mem_map = main_space_->ReleaseMemMap();
2241      RemoveSpace(main_space_);
2242      space::Space* old_main_space = main_space_;
2243      CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
2244                            mem_map->Size());
2245      delete old_main_space;
2246      AddSpace(main_space_);
2247    } else {
2248      if (collector_type_ == kCollectorTypeCC) {
2249        region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2250      } else {
2251        bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2252      }
2253    }
2254    if (temp_space_ != nullptr) {
2255      CHECK(temp_space_->IsEmpty());
2256    }
2257    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2258    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2259    // Update the end and write out image.
2260    non_moving_space_->SetEnd(target_space.End());
2261    non_moving_space_->SetLimit(target_space.Limit());
2262    VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2263  }
2264  // Change the collector to the post zygote one.
2265  ChangeCollector(foreground_collector_type_);
2266  // Save the old space so that we can remove it after we complete creating the zygote space.
2267  space::MallocSpace* old_alloc_space = non_moving_space_;
2268  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2269  // the remaining available space.
2270  // Remove the old space before creating the zygote space since creating the zygote space sets
2271  // the old alloc space's bitmaps to null.
2272  RemoveSpace(old_alloc_space);
2273  if (collector::SemiSpace::kUseRememberedSet) {
2274    // Sanity bound check.
2275    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2276    // Remove the remembered set for the now zygote space (the old
2277    // non-moving space). Note now that we have compacted objects into
2278    // the zygote space, the data in the remembered set is no longer
2279    // needed. The zygote space will instead have a mod-union table
2280    // from this point on.
2281    RemoveRememberedSet(old_alloc_space);
2282  }
2283  // Remaining space becomes the new non moving space.
2284  zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2285                                                     &non_moving_space_);
2286  CHECK(!non_moving_space_->CanMoveObjects());
2287  if (same_space) {
2288    main_space_ = non_moving_space_;
2289    SetSpaceAsDefault(main_space_);
2290  }
2291  delete old_alloc_space;
2292  CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2293  AddSpace(zygote_space_);
2294  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2295  AddSpace(non_moving_space_);
2296  // Create the zygote space mod union table.
2297  accounting::ModUnionTable* mod_union_table =
2298      new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
2299                                             zygote_space_);
2300  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2301  // Set all the cards in the mod-union table since we don't know which objects contain references
2302  // to large objects.
2303  mod_union_table->SetCards();
2304  AddModUnionTable(mod_union_table);
2305  large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
2306  if (collector::SemiSpace::kUseRememberedSet) {
2307    // Add a new remembered set for the post-zygote non-moving space.
2308    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2309        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2310                                      non_moving_space_);
2311    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2312        << "Failed to create post-zygote non-moving space remembered set";
2313    AddRememberedSet(post_zygote_non_moving_space_rem_set);
2314  }
2315}
2316
2317void Heap::FlushAllocStack() {
2318  MarkAllocStackAsLive(allocation_stack_.get());
2319  allocation_stack_->Reset();
2320}
2321
2322void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2323                          accounting::ContinuousSpaceBitmap* bitmap2,
2324                          accounting::LargeObjectBitmap* large_objects,
2325                          accounting::ObjectStack* stack) {
2326  DCHECK(bitmap1 != nullptr);
2327  DCHECK(bitmap2 != nullptr);
2328  const auto* limit = stack->End();
2329  for (auto* it = stack->Begin(); it != limit; ++it) {
2330    const mirror::Object* obj = it->AsMirrorPtr();
2331    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2332      if (bitmap1->HasAddress(obj)) {
2333        bitmap1->Set(obj);
2334      } else if (bitmap2->HasAddress(obj)) {
2335        bitmap2->Set(obj);
2336      } else {
2337        DCHECK(large_objects != nullptr);
2338        large_objects->Set(obj);
2339      }
2340    }
2341  }
2342}
2343
2344void Heap::SwapSemiSpaces() {
2345  CHECK(bump_pointer_space_ != nullptr);
2346  CHECK(temp_space_ != nullptr);
2347  std::swap(bump_pointer_space_, temp_space_);
2348}
2349
2350collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2351                                           space::ContinuousMemMapAllocSpace* source_space,
2352                                           GcCause gc_cause) {
2353  CHECK(kMovingCollector);
2354  if (target_space != source_space) {
2355    // Don't swap spaces since this isn't a typical semi space collection.
2356    semi_space_collector_->SetSwapSemiSpaces(false);
2357    semi_space_collector_->SetFromSpace(source_space);
2358    semi_space_collector_->SetToSpace(target_space);
2359    semi_space_collector_->Run(gc_cause, false);
2360    return semi_space_collector_;
2361  } else {
2362    CHECK(target_space->IsBumpPointerSpace())
2363        << "In-place compaction is only supported for bump pointer spaces";
2364    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2365    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2366    return mark_compact_collector_;
2367  }
2368}
2369
2370collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2371                                               bool clear_soft_references) {
2372  Thread* self = Thread::Current();
2373  Runtime* runtime = Runtime::Current();
2374  // If the heap can't run the GC, silently fail and return that no GC was run.
2375  switch (gc_type) {
2376    case collector::kGcTypePartial: {
2377      if (!HasZygoteSpace()) {
2378        return collector::kGcTypeNone;
2379      }
2380      break;
2381    }
2382    default: {
2383      // Other GC types don't have any special cases which makes them not runnable. The main case
2384      // here is full GC.
2385    }
2386  }
2387  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2388  Locks::mutator_lock_->AssertNotHeld(self);
2389  if (self->IsHandlingStackOverflow()) {
2390    // If we are throwing a stack overflow error we probably don't have enough remaining stack
2391    // space to run the GC.
2392    return collector::kGcTypeNone;
2393  }
2394  bool compacting_gc;
2395  {
2396    gc_complete_lock_->AssertNotHeld(self);
2397    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2398    MutexLock mu(self, *gc_complete_lock_);
2399    // Ensure there is only one GC at a time.
