1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "art_field-inl.h"
22#include "art_method-inl.h"
23#include "base/logging.h"
24#include "base/mutex-inl.h"
25#include "base/time_utils.h"
26#include "class_linker.h"
27#include "compiler_callbacks.h"
28#include "dex_file-inl.h"
29#include "dex_instruction-inl.h"
30#include "dex_instruction_utils.h"
31#include "dex_instruction_visitor.h"
32#include "gc/accounting/card_table-inl.h"
33#include "indenter.h"
34#include "intern_table.h"
35#include "leb128.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "utils.h"
46#include "handle_scope-inl.h"
47#include "verifier/dex_gc_map.h"
48
49namespace art {
50namespace verifier {
51
52static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
53static constexpr bool gDebugVerify = false;
54// TODO: Add a constant to method_verifier to turn on verbose logging?
55
56void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
57                                 uint32_t insns_size, uint16_t registers_size,
58                                 MethodVerifier* verifier) {
59  DCHECK_GT(insns_size, 0U);
60  register_lines_.reset(new RegisterLine*[insns_size]());
61  size_ = insns_size;
62  for (uint32_t i = 0; i < insns_size; i++) {
63    bool interesting = false;
64    switch (mode) {
65      case kTrackRegsAll:
66        interesting = flags[i].IsOpcode();
67        break;
68      case kTrackCompilerInterestPoints:
69        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
70        break;
71      case kTrackRegsBranches:
72        interesting = flags[i].IsBranchTarget();
73        break;
74      default:
75        break;
76    }
77    if (interesting) {
78      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
79    }
80  }
81}
82
83PcToRegisterLineTable::~PcToRegisterLineTable() {
84  for (size_t i = 0; i < size_; i++) {
85    delete register_lines_[i];
86    if (kIsDebugBuild) {
87      register_lines_[i] = nullptr;
88    }
89  }
90}
91
92// Note: returns true on failure.
93ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
94                                             const char* error_msg, uint32_t work_insn_idx) {
95  if (kIsDebugBuild) {
96    // In a debug build, abort if the error condition is wrong.
97    DCHECK(condition) << error_msg << work_insn_idx;
98  } else {
99    // In a non-debug build, just fail the class.
100    if (!condition) {
101      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
102      return true;
103    }
104  }
105
106  return false;
107}
108
109static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
110  if (verifier->IsInstanceConstructor()) {
111    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
112    reg_line->CheckConstructorReturn(verifier);
113  }
114  reg_line->MarkAllRegistersAsConflicts(verifier);
115}
116
117MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
118    ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
119  StackHandleScope<2> hs(Thread::Current());
120  mirror::Class* klass = method->GetDeclaringClass();
121  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
122  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
123  return VerifyMethod(hs.Self(), method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), method,
125                      method->GetAccessFlags(), allow_soft_failures, false);
126}
127
128
129MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130                                                        mirror::Class* klass,
131                                                        bool allow_soft_failures,
132                                                        std::string* error) {
133  if (klass->IsVerified()) {
134    return kNoFailure;
135  }
136  bool early_failure = false;
137  std::string failure_message;
138  const DexFile& dex_file = klass->GetDexFile();
139  const DexFile::ClassDef* class_def = klass->GetClassDef();
140  mirror::Class* super = klass->GetSuperClass();
141  std::string temp;
142  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143    early_failure = true;
144    failure_message = " that has no super class";
145  } else if (super != nullptr && super->IsFinal()) {
146    early_failure = true;
147    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148  } else if (class_def == nullptr) {
149    early_failure = true;
150    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151  }
152  if (early_failure) {
153    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154    if (Runtime::Current()->IsAotCompiler()) {
155      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157    }
158    return kHardFailure;
159  }
160  StackHandleScope<2> hs(self);
161  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163  return VerifyClass(
164      self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
165}
166
167MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
168                                                        const DexFile* dex_file,
169                                                        Handle<mirror::DexCache> dex_cache,
170                                                        Handle<mirror::ClassLoader> class_loader,
171                                                        const DexFile::ClassDef* class_def,
172                                                        bool allow_soft_failures,
173                                                        std::string* error) {
174  DCHECK(class_def != nullptr);
175
176  // A class must not be abstract and final.
177  if ((class_def->access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
178    *error = "Verifier rejected class ";
179    *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
180    *error += ": class is abstract and final.";
181    return kHardFailure;
182  }
183
184  const uint8_t* class_data = dex_file->GetClassData(*class_def);
185  if (class_data == nullptr) {
186    // empty class, probably a marker interface
187    return kNoFailure;
188  }
189  ClassDataItemIterator it(*dex_file, class_data);
190  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
191    it.Next();
192  }
193  size_t error_count = 0;
194  bool hard_fail = false;
195  ClassLinker* linker = Runtime::Current()->GetClassLinker();
196  int64_t previous_direct_method_idx = -1;
197  while (it.HasNextDirectMethod()) {
198    self->AllowThreadSuspension();
199    uint32_t method_idx = it.GetMemberIndex();
200    if (method_idx == previous_direct_method_idx) {
201      // smali can create dex files with two encoded_methods sharing the same method_idx
202      // http://code.google.com/p/smali/issues/detail?id=119
203      it.Next();
204      continue;
205    }
206    previous_direct_method_idx = method_idx;
207    InvokeType type = it.GetMethodInvokeType(*class_def);
208    ArtMethod* method = linker->ResolveMethod(
209        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
210    if (method == nullptr) {
211      DCHECK(self->IsExceptionPending());
212      // We couldn't resolve the method, but continue regardless.
213      self->ClearException();
214    } else {
215      DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
216    }
217    StackHandleScope<1> hs(self);
218    MethodVerifier::FailureKind result = VerifyMethod(self,
219                                                      method_idx,
220                                                      dex_file,
221                                                      dex_cache,
222                                                      class_loader,
223                                                      class_def,
224                                                      it.GetMethodCodeItem(),
225        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
226    if (result != kNoFailure) {
227      if (result == kHardFailure) {
228        hard_fail = true;
229        if (error_count > 0) {
230          *error += "\n";
231        }
232        *error = "Verifier rejected class ";
233        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
234        *error += " due to bad method ";
235        *error += PrettyMethod(method_idx, *dex_file);
236      }
237      ++error_count;
238    }
239    it.Next();
240  }
241  int64_t previous_virtual_method_idx = -1;
242  while (it.HasNextVirtualMethod()) {
243    self->AllowThreadSuspension();
244    uint32_t method_idx = it.GetMemberIndex();
245    if (method_idx == previous_virtual_method_idx) {
246      // smali can create dex files with two encoded_methods sharing the same method_idx
247      // http://code.google.com/p/smali/issues/detail?id=119
248      it.Next();
249      continue;
250    }
251    previous_virtual_method_idx = method_idx;
252    InvokeType type = it.GetMethodInvokeType(*class_def);
253    ArtMethod* method = linker->ResolveMethod(
254        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
255    if (method == nullptr) {
256      DCHECK(self->IsExceptionPending());
257      // We couldn't resolve the method, but continue regardless.
258      self->ClearException();
259    }
260    StackHandleScope<1> hs(self);
261    MethodVerifier::FailureKind result = VerifyMethod(self,
262                                                      method_idx,
263                                                      dex_file,
264                                                      dex_cache,
265                                                      class_loader,
266                                                      class_def,
267                                                      it.GetMethodCodeItem(),
268        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
269    if (result != kNoFailure) {
270      if (result == kHardFailure) {
271        hard_fail = true;
272        if (error_count > 0) {
273          *error += "\n";
274        }
275        *error = "Verifier rejected class ";
276        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
277        *error += " due to bad method ";
278        *error += PrettyMethod(method_idx, *dex_file);
279      }
280      ++error_count;
281    }
282    it.Next();
283  }
284  if (error_count == 0) {
285    return kNoFailure;
286  } else {
287    return hard_fail ? kHardFailure : kSoftFailure;
288  }
289}
290
291static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
292  if (code_item == nullptr) {
293    return false;
294  }
295
296  uint16_t registers_size = code_item->registers_size_;
297  uint32_t insns_size = code_item->insns_size_in_code_units_;
298
299  return registers_size * insns_size > 4*1024*1024;
300}
301
302MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
303                                                         const DexFile* dex_file,
304                                                         Handle<mirror::DexCache> dex_cache,
305                                                         Handle<mirror::ClassLoader> class_loader,
306                                                         const DexFile::ClassDef* class_def,
307                                                         const DexFile::CodeItem* code_item,
308                                                         ArtMethod* method,
309                                                         uint32_t method_access_flags,
310                                                         bool allow_soft_failures,
311                                                         bool need_precise_constants) {
312  MethodVerifier::FailureKind result = kNoFailure;
313  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
314
315  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
316                          method_idx, method, method_access_flags, true, allow_soft_failures,
317                          need_precise_constants, true);
318  if (verifier.Verify()) {
319    // Verification completed, however failures may be pending that didn't cause the verification
320    // to hard fail.
321    CHECK(!verifier.have_pending_hard_failure_);
322    if (verifier.failures_.size() != 0) {
323      if (VLOG_IS_ON(verifier)) {
324          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
325                                << PrettyMethod(method_idx, *dex_file) << "\n");
326      }
327      result = kSoftFailure;
328    }
329  } else {
330    // Bad method data.
331    CHECK_NE(verifier.failures_.size(), 0U);
332    CHECK(verifier.have_pending_hard_failure_);
333    verifier.DumpFailures(LOG(INFO) << "Verification error in "
334                                    << PrettyMethod(method_idx, *dex_file) << "\n");
335    if (gDebugVerify) {
336      std::cout << "\n" << verifier.info_messages_.str();
337      verifier.Dump(std::cout);
338    }
339    result = kHardFailure;
340  }
341  if (kTimeVerifyMethod) {
342    uint64_t duration_ns = NanoTime() - start_ns;
343    if (duration_ns > MsToNs(100)) {
344      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
345                   << " took " << PrettyDuration(duration_ns)
346                   << (IsLargeMethod(code_item) ? " (large method)" : "");
347    }
348  }
349  return result;
350}
351
352MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
353                                         const DexFile* dex_file,
354                                         Handle<mirror::DexCache> dex_cache,
355                                         Handle<mirror::ClassLoader> class_loader,
356                                         const DexFile::ClassDef* class_def,
357                                         const DexFile::CodeItem* code_item,
358                                         ArtMethod* method,
359                                         uint32_t method_access_flags) {
360  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
361                                                class_def, code_item, dex_method_idx, method,
362                                                method_access_flags, true, true, true, true);
363  verifier->Verify();
364  verifier->DumpFailures(os);
365  os << verifier->info_messages_.str();
366  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
367  // and querying any info is dangerous/can abort.
368  if (verifier->have_pending_hard_failure_) {
369    delete verifier;
370    return nullptr;
371  } else {
372    verifier->Dump(os);
373    return verifier;
374  }
375}
376
377MethodVerifier::MethodVerifier(Thread* self,
378                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
379                               Handle<mirror::ClassLoader> class_loader,
380                               const DexFile::ClassDef* class_def,
381                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
382                               ArtMethod* method, uint32_t method_access_flags,
383                               bool can_load_classes, bool allow_soft_failures,
384                               bool need_precise_constants, bool verify_to_dump,
385                               bool allow_thread_suspension)
386    : self_(self),
387      reg_types_(can_load_classes),
388      work_insn_idx_(DexFile::kDexNoIndex),
389      dex_method_idx_(dex_method_idx),
390      mirror_method_(method),
391      method_access_flags_(method_access_flags),
392      return_type_(nullptr),
393      dex_file_(dex_file),
394      dex_cache_(dex_cache),
395      class_loader_(class_loader),
396      class_def_(class_def),
397      code_item_(code_item),
398      declaring_class_(nullptr),
399      interesting_dex_pc_(-1),
400      monitor_enter_dex_pcs_(nullptr),
401      have_pending_hard_failure_(false),
402      have_pending_runtime_throw_failure_(false),
403      have_any_pending_runtime_throw_failure_(false),
404      new_instance_count_(0),
405      monitor_enter_count_(0),
406      can_load_classes_(can_load_classes),
407      allow_soft_failures_(allow_soft_failures),
408      need_precise_constants_(need_precise_constants),
409      has_check_casts_(false),
410      has_virtual_or_interface_invokes_(false),
411      verify_to_dump_(verify_to_dump),
412      allow_thread_suspension_(allow_thread_suspension),
413      link_(nullptr) {
414  self->PushVerifier(this);
415  DCHECK(class_def != nullptr);
416}
417
418MethodVerifier::~MethodVerifier() {
419  Thread::Current()->PopVerifier(this);
420  STLDeleteElements(&failure_messages_);
421}
422
423void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
424                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
425  StackHandleScope<2> hs(Thread::Current());
426  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
427  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
428  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
429                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
430                          false, true, false, false);
431  verifier.interesting_dex_pc_ = dex_pc;
432  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
433  verifier.FindLocksAtDexPc();
434}
435
436static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
437  const Instruction* inst = Instruction::At(code_item->insns_);
438
439  uint32_t insns_size = code_item->insns_size_in_code_units_;
440  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
441    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
442      return true;
443    }
444
445    dex_pc += inst->SizeInCodeUnits();
446    inst = inst->Next();
447  }
448
449  return false;
450}
451
452void MethodVerifier::FindLocksAtDexPc() {
453  CHECK(monitor_enter_dex_pcs_ != nullptr);
454  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
455
456  // Quick check whether there are any monitor_enter instructions at all.
457  if (!HasMonitorEnterInstructions(code_item_)) {
458    return;
459  }
460
461  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
462  // verification. In practice, the phase we want relies on data structures set up by all the
463  // earlier passes, so we just run the full method verification and bail out early when we've
464  // got what we wanted.
465  Verify();
466}
467
468ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
469  StackHandleScope<2> hs(Thread::Current());
470  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
471  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
472  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
473                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
474                          true, false, true);
475  return verifier.FindAccessedFieldAtDexPc(dex_pc);
476}
477
478ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
479  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
480
481  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
482  // verification. In practice, the phase we want relies on data structures set up by all the
483  // earlier passes, so we just run the full method verification and bail out early when we've
484  // got what we wanted.
485  bool success = Verify();
486  if (!success) {
487    return nullptr;
488  }
489  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
490  if (register_line == nullptr) {
491    return nullptr;
492  }
493  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
494  return GetQuickFieldAccess(inst, register_line);
495}
496
497ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
498  StackHandleScope<2> hs(Thread::Current());
499  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
500  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
501  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
502                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
503                          true, false, true);
504  return verifier.FindInvokedMethodAtDexPc(dex_pc);
505}
506
507ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
508  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
509
510  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
511  // verification. In practice, the phase we want relies on data structures set up by all the
512  // earlier passes, so we just run the full method verification and bail out early when we've
513  // got what we wanted.
514  bool success = Verify();
515  if (!success) {
516    return nullptr;
517  }
518  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
519  if (register_line == nullptr) {
520    return nullptr;
521  }
522  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
523  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
524  return GetQuickInvokedMethod(inst, register_line, is_range, false);
525}
526
527SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(ArtMethod* m) {
528  Thread* self = Thread::Current();
529  StackHandleScope<2> hs(self);
530  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
531  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
532  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
533                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
534                          true, true, false, true);
535  return verifier.FindStringInitMap();
536}
537
538SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
539  Verify();
540  return GetStringInitPcRegMap();
541}
542
543bool MethodVerifier::Verify() {
544  // If there aren't any instructions, make sure that's expected, then exit successfully.
545  if (code_item_ == nullptr) {
546    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
547      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
548      return false;
549    } else {
550      return true;
551    }
552  }
553  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
554  if (code_item_->ins_size_ > code_item_->registers_size_) {
555    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
556                                      << " regs=" << code_item_->registers_size_;
557    return false;
558  }
559  // Allocate and initialize an array to hold instruction data.
560  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
561  // Run through the instructions and see if the width checks out.
562  bool result = ComputeWidthsAndCountOps();
563  // Flag instructions guarded by a "try" block and check exception handlers.
564  result = result && ScanTryCatchBlocks();
565  // Perform static instruction verification.
566  result = result && VerifyInstructions();
567  // Perform code-flow analysis and return.
568  result = result && VerifyCodeFlow();
569  // Compute information for compiler.
570  if (result && Runtime::Current()->IsCompiler()) {
571    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
572  }
573  return result;
574}
575
576std::ostream& MethodVerifier::Fail(VerifyError error) {
577  switch (error) {
578    case VERIFY_ERROR_NO_CLASS:
579    case VERIFY_ERROR_NO_FIELD:
580    case VERIFY_ERROR_NO_METHOD:
581    case VERIFY_ERROR_ACCESS_CLASS:
582    case VERIFY_ERROR_ACCESS_FIELD:
583    case VERIFY_ERROR_ACCESS_METHOD:
584    case VERIFY_ERROR_INSTANTIATION:
585    case VERIFY_ERROR_CLASS_CHANGE:
586      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
587        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
588        // class change and instantiation errors into soft verification errors so that we re-verify
589        // at runtime. We may fail to find or to agree on access because of not yet available class
590        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
591        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
592        // paths" that dynamically perform the verification and cause the behavior to be that akin
593        // to an interpreter.
594        error = VERIFY_ERROR_BAD_CLASS_SOFT;
595      } else {
596        // If we fail again at runtime, mark that this instruction would throw and force this
597        // method to be executed using the interpreter with checks.
598        have_pending_runtime_throw_failure_ = true;
599
600        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
601        // try to merge garbage.
602        // Note: this assumes that Fail is called before we do any work_line modifications.
603        // Note: this can fail before we touch any instruction, for the signature of a method. So
604        //       add a check.
605        if (work_insn_idx_ < DexFile::kDexNoIndex) {
606          const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
607          const Instruction* inst = Instruction::At(insns);
608          int opcode_flags = Instruction::FlagsOf(inst->Opcode());
609
610          if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
611            saved_line_->CopyFromLine(work_line_.get());
612          }
613        }
614      }
615      break;
616      // Indication that verification should be retried at runtime.
617    case VERIFY_ERROR_BAD_CLASS_SOFT:
618      if (!allow_soft_failures_) {
619        have_pending_hard_failure_ = true;
620      }
621      break;
622      // Hard verification failures at compile time will still fail at runtime, so the class is
623      // marked as rejected to prevent it from being compiled.
624    case VERIFY_ERROR_BAD_CLASS_HARD: {
625      if (Runtime::Current()->IsAotCompiler()) {
626        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
627        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
628      }
629      have_pending_hard_failure_ = true;
630      break;
631    }
632  }
633  failures_.push_back(error);
634  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
635                                    work_insn_idx_));
636  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
637  failure_messages_.push_back(failure_message);
638  return *failure_message;
639}
640
641std::ostream& MethodVerifier::LogVerifyInfo() {
642  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
643                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
644}
645
646void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
647  size_t failure_num = failure_messages_.size();
648  DCHECK_NE(failure_num, 0U);
649  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
650  prepend += last_fail_message->str();
651  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
652  delete last_fail_message;
653}
654
655void MethodVerifier::AppendToLastFailMessage(std::string append) {
656  size_t failure_num = failure_messages_.size();
657  DCHECK_NE(failure_num, 0U);
658  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
659  (*last_fail_message) << append;
660}
661
662bool MethodVerifier::ComputeWidthsAndCountOps() {
663  const uint16_t* insns = code_item_->insns_;
664  size_t insns_size = code_item_->insns_size_in_code_units_;
665  const Instruction* inst = Instruction::At(insns);
666  size_t new_instance_count = 0;
667  size_t monitor_enter_count = 0;
668  size_t dex_pc = 0;
669
670  while (dex_pc < insns_size) {
671    Instruction::Code opcode = inst->Opcode();
672    switch (opcode) {
673      case Instruction::APUT_OBJECT:
674      case Instruction::CHECK_CAST:
675        has_check_casts_ = true;
676        break;
677      case Instruction::INVOKE_VIRTUAL:
678      case Instruction::INVOKE_VIRTUAL_RANGE:
679      case Instruction::INVOKE_INTERFACE:
680      case Instruction::INVOKE_INTERFACE_RANGE:
681        has_virtual_or_interface_invokes_ = true;
682        break;
683      case Instruction::MONITOR_ENTER:
684        monitor_enter_count++;
685        break;
686      case Instruction::NEW_INSTANCE:
687        new_instance_count++;
688        break;
689      default:
690        break;
691    }
692    size_t inst_size = inst->SizeInCodeUnits();
693    insn_flags_[dex_pc].SetIsOpcode();
694    dex_pc += inst_size;
695    inst = inst->RelativeAt(inst_size);
696  }
697
698  if (dex_pc != insns_size) {
699    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
700                                      << dex_pc << " vs. " << insns_size << ")";
701    return false;
702  }
703
704  new_instance_count_ = new_instance_count;
705  monitor_enter_count_ = monitor_enter_count;
706  return true;
707}
708
709bool MethodVerifier::ScanTryCatchBlocks() {
710  uint32_t tries_size = code_item_->tries_size_;
711  if (tries_size == 0) {
712    return true;
713  }
714  uint32_t insns_size = code_item_->insns_size_in_code_units_;
715  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
716
717  for (uint32_t idx = 0; idx < tries_size; idx++) {
718    const DexFile::TryItem* try_item = &tries[idx];
719    uint32_t start = try_item->start_addr_;
720    uint32_t end = start + try_item->insn_count_;
721    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
722      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
723                                        << " endAddr=" << end << " (size=" << insns_size << ")";
724      return false;
725    }
726    if (!insn_flags_[start].IsOpcode()) {
727      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
728          << "'try' block starts inside an instruction (" << start << ")";
729      return false;
730    }
731    uint32_t dex_pc = start;
732    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
733    while (dex_pc < end) {
734      insn_flags_[dex_pc].SetInTry();
735      size_t insn_size = inst->SizeInCodeUnits();
736      dex_pc += insn_size;
737      inst = inst->RelativeAt(insn_size);
738    }
739  }
740  // Iterate over each of the handlers to verify target addresses.
741  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
742  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
743  ClassLinker* linker = Runtime::Current()->GetClassLinker();
744  for (uint32_t idx = 0; idx < handlers_size; idx++) {
745    CatchHandlerIterator iterator(handlers_ptr);
746    for (; iterator.HasNext(); iterator.Next()) {
747      uint32_t dex_pc= iterator.GetHandlerAddress();
748      if (!insn_flags_[dex_pc].IsOpcode()) {
749        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
750            << "exception handler starts at bad address (" << dex_pc << ")";
751        return false;
752      }
753      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
754        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
755            << "exception handler begins with move-result* (" << dex_pc << ")";
756        return false;
757      }
758      insn_flags_[dex_pc].SetBranchTarget();
759      // Ensure exception types are resolved so that they don't need resolution to be delivered,
760      // unresolved exception types will be ignored by exception delivery
761      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
762        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
763                                                            iterator.GetHandlerTypeIndex(),
764                                                            dex_cache_, class_loader_);
765        if (exception_type == nullptr) {
766          DCHECK(self_->IsExceptionPending());
767          self_->ClearException();
768        }
769      }
770    }
771    handlers_ptr = iterator.EndDataPointer();
772  }
773  return true;
774}
775
776bool MethodVerifier::VerifyInstructions() {
777  const Instruction* inst = Instruction::At(code_item_->insns_);
778
779  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
780  insn_flags_[0].SetBranchTarget();
781  insn_flags_[0].SetCompileTimeInfoPoint();
782
783  uint32_t insns_size = code_item_->insns_size_in_code_units_;
784  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
785    if (!VerifyInstruction(inst, dex_pc)) {
786      DCHECK_NE(failures_.size(), 0U);
787      return false;
788    }
789    /* Flag instructions that are garbage collection points */
790    // All invoke points are marked as "Throw" points already.
791    // We are relying on this to also count all the invokes as interesting.
792    if (inst->IsBranch()) {
793      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
794      // The compiler also needs safepoints for fall-through to loop heads.
795      // Such a loop head must be a target of a branch.
796      int32_t offset = 0;
797      bool cond, self_ok;
798      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
799      DCHECK(target_ok);
800      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
801    } else if (inst->IsSwitch() || inst->IsThrow()) {
802      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
803    } else if (inst->IsReturn()) {
804      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
805    }
806    dex_pc += inst->SizeInCodeUnits();
807    inst = inst->Next();
808  }
809  return true;
810}
811
812bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
813  bool result = true;
814  switch (inst->GetVerifyTypeArgumentA()) {
815    case Instruction::kVerifyRegA:
816      result = result && CheckRegisterIndex(inst->VRegA());
817      break;
818    case Instruction::kVerifyRegAWide:
819      result = result && CheckWideRegisterIndex(inst->VRegA());
820      break;
821  }
822  switch (inst->GetVerifyTypeArgumentB()) {
823    case Instruction::kVerifyRegB:
824      result = result && CheckRegisterIndex(inst->VRegB());
825      break;
826    case Instruction::kVerifyRegBField:
827      result = result && CheckFieldIndex(inst->VRegB());
828      break;
829    case Instruction::kVerifyRegBMethod:
830      result = result && CheckMethodIndex(inst->VRegB());
831      break;
832    case Instruction::kVerifyRegBNewInstance:
833      result = result && CheckNewInstance(inst->VRegB());
834      break;
835    case Instruction::kVerifyRegBString:
836      result = result && CheckStringIndex(inst->VRegB());
837      break;
838    case Instruction::kVerifyRegBType:
839      result = result && CheckTypeIndex(inst->VRegB());
840      break;
841    case Instruction::kVerifyRegBWide:
842      result = result && CheckWideRegisterIndex(inst->VRegB());
843      break;
844  }
845  switch (inst->GetVerifyTypeArgumentC()) {
846    case Instruction::kVerifyRegC:
847      result = result && CheckRegisterIndex(inst->VRegC());
848      break;
849    case Instruction::kVerifyRegCField:
850      result = result && CheckFieldIndex(inst->VRegC());
851      break;
852    case Instruction::kVerifyRegCNewArray:
853      result = result && CheckNewArray(inst->VRegC());
854      break;
855    case Instruction::kVerifyRegCType:
856      result = result && CheckTypeIndex(inst->VRegC());
857      break;
858    case Instruction::kVerifyRegCWide:
859      result = result && CheckWideRegisterIndex(inst->VRegC());
860      break;
861  }
862  switch (inst->GetVerifyExtraFlags()) {
863    case Instruction::kVerifyArrayData:
864      result = result && CheckArrayData(code_offset);
865      break;
866    case Instruction::kVerifyBranchTarget:
867      result = result && CheckBranchTarget(code_offset);
868      break;
869    case Instruction::kVerifySwitchTargets:
870      result = result && CheckSwitchTargets(code_offset);
871      break;
872    case Instruction::kVerifyVarArgNonZero:
873      // Fall-through.
874    case Instruction::kVerifyVarArg: {
875      // Instructions that can actually return a negative value shouldn't have this flag.
876      uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
877      if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
878          v_a > Instruction::kMaxVarArgRegs) {
879        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
880                                             "non-range invoke";
881        return false;
882      }
883
884      uint32_t args[Instruction::kMaxVarArgRegs];
885      inst->GetVarArgs(args);
886      result = result && CheckVarArgRegs(v_a, args);
887      break;
888    }
889    case Instruction::kVerifyVarArgRangeNonZero:
890      // Fall-through.
891    case Instruction::kVerifyVarArgRange:
892      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
893          inst->VRegA() <= 0) {
894        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
895                                             "range invoke";
896        return false;
897      }
898      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
899      break;
900    case Instruction::kVerifyError:
901      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
902      result = false;
903      break;
904  }
905  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
906    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
907    result = false;
908  }
909  return result;
910}
911
912inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
913  if (idx >= code_item_->registers_size_) {
914    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
915                                      << code_item_->registers_size_ << ")";
916    return false;
917  }
918  return true;
919}
920
921inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
922  if (idx + 1 >= code_item_->registers_size_) {
923    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
924                                      << "+1 >= " << code_item_->registers_size_ << ")";
925    return false;
926  }
927  return true;
928}
929
930inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
931  if (idx >= dex_file_->GetHeader().field_ids_size_) {
932    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
933                                      << dex_file_->GetHeader().field_ids_size_ << ")";
934    return false;
935  }
936  return true;
937}
938
939inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
940  if (idx >= dex_file_->GetHeader().method_ids_size_) {
941    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
942                                      << dex_file_->GetHeader().method_ids_size_ << ")";
943    return false;
944  }
945  return true;
946}
947
948inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
949  if (idx >= dex_file_->GetHeader().type_ids_size_) {
950    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
951                                      << dex_file_->GetHeader().type_ids_size_ << ")";
952    return false;
953  }
954  // We don't need the actual class, just a pointer to the class name.
955  const char* descriptor = dex_file_->StringByTypeIdx(idx);
956  if (descriptor[0] != 'L') {
957    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
958    return false;
959  }
960  return true;
961}
962
963inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
964  if (idx >= dex_file_->GetHeader().string_ids_size_) {
965    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
966                                      << dex_file_->GetHeader().string_ids_size_ << ")";
967    return false;
968  }
969  return true;
970}
971
972inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
973  if (idx >= dex_file_->GetHeader().type_ids_size_) {
974    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
975                                      << dex_file_->GetHeader().type_ids_size_ << ")";
976    return false;
977  }
978  return true;
979}
980
981bool MethodVerifier::CheckNewArray(uint32_t idx) {
982  if (idx >= dex_file_->GetHeader().type_ids_size_) {
983    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
984                                      << dex_file_->GetHeader().type_ids_size_ << ")";
985    return false;
986  }
987  int bracket_count = 0;
988  const char* descriptor = dex_file_->StringByTypeIdx(idx);
989  const char* cp = descriptor;
990  while (*cp++ == '[') {
991    bracket_count++;
992  }
993  if (bracket_count == 0) {
994    /* The given class must be an array type. */
995    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
996        << "can't new-array class '" << descriptor << "' (not an array)";
997    return false;
998  } else if (bracket_count > 255) {
999    /* It is illegal to create an array of more than 255 dimensions. */
1000    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1001        << "can't new-array class '" << descriptor << "' (exceeds limit)";
1002    return false;
1003  }
1004  return true;
1005}
1006
1007bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
1008  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1009  const uint16_t* insns = code_item_->insns_ + cur_offset;
1010  const uint16_t* array_data;
1011  int32_t array_data_offset;
1012
1013  DCHECK_LT(cur_offset, insn_count);
1014  /* make sure the start of the array data table is in range */
1015  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
1016  if ((int32_t) cur_offset + array_data_offset < 0 ||
1017      cur_offset + array_data_offset + 2 >= insn_count) {
1018    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1019                                      << ", data offset " << array_data_offset
1020                                      << ", count " << insn_count;
1021    return false;
1022  }
1023  /* offset to array data table is a relative branch-style offset */
1024  array_data = insns + array_data_offset;
1025  /* make sure the table is 32-bit aligned */
1026  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
1027    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1028                                      << ", data offset " << array_data_offset;
1029    return false;
1030  }
1031  uint32_t value_width = array_data[1];
1032  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1033  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1034  /* make sure the end of the switch is in range */
1035  if (cur_offset + array_data_offset + table_size > insn_count) {
1036    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1037                                      << ", data offset " << array_data_offset << ", end "
1038                                      << cur_offset + array_data_offset + table_size
1039                                      << ", count " << insn_count;
1040    return false;
1041  }
1042  return true;
1043}
1044
1045bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1046  int32_t offset;
1047  bool isConditional, selfOkay;
1048  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1049    return false;
1050  }
1051  if (!selfOkay && offset == 0) {
1052    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1053                                      << reinterpret_cast<void*>(cur_offset);
1054    return false;
1055  }
1056  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1057  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1058  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1059    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1060                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1061    return false;
1062  }
1063  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1064  int32_t abs_offset = cur_offset + offset;
1065  if (abs_offset < 0 ||
1066      (uint32_t) abs_offset >= insn_count ||
1067      !insn_flags_[abs_offset].IsOpcode()) {
1068    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1069                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1070                                      << reinterpret_cast<void*>(cur_offset);
1071    return false;
1072  }
1073  insn_flags_[abs_offset].SetBranchTarget();
1074  return true;
1075}
1076
1077bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1078                                  bool* selfOkay) {
1079  const uint16_t* insns = code_item_->insns_ + cur_offset;
1080  *pConditional = false;
1081  *selfOkay = false;
1082  switch (*insns & 0xff) {
1083    case Instruction::GOTO:
1084      *pOffset = ((int16_t) *insns) >> 8;
1085      break;
1086    case Instruction::GOTO_32:
1087      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1088      *selfOkay = true;
1089      break;
1090    case Instruction::GOTO_16:
1091      *pOffset = (int16_t) insns[1];
1092      break;
1093    case Instruction::IF_EQ:
1094    case Instruction::IF_NE:
1095    case Instruction::IF_LT:
1096    case Instruction::IF_GE:
1097    case Instruction::IF_GT:
1098    case Instruction::IF_LE:
1099    case Instruction::IF_EQZ:
1100    case Instruction::IF_NEZ:
1101    case Instruction::IF_LTZ:
1102    case Instruction::IF_GEZ:
1103    case Instruction::IF_GTZ:
1104    case Instruction::IF_LEZ:
1105      *pOffset = (int16_t) insns[1];
1106      *pConditional = true;
1107      break;
1108    default:
1109      return false;
1110  }
1111  return true;
1112}
1113
1114bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1115  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1116  DCHECK_LT(cur_offset, insn_count);
1117  const uint16_t* insns = code_item_->insns_ + cur_offset;
1118  /* make sure the start of the switch is in range */
1119  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1120  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
1121    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1122                                      << ", switch offset " << switch_offset
1123                                      << ", count " << insn_count;
1124    return false;
1125  }
1126  /* offset to switch table is a relative branch-style offset */
1127  const uint16_t* switch_insns = insns + switch_offset;
1128  /* make sure the table is 32-bit aligned */
1129  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1130    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1131                                      << ", switch offset " << switch_offset;
1132    return false;
1133  }
1134  uint32_t switch_count = switch_insns[1];
1135  int32_t keys_offset, targets_offset;
1136  uint16_t expected_signature;
1137  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1138    /* 0=sig, 1=count, 2/3=firstKey */
1139    targets_offset = 4;
1140    keys_offset = -1;
1141    expected_signature = Instruction::kPackedSwitchSignature;
1142  } else {
1143    /* 0=sig, 1=count, 2..count*2 = keys */
1144    keys_offset = 2;
1145    targets_offset = 2 + 2 * switch_count;
1146    expected_signature = Instruction::kSparseSwitchSignature;
1147  }
1148  uint32_t table_size = targets_offset + switch_count * 2;
1149  if (switch_insns[0] != expected_signature) {
1150    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1151        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1152                        switch_insns[0], expected_signature);
1153    return false;
1154  }
1155  /* make sure the end of the switch is in range */
1156  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1157    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1158                                      << ", switch offset " << switch_offset
1159                                      << ", end " << (cur_offset + switch_offset + table_size)
1160                                      << ", count " << insn_count;
1161    return false;
1162  }
1163  /* for a sparse switch, verify the keys are in ascending order */
1164  if (keys_offset > 0 && switch_count > 1) {
1165    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1166    for (uint32_t targ = 1; targ < switch_count; targ++) {
1167      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1168                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1169      if (key <= last_key) {
1170        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1171                                          << ", this=" << key;
1172        return false;
1173      }
1174      last_key = key;
1175    }
1176  }
1177  /* verify each switch target */
1178  for (uint32_t targ = 0; targ < switch_count; targ++) {
1179    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1180                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1181    int32_t abs_offset = cur_offset + offset;
1182    if (abs_offset < 0 ||
1183        abs_offset >= (int32_t) insn_count ||
1184        !insn_flags_[abs_offset].IsOpcode()) {
1185      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1186                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1187                                        << reinterpret_cast<void*>(cur_offset)
1188                                        << "[" << targ << "]";
1189      return false;
1190    }
1191    insn_flags_[abs_offset].SetBranchTarget();
1192  }
1193  return true;
1194}
1195
1196bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1197  uint16_t registers_size = code_item_->registers_size_;
1198  for (uint32_t idx = 0; idx < vA; idx++) {
1199    if (arg[idx] >= registers_size) {
1200      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1201                                        << ") in non-range invoke (>= " << registers_size << ")";
1202      return false;
1203    }
1204  }
1205
1206  return true;
1207}
1208
1209bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1210  uint16_t registers_size = code_item_->registers_size_;
1211  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1212  // integer overflow when adding them here.