2400    WaitForGcToCompleteLocked(gc_cause, self);
2401    compacting_gc = IsMovingGc(collector_type_);
2402    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2403    if (compacting_gc && disable_moving_gc_count_ != 0) {
2404      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2405      return collector::kGcTypeNone;
2406    }
2407    collector_type_running_ = collector_type_;
2408  }
2409  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2410    ++runtime->GetStats()->gc_for_alloc_count;
2411    ++self->GetStats()->gc_for_alloc_count;
2412  }
2413  const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
2414  // Approximate heap size.
2415  ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
2416
2417  DCHECK_LT(gc_type, collector::kGcTypeMax);
2418  DCHECK_NE(gc_type, collector::kGcTypeNone);
2419
2420  collector::GarbageCollector* collector = nullptr;
2421  // TODO: Clean this up.
2422  if (compacting_gc) {
2423    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2424           current_allocator_ == kAllocatorTypeTLAB ||
2425           current_allocator_ == kAllocatorTypeRegion ||
2426           current_allocator_ == kAllocatorTypeRegionTLAB);
2427    switch (collector_type_) {
2428      case kCollectorTypeSS:
2429        // Fall-through.
2430      case kCollectorTypeGSS:
2431        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2432        semi_space_collector_->SetToSpace(temp_space_);
2433        semi_space_collector_->SetSwapSemiSpaces(true);
2434        collector = semi_space_collector_;
2435        break;
2436      case kCollectorTypeCC:
2437        concurrent_copying_collector_->SetRegionSpace(region_space_);
2438        collector = concurrent_copying_collector_;
2439        break;
2440      case kCollectorTypeMC:
2441        mark_compact_collector_->SetSpace(bump_pointer_space_);
2442        collector = mark_compact_collector_;
2443        break;
2444      default:
2445        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2446    }
2447    if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
2448      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2449      CHECK(temp_space_->IsEmpty());
2450    }
2451    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2452  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2453      current_allocator_ == kAllocatorTypeDlMalloc) {
2454    collector = FindCollectorByGcType(gc_type);
2455  } else {
2456    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2457  }
2458  if (IsGcConcurrent()) {
2459    // Disable concurrent GC check so that we don't have spammy JNI requests.
2460    // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2461    // calculated in the same thread so that there aren't any races that can cause it to become
2462    // permanantly disabled. b/17942071
2463    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2464  }
2465  CHECK(collector != nullptr)
2466      << "Could not find garbage collector with collector_type="
2467      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2468  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2469  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2470  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2471  RequestTrim(self);
2472  // Enqueue cleared references.
2473  reference_processor_.EnqueueClearedReferences(self);
2474  // Grow the heap so that we know when to perform the next GC.
2475  GrowForUtilization(collector, bytes_allocated_before_gc);
2476  LogGC(gc_cause, collector);
2477  FinishGC(self, gc_type);
2478  // Inform DDMS that a GC completed.
2479  Dbg::GcDidFinish();
2480  return gc_type;
2481}
2482
2483void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2484  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2485  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2486  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2487  // (mutator time blocked >= long_pause_log_threshold_).
2488  bool log_gc = gc_cause == kGcCauseExplicit;
2489  if (!log_gc && CareAboutPauseTimes()) {
2490    // GC for alloc pauses the allocating thread, so consider it as a pause.
2491    log_gc = duration > long_gc_log_threshold_ ||
2492        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2493    for (uint64_t pause : pause_times) {
2494      log_gc = log_gc || pause >= long_pause_log_threshold_;
2495    }
2496  }
2497  if (log_gc) {
2498    const size_t percent_free = GetPercentFree();
2499    const size_t current_heap_size = GetBytesAllocated();
2500    const size_t total_memory = GetTotalMemory();
2501    std::ostringstream pause_string;
2502    for (size_t i = 0; i < pause_times.size(); ++i) {
2503      pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2504                   << ((i != pause_times.size() - 1) ? "," : "");
2505    }
2506    LOG(INFO) << gc_cause << " " << collector->GetName()
2507              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2508              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2509              << current_gc_iteration_.GetFreedLargeObjects() << "("
2510              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2511              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2512              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2513              << " total " << PrettyDuration((duration / 1000) * 1000);
2514    VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2515  }
2516}
2517
2518void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2519  MutexLock mu(self, *gc_complete_lock_);
2520  collector_type_running_ = kCollectorTypeNone;
2521  if (gc_type != collector::kGcTypeNone) {
2522    last_gc_type_ = gc_type;
2523
2524    // Update stats.
2525    ++gc_count_last_window_;
2526    if (running_collection_is_blocking_) {
2527      // If the currently running collection was a blocking one,
2528      // increment the counters and reset the flag.
2529      ++blocking_gc_count_;
2530      blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2531      ++blocking_gc_count_last_window_;
2532    }
2533    // Update the gc count rate histograms if due.
2534    UpdateGcCountRateHistograms();
2535  }
2536  // Reset.
2537  running_collection_is_blocking_ = false;
2538  // Wake anyone who may have been waiting for the GC to complete.
2539  gc_complete_cond_->Broadcast(self);
2540}
2541
2542void Heap::UpdateGcCountRateHistograms() {
2543  // Invariant: if the time since the last update includes more than
2544  // one windows, all the GC runs (if > 0) must have happened in first
2545  // window because otherwise the update must have already taken place
2546  // at an earlier GC run. So, we report the non-first windows with
2547  // zero counts to the histograms.
2548  DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2549  uint64_t now = NanoTime();
2550  DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2551  uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2552  uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2553  if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2554    // Record the first window.
2555    gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
2556    blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2557        blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2558    // Record the other windows (with zero counts).
2559    for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2560      gc_count_rate_histogram_.AddValue(0);
2561      blocking_gc_count_rate_histogram_.AddValue(0);
2562    }
2563    // Update the last update time and reset the counters.
2564    last_update_time_gc_count_rate_histograms_ =
2565        (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2566    gc_count_last_window_ = 1;  // Include the current run.
2567    blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2568  }
2569  DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2570}
2571
2572class RootMatchesObjectVisitor : public SingleRootVisitor {
2573 public:
2574  explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2575
2576  void VisitRoot(mirror::Object* root, const RootInfo& info)
2577      OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2578    if (root == obj_) {
2579      LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2580    }
2581  }
2582
2583 private:
2584  const mirror::Object* const obj_;
2585};
2586
2587
2588class ScanVisitor {
2589 public:
2590  void operator()(const mirror::Object* obj) const {
2591    LOG(ERROR) << "Would have rescanned object " << obj;
2592  }
2593};
2594
2595// Verify a reference from an object.