1213  if (vA + vC > registers_size) {
1214    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1215                                      << " in range invoke (> " << registers_size << ")";
1216    return false;
1217  }
1218  return true;
1219}
1220
1221bool MethodVerifier::VerifyCodeFlow() {
1222  uint16_t registers_size = code_item_->registers_size_;
1223  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1224
1225  /* Create and initialize table holding register status */
1226  reg_table_.Init(kTrackCompilerInterestPoints,
1227                  insn_flags_.get(),
1228                  insns_size,
1229                  registers_size,
1230                  this);
1231
1232
1233  work_line_.reset(RegisterLine::Create(registers_size, this));
1234  saved_line_.reset(RegisterLine::Create(registers_size, this));
1235
1236  /* Initialize register types of method arguments. */
1237  if (!SetTypesFromSignature()) {
1238    DCHECK_NE(failures_.size(), 0U);
1239    std::string prepend("Bad signature in ");
1240    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1241    PrependToLastFailMessage(prepend);
1242    return false;
1243  }
1244  // We may have a runtime failure here, clear.
1245  have_pending_runtime_throw_failure_ = false;
1246
1247  /* Perform code flow verification. */
1248  if (!CodeFlowVerifyMethod()) {
1249    DCHECK_NE(failures_.size(), 0U);
1250    return false;
1251  }
1252  return true;
1253}
1254
1255std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1256  DCHECK_EQ(failures_.size(), failure_messages_.size());
1257  for (size_t i = 0; i < failures_.size(); ++i) {
1258      os << failure_messages_[i]->str() << "\n";
1259  }
1260  return os;
1261}
1262
1263void MethodVerifier::Dump(std::ostream& os) {
1264  if (code_item_ == nullptr) {
1265    os << "Native method\n";
1266    return;
1267  }
1268  {
1269    os << "Register Types:\n";
1270    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1271    std::ostream indent_os(&indent_filter);
1272    reg_types_.Dump(indent_os);
1273  }
1274  os << "Dumping instructions and register lines:\n";
1275  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1276  std::ostream indent_os(&indent_filter);
1277  const Instruction* inst = Instruction::At(code_item_->insns_);
1278  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1279      dex_pc += inst->SizeInCodeUnits()) {
1280    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1281    if (reg_line != nullptr) {
1282      indent_os << reg_line->Dump(this) << "\n";
1283    }
1284    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1285    const bool kDumpHexOfInstruction = false;
1286    if (kDumpHexOfInstruction) {
1287      indent_os << inst->DumpHex(5) << " ";
1288    }
1289    indent_os << inst->DumpString(dex_file_) << "\n";
1290    inst = inst->Next();
1291  }
1292}
1293
1294static bool IsPrimitiveDescriptor(char descriptor) {
1295  switch (descriptor) {
1296    case 'I':
1297    case 'C':
1298    case 'S':
1299    case 'B':
1300    case 'Z':
1301    case 'F':
1302    case 'D':
1303    case 'J':
1304      return true;
1305    default:
1306      return false;
1307  }
1308}
1309
1310bool MethodVerifier::SetTypesFromSignature() {
1311  RegisterLine* reg_line = reg_table_.GetLine(0);
1312
1313  // Should have been verified earlier.
1314  DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);
1315
1316  uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1317  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1318
1319  // Include the "this" pointer.
1320  size_t cur_arg = 0;
1321  if (!IsStatic()) {
1322    if (expected_args == 0) {
1323      // Expect at least a receiver.
1324      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1325      return false;
1326    }
1327
1328    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1329    // argument as uninitialized. This restricts field access until the superclass constructor is
1330    // called.
1331    const RegType& declaring_class = GetDeclaringClass();
1332    if (IsConstructor()) {
1333      if (declaring_class.IsJavaLangObject()) {
1334        // "this" is implicitly initialized.
1335        reg_line->SetThisInitialized();
1336        reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1337      } else {
1338        reg_line->SetRegisterType(this, arg_start + cur_arg,
1339                                  reg_types_.UninitializedThisArgument(declaring_class));
1340      }
1341    } else {
1342      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1343    }
1344    cur_arg++;
1345  }
1346
1347  const DexFile::ProtoId& proto_id =
1348      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1349  DexFileParameterIterator iterator(*dex_file_, proto_id);
1350
1351  for (; iterator.HasNext(); iterator.Next()) {
1352    const char* descriptor = iterator.GetDescriptor();
1353    if (descriptor == nullptr) {
1354      LOG(FATAL) << "Null descriptor";
1355    }
1356    if (cur_arg >= expected_args) {
1357      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1358                                        << " args, found more (" << descriptor << ")";
1359      return false;
1360    }
1361    switch (descriptor[0]) {
1362      case 'L':
1363      case '[':
1364        // We assume that reference arguments are initialized. The only way it could be otherwise
1365        // (assuming the caller was verified) is if the current method is <init>, but in that case
1366        // it's effectively considered initialized the instant we reach here (in the sense that we
1367        // can return without doing anything or call virtual methods).
1368        {
1369          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1370          if (!reg_type.IsNonZeroReferenceTypes()) {
1371            DCHECK(HasFailures());
1372            return false;
1373          }
1374          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1375        }
1376        break;
1377      case 'Z':
1378        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1379        break;
1380      case 'C':
1381        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1382        break;
1383      case 'B':
1384        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1385        break;
1386      case 'I':
1387        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1388        break;
1389      case 'S':
1390        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1391        break;
1392      case 'F':
1393        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1394        break;
1395      case 'J':
1396      case 'D': {
1397        if (cur_arg + 1 >= expected_args) {
1398          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1399              << " args, found more (" << descriptor << ")";
1400          return false;
1401        }
1402
1403        const RegType* lo_half;
1404        const RegType* hi_half;
1405        if (descriptor[0] == 'J') {
1406          lo_half = &reg_types_.LongLo();
1407          hi_half = &reg_types_.LongHi();
1408        } else {
1409          lo_half = &reg_types_.DoubleLo();
1410          hi_half = &reg_types_.DoubleHi();
1411        }
1412        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1413        cur_arg++;
1414        break;
1415      }
1416      default:
1417        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1418                                          << descriptor << "'";
1419        return false;
1420    }
1421    cur_arg++;
1422  }
1423  if (cur_arg != expected_args) {
1424    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1425                                      << " arguments, found " << cur_arg;
1426    return false;
1427  }
1428  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1429  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1430  // format. Only major difference from the method argument format is that 'V' is supported.
1431  bool result;
1432  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1433    result = descriptor[1] == '\0';
1434  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1435    size_t i = 0;
1436    do {
1437      i++;
1438    } while (descriptor[i] == '[');  // process leading [
1439    if (descriptor[i] == 'L') {  // object array
1440      do {
1441        i++;  // find closing ;
1442      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1443      result = descriptor[i] == ';';
1444    } else {  // primitive array
1445      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1446    }
1447  } else if (descriptor[0] == 'L') {
1448    // could be more thorough here, but shouldn't be required
1449    size_t i = 0;
1450    do {
1451      i++;
1452    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1453    result = descriptor[i] == ';';
1454  } else {
1455    result = false;
1456  }
1457  if (!result) {
1458    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1459                                      << descriptor << "'";
1460  }
1461  return result;
1462}
1463
1464bool MethodVerifier::CodeFlowVerifyMethod() {
1465  const uint16_t* insns = code_item_->insns_;
1466  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1467
1468  /* Begin by marking the first instruction as "changed". */
1469  insn_flags_[0].SetChanged();
1470  uint32_t start_guess = 0;
1471
1472  /* Continue until no instructions are marked "changed". */
1473  while (true) {
1474    if (allow_thread_suspension_) {
1475      self_->AllowThreadSuspension();
1476    }
1477    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1478    uint32_t insn_idx = start_guess;
1479    for (; insn_idx < insns_size; insn_idx++) {
1480      if (insn_flags_[insn_idx].IsChanged())
1481        break;
1482    }
1483    if (insn_idx == insns_size) {
1484      if (start_guess != 0) {
1485        /* try again, starting from the top */
1486        start_guess = 0;
1487        continue;
1488      } else {
1489        /* all flags are clear */
1490        break;
1491      }
1492    }
1493    // We carry the working set of registers from instruction to instruction. If this address can
1494    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1495    // "changed" flags, we need to load the set of registers from the table.
1496    // Because we always prefer to continue on to the next instruction, we should never have a
1497    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1498    // target.
1499    work_insn_idx_ = insn_idx;
1500    if (insn_flags_[insn_idx].IsBranchTarget()) {
1501      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1502    } else if (kIsDebugBuild) {
1503      /*
1504       * Sanity check: retrieve the stored register line (assuming
1505       * a full table) and make sure it actually matches.
1506       */
1507      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1508      if (register_line != nullptr) {
1509        if (work_line_->CompareLine(register_line) != 0) {
1510          Dump(std::cout);
1511          std::cout << info_messages_.str();
1512          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1513                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1514                     << " work_line=" << work_line_->Dump(this) << "\n"
1515                     << "  expected=" << register_line->Dump(this);
1516        }
1517      }
1518    }
1519    if (!CodeFlowVerifyInstruction(&start_guess)) {
1520      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1521      prepend += " failed to verify: ";
1522      PrependToLastFailMessage(prepend);
1523      return false;
1524    }
1525    /* Clear "changed" and mark as visited. */
1526    insn_flags_[insn_idx].SetVisited();
1527    insn_flags_[insn_idx].ClearChanged();
1528  }
1529
1530  if (gDebugVerify) {
1531    /*
1532     * Scan for dead code. There's nothing "evil" about dead code
1533     * (besides the wasted space), but it indicates a flaw somewhere
1534     * down the line, possibly in the verifier.
1535     *
1536     * If we've substituted "always throw" instructions into the stream,
1537     * we are almost certainly going to have some dead code.
1538     */
1539    int dead_start = -1;
1540    uint32_t insn_idx = 0;
1541    for (; insn_idx < insns_size;
1542         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1543      /*
1544       * Switch-statement data doesn't get "visited" by scanner. It
1545       * may or may not be preceded by a padding NOP (for alignment).
1546       */
1547      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1548          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1549          insns[insn_idx] == Instruction::kArrayDataSignature ||
1550          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1551           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1552            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1553            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1554        insn_flags_[insn_idx].SetVisited();
1555      }
1556
1557      if (!insn_flags_[insn_idx].IsVisited()) {
1558        if (dead_start < 0)
1559          dead_start = insn_idx;
1560      } else if (dead_start >= 0) {
1561        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1562                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1563        dead_start = -1;
1564      }
1565    }
1566    if (dead_start >= 0) {
1567      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1568                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1569    }
1570    // To dump the state of the verify after a method, do something like:
1571    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1572    //     "boolean java.lang.String.equals(java.lang.Object)") {
1573    //   LOG(INFO) << info_messages_.str();
1574    // }
1575  }
1576  return true;
1577}
1578
1579// Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1580// is no such field.
1581static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, uint16_t type_idx) {
1582  const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1583  DCHECK(class_def != nullptr);
1584  const uint8_t* class_data = dex_file.GetClassData(*class_def);
1585  DCHECK(class_data != nullptr);
1586  ClassDataItemIterator it(dex_file, class_data);
1587  // Skip static fields.
1588  while (it.HasNextStaticField()) {
1589    it.Next();
1590  }
1591  while (it.HasNextInstanceField()) {
1592    if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
1593      return it.GetMemberIndex();
1594    }
1595    it.Next();
1596  }
1597  return DexFile::kDexNoIndex;
1598}
1599
1600bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1601  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1602  // We want the state _before_ the instruction, for the case where the dex pc we're
1603  // interested in is itself a monitor-enter instruction (which is a likely place
1604  // for a thread to be suspended).
1605  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1606    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1607    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1608      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1609    }
1610  }
1611
1612  /*
1613   * Once we finish decoding the instruction, we need to figure out where
1614   * we can go from here. There are three possible ways to transfer
1615   * control to another statement:
1616   *
1617   * (1) Continue to the next instruction. Applies to all but
1618   *     unconditional branches, method returns, and exception throws.
1619   * (2) Branch to one or more possible locations. Applies to branches
1620   *     and switch statements.
1621   * (3) Exception handlers. Applies to any instruction that can
1622   *     throw an exception that is handled by an encompassing "try"
1623   *     block.
1624   *
1625   * We can also return, in which case there is no successor instruction
1626   * from this point.
1627   *
1628   * The behavior can be determined from the opcode flags.
1629   */
1630  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1631  const Instruction* inst = Instruction::At(insns);
1632  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1633
1634  int32_t branch_target = 0;
1635  bool just_set_result = false;
1636  if (gDebugVerify) {
1637    // Generate processing back trace to debug verifier
1638    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1639                    << work_line_->Dump(this) << "\n";
1640  }
1641
1642  /*
1643   * Make a copy of the previous register state. If the instruction
1644   * can throw an exception, we will copy/merge this into the "catch"
1645   * address rather than work_line, because we don't want the result
1646   * from the "successful" code path (e.g. a check-cast that "improves"
1647   * a type) to be visible to the exception handler.
1648   */
1649  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1650    saved_line_->CopyFromLine(work_line_.get());
1651  } else if (kIsDebugBuild) {
1652    saved_line_->FillWithGarbage();
1653  }
1654  DCHECK(!have_pending_runtime_throw_failure_);  // Per-instruction flag, should not be set here.
1655
1656
1657  // We need to ensure the work line is consistent while performing validation. When we spot a
1658  // peephole pattern we compute a new line for either the fallthrough instruction or the
1659  // branch target.
1660  std::unique_ptr<RegisterLine> branch_line;
1661  std::unique_ptr<RegisterLine> fallthrough_line;
1662
1663  switch (inst->Opcode()) {
1664    case Instruction::NOP:
1665      /*
1666       * A "pure" NOP has no effect on anything. Data tables start with
1667       * a signature that looks like a NOP; if we see one of these in
1668       * the course of executing code then we have a problem.
1669       */
1670      if (inst->VRegA_10x() != 0) {
1671        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1672      }
1673      break;
1674
1675    case Instruction::MOVE:
1676      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1677      break;
1678    case Instruction::MOVE_FROM16:
1679      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1680      break;
1681    case Instruction::MOVE_16:
1682      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1683      break;
1684    case Instruction::MOVE_WIDE:
1685      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1686      break;
1687    case Instruction::MOVE_WIDE_FROM16:
1688      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1689      break;
1690    case Instruction::MOVE_WIDE_16:
1691      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1692      break;
1693    case Instruction::MOVE_OBJECT:
1694      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1695      break;
1696    case Instruction::MOVE_OBJECT_FROM16:
1697      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1698      break;
1699    case Instruction::MOVE_OBJECT_16:
1700      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1701      break;
1702
1703    /*
1704     * The move-result instructions copy data out of a "pseudo-register"
1705     * with the results from the last method invocation. In practice we
1706     * might want to hold the result in an actual CPU register, so the
1707     * Dalvik spec requires that these only appear immediately after an
1708     * invoke or filled-new-array.
1709     *
1710     * These calls invalidate the "result" register. (This is now
1711     * redundant with the reset done below, but it can make the debug info
1712     * easier to read in some cases.)
1713     */
1714    case Instruction::MOVE_RESULT:
1715      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1716      break;
1717    case Instruction::MOVE_RESULT_WIDE:
1718      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1719      break;
1720    case Instruction::MOVE_RESULT_OBJECT:
1721      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1722      break;
1723
1724    case Instruction::MOVE_EXCEPTION: {
1725      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1726      // where one entrypoint to the catch block is not actually an exception path.
1727      if (work_insn_idx_ == 0) {
1728        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1729        break;
1730      }
1731      /*
1732       * This statement can only appear as the first instruction in an exception handler. We verify
1733       * that as part of extracting the exception type from the catch block list.
1734       */
1735      const RegType& res_type = GetCaughtExceptionType();
1736      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1737      break;
1738    }
1739    case Instruction::RETURN_VOID:
1740      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
1741        if (!GetMethodReturnType().IsConflict()) {
1742          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1743        }
1744      }
1745      break;
1746    case Instruction::RETURN:
1747      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
1748        /* check the method signature */
1749        const RegType& return_type = GetMethodReturnType();
1750        if (!return_type.IsCategory1Types()) {
1751          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1752                                            << return_type;
1753        } else {
1754          // Compilers may generate synthetic functions that write byte values into boolean fields.
1755          // Also, it may use integer values for boolean, byte, short, and character return types.
1756          const uint32_t vregA = inst->VRegA_11x();
1757          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1758          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1759                          ((return_type.IsBoolean() || return_type.IsByte() ||
1760                           return_type.IsShort() || return_type.IsChar()) &&
1761                           src_type.IsInteger()));
1762          /* check the register contents */
1763          bool success =
1764              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1765          if (!success) {
1766            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1767          }
1768        }
1769      }
1770      break;
1771    case Instruction::RETURN_WIDE:
1772      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
1773        /* check the method signature */
1774        const RegType& return_type = GetMethodReturnType();
1775        if (!return_type.IsCategory2Types()) {
1776          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1777        } else {
1778          /* check the register contents */
1779          const uint32_t vregA = inst->VRegA_11x();
1780          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1781          if (!success) {
1782            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1783          }
1784        }
1785      }
1786      break;
1787    case Instruction::RETURN_OBJECT:
1788      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
1789        const RegType& return_type = GetMethodReturnType();
1790        if (!return_type.IsReferenceTypes()) {
1791          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1792        } else {
1793          /* return_type is the *expected* return type, not register value */
1794          DCHECK(!return_type.IsZero());
1795          DCHECK(!return_type.IsUninitializedReference());
1796          const uint32_t vregA = inst->VRegA_11x();
1797          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1798          // Disallow returning uninitialized values and verify that the reference in vAA is an
1799          // instance of the "return_type"
1800          if (reg_type.IsUninitializedTypes()) {
1801            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1802                                              << reg_type << "'";
1803          } else if (!return_type.IsAssignableFrom(reg_type)) {
1804            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1805              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1806                  << "' or '" << reg_type << "'";
1807            } else {
1808              bool soft_error = false;
1809              // Check whether arrays are involved. They will show a valid class status, even
1810              // if their components are erroneous.
1811              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
1812                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
1813                if (soft_error) {
1814                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
1815                        << reg_type << " vs " << return_type;
1816                }
1817              }
1818
1819              if (!soft_error) {
1820                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1821                    << "', but expected from declaration '" << return_type << "'";
1822              }
1823            }
1824          }
1825        }
1826      }
1827      break;
1828
1829      /* could be boolean, int, float, or a null reference */
1830    case Instruction::CONST_4: {
1831      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1832      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1833                                  DetermineCat1Constant(val, need_precise_constants_));
1834      break;
1835    }
1836    case Instruction::CONST_16: {
1837      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1838      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1839                                  DetermineCat1Constant(val, need_precise_constants_));
1840      break;
1841    }
1842    case Instruction::CONST: {
1843      int32_t val = inst->VRegB_31i();
1844      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1845                                  DetermineCat1Constant(val, need_precise_constants_));
1846      break;
1847    }
1848    case Instruction::CONST_HIGH16: {
1849      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1850      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1851                                  DetermineCat1Constant(val, need_precise_constants_));
1852      break;
1853    }
1854      /* could be long or double; resolved upon use */
1855    case Instruction::CONST_WIDE_16: {
1856      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1857      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1858      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1859      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1860      break;
1861    }
1862    case Instruction::CONST_WIDE_32: {
1863      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1864      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1865      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1866      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1867      break;
1868    }
1869    case Instruction::CONST_WIDE: {
1870      int64_t val = inst->VRegB_51l();
1871      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1872      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1873      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1874      break;
1875    }
1876    case Instruction::CONST_WIDE_HIGH16: {
1877      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1878      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1879      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1880      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1881      break;
1882    }
1883    case Instruction::CONST_STRING:
1884      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1885      break;
1886    case Instruction::CONST_STRING_JUMBO:
1887      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1888      break;
1889    case Instruction::CONST_CLASS: {
1890      // Get type from instruction if unresolved then we need an access check
1891      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1892      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1893      // Register holds class, ie its type is class, on error it will hold Conflict.
1894      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1895                                  res_type.IsConflict() ? res_type
1896                                                        : reg_types_.JavaLangClass());
1897      break;
1898    }
1899    case Instruction::MONITOR_ENTER:
1900      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1901      break;
1902    case Instruction::MONITOR_EXIT:
1903      /*
1904       * monitor-exit instructions are odd. They can throw exceptions,
1905       * but when they do they act as if they succeeded and the PC is
1906       * pointing to the following instruction. (This behavior goes back
1907       * to the need to handle asynchronous exceptions, a now-deprecated
1908       * feature that Dalvik doesn't support.)
1909       *
1910       * In practice we don't need to worry about this. The only
1911       * exceptions that can be thrown from monitor-exit are for a
1912       * null reference and -exit without a matching -enter. If the
1913       * structured locking checks are working, the former would have
1914       * failed on the -enter instruction, and the latter is impossible.
1915       *
1916       * This is fortunate, because issue 3221411 prevents us from
1917       * chasing the "can throw" path when monitor verification is
1918       * enabled. If we can fully verify the locking we can ignore
1919       * some catch blocks (which will show up as "dead" code when
1920       * we skip them here); if we can't, then the code path could be
1921       * "live" so we still need to check it.
1922       */
1923      opcode_flags &= ~Instruction::kThrow;
1924      work_line_->PopMonitor(this, inst->VRegA_11x());
1925      break;
1926
1927    case Instruction::CHECK_CAST:
1928    case Instruction::INSTANCE_OF: {
1929      /*
1930       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1931       * could be a "upcast" -- not expected, so we don't try to address it.)
1932       *
1933       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1934       * dec_insn.vA when branching to a handler.
1935       */
1936      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1937      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1938      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1939      if (res_type.IsConflict()) {
1940        // If this is a primitive type, fail HARD.
1941        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1942        if (klass != nullptr && klass->IsPrimitive()) {
1943          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1944              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1945              << GetDeclaringClass();
1946          break;
1947        }
1948
1949        DCHECK_NE(failures_.size(), 0U);
1950        if (!is_checkcast) {
1951          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1952        }
1953        break;  // bad class
1954      }
1955      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1956      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1957      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1958      if (!res_type.IsNonZeroReferenceTypes()) {
1959        if (is_checkcast) {
1960          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1961        } else {
1962          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1963        }
1964      } else if (!orig_type.IsReferenceTypes()) {
1965        if (is_checkcast) {
1966          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1967        } else {
1968          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1969        }
1970      } else {
1971        if (is_checkcast) {
1972          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1973        } else {
1974          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1975        }
1976      }
1977      break;
1978    }
1979    case Instruction::ARRAY_LENGTH: {
1980      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1981      if (res_type.IsReferenceTypes()) {
1982        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1983          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1984        } else {
1985          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1986        }
1987      } else {
1988        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1989      }
1990      break;
1991    }
1992    case Instruction::NEW_INSTANCE: {
1993      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1994      if (res_type.IsConflict()) {
1995        DCHECK_NE(failures_.size(), 0U);
1996        break;  // bad class
1997      }
1998      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1999      // can't create an instance of an interface or abstract class */
2000      if (!res_type.IsInstantiableTypes()) {
2001        Fail(VERIFY_ERROR_INSTANTIATION)
2002            << "new-instance on primitive, interface or abstract class" << res_type;
2003        // Soft failure so carry on to set register type.
2004      }
2005      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2006      // Any registers holding previous allocations from this address that have not yet been
2007      // initialized must be marked invalid.
2008      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2009      // add the new uninitialized reference to the register state
2010      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
2011      break;
2012    }
2013    case Instruction::NEW_ARRAY:
2014      VerifyNewArray(inst, false, false);
2015      break;
2016    case Instruction::FILLED_NEW_ARRAY:
2017      VerifyNewArray(inst, true, false);
2018      just_set_result = true;  // Filled new array sets result register
2019      break;
2020    case Instruction::FILLED_NEW_ARRAY_RANGE:
2021      VerifyNewArray(inst, true, true);
2022      just_set_result = true;  // Filled new array range sets result register
2023      break;
2024    case Instruction::CMPL_FLOAT:
2025    case Instruction::CMPG_FLOAT:
2026      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2027        break;
2028      }
2029      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2030        break;
2031      }
2032      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2033      break;
2034    case Instruction::CMPL_DOUBLE:
2035    case Instruction::CMPG_DOUBLE:
2036      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2037                                              reg_types_.DoubleHi())) {
2038        break;
2039      }
2040      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2041                                              reg_types_.DoubleHi())) {
2042        break;
2043      }
2044      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2045      break;
2046    case Instruction::CMP_LONG:
2047      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2048                                              reg_types_.LongHi())) {
2049        break;
2050      }
2051      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2052                                              reg_types_.LongHi())) {
2053        break;
2054      }
2055      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2056      break;
2057    case Instruction::THROW: {
2058      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2059      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
2060        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2061            << "thrown class " << res_type << " not instanceof Throwable";
2062      }
2063      break;
2064    }
2065    case Instruction::GOTO:
2066    case Instruction::GOTO_16:
2067    case Instruction::GOTO_32:
2068      /* no effect on or use of registers */
2069      break;
2070
2071    case Instruction::PACKED_SWITCH:
2072    case Instruction::SPARSE_SWITCH:
2073      /* verify that vAA is an integer, or can be converted to one */
2074      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2075      break;
2076
2077    case Instruction::FILL_ARRAY_DATA: {
2078      /* Similar to the verification done for APUT */
2079      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2080      /* array_type can be null if the reg type is Zero */
2081      if (!array_type.IsZero()) {
2082        if (!array_type.IsArrayTypes()) {
2083          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2084                                            << array_type;
2085        } else {
2086          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2087          DCHECK(!component_type.IsConflict());
2088          if (component_type.IsNonZeroReferenceTypes()) {
2089            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2090                                              << component_type;
2091          } else {
2092            // Now verify if the element width in the table matches the element width declared in
2093            // the array
2094            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2095            if (array_data[0] != Instruction::kArrayDataSignature) {
2096              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2097            } else {
2098              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2099              // Since we don't compress the data in Dex, expect to see equal width of data stored
2100              // in the table and expected from the array class.
2101              if (array_data[1] != elem_width) {
2102                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2103                                                  << " vs " << elem_width << ")";
2104              }
2105            }
2106          }
2107        }
2108      }
2109      break;
2110    }
2111    case Instruction::IF_EQ:
2112    case Instruction::IF_NE: {
2113      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2114      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2115      bool mismatch = false;
2116      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2117        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2118      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2119        mismatch = !reg_type2.IsReferenceTypes();
2120      } else {  // both integral?
2121        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2122      }
2123      if (mismatch) {
2124        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2125                                          << reg_type2 << ") must both be references or integral";
2126      }
2127      break;
2128    }
2129    case Instruction::IF_LT:
2130    case Instruction::IF_GE:
2131    case Instruction::IF_GT:
2132    case Instruction::IF_LE: {
2133      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2134      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2135      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2136        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2137                                          << reg_type2 << ") must be integral";
2138      }
2139      break;
2140    }
2141    case Instruction::IF_EQZ:
2142    case Instruction::IF_NEZ: {
2143      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2144      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2145        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2146                                          << " unexpected as arg to if-eqz/if-nez";
2147      }
2148
2149      // Find previous instruction - its existence is a precondition to peephole optimization.
2150      uint32_t instance_of_idx = 0;
2151      if (0 != work_insn_idx_) {
2152        instance_of_idx = work_insn_idx_ - 1;
2153        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2154          instance_of_idx--;
2155        }
2156        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2157                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2158                        work_insn_idx_)) {
2159          break;
2160        }
2161      } else {
2162        break;
2163      }
2164
2165      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2166
2167      /* Check for peep-hole pattern of:
2168       *    ...;
2169       *    instance-of vX, vY, T;
2170       *    ifXXX vX, label ;
2171       *    ...;
2172       * label:
2173       *    ...;
2174       * and sharpen the type of vY to be type T.
2175       * Note, this pattern can't be if:
2176       *  - if there are other branches to this branch,
2177       *  - when vX == vY.
2178       */
2179      if (!CurrentInsnFlags()->IsBranchTarget() &&
2180          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2181          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2182          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2183        // Check the type of the instance-of is different than that of registers type, as if they
2184        // are the same there is no work to be done here. Check that the conversion is not to or
2185        // from an unresolved type as type information is imprecise. If the instance-of is to an
2186        // interface then ignore the type information as interfaces can only be treated as Objects
2187        // and we don't want to disallow field and other operations on the object. If the value
2188        // being instance-of checked against is known null (zero) then allow the optimization as
2189        // we didn't have type information. If the merge of the instance-of type with the original
2190        // type is assignable to the original then allow optimization. This check is performed to
2191        // ensure that subsequent merges don't lose type information - such as becoming an
2192        // interface from a class that would lose information relevant to field checks.
2193        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2194        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2195
2196        if (!orig_type.Equals(cast_type) &&
2197            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2198            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2199            !cast_type.GetClass()->IsInterface() &&
2200            (orig_type.IsZero() ||
2201                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2202          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2203          if (inst->Opcode() == Instruction::IF_EQZ) {
2204            fallthrough_line.reset(update_line);
2205          } else {
2206            branch_line.reset(update_line);
2207          }
2208          update_line->CopyFromLine(work_line_.get());
2209          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2210          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2211            // See if instance-of was preceded by a move-object operation, common due to the small
2212            // register encoding space of instance-of, and propagate type information to the source
2213            // of the move-object.