2596class VerifyReferenceVisitor : public SingleRootVisitor {
2597 public:
2598  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2599      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2600      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2601
2602  size_t GetFailureCount() const {
2603    return fail_count_->LoadSequentiallyConsistent();
2604  }
2605
2606  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2607      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2608    UNUSED(klass);
2609    if (verify_referent_) {
2610      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2611    }
2612  }
2613
2614  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2615      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2616    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2617  }
2618
2619  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2620    return heap_->IsLiveObjectLocked(obj, true, false, true);
2621  }
2622
2623  void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
2624      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2625    if (root == nullptr) {
2626      LOG(ERROR) << "Root is null with info " << root_info.GetType();
2627    } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2628      LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root)
2629          << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2630    }
2631  }
2632
2633 private:
2634  // TODO: Fix the no thread safety analysis.
2635  // Returns false on failure.
2636  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2637      NO_THREAD_SAFETY_ANALYSIS {
2638    if (ref == nullptr || IsLive(ref)) {
2639      // Verify that the reference is live.
2640      return true;
2641    }
2642    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2643      // Print message on only on first failure to prevent spam.
2644      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2645    }
2646    if (obj != nullptr) {
2647      // Only do this part for non roots.
2648      accounting::CardTable* card_table = heap_->GetCardTable();
2649      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2650      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2651      uint8_t* card_addr = card_table->CardFromAddr(obj);
2652      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2653                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2654      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2655        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2656      } else {
2657        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2658      }
2659
2660      // Attempt to find the class inside of the recently freed objects.
2661      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2662      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2663        space::MallocSpace* space = ref_space->AsMallocSpace();
2664        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2665        if (ref_class != nullptr) {
2666          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2667                     << PrettyClass(ref_class);
2668        } else {
2669          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2670        }
2671      }
2672
2673      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2674          ref->GetClass()->IsClass()) {
2675        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2676      } else {
2677        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2678                   << ") is not a valid heap address";
2679      }
2680
2681      card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2682      void* cover_begin = card_table->AddrFromCard(card_addr);
2683      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2684          accounting::CardTable::kCardSize);
2685      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2686          << "-" << cover_end;
2687      accounting::ContinuousSpaceBitmap* bitmap =
2688          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2689
2690      if (bitmap == nullptr) {
2691        LOG(ERROR) << "Object " << obj << " has no bitmap";
2692        if (!VerifyClassClass(obj->GetClass())) {
2693          LOG(ERROR) << "Object " << obj << " failed class verification!";
2694        }
2695      } else {
2696        // Print out how the object is live.
2697        if (bitmap->Test(obj)) {
2698          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2699        }
2700        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2701          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2702        }
2703        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2704          LOG(ERROR) << "Object " << obj << " found in live stack";
2705        }
2706        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2707          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2708        }
2709        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2710          LOG(ERROR) << "Ref " << ref << " found in live stack";
2711        }
2712        // Attempt to see if the card table missed the reference.
2713        ScanVisitor scan_visitor;
2714        uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2715        card_table->Scan<false>(bitmap, byte_cover_begin,
2716                                byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2717      }
2718
2719      // Search to see if any of the roots reference our object.
2720      RootMatchesObjectVisitor visitor1(obj);
2721      Runtime::Current()->VisitRoots(&visitor1);
2722      // Search to see if any of the roots reference our reference.
2723      RootMatchesObjectVisitor visitor2(ref);
2724      Runtime::Current()->VisitRoots(&visitor2);
2725    }
2726    return false;
2727  }
2728
2729  Heap* const heap_;
2730  Atomic<size_t>* const fail_count_;
2731  const bool verify_referent_;
2732};
2733
2734// Verify all references within an object, for use with HeapBitmap::Visit.
2735class VerifyObjectVisitor {
2736 public:
2737  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2738      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2739  }
2740
2741  void operator()(mirror::Object* obj) const
2742      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2743    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2744    // be live or else how did we find it in the live bitmap?
2745    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2746    // The class doesn't count as a reference but we should verify it anyways.
2747    obj->VisitReferences<true>(visitor, visitor);
2748  }
2749
2750  static void VisitCallback(mirror::Object* obj, void* arg)
2751      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2752    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2753    visitor->operator()(obj);
2754  }
2755
2756  void VerifyRoots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2757      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) {
2758    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2759    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2760    Runtime::Current()->VisitRoots(&visitor);
2761  }
2762
2763  size_t GetFailureCount() const {
2764    return fail_count_->LoadSequentiallyConsistent();
2765  }
2766
2767 private:
2768  Heap* const heap_;
2769  Atomic<size_t>* const fail_count_;
2770  const bool verify_referent_;
2771};
2772
2773void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2774  // Slow path, the allocation stack push back must have already failed.
2775  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2776  do {
2777    // TODO: Add handle VerifyObject.
2778    StackHandleScope<1> hs(self);
2779    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2780    // Push our object into the reserve region of the allocaiton stack. This is only required due
2781    // to heap verification requiring that roots are live (either in the live bitmap or in the
2782    // allocation stack).
2783    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2784    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2785  } while (!allocation_stack_->AtomicPushBack(*obj));
2786}
2787
2788void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2789  // Slow path, the allocation stack push back must have already failed.
2790  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2791  StackReference<mirror::Object>* start_address;
2792  StackReference<mirror::Object>* end_address;
2793  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2794                                            &end_address)) {
2795    // TODO: Add handle VerifyObject.
2796    StackHandleScope<1> hs(self);
2797    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2798    // Push our object into the reserve region of the allocaiton stack. This is only required due
2799    // to heap verification requiring that roots are live (either in the live bitmap or in the
2800    // allocation stack).
2801    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2802    // Push into the reserve allocation stack.
2803    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2804  }
2805  self->SetThreadLocalAllocationStack(start_address, end_address);
2806  // Retry on the new thread-local allocation stack.
2807  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2808}
2809
2810// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2811size_t Heap::VerifyHeapReferences(bool verify_referents) {
2812  Thread* self = Thread::Current();
2813  Locks::mutator_lock_->AssertExclusiveHeld(self);
2814  // Lets sort our allocation stacks so that we can efficiently binary search them.