2214            uint32_t move_idx = instance_of_idx - 1;
2215            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2216              move_idx--;
2217            }
2218            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2219                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2220                            work_insn_idx_)) {
2221              break;
2222            }
2223            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2224            switch (move_inst->Opcode()) {
2225              case Instruction::MOVE_OBJECT:
2226                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2227                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2228                }
2229                break;
2230              case Instruction::MOVE_OBJECT_FROM16:
2231                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2232                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2233                }
2234                break;
2235              case Instruction::MOVE_OBJECT_16:
2236                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2237                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2238                }
2239                break;
2240              default:
2241                break;
2242            }
2243          }
2244        }
2245      }
2246
2247      break;
2248    }
2249    case Instruction::IF_LTZ:
2250    case Instruction::IF_GEZ:
2251    case Instruction::IF_GTZ:
2252    case Instruction::IF_LEZ: {
2253      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2254      if (!reg_type.IsIntegralTypes()) {
2255        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2256                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2257      }
2258      break;
2259    }
2260    case Instruction::AGET_BOOLEAN:
2261      VerifyAGet(inst, reg_types_.Boolean(), true);
2262      break;
2263    case Instruction::AGET_BYTE:
2264      VerifyAGet(inst, reg_types_.Byte(), true);
2265      break;
2266    case Instruction::AGET_CHAR:
2267      VerifyAGet(inst, reg_types_.Char(), true);
2268      break;
2269    case Instruction::AGET_SHORT:
2270      VerifyAGet(inst, reg_types_.Short(), true);
2271      break;
2272    case Instruction::AGET:
2273      VerifyAGet(inst, reg_types_.Integer(), true);
2274      break;
2275    case Instruction::AGET_WIDE:
2276      VerifyAGet(inst, reg_types_.LongLo(), true);
2277      break;
2278    case Instruction::AGET_OBJECT:
2279      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2280      break;
2281
2282    case Instruction::APUT_BOOLEAN:
2283      VerifyAPut(inst, reg_types_.Boolean(), true);
2284      break;
2285    case Instruction::APUT_BYTE:
2286      VerifyAPut(inst, reg_types_.Byte(), true);
2287      break;
2288    case Instruction::APUT_CHAR:
2289      VerifyAPut(inst, reg_types_.Char(), true);
2290      break;
2291    case Instruction::APUT_SHORT:
2292      VerifyAPut(inst, reg_types_.Short(), true);
2293      break;
2294    case Instruction::APUT:
2295      VerifyAPut(inst, reg_types_.Integer(), true);
2296      break;
2297    case Instruction::APUT_WIDE:
2298      VerifyAPut(inst, reg_types_.LongLo(), true);
2299      break;
2300    case Instruction::APUT_OBJECT:
2301      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2302      break;
2303
2304    case Instruction::IGET_BOOLEAN:
2305      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2306      break;
2307    case Instruction::IGET_BYTE:
2308      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2309      break;
2310    case Instruction::IGET_CHAR:
2311      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2312      break;
2313    case Instruction::IGET_SHORT:
2314      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2315      break;
2316    case Instruction::IGET:
2317      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2318      break;
2319    case Instruction::IGET_WIDE:
2320      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2321      break;
2322    case Instruction::IGET_OBJECT:
2323      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2324                                                    false);
2325      break;
2326
2327    case Instruction::IPUT_BOOLEAN:
2328      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2329      break;
2330    case Instruction::IPUT_BYTE:
2331      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2332      break;
2333    case Instruction::IPUT_CHAR:
2334      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2335      break;
2336    case Instruction::IPUT_SHORT:
2337      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2338      break;
2339    case Instruction::IPUT:
2340      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2341      break;
2342    case Instruction::IPUT_WIDE:
2343      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2344      break;
2345    case Instruction::IPUT_OBJECT:
2346      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2347                                                    false);
2348      break;
2349
2350    case Instruction::SGET_BOOLEAN:
2351      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2352      break;
2353    case Instruction::SGET_BYTE:
2354      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2355      break;
2356    case Instruction::SGET_CHAR:
2357      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2358      break;
2359    case Instruction::SGET_SHORT:
2360      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2361      break;
2362    case Instruction::SGET:
2363      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2364      break;
2365    case Instruction::SGET_WIDE:
2366      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2367      break;
2368    case Instruction::SGET_OBJECT:
2369      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2370                                                    true);
2371      break;
2372
2373    case Instruction::SPUT_BOOLEAN:
2374      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2375      break;
2376    case Instruction::SPUT_BYTE:
2377      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2378      break;
2379    case Instruction::SPUT_CHAR:
2380      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2381      break;
2382    case Instruction::SPUT_SHORT:
2383      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2384      break;
2385    case Instruction::SPUT:
2386      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2387      break;
2388    case Instruction::SPUT_WIDE:
2389      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2390      break;
2391    case Instruction::SPUT_OBJECT:
2392      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2393                                                    true);
2394      break;
2395
2396    case Instruction::INVOKE_VIRTUAL:
2397    case Instruction::INVOKE_VIRTUAL_RANGE:
2398    case Instruction::INVOKE_SUPER:
2399    case Instruction::INVOKE_SUPER_RANGE: {
2400      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2401                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2402      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2403                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2404      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, is_super);
2405      const RegType* return_type = nullptr;
2406      if (called_method != nullptr) {
2407        StackHandleScope<1> hs(self_);
2408        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2409        if (return_type_class != nullptr) {
2410          return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2411                                   return_type_class,
2412                                   return_type_class->CannotBeAssignedFromOtherTypes());
2413        } else {
2414          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2415          self_->ClearException();
2416        }
2417      }
2418      if (return_type == nullptr) {
2419        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2420        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2421        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2422        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2423        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2424      }
2425      if (!return_type->IsLowHalf()) {
2426        work_line_->SetResultRegisterType(this, *return_type);
2427      } else {
2428        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2429      }
2430      just_set_result = true;
2431      break;
2432    }
2433    case Instruction::INVOKE_DIRECT:
2434    case Instruction::INVOKE_DIRECT_RANGE: {
2435      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2436      ArtMethod* called_method = VerifyInvocationArgs(inst,
2437                                                      METHOD_DIRECT,
2438                                                      is_range,
2439                                                      false);
2440      const char* return_type_descriptor;
2441      bool is_constructor;
2442      const RegType* return_type = nullptr;
2443      if (called_method == nullptr) {
2444        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2445        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2446        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2447        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2448        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2449      } else {
2450        is_constructor = called_method->IsConstructor();
2451        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2452        StackHandleScope<1> hs(self_);
2453        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2454        if (return_type_class != nullptr) {
2455          return_type = &FromClass(return_type_descriptor,
2456                                   return_type_class,
2457                                   return_type_class->CannotBeAssignedFromOtherTypes());
2458        } else {
2459          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2460          self_->ClearException();
2461        }
2462      }
2463      if (is_constructor) {
2464        /*
2465         * Some additional checks when calling a constructor. We know from the invocation arg check
2466         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2467         * that to require that called_method->klass is the same as this->klass or this->super,
2468         * allowing the latter only if the "this" argument is the same as the "this" argument to
2469         * this method (which implies that we're in a constructor ourselves).
2470         */
2471        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2472        if (this_type.IsConflict())  // failure.
2473          break;
2474
2475        /* no null refs allowed (?) */
2476        if (this_type.IsZero()) {
2477          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2478          break;
2479        }
2480
2481        /* must be in same class or in superclass */
2482        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2483        // TODO: re-enable constructor type verification
2484        // if (this_super_klass.IsConflict()) {
2485          // Unknown super class, fail so we re-check at runtime.
2486          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2487          // break;
2488        // }
2489
2490        /* arg must be an uninitialized reference */
2491        if (!this_type.IsUninitializedTypes()) {
2492          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2493              << this_type;
2494          break;
2495        }
2496
2497        /*
2498         * Replace the uninitialized reference with an initialized one. We need to do this for all
2499         * registers that have the same object instance in them, not just the "this" register.
2500         */
2501        const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
2502        work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
2503      }
2504      if (return_type == nullptr) {
2505        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2506                                                 false);
2507      }
2508      if (!return_type->IsLowHalf()) {
2509        work_line_->SetResultRegisterType(this, *return_type);
2510      } else {
2511        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2512      }
2513      just_set_result = true;
2514      break;
2515    }
2516    case Instruction::INVOKE_STATIC:
2517    case Instruction::INVOKE_STATIC_RANGE: {
2518        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2519        ArtMethod* called_method = VerifyInvocationArgs(inst,
2520                                                        METHOD_STATIC,
2521                                                        is_range,
2522                                                        false);
2523        const char* descriptor;
2524        if (called_method == nullptr) {
2525          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2526          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2527          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2528          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2529        } else {
2530          descriptor = called_method->GetReturnTypeDescriptor();
2531        }
2532        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2533        if (!return_type.IsLowHalf()) {
2534          work_line_->SetResultRegisterType(this, return_type);
2535        } else {
2536          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2537        }
2538        just_set_result = true;
2539      }
2540      break;
2541    case Instruction::INVOKE_INTERFACE:
2542    case Instruction::INVOKE_INTERFACE_RANGE: {
2543      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2544      ArtMethod* abs_method = VerifyInvocationArgs(inst,
2545                                                   METHOD_INTERFACE,
2546                                                   is_range,
2547                                                   false);
2548      if (abs_method != nullptr) {
2549        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2550        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2551          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2552              << PrettyMethod(abs_method) << "'";
2553          break;
2554        }
2555      }
2556      /* Get the type of the "this" arg, which should either be a sub-interface of called
2557       * interface or Object (see comments in RegType::JoinClass).
2558       */
2559      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2560      if (this_type.IsZero()) {
2561        /* null pointer always passes (and always fails at runtime) */
2562      } else {
2563        if (this_type.IsUninitializedTypes()) {
2564          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2565              << this_type;
2566          break;
2567        }
2568        // In the past we have tried to assert that "called_interface" is assignable
2569        // from "this_type.GetClass()", however, as we do an imprecise Join
2570        // (RegType::JoinClass) we don't have full information on what interfaces are
2571        // implemented by "this_type". For example, two classes may implement the same
2572        // interfaces and have a common parent that doesn't implement the interface. The
2573        // join will set "this_type" to the parent class and a test that this implements
2574        // the interface will incorrectly fail.
2575      }
2576      /*
2577       * We don't have an object instance, so we can't find the concrete method. However, all of
2578       * the type information is in the abstract method, so we're good.
2579       */
2580      const char* descriptor;
2581      if (abs_method == nullptr) {
2582        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2583        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2584        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2585        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2586      } else {
2587        descriptor = abs_method->GetReturnTypeDescriptor();
2588      }
2589      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2590      if (!return_type.IsLowHalf()) {
2591        work_line_->SetResultRegisterType(this, return_type);
2592      } else {
2593        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2594      }
2595      just_set_result = true;
2596      break;
2597    }
2598    case Instruction::NEG_INT:
2599    case Instruction::NOT_INT:
2600      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2601      break;
2602    case Instruction::NEG_LONG:
2603    case Instruction::NOT_LONG:
2604      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2605                                   reg_types_.LongLo(), reg_types_.LongHi());
2606      break;
2607    case Instruction::NEG_FLOAT:
2608      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2609      break;
2610    case Instruction::NEG_DOUBLE:
2611      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2612                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2613      break;
2614    case Instruction::INT_TO_LONG:
2615      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2616                                     reg_types_.Integer());
2617      break;
2618    case Instruction::INT_TO_FLOAT:
2619      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2620      break;
2621    case Instruction::INT_TO_DOUBLE:
2622      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2623                                     reg_types_.Integer());
2624      break;
2625    case Instruction::LONG_TO_INT:
2626      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2627                                       reg_types_.LongLo(), reg_types_.LongHi());
2628      break;
2629    case Instruction::LONG_TO_FLOAT:
2630      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2631                                       reg_types_.LongLo(), reg_types_.LongHi());
2632      break;
2633    case Instruction::LONG_TO_DOUBLE:
2634      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2635                                   reg_types_.LongLo(), reg_types_.LongHi());
2636      break;
2637    case Instruction::FLOAT_TO_INT:
2638      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2639      break;
2640    case Instruction::FLOAT_TO_LONG:
2641      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2642                                     reg_types_.Float());
2643      break;
2644    case Instruction::FLOAT_TO_DOUBLE:
2645      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2646                                     reg_types_.Float());
2647      break;
2648    case Instruction::DOUBLE_TO_INT:
2649      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2650                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2651      break;
2652    case Instruction::DOUBLE_TO_LONG:
2653      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2654                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2655      break;
2656    case Instruction::DOUBLE_TO_FLOAT:
2657      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2658                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2659      break;
2660    case Instruction::INT_TO_BYTE:
2661      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2662      break;
2663    case Instruction::INT_TO_CHAR:
2664      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2665      break;
2666    case Instruction::INT_TO_SHORT:
2667      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2668      break;
2669
2670    case Instruction::ADD_INT:
2671    case Instruction::SUB_INT:
2672    case Instruction::MUL_INT:
2673    case Instruction::REM_INT:
2674    case Instruction::DIV_INT:
2675    case Instruction::SHL_INT:
2676    case Instruction::SHR_INT:
2677    case Instruction::USHR_INT:
2678      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2679                                reg_types_.Integer(), false);
2680      break;
2681    case Instruction::AND_INT:
2682    case Instruction::OR_INT:
2683    case Instruction::XOR_INT:
2684      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2685                                reg_types_.Integer(), true);
2686      break;
2687    case Instruction::ADD_LONG:
2688    case Instruction::SUB_LONG:
2689    case Instruction::MUL_LONG:
2690    case Instruction::DIV_LONG:
2691    case Instruction::REM_LONG:
2692    case Instruction::AND_LONG:
2693    case Instruction::OR_LONG:
2694    case Instruction::XOR_LONG:
2695      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2696                                    reg_types_.LongLo(), reg_types_.LongHi(),
2697                                    reg_types_.LongLo(), reg_types_.LongHi());
2698      break;
2699    case Instruction::SHL_LONG:
2700    case Instruction::SHR_LONG:
2701    case Instruction::USHR_LONG:
2702      /* shift distance is Int, making these different from other binary operations */
2703      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2704                                         reg_types_.Integer());
2705      break;
2706    case Instruction::ADD_FLOAT:
2707    case Instruction::SUB_FLOAT:
2708    case Instruction::MUL_FLOAT:
2709    case Instruction::DIV_FLOAT:
2710    case Instruction::REM_FLOAT:
2711      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2712                                reg_types_.Float(), false);
2713      break;
2714    case Instruction::ADD_DOUBLE:
2715    case Instruction::SUB_DOUBLE:
2716    case Instruction::MUL_DOUBLE:
2717    case Instruction::DIV_DOUBLE:
2718    case Instruction::REM_DOUBLE:
2719      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2720                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2721                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2722      break;
2723    case Instruction::ADD_INT_2ADDR:
2724    case Instruction::SUB_INT_2ADDR:
2725    case Instruction::MUL_INT_2ADDR:
2726    case Instruction::REM_INT_2ADDR:
2727    case Instruction::SHL_INT_2ADDR:
2728    case Instruction::SHR_INT_2ADDR:
2729    case Instruction::USHR_INT_2ADDR:
2730      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2731                                     reg_types_.Integer(), false);
2732      break;
2733    case Instruction::AND_INT_2ADDR:
2734    case Instruction::OR_INT_2ADDR:
2735    case Instruction::XOR_INT_2ADDR:
2736      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2737                                     reg_types_.Integer(), true);
2738      break;
2739    case Instruction::DIV_INT_2ADDR:
2740      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2741                                     reg_types_.Integer(), false);
2742      break;
2743    case Instruction::ADD_LONG_2ADDR:
2744    case Instruction::SUB_LONG_2ADDR:
2745    case Instruction::MUL_LONG_2ADDR:
2746    case Instruction::DIV_LONG_2ADDR:
2747    case Instruction::REM_LONG_2ADDR:
2748    case Instruction::AND_LONG_2ADDR:
2749    case Instruction::OR_LONG_2ADDR:
2750    case Instruction::XOR_LONG_2ADDR:
2751      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2752                                         reg_types_.LongLo(), reg_types_.LongHi(),
2753                                         reg_types_.LongLo(), reg_types_.LongHi());
2754      break;
2755    case Instruction::SHL_LONG_2ADDR:
2756    case Instruction::SHR_LONG_2ADDR:
2757    case Instruction::USHR_LONG_2ADDR:
2758      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2759                                              reg_types_.Integer());
2760      break;
2761    case Instruction::ADD_FLOAT_2ADDR:
2762    case Instruction::SUB_FLOAT_2ADDR:
2763    case Instruction::MUL_FLOAT_2ADDR:
2764    case Instruction::DIV_FLOAT_2ADDR:
2765    case Instruction::REM_FLOAT_2ADDR:
2766      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2767                                     reg_types_.Float(), false);
2768      break;
2769    case Instruction::ADD_DOUBLE_2ADDR:
2770    case Instruction::SUB_DOUBLE_2ADDR:
2771    case Instruction::MUL_DOUBLE_2ADDR:
2772    case Instruction::DIV_DOUBLE_2ADDR:
2773    case Instruction::REM_DOUBLE_2ADDR:
2774      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2775                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2776                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2777      break;
2778    case Instruction::ADD_INT_LIT16:
2779    case Instruction::RSUB_INT_LIT16:
2780    case Instruction::MUL_INT_LIT16:
2781    case Instruction::DIV_INT_LIT16:
2782    case Instruction::REM_INT_LIT16:
2783      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2784                                 true);
2785      break;
2786    case Instruction::AND_INT_LIT16:
2787    case Instruction::OR_INT_LIT16:
2788    case Instruction::XOR_INT_LIT16:
2789      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2790                                 true);
2791      break;
2792    case Instruction::ADD_INT_LIT8:
2793    case Instruction::RSUB_INT_LIT8:
2794    case Instruction::MUL_INT_LIT8:
2795    case Instruction::DIV_INT_LIT8:
2796    case Instruction::REM_INT_LIT8:
2797    case Instruction::SHL_INT_LIT8:
2798    case Instruction::SHR_INT_LIT8:
2799    case Instruction::USHR_INT_LIT8:
2800      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2801                                 false);
2802      break;
2803    case Instruction::AND_INT_LIT8:
2804    case Instruction::OR_INT_LIT8:
2805    case Instruction::XOR_INT_LIT8:
2806      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2807                                 false);
2808      break;
2809
2810    // Special instructions.