2815  allocation_stack_->Sort();
2816  live_stack_->Sort();
2817  // Since we sorted the allocation stack content, need to revoke all
2818  // thread-local allocation stacks.
2819  RevokeAllThreadLocalAllocationStacks(self);
2820  Atomic<size_t> fail_count_(0);
2821  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2822  // Verify objects in the allocation stack since these will be objects which were:
2823  // 1. Allocated prior to the GC (pre GC verification).
2824  // 2. Allocated during the GC (pre sweep GC verification).
2825  // We don't want to verify the objects in the live stack since they themselves may be
2826  // pointing to dead objects if they are not reachable.
2827  VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
2828  // Verify the roots:
2829  visitor.VerifyRoots();
2830  if (visitor.GetFailureCount() > 0) {
2831    // Dump mod-union tables.
2832    for (const auto& table_pair : mod_union_tables_) {
2833      accounting::ModUnionTable* mod_union_table = table_pair.second;
2834      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2835    }
2836    // Dump remembered sets.
2837    for (const auto& table_pair : remembered_sets_) {
2838      accounting::RememberedSet* remembered_set = table_pair.second;
2839      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2840    }
2841    DumpSpaces(LOG(ERROR));
2842  }
2843  return visitor.GetFailureCount();
2844}
2845
2846class VerifyReferenceCardVisitor {
2847 public:
2848  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2849      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2850                            Locks::heap_bitmap_lock_)
2851      : heap_(heap), failed_(failed) {
2852  }
2853
2854  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2855  // annotalysis on visitors.
2856  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2857      NO_THREAD_SAFETY_ANALYSIS {
2858    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2859    // Filter out class references since changing an object's class does not mark the card as dirty.
2860    // Also handles large objects, since the only reference they hold is a class reference.
2861    if (ref != nullptr && !ref->IsClass()) {
2862      accounting::CardTable* card_table = heap_->GetCardTable();
2863      // If the object is not dirty and it is referencing something in the live stack other than
2864      // class, then it must be on a dirty card.
2865      if (!card_table->AddrIsInCardTable(obj)) {
2866        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2867        *failed_ = true;
2868      } else if (!card_table->IsDirty(obj)) {
2869        // TODO: Check mod-union tables.
2870        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2871        // kCardDirty - 1 if it didnt get touched since we aged it.
2872        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2873        if (live_stack->ContainsSorted(ref)) {
2874          if (live_stack->ContainsSorted(obj)) {
2875            LOG(ERROR) << "Object " << obj << " found in live stack";
2876          }
2877          if (heap_->GetLiveBitmap()->Test(obj)) {
2878            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2879          }
2880          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2881                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2882
2883          // Print which field of the object is dead.
2884          if (!obj->IsObjectArray()) {
2885            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2886            CHECK(klass != nullptr);
2887            auto* fields = is_static ? klass->GetSFields() : klass->GetIFields();
2888            auto num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
2889            CHECK_EQ(fields == nullptr, num_fields == 0u);
2890            for (size_t i = 0; i < num_fields; ++i) {
2891              ArtField* cur = &fields[i];
2892              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2893                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2894                          << PrettyField(cur);
2895                break;
2896              }
2897            }
2898          } else {
2899            mirror::ObjectArray<mirror::Object>* object_array =
2900                obj->AsObjectArray<mirror::Object>();
2901            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2902              if (object_array->Get(i) == ref) {
2903                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2904              }
2905            }
2906          }
2907
2908          *failed_ = true;
2909        }
2910      }
2911    }
2912  }
2913
2914 private:
2915  Heap* const heap_;
2916  bool* const failed_;
2917};
2918
2919class VerifyLiveStackReferences {
2920 public:
2921  explicit VerifyLiveStackReferences(Heap* heap)
2922      : heap_(heap),
2923        failed_(false) {}
2924
2925  void operator()(mirror::Object* obj) const
2926      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2927    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2928    obj->VisitReferences<true>(visitor, VoidFunctor());
2929  }
2930
2931  bool Failed() const {
2932    return failed_;
2933  }
2934
2935 private:
2936  Heap* const heap_;
2937  bool failed_;
2938};
2939
2940bool Heap::VerifyMissingCardMarks() {
2941  Thread* self = Thread::Current();
2942  Locks::mutator_lock_->AssertExclusiveHeld(self);
2943  // We need to sort the live stack since we binary search it.
2944  live_stack_->Sort();
2945  // Since we sorted the allocation stack content, need to revoke all
2946  // thread-local allocation stacks.
2947  RevokeAllThreadLocalAllocationStacks(self);
2948  VerifyLiveStackReferences visitor(this);
2949  GetLiveBitmap()->Visit(visitor);
2950  // We can verify objects in the live stack since none of these should reference dead objects.
2951  for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2952    if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
2953      visitor(it->AsMirrorPtr());
2954    }
2955  }
2956  return !visitor.Failed();
2957}
2958
2959void Heap::SwapStacks(Thread* self) {
2960  UNUSED(self);
2961  if (kUseThreadLocalAllocationStack) {
2962    live_stack_->AssertAllZero();
2963  }
2964  allocation_stack_.swap(live_stack_);
2965}
2966
2967void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2968  // This must be called only during the pause.
2969  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2970  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2971  MutexLock mu2(self, *Locks::thread_list_lock_);
2972  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2973  for (Thread* t : thread_list) {
2974    t->RevokeThreadLocalAllocationStack();
2975  }
2976}
2977
2978void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
2979  if (kIsDebugBuild) {
2980    if (rosalloc_space_ != nullptr) {
2981      rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
2982    }
2983    if (bump_pointer_space_ != nullptr) {
2984      bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
2985    }
2986  }
2987}
2988
2989void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2990  if (kIsDebugBuild) {
2991    if (bump_pointer_space_ != nullptr) {
2992      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2993    }
2994  }
2995}
2996
2997accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2998  auto it = mod_union_tables_.find(space);
2999  if (it == mod_union_tables_.end()) {
3000    return nullptr;
3001  }
3002  return it->second;
3003}
3004
3005accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3006  auto it = remembered_sets_.find(space);
3007  if (it == remembered_sets_.end()) {
3008    return nullptr;
3009  }
3010  return it->second;
3011}
3012
3013void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards,
3014                        bool clear_alloc_space_cards) {
3015  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3016  // Clear cards and keep track of cards cleared in the mod-union table.
3017  for (const auto& space : continuous_spaces_) {
3018    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3019    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3020    if (table != nullptr) {
3021      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3022          "ImageModUnionClearCards";
3023      TimingLogger::ScopedTiming t2(name, timings);
3024      table->ClearCards();
3025    } else if (use_rem_sets && rem_set != nullptr) {
3026      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
3027          << static_cast<int>(collector_type_);
3028      TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3029      rem_set->ClearCards();
3030    } else if (process_alloc_space_cards) {
3031      TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3032      if (clear_alloc_space_cards) {
3033        card_table_->ClearCardRange(space->Begin(), space->End());
3034      } else {
3035        // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3036        // cards were dirty before the GC started.
3037        // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3038        // -> clean(cleaning thread).
3039        // The races are we either end up with: Aged card, unaged card. Since we have the
3040        // checkpoint roots and then we scan / update mod union tables after. We will always
3041        // scan either card. If we end up with the non aged card, we scan it it in the pause.
3042        card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3043                                       VoidFunctor());
3044      }
3045    }
3046  }
3047}
3048
3049static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
3050}
3051
3052void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3053  Thread* const self = Thread::Current();
3054  TimingLogger* const timings = current_gc_iteration_.GetTimings();
3055  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3056  if (verify_pre_gc_heap_) {
3057    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3058    size_t failures = VerifyHeapReferences();
3059    if (failures > 0) {
3060      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3061          << " failures";
3062    }
3063  }
3064  // Check that all objects which reference things in the live stack are on dirty cards.
3065  if (verify_missing_card_marks_) {
3066    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3067    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3068    SwapStacks(self);
3069    // Sort the live stack so that we can quickly binary search it later.
3070    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3071                                    << " missing card mark verification failed\n" << DumpSpaces();
3072    SwapStacks(self);
3073  }
3074  if (verify_mod_union_table_) {
3075    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3076    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3077    for (const auto& table_pair : mod_union_tables_) {
3078      accounting::ModUnionTable* mod_union_table = table_pair.second;
3079      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
3080      mod_union_table->Verify();
3081    }
3082  }
3083}
3084
3085void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3086  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3087    collector::GarbageCollector::ScopedPause pause(gc);
3088    PreGcVerificationPaused(gc);
3089  }
3090}
3091
3092void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
3093  UNUSED(gc);
3094  // TODO: Add a new runtime option for this?
3095  if (verify_pre_gc_rosalloc_) {
3096    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3097  }
3098}
3099
3100void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3101  Thread* const self = Thread::Current();
3102  TimingLogger* const timings = current_gc_iteration_.GetTimings();
3103  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3104  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3105  // reachable objects.
3106  if (verify_pre_sweeping_heap_) {
3107    TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3108    CHECK_NE(self->GetState(), kRunnable);
3109    {
3110      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3111      // Swapping bound bitmaps does nothing.
3112      gc->SwapBitmaps();
3113    }
3114    // Pass in false since concurrent reference processing can mean that the reference referents
3115    // may point to dead objects at the point which PreSweepingGcVerification is called.
3116    size_t failures = VerifyHeapReferences(false);
3117    if (failures > 0) {
3118      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3119          << " failures";
3120    }
3121    {
3122      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3123      gc->SwapBitmaps();
3124    }
3125  }
3126  if (verify_pre_sweeping_rosalloc_) {
3127    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3128  }
3129}
3130
3131void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3132  // Only pause if we have to do some verification.
3133  Thread* const self = Thread::Current();
3134  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3135  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3136  if (verify_system_weaks_) {
3137    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3138    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3139    mark_sweep->VerifySystemWeaks();
3140  }
3141  if (verify_post_gc_rosalloc_) {
3142    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3143  }
3144  if (verify_post_gc_heap_) {
3145    TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3146    size_t failures = VerifyHeapReferences();
3147    if (failures > 0) {
3148      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3149          << " failures";
3150    }
3151  }
3152}
3153
3154void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3155  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3156    collector::GarbageCollector::ScopedPause pause(gc);
3157    PostGcVerificationPaused(gc);
3158  }
3159}
3160
3161void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3162  TimingLogger::ScopedTiming t(name, timings);
3163  for (const auto& space : continuous_spaces_) {
3164    if (space->IsRosAllocSpace()) {
3165      VLOG(heap) << name << " : " << space->GetName();
3166      space->AsRosAllocSpace()->Verify();
3167    }
3168  }
3169}
3170
3171collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3172  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3173  MutexLock mu(self, *gc_complete_lock_);
3174  return WaitForGcToCompleteLocked(cause, self);
3175}
3176
3177collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3178  collector::GcType last_gc_type = collector::kGcTypeNone;
3179  uint64_t wait_start = NanoTime();
3180  while (collector_type_running_ != kCollectorTypeNone) {
3181    if (self != task_processor_->GetRunningThread()) {
3182      // The current thread is about to wait for a currently running
3183      // collection to finish. If the waiting thread is not the heap
3184      // task daemon thread, the currently running collection is
3185      // considered as a blocking GC.
3186      running_collection_is_blocking_ = true;
3187      VLOG(gc) << "Waiting for a blocking GC " << cause;
3188    }
3189    ATRACE_BEGIN("GC: Wait For Completion");
3190    // We must wait, change thread state then sleep on gc_complete_cond_;
3191    gc_complete_cond_->Wait(self);
3192    last_gc_type = last_gc_type_;
3193    ATRACE_END();
3194  }
3195  uint64_t wait_time = NanoTime() - wait_start;
3196  total_wait_time_ += wait_time;
3197  if (wait_time > long_pause_log_threshold_) {
3198    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
3199        << " for cause " << cause;
3200  }
3201  if (self != task_processor_->GetRunningThread()) {
3202    // The current thread is about to run a collection. If the thread
3203    // is not the heap task daemon thread, it's considered as a
3204    // blocking GC (i.e., blocking itself).