2811    case Instruction::RETURN_VOID_NO_BARRIER:
2812      if (IsConstructor() && !IsStatic()) {
2813        auto& declaring_class = GetDeclaringClass();
2814        if (declaring_class.IsUnresolvedReference()) {
2815          // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
2816          // manually over the underlying dex file.
2817          uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
2818              dex_file_->GetMethodId(dex_method_idx_).class_idx_);
2819          if (first_index != DexFile::kDexNoIndex) {
2820            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
2821                              << first_index;
2822          }
2823          break;
2824        }
2825        auto* klass = declaring_class.GetClass();
2826        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
2827          if (klass->GetInstanceField(i)->IsFinal()) {
2828            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
2829                << PrettyField(klass->GetInstanceField(i));
2830            break;
2831          }
2832        }
2833      }
2834      break;
2835    // Note: the following instructions encode offsets derived from class linking.
2836    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2837    // meaning if the class linking and resolution were successful.
2838    case Instruction::IGET_QUICK:
2839      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2840      break;
2841    case Instruction::IGET_WIDE_QUICK:
2842      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2843      break;
2844    case Instruction::IGET_OBJECT_QUICK:
2845      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2846      break;
2847    case Instruction::IGET_BOOLEAN_QUICK:
2848      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2849      break;
2850    case Instruction::IGET_BYTE_QUICK:
2851      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2852      break;
2853    case Instruction::IGET_CHAR_QUICK:
2854      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2855      break;
2856    case Instruction::IGET_SHORT_QUICK:
2857      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2858      break;
2859    case Instruction::IPUT_QUICK:
2860      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2861      break;
2862    case Instruction::IPUT_BOOLEAN_QUICK:
2863      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2864      break;
2865    case Instruction::IPUT_BYTE_QUICK:
2866      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2867      break;
2868    case Instruction::IPUT_CHAR_QUICK:
2869      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2870      break;
2871    case Instruction::IPUT_SHORT_QUICK:
2872      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2873      break;
2874    case Instruction::IPUT_WIDE_QUICK:
2875      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2876      break;
2877    case Instruction::IPUT_OBJECT_QUICK:
2878      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2879      break;
2880    case Instruction::INVOKE_VIRTUAL_QUICK:
2881    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2882      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2883      ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2884      if (called_method != nullptr) {
2885        const char* descriptor = called_method->GetReturnTypeDescriptor();
2886        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2887        if (!return_type.IsLowHalf()) {
2888          work_line_->SetResultRegisterType(this, return_type);
2889        } else {
2890          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2891        }
2892        just_set_result = true;
2893      }
2894      break;
2895    }
2896
2897    /* These should never appear during verification. */
2898    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2899    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2900    case Instruction::UNUSED_79:
2901    case Instruction::UNUSED_7A:
2902      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2903      break;
2904
2905    /*
2906     * DO NOT add a "default" clause here. Without it the compiler will
2907     * complain if an instruction is missing (which is desirable).
2908     */
2909  }  // end - switch (dec_insn.opcode)
2910
2911  if (have_pending_hard_failure_) {
2912    if (Runtime::Current()->IsAotCompiler()) {
2913      /* When AOT compiling, check that the last failure is a hard failure */
2914      if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
2915        LOG(ERROR) << "Pending failures:";
2916        for (auto& error : failures_) {
2917          LOG(ERROR) << error;
2918        }
2919        for (auto& error_msg : failure_messages_) {
2920          LOG(ERROR) << error_msg->str();
2921        }
2922        LOG(FATAL) << "Pending hard failure, but last failure not hard.";
2923      }
2924    }
2925    /* immediate failure, reject class */
2926    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2927    return false;
2928  } else if (have_pending_runtime_throw_failure_) {
2929    /* checking interpreter will throw, mark following code as unreachable */
2930    opcode_flags = Instruction::kThrow;
2931    have_any_pending_runtime_throw_failure_ = true;
2932    // Reset the pending_runtime_throw flag. The flag is a global to decouple Fail and is per
2933    // instruction.
2934    have_pending_runtime_throw_failure_ = false;
2935  }
2936  /*
2937   * If we didn't just set the result register, clear it out. This ensures that you can only use
2938   * "move-result" immediately after the result is set. (We could check this statically, but it's
2939   * not expensive and it makes our debugging output cleaner.)
2940   */
2941  if (!just_set_result) {
2942    work_line_->SetResultTypeToUnknown(this);
2943  }
2944
2945
2946
2947  /*
2948   * Handle "branch". Tag the branch target.
2949   *
2950   * NOTE: instructions like Instruction::EQZ provide information about the
2951   * state of the register when the branch is taken or not taken. For example,
2952   * somebody could get a reference field, check it for zero, and if the
2953   * branch is taken immediately store that register in a boolean field
2954   * since the value is known to be zero. We do not currently account for
2955   * that, and will reject the code.
2956   *
2957   * TODO: avoid re-fetching the branch target
2958   */
2959  if ((opcode_flags & Instruction::kBranch) != 0) {
2960    bool isConditional, selfOkay;
2961    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2962      /* should never happen after static verification */
2963      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2964      return false;
2965    }
2966    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2967    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2968      return false;
2969    }
2970    /* update branch target, set "changed" if appropriate */
2971    if (nullptr != branch_line.get()) {
2972      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2973        return false;
2974      }
2975    } else {
2976      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2977        return false;
2978      }
2979    }
2980  }
2981
2982  /*
2983   * Handle "switch". Tag all possible branch targets.
2984   *
2985   * We've already verified that the table is structurally sound, so we
2986   * just need to walk through and tag the targets.
2987   */
2988  if ((opcode_flags & Instruction::kSwitch) != 0) {
2989    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2990    const uint16_t* switch_insns = insns + offset_to_switch;
2991    int switch_count = switch_insns[1];
2992    int offset_to_targets, targ;
2993
2994    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2995      /* 0 = sig, 1 = count, 2/3 = first key */
2996      offset_to_targets = 4;
2997    } else {
2998      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2999      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3000      offset_to_targets = 2 + 2 * switch_count;
3001    }
3002
3003    /* verify each switch target */
3004    for (targ = 0; targ < switch_count; targ++) {
3005      int offset;
3006      uint32_t abs_offset;
3007
3008      /* offsets are 32-bit, and only partly endian-swapped */
3009      offset = switch_insns[offset_to_targets + targ * 2] |
3010         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3011      abs_offset = work_insn_idx_ + offset;
3012      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
3013      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
3014        return false;
3015      }
3016      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3017        return false;
3018      }
3019    }
3020  }
3021
3022  /*
3023   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3024   * "try" block when they throw, control transfers out of the method.)
3025   */
3026  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
3027    bool has_catch_all_handler = false;
3028    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
3029
3030    // Need the linker to try and resolve the handled class to check if it's Throwable.
3031    ClassLinker* linker = Runtime::Current()->GetClassLinker();
3032
3033    for (; iterator.HasNext(); iterator.Next()) {
3034      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
3035      if (handler_type_idx == DexFile::kDexNoIndex16) {
3036        has_catch_all_handler = true;
3037      } else {
3038        // It is also a catch-all if it is java.lang.Throwable.
3039        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
3040                                                   class_loader_);
3041        if (klass != nullptr) {
3042          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
3043            has_catch_all_handler = true;
3044          }
3045        } else {
3046          // Clear exception.
3047          DCHECK(self_->IsExceptionPending());
3048          self_->ClearException();
3049        }
3050      }
3051      /*
3052       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3053       * "work_regs", because at runtime the exception will be thrown before the instruction
3054       * modifies any registers.
3055       */
3056      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3057        return false;
3058      }
3059    }
3060
3061    /*
3062     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3063     * instruction. This does apply to monitor-exit because of async exception handling.
3064     */
3065    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3066      /*
3067       * The state in work_line reflects the post-execution state. If the current instruction is a
3068       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3069       * it will do so before grabbing the lock).
3070       */
3071      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3072        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3073            << "expected to be within a catch-all for an instruction where a monitor is held";
3074        return false;
3075      }
3076    }
3077  }
3078
3079  /* Handle "continue". Tag the next consecutive instruction.
3080   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3081   *        because it changes work_line_ when performing peephole optimization
3082   *        and this change should not be used in those cases.
3083   */
3084  if ((opcode_flags & Instruction::kContinue) != 0) {
3085    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3086    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3087    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3088      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3089      return false;
3090    }
3091    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3092    // next instruction isn't one.
3093    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3094      return false;
3095    }
3096    if (nullptr != fallthrough_line.get()) {
3097      // Make workline consistent with fallthrough computed from peephole optimization.
3098      work_line_->CopyFromLine(fallthrough_line.get());
3099    }
3100    if (insn_flags_[next_insn_idx].IsReturn()) {
3101      // For returns we only care about the operand to the return, all other registers are dead.
3102      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3103      Instruction::Code opcode = ret_inst->Opcode();
3104      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
3105        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3106      } else {
3107        if (opcode == Instruction::RETURN_WIDE) {
3108          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3109        } else {
3110          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3111        }
3112      }
3113    }
3114    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3115    if (next_line != nullptr) {
3116      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3117      // needed. If the merge changes the state of the registers then the work line will be
3118      // updated.
3119      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3120        return false;
3121      }
3122    } else {
3123      /*
3124       * We're not recording register data for the next instruction, so we don't know what the
3125       * prior state was. We have to assume that something has changed and re-evaluate it.
3126       */
3127      insn_flags_[next_insn_idx].SetChanged();
3128    }
3129  }
3130
3131  /* If we're returning from the method, make sure monitor stack is empty. */
3132  if ((opcode_flags & Instruction::kReturn) != 0) {
3133    if (!work_line_->VerifyMonitorStackEmpty(this)) {
3134      return false;
3135    }
3136  }
3137
3138  /*
3139   * Update start_guess. Advance to the next instruction of that's
3140   * possible, otherwise use the branch target if one was found. If
3141   * neither of those exists we're in a return or throw; leave start_guess
3142   * alone and let the caller sort it out.
3143   */
3144  if ((opcode_flags & Instruction::kContinue) != 0) {
3145    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3146    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3147  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3148    /* we're still okay if branch_target is zero */
3149    *start_guess = work_insn_idx_ + branch_target;
3150  }
3151
3152  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3153  DCHECK(insn_flags_[*start_guess].IsOpcode());
3154
3155  return true;
3156}  // NOLINT(readability/fn_size)
3157
3158const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3159  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3160  const RegType& referrer = GetDeclaringClass();
3161  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3162  const RegType& result = klass != nullptr ?
3163      FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3164      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3165  if (result.IsConflict()) {
3166    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3167        << "' in " << referrer;
3168    return result;
3169  }
3170  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3171    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3172  }
3173  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3174  // check at runtime if access is allowed and so pass here. If result is
3175  // primitive, skip the access check.
3176  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3177      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3178    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3179                                    << referrer << "' -> '" << result << "'";
3180  }
3181  return result;
3182}
3183
3184const RegType& MethodVerifier::GetCaughtExceptionType() {
3185  const RegType* common_super = nullptr;
3186  if (code_item_->tries_size_ != 0) {
3187    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3188    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3189    for (uint32_t i = 0; i < handlers_size; i++) {
3190      CatchHandlerIterator iterator(handlers_ptr);
3191      for (; iterator.HasNext(); iterator.Next()) {
3192        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3193          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3194            common_super = &reg_types_.JavaLangThrowable(false);
3195          } else {
3196            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3197            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3198              if (exception.IsUnresolvedTypes()) {
3199                // We don't know enough about the type. Fail here and let runtime handle it.
3200                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3201                return exception;
3202              } else {
3203                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3204                return reg_types_.Conflict();
3205              }
3206            } else if (common_super == nullptr) {
3207              common_super = &exception;
3208            } else if (common_super->Equals(exception)) {
3209              // odd case, but nothing to do
3210            } else {
3211              common_super = &common_super->Merge(exception, &reg_types_);
3212              if (FailOrAbort(this,
3213                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3214                              "java.lang.Throwable is not assignable-from common_super at ",
3215                              work_insn_idx_)) {
3216                break;
3217              }
3218            }
3219          }
3220        }
3221      }
3222      handlers_ptr = iterator.EndDataPointer();
3223    }
3224  }
3225  if (common_super == nullptr) {
3226    /* no catch blocks, or no catches with classes we can find */
3227    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3228    return reg_types_.Conflict();
3229  }
3230  return *common_super;
3231}
3232
3233ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
3234    uint32_t dex_method_idx, MethodType method_type) {
3235  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3236  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3237  if (klass_type.IsConflict()) {
3238    std::string append(" in attempt to access method ");
3239    append += dex_file_->GetMethodName(method_id);
3240    AppendToLastFailMessage(append);
3241    return nullptr;
3242  }
3243  if (klass_type.IsUnresolvedTypes()) {
3244    return nullptr;  // Can't resolve Class so no more to do here
3245  }
3246  mirror::Class* klass = klass_type.GetClass();
3247  const RegType& referrer = GetDeclaringClass();
3248  auto* cl = Runtime::Current()->GetClassLinker();
3249  auto pointer_size = cl->GetImagePointerSize();
3250  ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3251  if (res_method == nullptr) {
3252    const char* name = dex_file_->GetMethodName(method_id);
3253    const Signature signature = dex_file_->GetMethodSignature(method_id);
3254
3255    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3256      res_method = klass->FindDirectMethod(name, signature, pointer_size);
3257    } else if (method_type == METHOD_INTERFACE) {
3258      res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3259    } else {
3260      res_method = klass->FindVirtualMethod(name, signature, pointer_size);
3261    }
3262    if (res_method != nullptr) {
3263      dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
3264    } else {
3265      // If a virtual or interface method wasn't found with the expected type, look in
3266      // the direct methods. This can happen when the wrong invoke type is used or when
3267      // a class has changed, and will be flagged as an error in later checks.
3268      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3269        res_method = klass->FindDirectMethod(name, signature, pointer_size);
3270      }
3271      if (res_method == nullptr) {
3272        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3273                                     << PrettyDescriptor(klass) << "." << name
3274                                     << " " << signature;
3275        return nullptr;
3276      }
3277    }
3278  }
3279  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3280  // enforce them here.
3281  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3282    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3283                                      << PrettyMethod(res_method);
3284    return nullptr;
3285  }
3286  // Disallow any calls to class initializers.
3287  if (res_method->IsClassInitializer()) {
3288    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3289                                      << PrettyMethod(res_method);
3290    return nullptr;
3291  }
3292  // Check if access is allowed.