3205    running_collection_is_blocking_ = true;
3206    VLOG(gc) << "Starting a blocking GC " << cause;
3207  }
3208  return last_gc_type;
3209}
3210
3211void Heap::DumpForSigQuit(std::ostream& os) {
3212  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3213     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3214  DumpGcPerformanceInfo(os);
3215}
3216
3217size_t Heap::GetPercentFree() {
3218  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
3219}
3220
3221void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
3222  if (max_allowed_footprint > GetMaxMemory()) {
3223    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
3224             << PrettySize(GetMaxMemory());
3225    max_allowed_footprint = GetMaxMemory();
3226  }
3227  max_allowed_footprint_ = max_allowed_footprint;
3228}
3229
3230bool Heap::IsMovableObject(const mirror::Object* obj) const {
3231  if (kMovingCollector) {
3232    space::Space* space = FindContinuousSpaceFromObject(obj, true);
3233    if (space != nullptr) {
3234      // TODO: Check large object?
3235      return space->CanMoveObjects();
3236    }
3237  }
3238  return false;
3239}
3240
3241void Heap::UpdateMaxNativeFootprint() {
3242  size_t native_size = native_bytes_allocated_.LoadRelaxed();
3243  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
3244  size_t target_size = native_size / GetTargetHeapUtilization();
3245  if (target_size > native_size + max_free_) {
3246    target_size = native_size + max_free_;
3247  } else if (target_size < native_size + min_free_) {
3248    target_size = native_size + min_free_;
3249  }
3250  native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
3251}
3252
3253collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3254  for (const auto& collector : garbage_collectors_) {
3255    if (collector->GetCollectorType() == collector_type_ &&
3256        collector->GetGcType() == gc_type) {
3257      return collector;
3258    }
3259  }
3260  return nullptr;
3261}
3262
3263double Heap::HeapGrowthMultiplier() const {
3264  // If we don't care about pause times we are background, so return 1.0.
3265  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
3266    return 1.0;
3267  }
3268  return foreground_heap_growth_multiplier_;
3269}
3270
3271void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3272                              uint64_t bytes_allocated_before_gc) {
3273  // We know what our utilization is at this moment.
3274  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3275  const uint64_t bytes_allocated = GetBytesAllocated();
3276  uint64_t target_size;
3277  collector::GcType gc_type = collector_ran->GetGcType();
3278  const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
3279  // foreground.
3280  const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
3281  const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
3282  if (gc_type != collector::kGcTypeSticky) {
3283    // Grow the heap for non sticky GC.
3284    ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
3285    CHECK_GE(delta, 0);
3286    target_size = bytes_allocated + delta * multiplier;
3287    target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
3288    target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
3289    native_need_to_run_finalization_ = true;
3290    next_gc_type_ = collector::kGcTypeSticky;
3291  } else {
3292    collector::GcType non_sticky_gc_type =
3293        HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3294    // Find what the next non sticky collector will be.
3295    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3296    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3297    // do another sticky collection next.
3298    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
3299    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3300    // if the sticky GC throughput always remained >= the full/partial throughput.
3301    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
3302        non_sticky_collector->GetEstimatedMeanThroughput() &&
3303        non_sticky_collector->NumberOfIterations() > 0 &&
3304        bytes_allocated <= max_allowed_footprint_) {
3305      next_gc_type_ = collector::kGcTypeSticky;
3306    } else {
3307      next_gc_type_ = non_sticky_gc_type;
3308    }
3309    // If we have freed enough memory, shrink the heap back down.
3310    if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
3311      target_size = bytes_allocated + adjusted_max_free;
3312    } else {
3313      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
3314    }
3315  }
3316  if (!ignore_max_footprint_) {
3317    SetIdealFootprint(target_size);
3318    if (IsGcConcurrent()) {
3319      const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3320          current_gc_iteration_.GetFreedLargeObjectBytes() +
3321          current_gc_iteration_.GetFreedRevokeBytes();
3322      // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3323      // how many bytes were allocated during the GC we need to add freed_bytes back on.
3324      CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3325      const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3326          bytes_allocated_before_gc;
3327      // Calculate when to perform the next ConcurrentGC.
3328      // Calculate the estimated GC duration.
3329      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
3330      // Estimate how many remaining bytes we will have when we need to start the next GC.
3331      size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
3332      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3333      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3334      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
3335        // A never going to happen situation that from the estimated allocation rate we will exceed
3336        // the applications entire footprint with the given estimated allocation rate. Schedule
3337        // another GC nearly straight away.
3338        remaining_bytes = kMinConcurrentRemainingBytes;
3339      }
3340      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
3341      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
3342      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3343      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3344      // right away.
3345      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
3346                                         static_cast<size_t>(bytes_allocated));
3347    }
3348  }
3349}
3350
3351void Heap::ClampGrowthLimit() {
3352  // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3353  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3354  capacity_ = growth_limit_;
3355  for (const auto& space : continuous_spaces_) {
3356    if (space->IsMallocSpace()) {
3357      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3358      malloc_space->ClampGrowthLimit();
3359    }
3360  }
3361  // This space isn't added for performance reasons.
3362  if (main_space_backup_.get() != nullptr) {
3363    main_space_backup_->ClampGrowthLimit();
3364  }
3365}
3366
3367void Heap::ClearGrowthLimit() {
3368  growth_limit_ = capacity_;
3369  for (const auto& space : continuous_spaces_) {
3370    if (space->IsMallocSpace()) {
3371      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3372      malloc_space->ClearGrowthLimit();
3373      malloc_space->SetFootprintLimit(malloc_space->Capacity());
3374    }
3375  }
3376  // This space isn't added for performance reasons.
3377  if (main_space_backup_.get() != nullptr) {
3378    main_space_backup_->ClearGrowthLimit();
3379    main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3380  }
3381}
3382
3383void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
3384  ScopedObjectAccess soa(self);
3385  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3386  jvalue args[1];
3387  args[0].l = arg.get();
3388  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3389  // Restore object in case it gets moved.