3293  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3294    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3295                                     << " from " << referrer << ")";
3296    return res_method;
3297  }
3298  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3299  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3300    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3301                                      << PrettyMethod(res_method);
3302    return nullptr;
3303  }
3304  // Check that interface methods match interface classes.
3305  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3306    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3307                                    << " is in an interface class " << PrettyClass(klass);
3308    return nullptr;
3309  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3310    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3311                                    << " is in a non-interface class " << PrettyClass(klass);
3312    return nullptr;
3313  }
3314  // See if the method type implied by the invoke instruction matches the access flags for the
3315  // target method.
3316  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3317      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3318      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3319      ) {
3320    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3321                                       " type of " << PrettyMethod(res_method);
3322    return nullptr;
3323  }
3324  return res_method;
3325}
3326
3327template <class T>
3328ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
3329    T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3330  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3331  // match the call to the signature. Also, we might be calling through an abstract method
3332  // definition (which doesn't have register count values).
3333  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3334  /* caught by static verifier */
3335  DCHECK(is_range || expected_args <= 5);
3336  if (expected_args > code_item_->outs_size_) {
3337    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3338        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3339    return nullptr;
3340  }
3341
3342  uint32_t arg[5];
3343  if (!is_range) {
3344    inst->GetVarArgs(arg);
3345  }
3346  uint32_t sig_registers = 0;
3347
3348  /*
3349   * Check the "this" argument, which must be an instance of the class that declared the method.
3350   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3351   * rigorous check here (which is okay since we have to do it at runtime).
3352   */
3353  if (method_type != METHOD_STATIC) {
3354    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3355    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3356      CHECK(have_pending_hard_failure_);
3357      return nullptr;
3358    }
3359    if (actual_arg_type.IsUninitializedReference()) {
3360      if (res_method) {
3361        if (!res_method->IsConstructor()) {
3362          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3363          return nullptr;
3364        }
3365      } else {
3366        // Check whether the name of the called method is "<init>"
3367        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3368        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3369          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3370          return nullptr;
3371        }
3372      }
3373    }
3374    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3375      const RegType* res_method_class;
3376      if (res_method != nullptr) {
3377        mirror::Class* klass = res_method->GetDeclaringClass();
3378        std::string temp;
3379        res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
3380                                      klass->CannotBeAssignedFromOtherTypes());
3381      } else {
3382        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3383        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3384        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3385                                                      dex_file_->StringByTypeIdx(class_idx),
3386                                                      false);
3387      }
3388      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3389        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3390            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3391                << "' not instance of '" << *res_method_class << "'";
3392        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3393        // the compiler.
3394        if (have_pending_hard_failure_) {
3395          return nullptr;
3396        }
3397      }
3398    }
3399    sig_registers = 1;
3400  }
3401
3402  for ( ; it->HasNext(); it->Next()) {
3403    if (sig_registers >= expected_args) {
3404      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3405          " arguments, found " << sig_registers << " or more.";
3406      return nullptr;
3407    }
3408
3409    const char* param_descriptor = it->GetDescriptor();
3410
3411    if (param_descriptor == nullptr) {
3412      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3413          "component";
3414      return nullptr;
3415    }
3416
3417    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3418    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3419        arg[sig_registers];
3420    if (reg_type.IsIntegralTypes()) {
3421      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3422      if (!src_type.IsIntegralTypes()) {
3423        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3424            << " but expected " << reg_type;
3425        return nullptr;
3426      }
3427    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3428      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3429      // compiler.
3430      if (have_pending_hard_failure_) {
3431        return nullptr;
3432      }
3433    }
3434    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3435  }
3436  if (expected_args != sig_registers) {
3437    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3438        " arguments, found " << sig_registers;
3439    return nullptr;
3440  }
3441  return res_method;
3442}
3443
3444void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3445                                                          MethodType method_type,
3446                                                          bool is_range) {
3447  // As the method may not have been resolved, make this static check against what we expect.
3448  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3449  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3450  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3451  DexFileParameterIterator it(*dex_file_,
3452                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3453  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3454                                                             nullptr);
3455}
3456
3457class MethodParamListDescriptorIterator {
3458 public:
3459  explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
3460      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3461      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3462  }
3463
3464  bool HasNext() {
3465    return pos_ < params_size_;
3466  }
3467
3468  void Next() {
3469    ++pos_;
3470  }
3471
3472  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3473    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3474  }
3475
3476 private:
3477  ArtMethod* res_method_;
3478  size_t pos_;
3479  const DexFile::TypeList* params_;
3480  const size_t params_size_;
3481};
3482
3483ArtMethod* MethodVerifier::VerifyInvocationArgs(
3484    const Instruction* inst, MethodType method_type, bool is_range, bool is_super) {
3485  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3486  // we're making.
3487  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3488
3489  ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3490  if (res_method == nullptr) {  // error or class is unresolved
3491    // Check what we can statically.
3492    if (!have_pending_hard_failure_) {
3493      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3494    }
3495    return nullptr;
3496  }
3497
3498  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3499  // has a vtable entry for the target method.
3500  if (is_super) {
3501    DCHECK(method_type == METHOD_VIRTUAL);
3502    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3503    if (super.IsUnresolvedTypes()) {
3504      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3505                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3506                                   << " to super " << PrettyMethod(res_method);
3507      return nullptr;
3508    }
3509    mirror::Class* super_klass = super.GetClass();
3510    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3511      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3512                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3513                                   << " to super " << super
3514                                   << "." << res_method->GetName()
3515                                   << res_method->GetSignature();
3516      return nullptr;
3517    }
3518  }
3519
3520  // Process the target method's signature. This signature may or may not
3521  MethodParamListDescriptorIterator it(res_method);
3522  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3523                                                                             is_range, res_method);
3524}
3525
3526ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
3527                                                 bool is_range, bool allow_failure) {
3528  if (is_range) {
3529    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3530  } else {
3531    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
3532  }
3533  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
3534  if (!actual_arg_type.HasClass()) {
3535    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3536    return nullptr;
3537  }
3538  mirror::Class* klass = actual_arg_type.GetClass();
3539  mirror::Class* dispatch_class;
3540  if (klass->IsInterface()) {
3541    // Derive Object.class from Class.class.getSuperclass().
3542    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3543    if (FailOrAbort(this, object_klass->IsObjectClass(),
3544                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
3545      return nullptr;
3546    }
3547    dispatch_class = object_klass;
3548  } else {
3549    dispatch_class = klass;
3550  }
3551  if (!dispatch_class->HasVTable()) {
3552    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
3553                work_insn_idx_);
3554    return nullptr;
3555  }
3556  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3557  auto* cl = Runtime::Current()->GetClassLinker();
3558  auto pointer_size = cl->GetImagePointerSize();
3559  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
3560    FailOrAbort(this, allow_failure,
3561                "Receiver class has not enough vtable slots for quickened invoke at ",
3562                work_insn_idx_);
3563    return nullptr;
3564  }
3565  ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
3566  if (self_->IsExceptionPending()) {
3567    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
3568                work_insn_idx_);
3569    return nullptr;
3570  }
3571  return res_method;
3572}
3573
3574ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
3575  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3576      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3577
3578  ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
3579  if (res_method == nullptr) {
3580    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3581    return nullptr;
3582  }
3583  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3584                  work_insn_idx_)) {
3585    return nullptr;
3586  }
3587  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3588                  work_insn_idx_)) {
3589    return nullptr;
3590  }
3591
3592  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3593  // match the call to the signature. Also, we might be calling through an abstract method
3594  // definition (which doesn't have register count values).
3595  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3596  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3597    return nullptr;
3598  }
3599  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3600  /* caught by static verifier */
3601  DCHECK(is_range || expected_args <= 5);
3602  if (expected_args > code_item_->outs_size_) {
3603    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3604        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3605    return nullptr;
3606  }
3607
3608  /*
3609   * Check the "this" argument, which must be an instance of the class that declared the method.
3610   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3611   * rigorous check here (which is okay since we have to do it at runtime).
3612   */
3613  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3614    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3615    return nullptr;
3616  }
3617  if (!actual_arg_type.IsZero()) {
3618    mirror::Class* klass = res_method->GetDeclaringClass();
3619    std::string temp;
3620    const RegType& res_method_class =
3621        FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
3622    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3623      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3624          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3625          << "' not instance of '" << res_method_class << "'";
3626      return nullptr;
3627    }
3628  }
3629  /*
3630   * Process the target method's signature. This signature may or may not
3631   * have been verified, so we can't assume it's properly formed.
3632   */
3633  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3634  size_t params_size = params == nullptr ? 0 : params->Size();
3635  uint32_t arg[5];
3636  if (!is_range) {
3637    inst->GetVarArgs(arg);
3638  }
3639  size_t actual_args = 1;
3640  for (size_t param_index = 0; param_index < params_size; param_index++) {
3641    if (actual_args >= expected_args) {
3642      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3643                                        << "'. Expected " << expected_args
3644                                         << " arguments, processing argument " << actual_args
3645                                        << " (where longs/doubles count twice).";
3646      return nullptr;
3647    }
3648    const char* descriptor =
3649        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3650    if (descriptor == nullptr) {
3651      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3652                                        << " missing signature component";
3653      return nullptr;
3654    }
3655    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3656    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3657    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3658      return res_method;
3659    }
3660    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3661  }
3662  if (actual_args != expected_args) {
3663    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3664              << " expected " << expected_args << " arguments, found " << actual_args;
3665    return nullptr;
3666  } else {
3667    return res_method;
3668  }
3669}
3670
3671void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3672  uint32_t type_idx;
3673  if (!is_filled) {
3674    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3675    type_idx = inst->VRegC_22c();
3676  } else if (!is_range) {
3677    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3678    type_idx = inst->VRegB_35c();
3679  } else {
3680    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3681    type_idx = inst->VRegB_3rc();
3682  }
3683  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3684  if (res_type.IsConflict()) {  // bad class
3685    DCHECK_NE(failures_.size(), 0U);
3686  } else {
3687    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3688    if (!res_type.IsArrayTypes()) {
3689      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3690    } else if (!is_filled) {
3691      /* make sure "size" register is valid type */
3692      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3693      /* set register type to array class */
3694      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3695      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3696    } else {
3697      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3698      // the list and fail. It's legal, if silly, for arg_count to be zero.
3699      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3700      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3701      uint32_t arg[5];
3702      if (!is_range) {
3703        inst->GetVarArgs(arg);
3704      }
3705      for (size_t ui = 0; ui < arg_count; ui++) {
3706        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3707        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3708          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3709          return;
3710        }
3711      }
3712      // filled-array result goes into "result" register
3713      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3714      work_line_->SetResultRegisterType(this, precise_type);
3715    }
3716  }
3717}
3718
3719void MethodVerifier::VerifyAGet(const Instruction* inst,
3720                                const RegType& insn_type, bool is_primitive) {
3721  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3722  if (!index_type.IsArrayIndexTypes()) {
3723    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3724  } else {
3725    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3726    if (array_type.IsZero()) {
3727      have_pending_runtime_throw_failure_ = true;
3728      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3729      // instruction type. TODO: have a proper notion of bottom here.
3730      if (!is_primitive || insn_type.IsCategory1Types()) {
3731        // Reference or category 1
3732        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3733      } else {
3734        // Category 2
3735        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3736                                        reg_types_.FromCat2ConstLo(0, false),
3737                                        reg_types_.FromCat2ConstHi(0, false));
3738      }
3739    } else if (!array_type.IsArrayTypes()) {
3740      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3741    } else {
3742      /* verify the class */
3743      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3744      if (!component_type.IsReferenceTypes() && !is_primitive) {
3745        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3746            << " source for aget-object";
3747      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3748        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3749            << " source for category 1 aget";
3750      } else if (is_primitive && !insn_type.Equals(component_type) &&
3751                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3752                 (insn_type.IsLong() && component_type.IsDouble()))) {
3753        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3754            << " incompatible with aget of type " << insn_type;
3755      } else {
3756        // Use knowledge of the field type which is stronger than the type inferred from the
3757        // instruction, which can't differentiate object types and ints from floats, longs from
3758        // doubles.
3759        if (!component_type.IsLowHalf()) {
3760          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3761        } else {
3762          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3763                                          component_type.HighHalf(&reg_types_));
3764        }
3765      }
3766    }
3767  }
3768}
3769
3770void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3771                                        const uint32_t vregA) {
3772  // Primitive assignability rules are weaker than regular assignability rules.
3773  bool instruction_compatible;
3774  bool value_compatible;
3775  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3776  if (target_type.IsIntegralTypes()) {
3777    instruction_compatible = target_type.Equals(insn_type);
3778    value_compatible = value_type.IsIntegralTypes();
3779  } else if (target_type.IsFloat()) {
3780    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3781    value_compatible = value_type.IsFloatTypes();
3782  } else if (target_type.IsLong()) {
3783    instruction_compatible = insn_type.IsLong();
3784    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3785    // as target_type depends on the resolved type of the field.
3786    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3787      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3788      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3789    } else {
3790      value_compatible = false;
3791    }
3792  } else if (target_type.IsDouble()) {
3793    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3794    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3795    // as target_type depends on the resolved type of the field.
3796    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3797      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3798      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3799    } else {
3800      value_compatible = false;
3801    }
3802  } else {
3803    instruction_compatible = false;  // reference with primitive store
3804    value_compatible = false;  // unused
3805  }
3806  if (!instruction_compatible) {
3807    // This is a global failure rather than a class change failure as the instructions and
3808    // the descriptors for the type should have been consistent within the same file at
3809    // compile time.
3810    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3811        << "' but expected type '" << target_type << "'";
3812    return;
3813  }
3814  if (!value_compatible) {
3815    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3816        << " of type " << value_type << " but expected " << target_type << " for put";
3817    return;
3818  }
3819}
3820
3821void MethodVerifier::VerifyAPut(const Instruction* inst,
3822                                const RegType& insn_type, bool is_primitive) {
3823  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3824  if (!index_type.IsArrayIndexTypes()) {
3825    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3826  } else {
3827    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3828    if (array_type.IsZero()) {
3829      // Null array type; this code path will fail at runtime.
3830      // Still check that the given value matches the instruction's type.
3831      // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
3832      //       and fits multiple register types.
3833      const RegType* modified_reg_type = &insn_type;
3834      if ((modified_reg_type == &reg_types_.Integer()) ||
3835          (modified_reg_type == &reg_types_.LongLo())) {
3836        // May be integer or float | long or double. Overwrite insn_type accordingly.
3837        const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
3838        if (modified_reg_type == &reg_types_.Integer()) {
3839          if (&value_type == &reg_types_.Float()) {
3840            modified_reg_type = &value_type;
3841          }
3842        } else {
3843          if (&value_type == &reg_types_.DoubleLo()) {
3844            modified_reg_type = &value_type;
3845          }
3846        }
3847      }
3848      work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
3849    } else if (!array_type.IsArrayTypes()) {
3850      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3851    } else {
3852      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3853      const uint32_t vregA = inst->VRegA_23x();
3854      if (is_primitive) {
3855        VerifyPrimitivePut(component_type, insn_type, vregA);
3856      } else {
3857        if (!component_type.IsReferenceTypes()) {
3858          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3859              << " source for aput-object";
3860        } else {
3861          // The instruction agrees with the type of array, confirm the value to be stored does too
3862          // Note: we use the instruction type (rather than the component type) for aput-object as
3863          // incompatible classes will be caught at runtime as an array store exception
3864          work_line_->VerifyRegisterType(this, vregA, insn_type);
3865        }
3866      }
3867    }
3868  }
3869}
3870
3871ArtField* MethodVerifier::GetStaticField(int field_idx) {
3872  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3873  // Check access to class
3874  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3875  if (klass_type.IsConflict()) {  // bad class
3876    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3877                                         field_idx, dex_file_->GetFieldName(field_id),
3878                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3879    return nullptr;
3880  }
3881  if (klass_type.IsUnresolvedTypes()) {
3882    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3883  }
3884  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3885  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3886                                                  class_loader_);
3887  if (field == nullptr) {
3888    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3889              << dex_file_->GetFieldName(field_id) << ") in "
3890              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3891    DCHECK(self_->IsExceptionPending());
3892    self_->ClearException();
3893    return nullptr;
3894  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3895                                                  field->GetAccessFlags())) {
3896    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3897                                    << " from " << GetDeclaringClass();
3898    return nullptr;
3899  } else if (!field->IsStatic()) {
3900    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3901    return nullptr;
3902  }
3903  return field;
3904}
3905
3906ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3907  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3908  // Check access to class
3909  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3910  if (klass_type.IsConflict()) {
3911    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3912                                         field_idx, dex_file_->GetFieldName(field_id),
3913                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3914    return nullptr;
3915  }
3916  if (klass_type.IsUnresolvedTypes()) {
3917    return nullptr;  // Can't resolve Class so no more to do here
3918  }
3919  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3920  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3921                                                  class_loader_);
3922  if (field == nullptr) {
3923    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3924              << dex_file_->GetFieldName(field_id) << ") in "
3925              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3926    DCHECK(self_->IsExceptionPending());
3927    self_->ClearException();
3928    return nullptr;
3929  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3930                                                  field->GetAccessFlags())) {
3931    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3932                                    << " from " << GetDeclaringClass();
3933    return nullptr;
3934  } else if (field->IsStatic()) {
3935    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3936                                    << " to not be static";
3937    return nullptr;
3938  } else if (obj_type.IsZero()) {
3939    // Cannot infer and check type, however, access will cause null pointer exception
3940    return field;
3941  } else if (!obj_type.IsReferenceTypes()) {
3942    // Trying to read a field from something that isn't a reference
3943    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3944                                      << "non-reference type " << obj_type;
3945    return nullptr;
3946  } else {
3947    mirror::Class* klass = field->GetDeclaringClass();
3948    const RegType& field_klass =
3949        FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3950                  klass, klass->CannotBeAssignedFromOtherTypes());
3951    if (obj_type.IsUninitializedTypes() &&
3952        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3953            !field_klass.Equals(GetDeclaringClass()))) {
3954      // Field accesses through uninitialized references are only allowable for constructors where
3955      // the field is declared in this class
3956      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3957                                        << " of a not fully initialized object within the context"
3958                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3959      return nullptr;
3960    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3961      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3962      // of C1. For resolution to occur the declared class of the field must be compatible with
3963      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3964      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3965                                  << " from object of type " << obj_type;
3966      return nullptr;
3967    } else {
3968      return field;
3969    }
3970  }
3971}
3972
3973template <MethodVerifier::FieldAccessType kAccType>
3974void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3975                                         bool is_primitive, bool is_static) {
3976  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3977  ArtField* field;
3978  if (is_static) {
3979    field = GetStaticField(field_idx);
3980  } else {
3981    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3982    field = GetInstanceField(object_type, field_idx);
3983    if (UNLIKELY(have_pending_hard_failure_)) {
3984      return;
3985    }
3986  }
3987  const RegType* field_type = nullptr;
3988  if (field != nullptr) {
3989    if (kAccType == FieldAccessType::kAccPut) {
3990      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3991        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3992                                        << " from other class " << GetDeclaringClass();
3993        return;
3994      }
3995    }
3996
3997    mirror::Class* field_type_class =
3998        can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
3999    if (field_type_class != nullptr) {
4000      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4001                              field_type_class->CannotBeAssignedFromOtherTypes());
4002    } else {
4003      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4004      self_->ClearException();
4005    }
4006  }
4007  if (field_type == nullptr) {
4008    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4009    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4010    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4011  }
4012  DCHECK(field_type != nullptr);
4013  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4014  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4015                "Unexpected third access type");
4016  if (kAccType == FieldAccessType::kAccPut) {
4017    // sput or iput.
4018    if (is_primitive) {
4019      VerifyPrimitivePut(*field_type, insn_type, vregA);
4020    } else {
4021      if (!insn_type.IsAssignableFrom(*field_type)) {
4022        // If the field type is not a reference, this is a global failure rather than
4023        // a class change failure as the instructions and the descriptors for the type
4024        // should have been consistent within the same file at compile time.
4025        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4026                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
4027        Fail(error) << "expected field " << PrettyField(field)
4028                    << " to be compatible with type '" << insn_type
4029                    << "' but found type '" << *field_type
4030                    << "' in put-object";
4031        return;
4032      }
4033      work_line_->VerifyRegisterType(this, vregA, *field_type);
4034    }
4035  } else if (kAccType == FieldAccessType::kAccGet) {
4036    // sget or iget.
4037    if (is_primitive) {
4038      if (field_type->Equals(insn_type) ||
4039          (field_type->IsFloat() && insn_type.IsInteger()) ||
4040          (field_type->IsDouble() && insn_type.IsLong())) {
4041        // expected that read is of the correct primitive type or that int reads are reading
4042        // floats or long reads are reading doubles
4043      } else {
4044        // This is a global failure rather than a class change failure as the instructions and
4045        // the descriptors for the type should have been consistent within the same file at
4046        // compile time
4047        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4048                                          << " to be of type '" << insn_type
4049                                          << "' but found type '" << *field_type << "' in get";
4050        return;
4051      }
4052    } else {
4053      if (!insn_type.IsAssignableFrom(*field_type)) {
4054        // If the field type is not a reference, this is a global failure rather than
4055        // a class change failure as the instructions and the descriptors for the type
4056        // should have been consistent within the same file at compile time.
4057        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4058                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
4059        Fail(error) << "expected field " << PrettyField(field)
4060                    << " to be compatible with type '" << insn_type
4061                    << "' but found type '" << *field_type
4062                    << "' in get-object";
4063        if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
4064          work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4065        }
4066        return;
4067      }
4068    }
4069    if (!field_type->IsLowHalf()) {
4070      work_line_->SetRegisterType(this, vregA, *field_type);
4071    } else {
4072      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4073    }
4074  } else {
4075    LOG(FATAL) << "Unexpected case.";
4076  }
4077}
4078
4079ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
4080                                                      RegisterLine* reg_line) {
4081  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
4082  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
4083  if (!object_type.HasClass()) {
4084    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
4085    return nullptr;
4086  }
4087  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
4088  ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
4089  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
4090  if (f == nullptr) {
4091    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
4092                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
4093  }
4094  return f;
4095}
4096
4097template <MethodVerifier::FieldAccessType kAccType>
4098void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
4099                                            bool is_primitive) {
4100  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4101
4102  ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4103  if (field == nullptr) {
4104    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4105    return;
4106  }
4107
4108  // For an IPUT_QUICK, we now test for final flag of the field.
4109  if (kAccType == FieldAccessType::kAccPut) {
4110    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4111      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4112                                      << " from other class " << GetDeclaringClass();
4113      return;
4114    }
4115  }
4116
4117  // Get the field type.
4118  const RegType* field_type;
4119  {
4120    mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
4121        field->GetType<false>();
4122
4123    if (field_type_class != nullptr) {
4124      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4125                              field_type_class->CannotBeAssignedFromOtherTypes());
4126    } else {
4127      Thread* self = Thread::Current();
4128      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4129      self->ClearException();
4130      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4131                                              field->GetTypeDescriptor(), false);
4132    }
4133    if (field_type == nullptr) {
4134      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4135      return;
4136    }
4137  }
4138
4139  const uint32_t vregA = inst->VRegA_22c();
4140  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4141                "Unexpected third access type");
4142  if (kAccType == FieldAccessType::kAccPut) {
4143    if (is_primitive) {
4144      // Primitive field assignability rules are weaker than regular assignability rules
4145      bool instruction_compatible;
4146      bool value_compatible;
4147      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4148      if (field_type->IsIntegralTypes()) {
4149        instruction_compatible = insn_type.IsIntegralTypes();
4150        value_compatible = value_type.IsIntegralTypes();
4151      } else if (field_type->IsFloat()) {
4152        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4153        value_compatible = value_type.IsFloatTypes();
4154      } else if (field_type->IsLong()) {
4155        instruction_compatible = insn_type.IsLong();
4156        value_compatible = value_type.IsLongTypes();
4157      } else if (field_type->IsDouble()) {
4158        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4159        value_compatible = value_type.IsDoubleTypes();
4160      } else {
4161        instruction_compatible = false;  // reference field with primitive store
4162        value_compatible = false;  // unused
4163      }
4164      if (!instruction_compatible) {
4165        // This is a global failure rather than a class change failure as the instructions and
4166        // the descriptors for the type should have been consistent within the same file at
4167        // compile time
4168        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4169                                          << " to be of type '" << insn_type
4170                                          << "' but found type '" << *field_type
4171                                          << "' in put";
4172        return;
4173      }
4174      if (!value_compatible) {
4175        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4176            << " of type " << value_type
4177            << " but expected " << *field_type
4178            << " for store to " << PrettyField(field) << " in put";
4179        return;
4180      }
4181    } else {
4182      if (!insn_type.IsAssignableFrom(*field_type)) {
4183        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4184                                          << " to be compatible with type '" << insn_type
4185                                          << "' but found type '" << *field_type
4186                                          << "' in put-object";
4187        return;
4188      }
4189      work_line_->VerifyRegisterType(this, vregA, *field_type);
4190    }
4191  } else if (kAccType == FieldAccessType::kAccGet) {
4192    if (is_primitive) {
4193      if (field_type->Equals(insn_type) ||
4194          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4195          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4196        // expected that read is of the correct primitive type or that int reads are reading
4197        // floats or long reads are reading doubles
4198      } else {
4199        // This is a global failure rather than a class change failure as the instructions and
4200        // the descriptors for the type should have been consistent within the same file at
4201        // compile time
4202        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4203                                          << " to be of type '" << insn_type
4204                                          << "' but found type '" << *field_type << "' in Get";
4205        return;
4206      }
4207    } else {
4208      if (!insn_type.IsAssignableFrom(*field_type)) {
4209        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4210                                          << " to be compatible with type '" << insn_type
4211                                          << "' but found type '" << *field_type
4212                                          << "' in get-object";
4213        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4214        return;
4215      }
4216    }
4217    if (!field_type->IsLowHalf()) {
4218      work_line_->SetRegisterType(this, vregA, *field_type);
4219    } else {
4220      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4221    }
4222  } else {
4223    LOG(FATAL) << "Unexpected case.";
4224  }
4225}
4226
4227bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4228  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4229    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4230    return false;
4231  }
4232  return true;
4233}
4234
4235bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4236  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4237      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4238    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4239    return false;
4240  }
4241  return true;
4242}
4243
4244bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4245  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4246}
4247
4248bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4249                                     bool update_merge_line) {
4250  bool changed = true;
4251  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4252  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4253    /*
4254     * We haven't processed this instruction before, and we haven't touched the registers here, so
4255     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4256     * only way a register can transition out of "unknown", so this is not just an optimization.)
4257     */
4258    if (!insn_flags_[next_insn].IsReturn()) {
4259      target_line->CopyFromLine(merge_line);
4260    } else {
4261      // Verify that the monitor stack is empty on return.
4262      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4263        return false;
4264      }
4265      // For returns we only care about the operand to the return, all other registers are dead.
4266      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4267      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4268      Instruction::Code opcode = ret_inst->Opcode();
4269      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
4270        // Explicitly copy the this-initialized flag from the merge-line, as we didn't copy its
4271        // state. Must be done before SafelyMarkAllRegistersAsConflicts as that will do the
4272        // super-constructor-call checking.
4273        target_line->CopyThisInitialized(*merge_line);
4274        SafelyMarkAllRegistersAsConflicts(this, target_line);
4275      } else {
4276        target_line->CopyFromLine(merge_line);
4277        if (opcode == Instruction::RETURN_WIDE) {
4278          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4279        } else {
4280          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4281        }
4282      }
4283    }
4284  } else {
4285    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4286                                 RegisterLine::Create(target_line->NumRegs(), this) :
4287                                 nullptr);
4288    if (gDebugVerify) {
4289      copy->CopyFromLine(target_line);
4290    }
4291    changed = target_line->MergeRegisters(this, merge_line);
4292    if (have_pending_hard_failure_) {
4293      return false;
4294    }
4295    if (gDebugVerify && changed) {
4296      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4297                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4298                      << copy->Dump(this) << "  MERGE\n"
4299                      << merge_line->Dump(this) << "  ==\n"
4300                      << target_line->Dump(this) << "\n";
4301    }
4302    if (update_merge_line && changed) {
4303      merge_line->CopyFromLine(target_line);
4304    }
4305  }
4306  if (changed) {
4307    insn_flags_[next_insn].SetChanged();
4308  }
4309  return true;
4310}
4311
4312InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4313  return &insn_flags_[work_insn_idx_];
4314}
4315
4316const RegType& MethodVerifier::GetMethodReturnType() {
4317  if (return_type_ == nullptr) {
4318    if (mirror_method_ != nullptr) {
4319      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4320      if (return_type_class != nullptr) {
4321        return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
4322                                  return_type_class,
4323                                  return_type_class->CannotBeAssignedFromOtherTypes());
4324      } else {
4325        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4326        self_->ClearException();
4327      }
4328    }
4329    if (return_type_ == nullptr) {
4330      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4331      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4332      uint16_t return_type_idx = proto_id.return_type_idx_;
4333      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4334      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4335    }
4336  }
4337  return *return_type_;
4338}
4339
4340const RegType& MethodVerifier::GetDeclaringClass() {
4341  if (declaring_class_ == nullptr) {
4342    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4343    const char* descriptor
4344        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4345    if (mirror_method_ != nullptr) {
4346      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4347      declaring_class_ = &FromClass(descriptor, klass,
4348                                    klass->CannotBeAssignedFromOtherTypes());
4349    } else {
4350      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4351    }
4352  }
4353  return *declaring_class_;
4354}
4355
4356std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4357  RegisterLine* line = reg_table_.GetLine(dex_pc);
4358  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4359  std::vector<int32_t> result;
4360  for (size_t i = 0; i < line->NumRegs(); ++i) {
4361    const RegType& type = line->GetRegisterType(this, i);
4362    if (type.IsConstant()) {
4363      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4364      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4365      result.push_back(const_val->ConstantValue());
4366    } else if (type.IsConstantLo()) {
4367      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4368      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4369      result.push_back(const_val->ConstantValueLo());
4370    } else if (type.IsConstantHi()) {
4371      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4372      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4373      result.push_back(const_val->ConstantValueHi());
4374    } else if (type.IsIntegralTypes()) {
4375      result.push_back(kIntVReg);
4376      result.push_back(0);
4377    } else if (type.IsFloat()) {
4378      result.push_back(kFloatVReg);
4379      result.push_back(0);
4380    } else if (type.IsLong()) {
4381      result.push_back(kLongLoVReg);
4382      result.push_back(0);
4383      result.push_back(kLongHiVReg);
4384      result.push_back(0);
4385      ++i;
4386    } else if (type.IsDouble()) {
4387      result.push_back(kDoubleLoVReg);
4388      result.push_back(0);
4389      result.push_back(kDoubleHiVReg);
4390      result.push_back(0);
4391      ++i;
4392    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4393      result.push_back(kUndefined);
4394      result.push_back(0);
4395    } else {
4396      CHECK(type.IsNonZeroReferenceTypes());
4397      result.push_back(kReferenceVReg);
4398      result.push_back(0);
4399    }
4400  }
4401  return result;
4402}
4403
4404const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4405  if (precise) {
4406    // Precise constant type.
4407    return reg_types_.FromCat1Const(value, true);
4408  } else {
4409    // Imprecise constant type.
4410    if (value < -32768) {
4411      return reg_types_.IntConstant();
4412    } else if (value < -128) {
4413      return reg_types_.ShortConstant();
4414    } else if (value < 0) {
4415      return reg_types_.ByteConstant();
4416    } else if (value == 0) {
4417      return reg_types_.Zero();
4418    } else if (value == 1) {
4419      return reg_types_.One();
4420    } else if (value < 128) {
4421      return reg_types_.PosByteConstant();
4422    } else if (value < 32768) {
4423      return reg_types_.PosShortConstant();
4424    } else if (value < 65536) {
4425      return reg_types_.CharConstant();
4426    } else {
4427      return reg_types_.IntConstant();
4428    }
4429  }
4430}
4431
4432void MethodVerifier::Init() {
4433  art::verifier::RegTypeCache::Init();
4434}
4435
4436void MethodVerifier::Shutdown() {
4437  verifier::RegTypeCache::ShutDown();
4438}
4439
4440void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
4441  RegTypeCache::VisitStaticRoots(visitor);
4442}
4443
4444void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
4445  reg_types_.VisitRoots(visitor, root_info);
4446}
4447
4448const RegType& MethodVerifier::FromClass(const char* descriptor,
4449                                         mirror::Class* klass,
4450                                         bool precise) {
4451  DCHECK(klass != nullptr);
4452  if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
4453    Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
4454        << "non-instantiable klass " << descriptor;
4455    precise = false;
4456  }
4457  return reg_types_.FromClass(descriptor, klass, precise);
4458}
4459
4460}  // namespace verifier
4461}  // namespace art
4462