3390  *object = soa.Decode<mirror::Object*>(arg.get());
3391}
3392
3393void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) {
3394  StackHandleScope<1> hs(self);
3395  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3396  RequestConcurrentGC(self, force_full);
3397}
3398
3399class Heap::ConcurrentGCTask : public HeapTask {
3400 public:
3401  explicit ConcurrentGCTask(uint64_t target_time, bool force_full)
3402    : HeapTask(target_time), force_full_(force_full) { }
3403  virtual void Run(Thread* self) OVERRIDE {
3404    gc::Heap* heap = Runtime::Current()->GetHeap();
3405    heap->ConcurrentGC(self, force_full_);
3406    heap->ClearConcurrentGCRequest();
3407  }
3408
3409 private:
3410  const bool force_full_;  // If true, force full (or partial) collection.
3411};
3412
3413static bool CanAddHeapTask(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_) {
3414  Runtime* runtime = Runtime::Current();
3415  return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3416      !self->IsHandlingStackOverflow();
3417}
3418
3419void Heap::ClearConcurrentGCRequest() {
3420  concurrent_gc_pending_.StoreRelaxed(false);
3421}
3422
3423void Heap::RequestConcurrentGC(Thread* self, bool force_full) {
3424  if (CanAddHeapTask(self) &&
3425      concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
3426    task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
3427                                                        force_full));
3428  }
3429}
3430
3431void Heap::ConcurrentGC(Thread* self, bool force_full) {
3432  if (!Runtime::Current()->IsShuttingDown(self)) {
3433    // Wait for any GCs currently running to finish.
3434    if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
3435      // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
3436      // instead. E.g. can't do partial, so do full instead.
3437      collector::GcType next_gc_type = next_gc_type_;
3438      // If forcing full and next gc type is sticky, override with a non-sticky type.
3439      if (force_full && next_gc_type == collector::kGcTypeSticky) {
3440        next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3441      }
3442      if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) ==
3443          collector::kGcTypeNone) {
3444        for (collector::GcType gc_type : gc_plan_) {
3445          // Attempt to run the collector, if we succeed, we are done.
3446          if (gc_type > next_gc_type &&
3447              CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
3448                  collector::kGcTypeNone) {
3449            break;
3450          }
3451        }
3452      }
3453    }
3454  }
3455}
3456
3457class Heap::CollectorTransitionTask : public HeapTask {
3458 public:
3459  explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) { }
3460  virtual void Run(Thread* self) OVERRIDE {
3461    gc::Heap* heap = Runtime::Current()->GetHeap();
3462    heap->DoPendingCollectorTransition();
3463    heap->ClearPendingCollectorTransition(self);
3464  }
3465};
3466
3467void Heap::ClearPendingCollectorTransition(Thread* self) {
3468  MutexLock mu(self, *pending_task_lock_);
3469  pending_collector_transition_ = nullptr;
3470}
3471
3472void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3473  Thread* self = Thread::Current();
3474  desired_collector_type_ = desired_collector_type;
3475  if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3476    return;
3477  }
3478  CollectorTransitionTask* added_task = nullptr;
3479  const uint64_t target_time = NanoTime() + delta_time;
3480  {
3481    MutexLock mu(self, *pending_task_lock_);
3482    // If we have an existing collector transition, update the targe time to be the new target.
3483    if (pending_collector_transition_ != nullptr) {
3484      task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3485      return;
3486    }
3487    added_task = new CollectorTransitionTask(target_time);
3488    pending_collector_transition_ = added_task;
3489  }
3490  task_processor_->AddTask(self, added_task);
3491}
3492
3493class Heap::HeapTrimTask : public HeapTask {
3494 public:
3495  explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
3496  virtual void Run(Thread* self) OVERRIDE {
3497    gc::Heap* heap = Runtime::Current()->GetHeap();
3498    heap->Trim(self);
3499    heap->ClearPendingTrim(self);
3500  }
3501};
3502
3503void Heap::ClearPendingTrim(Thread* self) {
3504  MutexLock mu(self, *pending_task_lock_);
3505  pending_heap_trim_ = nullptr;
3506}
3507
3508void Heap::RequestTrim(Thread* self) {
3509  if (!CanAddHeapTask(self)) {
3510    return;
3511  }
3512  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3513  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3514  // a space it will hold its lock and can become a cause of jank.
3515  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3516  // forking.
3517
3518  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3519  // because that only marks object heads, so a large array looks like lots of empty space. We
3520  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3521  // to utilization (which is probably inversely proportional to how much benefit we can expect).
3522  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3523  // not how much use we're making of those pages.
3524  HeapTrimTask* added_task = nullptr;
3525  {
3526    MutexLock mu(self, *pending_task_lock_);
3527    if (pending_heap_trim_ != nullptr) {
3528      // Already have a heap trim request in task processor, ignore this request.
3529      return;
3530    }
3531    added_task = new HeapTrimTask(kHeapTrimWait);
3532    pending_heap_trim_ = added_task;
3533  }
3534  task_processor_->AddTask(self, added_task);
3535}
3536
3537void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3538  if (rosalloc_space_ != nullptr) {
3539    size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3540    if (freed_bytes_revoke > 0U) {
3541      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3542      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3543    }
3544  }
3545  if (bump_pointer_space_ != nullptr) {
3546    CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3547  }
3548  if (region_space_ != nullptr) {
3549    CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3550  }
3551}
3552
3553void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3554  if (rosalloc_space_ != nullptr) {
3555    size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3556    if (freed_bytes_revoke > 0U) {
3557      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3558      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3559    }
3560  }
3561}
3562
3563void Heap::RevokeAllThreadLocalBuffers() {
3564  if (rosalloc_space_ != nullptr) {
3565    size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3566    if (freed_bytes_revoke > 0U) {
3567      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3568      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3569    }
3570  }
3571  if (bump_pointer_space_ != nullptr) {
3572    CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3573  }
3574  if (region_space_ != nullptr) {
3575    CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3576  }
3577}
3578
3579bool Heap::IsGCRequestPending() const {
3580  return concurrent_gc_pending_.LoadRelaxed();
3581}
3582
3583void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
3584  env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
3585                            WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
3586                            static_cast<jlong>(timeout));
3587}
3588
3589void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3590  Thread* self = ThreadForEnv(env);
3591  if (native_need_to_run_finalization_) {
3592    RunFinalization(env, kNativeAllocationFinalizeTimeout);
3593    UpdateMaxNativeFootprint();
3594    native_need_to_run_finalization_ = false;
3595  }
3596  // Total number of native bytes allocated.
3597  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3598  new_native_bytes_allocated += bytes;
3599  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3600    collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
3601        collector::kGcTypeFull;
3602
3603    // The second watermark is higher than the gc watermark. If you hit this it means you are
3604    // allocating native objects faster than the GC can keep up with.
3605    if (new_native_bytes_allocated > growth_limit_) {
3606      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3607        // Just finished a GC, attempt to run finalizers.
3608        RunFinalization(env, kNativeAllocationFinalizeTimeout);
3609        CHECK(!env->ExceptionCheck());
3610        // Native bytes allocated may be updated by finalization, refresh it.
3611        new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed();
3612      }
3613      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3614      if (new_native_bytes_allocated > growth_limit_) {
3615        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3616        RunFinalization(env, kNativeAllocationFinalizeTimeout);
3617        native_need_to_run_finalization_ = false;
3618        CHECK(!env->ExceptionCheck());
3619      }
3620      // We have just run finalizers, update the native watermark since it is very likely that
3621      // finalizers released native managed allocations.
3622      UpdateMaxNativeFootprint();
3623    } else if (!IsGCRequestPending()) {
3624      if (IsGcConcurrent()) {
3625        RequestConcurrentGC(self, true);  // Request non-sticky type.
3626      } else {
3627        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3628      }
3629    }
3630  }
3631}
3632
3633void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3634  size_t expected_size;
3635  do {
3636    expected_size = native_bytes_allocated_.LoadRelaxed();
3637    if (UNLIKELY(bytes > expected_size)) {
3638      ScopedObjectAccess soa(env);
3639      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3640                    StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3641                                 "registered as allocated", bytes, expected_size).c_str());
3642      break;
3643    }
3644  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3645                                                               expected_size - bytes));
3646}
3647
3648size_t Heap::GetTotalMemory() const {
3649  return std::max(max_allowed_footprint_, GetBytesAllocated());
3650}
3651
3652void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3653  DCHECK(mod_union_table != nullptr);
3654  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3655}
3656
3657void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3658  CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3659        (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3660  CHECK_GE(byte_count, sizeof(mirror::Object));
3661}
3662
3663void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3664  CHECK(remembered_set != nullptr);
3665  space::Space* space = remembered_set->GetSpace();
3666  CHECK(space != nullptr);
3667  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3668  remembered_sets_.Put(space, remembered_set);
3669  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3670}
3671
3672void Heap::RemoveRememberedSet(space::Space* space) {
3673  CHECK(space != nullptr);
3674  auto it = remembered_sets_.find(space);
3675  CHECK(it != remembered_sets_.end());
3676  delete it->second;
3677  remembered_sets_.erase(it);
3678  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3679}
3680
3681void Heap::ClearMarkedObjects() {
3682  // Clear all of the spaces' mark bitmaps.
3683  for (const auto& space : GetContinuousSpaces()) {
3684    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3685    if (space->GetLiveBitmap() != mark_bitmap) {
3686      mark_bitmap->Clear();
3687    }
3688  }
3689  // Clear the marked objects in the discontinous space object sets.
3690  for (const auto& space : GetDiscontinuousSpaces()) {
3691    space->GetMarkBitmap()->Clear();
3692  }
3693}
3694
3695// Based on debug malloc logic from libc/bionic/debug_stacktrace.cpp.
3696class StackCrawlState {
3697 public:
3698  StackCrawlState(uintptr_t* frames, size_t max_depth, size_t skip_count)
3699      : frames_(frames), frame_count_(0), max_depth_(max_depth), skip_count_(skip_count) {
3700  }
3701  size_t GetFrameCount() const {
3702    return frame_count_;
3703  }
3704  static _Unwind_Reason_Code Callback(_Unwind_Context* context, void* arg) {
3705    auto* const state = reinterpret_cast<StackCrawlState*>(arg);
3706    const uintptr_t ip = _Unwind_GetIP(context);
3707    // The first stack frame is get_backtrace itself. Skip it.
3708    if (ip != 0 && state->skip_count_ > 0) {
3709      --state->skip_count_;
3710      return _URC_NO_REASON;
3711    }
3712    // ip may be off for ARM but it shouldn't matter since we only use it for hashing.
3713    state->frames_[state->frame_count_] = ip;
3714    state->frame_count_++;
3715    return state->frame_count_ >= state->max_depth_ ? _URC_END_OF_STACK : _URC_NO_REASON;
3716  }
3717
3718 private:
3719  uintptr_t* const frames_;
3720  size_t frame_count_;
3721  const size_t max_depth_;
3722  size_t skip_count_;
3723};
3724
3725static size_t get_backtrace(uintptr_t* frames, size_t max_depth) {
3726  StackCrawlState state(frames, max_depth, 0u);
3727  _Unwind_Backtrace(&StackCrawlState::Callback, &state);
3728  return state.GetFrameCount();
3729}
3730
3731void Heap::CheckGcStressMode(Thread* self, mirror::Object** obj) {
3732  auto* const runtime = Runtime::Current();
3733  if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
3734      !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
3735    // Check if we should GC.
3736    bool new_backtrace = false;
3737    {
3738      static constexpr size_t kMaxFrames = 16u;
3739      uintptr_t backtrace[kMaxFrames];
3740      const size_t frames = get_backtrace(backtrace, kMaxFrames);
3741      uint64_t hash = 0;
3742      for (size_t i = 0; i < frames; ++i) {
3743        hash = hash * 2654435761 + backtrace[i];
3744        hash += (hash >> 13) ^ (hash << 6);
3745      }
3746      MutexLock mu(self, *backtrace_lock_);
3747      new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
3748      if (new_backtrace) {
3749        seen_backtraces_.insert(hash);
3750      }
3751    }
3752    if (new_backtrace) {
3753      StackHandleScope<1> hs(self);
3754      auto h = hs.NewHandleWrapper(obj);
3755      CollectGarbage(false);
3756      unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
3757    } else {
3758      seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
3759    }
3760  }
3761}
3762
3763}  // namespace gc
3764}  // namespace art
3765